第一章 有理数复习剖析
初一数学上册第一章有理数复习教案最新3篇
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳有理数是我们学习数学的基础,掌握有理数的知识是进行后续学习的关键。
本章将对有理数的知识点、考点和难点进行总结归纳,帮助我们更好地理解和掌握有理数。
一、有理数的定义有理数是可以表示为两个整数的比值,包括正整数、负整数和零。
有理数的表示形式为分数或整数。
二、有理数的基本运算1. 加法和减法:有理数的加法和减法运算都可以通过分数的相加相减来完成,要注意同分母的分数之间的加减法运算规则,并进行合并和化简。
2. 乘法和除法:有理数的乘法和除法运算也可以通过分数的乘法和除法来完成,要注意分数的乘法规则和除法规则,并进行化简。
三、有理数的大小比较比较两个有理数的大小,可以首先将它们转化为相同分母的分数形式,然后按照分数的大小关系进行比较。
四、有理数的相反数与绝对值1. 相反数:一个有理数的相反数是它的数值相反而符号不变。
2. 绝对值:一个有理数的绝对值是它去掉符号后的数值,即该数的非负值。
五、有理数的混合运算混合运算是指同时进行加减乘除等多种运算的情况。
在有理数的混合运算中,需要根据运算法则和优先级进行计算,并注意括号的运用。
六、有理数的分数表示和小数表示有理数可以用分数形式表示,也可以用小数形式表示。
分数形式适用于精确计算,而小数形式便于运算和比较大小。
七、有理数的化简有理数的化简是指将其写成最简形式,即分子与分母没有公约数的分数表示。
通过寻找最大公约数,可以将有理数化简为最简形式。
八、有理数的乘方运算乘方运算是指一个数自乘若干次的运算。
在有理数的乘方运算中,可以根据乘方运算法则简化计算过程,并注意负次幂的运算规律。
九、有理数与实际问题的应用有理数在实际问题中有广泛的应用,如温度计的读数、海拔高度的表示、财务账目的计算等。
通过将实际问题转化为有理数运算,可以得出准确的答案。
总结:有理数是我们日常生活和学习中经常遇到的数,掌握有理数的知识对于数学学习至关重要。
本章总结了有理数的定义,基本运算,大小比较,相反数与绝对值,混合运算,分数与小数表示,化简,乘方运算以及应用等知识点、考点和难点。
(word完整版)初一数学上册完全辅导——第一章有理数精讲
初一数学上册重点知识学习参考第一章 有理数一、知识结构有理数: 按定义分 按符号分正整数 正整数 正有理数0 整数 有 正分数(含正有限小数负整数 理 0 和循环小数)有限小数 正分数 数 负整数分数 负有理数无限循环小数 负分数 负分数(含负有限小数和循环小数)注意:常见的不是有理数的数有π和有规律的但不循环的小数。
如:0.0100100010001000010000010000001……二、掌握要点1、了解有理数的概念(什么是有理数、有理数包含的范围有哪些、有理数之间的大小比较)。
(1)大于0的数叫做正数,如3、1.8、5%等。
(2)在正数前面加上负号“—”的数叫负数,即小于0的数,如-3、-2.5、-5%等。
(3)数0既不是正数,也不是负数。
0除了表示一个也没有以外,是正数和负数的分界,是基准。
(4)在同一个问题中,分别用正数与负数表示的量具有相反的意义。
强调:用正数、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是他们的意义相反,如向东与向西、收入与支出;二是他们都是数量,而且是同类的量。
(5)正整数、0、负整数统称整数。
整数可以看作分母为1的分数。
(6)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
(7)把一些数放在一起,就组成了一个数的集合,简称“数集”。
所有有理数组成的数集叫“有理数集”,所有整数组成的数集叫“整数集”,所有负数组成的数集叫“负数集”……数集一般用圆圈或大括号表示,因为集合中的数是无限的。
(8)有理数可以按不同的标准进行分类,标准不同,分类结果也不同。
问:有理数可分为正数和负数两大类,对吗?为什么?有理数可分为整数和分数两大类,对吗?为什么?2、有理数与数轴上的点一一对应(数轴的三要素、怎样看数轴、掌握应用数轴来进行去绝对值符号的简单运算)。
(1)通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、正方向、单位长度原点——在直线上任取一点表示数0,这个点叫原点。
人教版七年级上册第一章《有理数》复习教案
课题:第一章有理数主备人复习验收结果:合格/须完善时间分管领导课时 1教学目标:知识与能力:检查学生对本章的掌握情况,复习整理本章的基本概念和有理数的运算法则、运算规律以及相关的知识点。
过程与方法:培养学生综合应用知识解决问题的能力。
情感态度价值观:渗透数形结合的思想。
重点、难点有理数的概念和有理数的运算;负数和有理数法则的理解。
教学过程教师活动学生活动修改意见一、【正负数】____________统称有理数。
[基础练习](1)把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{…};正有理数集{…};负有理数集{…}负整数集{…};自然数集{…};正分数集{…}负分数集{…}(2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是;如果这种油的原价是76元,那么现在的卖价是。
二、【数轴】规定了、的直线,叫数轴[基础练习](1)如图所示的图形为四位同学画的数轴,其中正确的是(2)在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来: 4,-|-2|,-4.5,1,0(3)下列语句中正确的是()A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来(4)①比-3大的负整数是_______;②已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是,最小的学生以学习小组为单位完成知识梳理;并在小组内统一认识,形成一支的答案,并展示疑惑。
有理数有理数正整数是 。
最大的非正数是 。
④与原点的 距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。
(5)在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4C.-3D.-2 三、【相反数】像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数。
人教版七年级数学第一章有理数小结复习1优秀教学案例
1.通过问题驱动的教学方法,引导学生积极参与课堂讨论,培养学生的探究精神和合作意识。
2.设计多样化的教学活动,如小组讨论、数学游戏、实际操作等,让学生在实践中掌握有理数的运算方法和技巧。
3.引导学生运用数形结合、分类讨论等数学思想方法,提高学生解决问题的策略和灵活性。
4.注重个别差异,针对不同学生的学习需求,给予个性化的辅导和指导,使学生在原有基础上得到提高。
(二)问题导向
在教学过程中,我将以问题为导向,引导学生积极参与课堂讨论。设计具有启发性和挑战性的问题,激发学生的思维活力。例如,在学习有理数的乘除法时,可以提出“为什么负数乘以负数等于正数?”等问题,引导学生通过自主探究、合作交流,深入理解有理数运算的规律。同时,注重引导学生提出问题,培养他们的问题意识,提高学生主动学习的积极性。
人教版七年级数学第一章有理数小结复习1优秀教学案例
一、案例背景
在我国初中数学教育中,有理数的概念及其运算贯穿始终,是学生数学思维发展的重要基础。人教版七年级数学第一章“有理数”的学习,旨在帮助学生掌握有理数的基本知识,理解有理数的性质和运算法则,为后续数学学习打下坚实基础。针对本章小结复习1,本教学案例将结合课程主要内容,以提升学生的实际操作能力和思维品质为目标,采用问题驱动的教学方法,激发学生的学习兴趣,培养学生解决问题的能力。通过设计丰富多样的教学活动,让学生在实践中感悟有理数的奥妙,使他们在复习过程中温故知新,提高数学素养。
(五)作业小结
在作业小结环节,我将根据学生的认知水平和能力差异,设计分层作业,既有基础题,也有拓展题。让学生在完成作业的过程中,巩固所学知识,提高自己的数学能力。同时,鼓励学生进行反思,总结自己在学习有理数过程中的收获和不足,为后续学习奠定基础。
七年级上册第一章有理数知识点及考点分析
第一章 有理数本章复习目标:1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数绝对值。
3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算。
4.理解有理数的运算律,能运用运算律简化运算。
5.能运用有理数的运算解决简单的问题。
6.掌握用科学记数法表示较大的数的方法,能按要求取近视数和有效数字。
体系自主建构。
重难点一 有理数的有关概念相反数、绝对值、数轴等概念是代数的重要概念,是学习代数后续内容的基础,数轴是理解有理数概念与运算的重要工具,是数与形结合,借助数轴把相反数、绝对值有机联系在一起。
例1 1__3-=;14-的相反数是 。
跟踪训练:1.3-的相反数是( ) A.3 B.3- C.13 D. 13- 2.2011(1)-的相反数是( )A.1B. 1-C. 2011D. 2011-3.点A 为数轴上表示2-的点,当点A 沿数轴移动4个单位长度时到达点B ,点B 所表示的数是 。
重难点二 有理数的运算有理数的运算时数学运算的基础,页是中考必考的内容,要熟练掌握有理数的运算法则、运算律、运算顺序,运算中要特别注意符号问题。
例2 计算(1) 33(2)(8)(7)5⨯---+-⨯-(2)251233()(12)(2)(1)23-÷+-⨯-+-⨯-跟踪训练:4.计算(1)()2011211214122⎡⎤⎛⎫-+---⨯+- ⎪⎢⎥⎝⎭⎣⎦(2)22223232()4()332-⨯-÷-⨯-⨯-5. 蚂蚁从某点A 出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm ):5;3;10;+-+ 8;6;12.10.--+-求(1) 蚂蚁最后是否回到出发点A? (2)在爬行过程中,如果每爬行1cm 得到一粒芝麻,则蚂蚁一共得到多少粒芝麻?重难点三 非负数的应用常见的非负数:任意一个数(式子)的平方、任意一个数(式子)的绝对值。
《有理数》全章复习与巩固知识讲解.doc
第一章有理数复习与巩固【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4.理解科学记数法,有效数字及近似数的相关概念并能灵活应用;5.体会数学知识中体现的一些数学思想.【知识网络】(2)整数和分数统称有理数。
注意:0即不是正数,也不是负数;-口不一定是负数,+Q 也不一定是正数;不是有理数;2.数轴:规定了原点、正方向和单位?长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如兀.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.【要点梳理】要点一、有理数的相关概念1?有理数的分类:(1)按定义分类:(2)按性质分类:止有理数负有理数「整数负分数有理数非负数非正数3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)若a + b = O,则a、b互为相反数.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.数a的绝对值记作同.(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.a(d > 0)(3)绝对值可表示为:|。
|= 0 (a = 0);绝对值的问题经常分类讨论;-a (a < 0)、 a a(4)——= l?6Z>0 : — = —lOGVO;a a(5)|a|是重要的非负数,即|a|N0;注意:|a| ? |b| = |a?b|,5.倒数:乘积为1的两个数互为倒数.注意:0没有倒数;倒数是本身的数是±1;要点二、有理数的运算1?法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的界号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b二a+(-b)?(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘?②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数?即a—b=a?一(bHO).b(5)乘方运算的符号法则:①负数的奇次幕是负数,负数的偶次幕是正数;②正数的任何次幕都是正数,0的任何非零次幕都是0.注意:当斤为正奇数时:(―d)" = —d"或(d — b)" = —(b — d)";当n为正偶数时:= /或(a-b)n = (b-Q)”.当底数为负数或分数时要用括号把底数括起来.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“一”号的个数,例如:一[—(一3)]二一3,一[+(—3)]二3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(一3) X (-2) X (-6) =-36,而(一3) X (-2) X6二36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数吋,指数为奇数,则幕为负;指数为偶数,则幕为正,例如:(—3)2=9, (-3)3=-27.2.运算律:< 1)交换律:①加法交换律:a+b二b+a;②乘法交换律:ab=ba;(2)结合律:①加法结合律:(a+b) +c=a+ (b+c);②乘法结合律:(ab) c=a(bc)(3)分配律:a(b+c) =ab+ac要点三、有理数的大小比较.比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0, 0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3)作差比较法.(4)作商比较法;(5)倒数比较法. 要点四、科学记数法1.科学记数法:把一个大于10的数表示成QX1O”的形式(其?Pl<p/|<10,斤是正整数),此种记法叫做科学记数法.例如:200 000=2xlO5.2?有效数字:从一个数的左边第一?个非0数字起,到末位数字止,所有数字都是这个数的有效数字.如:0. 000 27有两个有效数字:2, 7.注意:万=104,亿二108【典型例题】类型一、有理数相关概念俄.若-个有理数的:⑴相反数;(2)倒数;⑶绝对值⑷平方;⑸立方,等于它本身.则这个数分别为(1) _______ ;⑵_________ ; (3) ________ :⑷_________ : (5) ________变式练习:2 2 2(1)一1 一的倒数是;-1—的相反数是;一1 一的绝对值是3 3 3-(-8)的相反数是;-丄的相反数的倒数是______------ 2(2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,贝卜 5. 8元的意义是________ ;如果这种油的原价是76元,那么现在的卖价是 _________ ?(3)上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 ________________ m / mi n.2⑷若日、力互为相反数,c、d互为倒数,则3cd +兰(d + b)= ___________ ?3(5)近似数0. 4062精确到____________ 位,有_____________ 个有效数字;近似数5.47X 105精确到________________ 位,有_______________ 个有效数字;近似数3. 5万精确到 ___________ 位,有______________ 个有效数字.(6) 3 . 40 30X 105保留两个有效数字是_______________ ,精确到千位是 _______________ ??A.如果(x-2)2+|y-3|=O,那么(2x-y)2005的值为(V 3.在下列两数之间填上适当的不等号: 2005200620062007 ?变式练习:比较大小:(1) 一-- ________ 0. 001;99类型二、有理数的运算).A. 1B. -1C. 22(X)6D. 3 2005(2) -- -0. 683ST /、(2、< 八< 1>4. (1)-4-—-3-—-6-+-2 -I 3< 3k 2 J < 4-12x(-15 + 2“)'1〈3 77)「5(n1-+ 1 ------------ 十——2.5 —x3< 4 8 12J< 8丿6<~3>(2丿⑷-25-(-4)X _53 _(_!)-_12,'1 )< 22)1 +-1-32X 2⑸变式练习: 计算:(1)z■¥+S1- + 2--13-訶丿< 2< 434;(-2)X -4--X (-2);(2)X24~(-O,2)32 2 【答案】(1) (―2)x*?*x(—2) = (—l)+*x(—2) = (—l)x2x(—2) = 41——X16+<45 7丄55]< 5;<4丁34 Jx24- (2)原式=45 55 丄兰x24 + ?x24 — j + 12540 I 4-丄+ 270 + 56-330 + 125 =-— + 121 = 120—4040 40类型三、数学思想在本章中的应用5. (1)数形结合思想:有理数a 在数轴上对应的点如图所示,则乩-a, 1的大小关系.A. ~a<a<lB. l<~a<aC. l<-a<aD. a<l<-a (2)分类讨论思想:已知|x|=5, lyl=3”?求x-y 的值.变式练习:若a 是有理数,|a 卜a 能不能是负数?为什么?类型四、规律探索繆6. (2009 ?山东聊城)将1,一丄,一丄,…,按一定规律排列如下:23 4 5 610请你写出第20行从左至右第10个数是________(3)转化思想:计算:-35A14丿+(弓)1112131415。
新浙教版七年级上册数学第一章《有理数》复习要点(知识点+例题+练习)
第一章从自然数到有理数的复习课一、目的要求进一步理解并运用有理数、数轴、相反数、绝对值等概念,会比较有理数的大小.二、内容分析小结与复习分作三部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,还有近似数与有效数字的问题,从而给出全章内容的大致轮廓,第二部分围绕有理数运算这一中心,提出了全章的三条教学要求,第三部分针对这一章新出现的思想、内容、方法等提出了5点应注意的问题。
三、教学过程我们已经学过了有理数全章内容。
概括起来说,这一章我们学的是有理数的概念及其运算。
这节课我们将复习有理数的意义及其有关概念。
复习提问:1.为什么要引入负数?温度为-4℃是什么意思?答:为了表示具有相反意义的量。
温度为-4℃表示温度是零下4摄氏度。
2.什么是有理数?有理数集包括哪些数?答:整数和分数统称为有理数。
有理数集包括:3.什么叫数轴?画出一个数轴来。
答:规定了正方向、原点和单位长度的直线叫数轴。
图略。
4.有理数和数轴上的点有什么关系?答:每一个有理数都可以用数轴上唯一确定的点来表示.但反过来以后可以看到,数轴上任一点并不一定表示有理数。
表示正有理数的点在原点的右边,表示零的点是原点,表示负有理数的点在原点的左边。
5.怎样的两个数叫互为相反数?零的相反数是什么?a的相反数是什么?两个互为相反数的和是什么?答:只有符号不同的两个数叫做互为相反数;并说其中一个是另一个的相反数。
零的相反数是零,a的相反数是-a。
两个互为相反数的和为零。
6.有理数的绝对值的意义是什么?如果两个数互为相反数,那么它们的绝对值有什么关系?试举例说明。
答:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作|a|。
如]|-6|=6,|6|=6;一般地,一个正数的绝对值是它本身。
一个负数的绝对值是它的相反数。
0的绝对值是0。
用式子表示就是:如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那以|a|=0.如果两个数互为相反数,那么它们的绝对值相等。
人教版数学七年级上册第一章《有理数》复习小结说课稿
这些媒体资源在教学中的作用主要是提高教学效果,激发学生的学习兴趣,促进学生的主动参与。
(三)互动方式
我将设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:在课堂上,通过提问、讨论等方式,引导学生积极参与教学活动,关注学生的个体差异,给予个性化指导。
(2)培养学生严谨、认真的学习态度,养成良好学习习惯。
(三)教学重难点
1.教学重点:
(1)有理数的概念、分类、性质和运算规律。
(2)有理数的混合运算及在实际问题中的应用。
2.教学难点:
(1)学生对有理数性质的理解,如相反数、绝对值等。
(2)有理数混合运算的顺序和法则,特别是乘方、乘除法与加减法的结合。
1.主要内容:左侧列出有理数的分类、性质和运算规律;中间部分通过具体例题展示运算步骤,突出重点和难点;右侧部分强调易错点和学习策略。
2.风格:采用图文结合的方式,使用不同颜色粉笔突出重点,以思维导图形式呈现知识结构。
板书在教学过程中的作用是帮助学生理清思路,把握知识结构,强化记忆。为确保板书清晰、简洁且有助于学生把握知识结构,我将:
3.复习提问:通过提问学生关于有理数的基础知识,引导学生回顾已学内容,为新课的学习做好铺垫。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.梳理知识点:以图表、思维导图等形式,展示有理数的性质、分类、运算规律等,帮助学生建立完整的知识体系。
2.案例分析:结合具体例题,引导学生分析有理数运算的步骤和技巧,培养学生的逻辑思维和分析能力。
3.小组合作学习:依据社会建构主义理论,通过小组合作交流,促进学生之间的知识互补,培养学生的团队协作能力和沟通能力。
人教版七年级数学上册第一章《有理数》复习课说课稿
1.生活情境导入:通过讲述一个与有理数相关的生活故事,如购物时如何计算找零,让学生初步接触到有理数的概念。
2.问题导入:提出一个与有理数相关的问题,如“小明有3个苹果,小华给了小明2个苹果,请问小明现在有几个苹果?”引导学生思考和讨论。
3.游戏导入:设计一个简单的数学游戏,如数独或接龙,让学生在游戏中自然地接触到有理数,激发学生的学习兴趣。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.有理数的概念:通过PPT课件和实物教具,引导学生理解有理数的定义和分类,如有理数的正负、整数和分数等。
2.有理数的运算规则:通过示例和练习,逐步讲解有理数的加减乘除运算规则,引导学生理解和掌握。
3.有理数的大小比较:通过比较实例,让学生了解有理数的大小比较法则,如正数大于负数、分数的大小比较等。
(一)学生特点
面对人教版七年级的学生群体,他们正处于青少年时期,好奇心强,求知欲旺盛。在认知水平方面,他们已经开始由形象思维向抽象思维过渡,能够理解和接受一定的抽象概念。然而,由于个体差异,部分学生可能还未完全适应初中的学习节奏。在学习兴趣方面,大部分学生对于数学有着浓厚的兴趣,但也有少部分学生可能因为过去的学习经历而对数学产生恐惧或抵触心理。至于学习习惯,学生们在这一阶段已经形成了各自的学习方式,但仍有提升空间,特别是在自主学习和合作学习方面。
(二)教学目标
1.知识与技能:使学生掌握有理数的定义、分类、运算规则、大小比较,以及实数的概念。能够熟练运用有理数的知识解决实际问题。
2.过程与方法:通过复习课的形式,引导学生自主学习,培养学生的自学能力和合作精神。通过典型例题的讲解,让学生掌握解题方法和技巧。
《第一章 有理数》全章小结复习
《第一章有理数》全章小结复习学习目标:1、梳理所学、查缺补漏、完善自我2、通过复习明确本章所学内容中的重点、难点、考点知识梳理:难点:有理数运算重点:落实好基本概念、基本运算,要从重视算理、法则、运算律的理解和应用入手.常见错误类型:1、符号错误2、运算顺序错误3、一些概念的理解错误现在应达到的学习习惯和学习能力:1、对于法则要深刻理解,对于运算律要熟练掌握并能灵活运用;2、要学会读题,学会观察算式的特点,然后再进行计算;3、能及时将错题进行分析,并总结错误原因,并附纸改错;4、要重视有理数运算问题,做好小学到初中的过渡,包括学习方法以及对比所学知识上的兼容与发展。
常考知识点例题分析:1、(1)最小的正整数是________:最大的负整是__________;最小的整数是__________;最小的正数是____________;最大的负数是_____________最小的有理数____________;绝对值最小的有理数是__________。
(2)一个数的相反数等于它本身,这个数是_________________;一个数的绝对值等于它本身,这个数是__________;一个数的绝对值等于它的相反数,这个数是__________;一个数的倒数等于它本身,这个数是__________;一个数的平方等于它本身,这个数是__________;一个数的平方等于它的绝对值,这个数是__________;一个数的平方等于它的相反数,这个数是__________;一个数的立方等于它本身,这个数是__________。
解析:(1):1,-1,不存在;不存在;不存在;0(2):0;0或正数;0或负数;±1;0或1;±1,0;-1,0;±1,0。
评述;以上题目的主要目的是检查概念落实,通过类似与这样的练习,强化、巩固有理数分类、相反数、绝对值等概念;关于0的绝对值、相反数最易错,要尤其关注。
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳第一章有理数知识点总结一、正数和负数1.正数和负数的概念:负数是比小的数,正数是比大的数。
注意:字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0.强调:带正号的数不一定是正数,带负号的数不一定是负数。
2.具有相反意义的量:若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量。
惯把“前进、上升、收入、零上温度”等规定为正,“后退、下降、支出、零下温度”等规定为负。
比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃。
二、有理数1.有理数的概念:⑴正整数、0、负整数统称为整数(和正整数统称为自然数)。
⑵正分数和负分数统称为分数。
⑶正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
2.数轴1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
注意:数轴是一条向两端无限延伸的直线。
原点、正方向、单位长度是数轴的三要素,三者缺一不可。
同一数轴上的单位长度要统一。
数轴的三要素都是根据实际需要规定的。
2)数轴上的点与有理数的关系:所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
所有的有理数都可以用数轴上的点表示出来。
3)利用数轴表示两数大小:在数轴上数的大小比较,右边的数总比左边的数大。
正数都大于0,负数都小于0,正数大于负数。
两个负数比较,距离原点远的数比距离原点近的数小。
4)数轴上特殊的最大(小)数:最小的自然数是1,无最大的自然数。
最小的正整数是1,无最大的正整数。
最大的负整数是-1,无最小的负整数。
3.相反数:1) 只有符号不同的两个数叫做互为相反数;0的相反数是0.2) 互为相反数的两数的和为0,即:若a、b互为相反数,则a+b=0.3) 相反数的求法:求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5)。
新人教版七年级数学上册第一章《有理数复习课》教案
新人教版七年级数学上册第一章《有理数复习课》教案一、内容和内容解析1.内容有理数的有关概念、运算.2.内容解析本章,我们学习了一类新的数——负数,使数的范围扩充到有理数,再引进数轴、相反数、绝对值等概念,为学习有理数的运算作好铺垫.有理数的运算,是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提,是本章学习的重点.对于有理数的运算,我们总是把与负数相关的运算归结为正数之间的运算,其中,数形结合、化归是很重要的思想方法,也是本章需要重点关注的.基于以上分析,确定本节课的教学重点:有理数的运算及数形结合、化归的思想方法.二、教材解析数轴是数形结合思想的产物.引进数轴后,可以用数轴上的点直观地表示有理数,从而也为学生提供了理解相反数、绝对值的直观工具,同时也为学习有理数的运算法则作了准备.引入相反数的概念,一方面可以加深对相反意义的量的认识,另一方面可以为学习绝对值、有理数运算作准备.绝对值的概念借助距离的概念加以定义.在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定.这里,“方向”与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,学习绝对值的概念可以促进对数轴概念的理解.在“数与代数”中,运算是核心内容.“引进一种新的数,就要研究相应的运算;定义一种运算,就要研究相应的运算律”是代数的核心思想.在数系、运算法则和运算律(即对任何数都成立的通性)中获得的知识,可以方便地迁移到“以字母表示数”后的学习内容中去.因此,本章的重点是有理数的运算和运算律.在领悟有理数概念、运算法则和运算律内涵的过程中,让学生体会从特殊到一般,从具体到抽象的研究过程和方法,使他们既学会发现,又学会归纳、概括,从而逐步提高学生的思考力,培养用数学的思想和方法来思考和处理问题的习惯.三、教学目标和目标解析1.教学目标(1)梳理有理数的有关概念,理解概念之间的内在联系;(2)熟练地进行有理数的运算,并能运用运算律简化运算,体会数系扩充之后运算的一致性;(3)通过利用数轴的直观性解决问题,体会数形结合的思想方法.2.目标解析达成目标(1)的标志:学生能够解决与数轴、相反数、绝对值有关的问题;达成目标(2)的标志:学生能合理运用运算律简化运算,准确进行有理数的运算;达成目标(3)的标志:学生能够利用数轴解决有关的问题.四、教学问题诊断分析本章的难点是对有理数运算法则的理解.有理数运算,与以前学过的运算的一个重要区别就是多了一个符号问题,而在有理数的混合运算中,还应注意运算顺序的问题.当这两个问题同时出现时,有些学生往往顾此失彼,造成计算结果失误.“绝对值”是“距离”这一几何量的代数表示.距离是基本而重要的几何概念,相应的,绝对值是基本而重要的代数概念.从绝对值的定义出发,可以得到求一个数的绝对值的具体操作方法,即看这个数是正数、负数还是0等三类情况分别得出结果,有些学生对绝对值的理解可能只停留在能按此方法,求出一个数的绝对值,但不能把绝对值与数轴、相反数等概念联系起来.基于以上学情的分析,本节课的教学难点:有理数的混合运算中,每一步的运算中符号的确定以及对绝对值概念的深入理解.五、教学过程设计1.梳理知识,建立联系问题1本章学习了哪些知识?它们之间的联系是什么?教师引导学生通过举例来回顾本章知识要点,指出知识之间的内在联系.教师应重点关注: (1)学生对正数、负数、有理数等概念的理解;(2)学生对数轴、相反数、绝对值等概念及它们之间的联系的理解.【设计意图】通过回顾本章知识要点,帮助学生建立有理数的有关概念之间的联系,体会相反数、绝对值等概念与有理数运算的联系.2.加强运算,熟练掌握例1 计算:(1)0.125+⎪⎭⎫ ⎝⎛413++⎪⎭⎫ ⎝⎛813--⎪⎭⎫ ⎝⎛3211--0.25; (2)⎪⎭⎫ ⎝⎛185+65-43+127-×(-36); (3)(-2)÷⎪⎭⎫ ⎝⎛121-÷⎪⎭⎫ ⎝⎛121-; (4)(-24)÷2322⎪⎭⎫ ⎝⎛+215×⎪⎭⎫ ⎝⎛61--(-0.5)2. 问题2 有理数运算中,应该注意哪些问题?学生独立完成练习,教师巡视,把学生练习中出现的典型错误用实物投影仪呈现出来,学生找出问题后,进行更正,展示正确的解法.师生共同归纳有理数运算中,应该注意的问题.第(1)题把减法转化为加法时,要注意减号和减数的性质符号要同时改变.对多个有理数相加减的题目,要观察数的特征,能利用运算律时,要利用运算律使计算简便.第(2)题运用运算律时要注意符号问题.第(3)题运用除法法则进行运算时,首先应确定商的符号,然后把绝对值相除,还要注意,对同一级运算要按从左至右的顺序进行.第(4)题中-24≠(-2)4,要注意两者的底数及符号的差别;计算2322⎪⎭⎫⎝⎛时,先将带分数化成假分数,然后求乘方;要根据有利于计算的原则,将小数化为分数;要注意运算顺序.教师应对学生进行学法指导.在计算前认真审题,选择简便途径,确定运算顺序;计算中按步骤审慎进行;最后要检验.本环节中,教师应重点关注:(1)学生能否根据算理进行每一步的运算;(2)学生是否有良好的解题习惯.【设计意图】通过计算、呈现错例、找出错误、归纳在有理数运算中应注意的问题,达到熟练掌握有理数运算的目的.3.应用拓展,提高能力例2 观察下列五组数:1,-1,-1;2,-4,-6;3,-9,-15;4,-16,-28;5,-25,-45;…(1)每组数中的第2个数与第1个数有什么关系?(2)每组数中的第3个数与第1个数有什么关系?(3)计算第50组数的和.答案:(1)每组数中的第2个数分别是-12,-22,-32,-42,-52,….每组数中的第2个数是第1个数的平方的相反数;(2)每组数中的第3个数分别是-1×1,-2×3,-3×5,-4×7,-5×9,….即-1×(2×1-1),-2×(2×2-1),-3×(2×3-1),-4×(2×4-1),-5×(2×5-1),….每组数中的第3个数是第1个数乘第1个数的2倍与1的差所得积的相反数;(3)第50组数的3个数分别是50,-502,-50×(2×50-1),它们的和为50+(-502)+[-50×(2×50-1)]=50―2 500―4 950=-7 400.问题3 怎样解决有关数的规律探索性问题(结合例题)?学生尝试解决问题,教师点拨.教师应关注学生能否对每组中的数从符号、绝对值两方面考虑,能否把数的绝对值与组数的序号联系起来.例3 (教科书第52页第14题)结合具体的数的运算,归纳有关特例,然后比较下列数的大小:(1)小于1的正数a,a的平方,a的立方;(2)大于-1的负数b,b的平方,b的立方.答案:(1)a>a2>a3;(2)b2>b3>b.学生独立完成,教师巡视,个别辅导.教师应关注学生举出的具体的数是否符合题目要求,是否能多举出几个具体的例子.例4 若a>0,b<0,且a+b<0,把a、-a、b、-b、0按从大到小的顺序进行排列.答案:-b>a>0>-a>b.教师启发学生利用数轴解决问题.教师应关注学生在数轴上表示的数位置是否正确.问题4 从例3、例4的解题方法中,你受到哪些启发?【设计意图】例2是有关数的规律探索性问题.联系数的乘方、乘法,从符号与绝对值两方面考虑排列规律.使学生体会找规律的方法.例3是让学生通过具体计算,归纳得出结论,体会由特殊到一般这一认识事物规律的方法.解决例4的关键是从已知条件及有理数加法法则分析得出|b|>|a|,然后把表示a、-a、b、-b的点在数轴上表示出来,让学生学会利用数轴解决问题,体会数形结合的方法.4.归纳小结,反思提高问题5谈谈通过本节课的复习,有哪些新的收获?本环节中,教师应重点关注:(1)学生是否能利用数轴建立起相反数、绝对值等概念的联系;(2)学生是否能体会到由特殊到一般、数形结合等方法的作用.【设计意图】通过小结,加深对知识及解决问题的方法的理解,为今后的学习奠定基础.作业:教科书第51页第1,2,3,4,5,6,10题.六、目标检测设计1.计算:(1)-3.2+733-6.8+745; (2)14+56÷(-7);(3)⎪⎭⎫ ⎝⎛151-109×30; (4)⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛÷⨯22233-+3-21-34-23-)(×(-1)3. 2.已知数轴上表示负有理数m 的点是点M ,那么在数轴上与点M 相距|m |个单位的点中,与原点距离较远的点对应的数是( ).A .-2mB .2mC .-mD .m【设计意图】检测是否能熟练地进行有理数的运算,是否能运用运算律简化运算,以及是否会利用数轴解决问题.。
人教版七年级上册数学教案:第一章有理数复习
课题:第一章有理数复习一、教学目标1.知道第一章有理数知识结构图.2.通过基本训练,巩固第一章所学的基本内容.3.通过典型例题和综合运用,加深理解第一章所学的基本内容,发展能力.二、教学重点和难点1.重点:知识结构图和基本训练.2.难点:典型例题和综合运用.三、教学过程(一)归纳总结,完善认知(上面的知识结构图,要结合下面的讲解逐步板书出来)师:前面我们花了很多节课,学习了第一章有理数.有理数这一章是很重要的,学不好这一章,学习后面的内容就会发生困难.下面我们把有理数这一章中最重要的内容作一番整理.(板书课题:第一章有理数复习)师:在这一章的开始,我们首先引入了负数.(板书:引入负数)引入负数后,小学里学过的数的范围就扩大到了有理数范围.(板书:有理数)具体地说,有理数包括整数和分数,整数包括正整数、0、负整数,分数包括正分数和负分数.这就是有理数的分类.(板书:有理数的分类)师:学习了有理数的分类后,我们又学习了相反数、(板书:相反数)绝对值、(板书:绝对值)有理数大小的比较.(板书:大小比较)师:我们可以从两个角度来看相反数、绝对值、比较大小,一个角度是从数轴上看,另一角度是从数本身看.(板书:数轴与数)师:从数轴上看,相反数表示在数轴上是怎样的两点?生:……师:从数轴上看,在数轴上表示相反数的两点在原点两边并与原点距离相等. 师:从数本身看,互为相反数又是怎么样的两个数?生:……师:从数本身看,只有符号不同的两个数就是相反数.师:同样,从数轴上看,一个数的绝对值在数轴上指的是什么呢?生:……师:从数轴上看,数轴上表示某数的点与原点的距离就是这个数的绝对值.师:从数本身看,一个数的绝对值又等于什么?生:……师:从数本身看,有这么三句话:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.师:怎么比较有理数的大小?解决这个问题也可以从两个不同的角度去考虑,从数轴上看,两个有理数哪个?从数本身看,两个有理数又怎么比较?生:……师:从数轴上看,在数轴上表示的两个数,右边的数总比左边的数大.从数本身看,有理数大小的比较有两条法则,第一条是说:正数大于0,0大于负数,正数大于负数;第二条是说:两个负数,绝对值大的反而小.师:(指板书)学习了相反数、绝对值、有理数大小比较以后,我们学习了本章中最重要的内容:有理数的运算.(板书:有理数运算)有理数运算是以前面学习过的相反数、绝对值、有理数大小比较为基础的.师:有理数运算包括加法、减法、乘法、除法、乘方.(板书:加法、减法、乘法、除法、乘方,要将“除法”写在“乘法”上面)师:有理数加法法则有三条,是哪三条?有理数加法法则,师板书:(三条法则))(生齐读P18师:有理数减法是转化为加法进行计算的,(板书:转化,并加箭头)减法怎么转化为加法?生:减去一个数,等于加这个数的相反数.师:有理数乘法法则有两条,是哪两条?有理数乘法法则,师板书:(两条法则))(生齐读P29师:有理数除法是转化为乘法进行计算的,(板书:转化,并加上箭头)除法怎么转化为乘法?生:除以一个不等于0的数,等于乘这个数的倒数.师:除法还有另一个直接相除的法则,和乘法法则类似,也有两条,是哪两条?有理数除法法则的另一种说法,师板书:(两条法则))(生齐读P34师:乘方是几个相同因数的积的运算,所以乘方也是转化为乘法来计算的.(板书:转化,并加上箭头)师:有理数运算虽然有五种,但基本运算还是加法和乘法,其它运算都可以转化为加法或乘法.加法有交换律和结合律,(板书:交换律、结合律)乘法有交换律、结合律、分配律.(板书:交换律、结合律、分配律)减法和除法虽然没有交换律、结合律、分配律,但把它们转化为加法、乘法后,就可以使用交换律、结合律、分配律了.师:(指板书)这就是第一章有理数基本知识结构图,除了结构图中所标出的外,我们还学习了科学记数法、近似数等于知识.(二)基本训练,掌握双基1.填空:(以下空你最好直接用铅笔填,实在想不起来,你可以在课本中找)(1)正数前面加上负号的数叫做;既不是正数,也不是负数;正数和负数可表示两种的量.(2)只有符号不同的两个数叫做 .(3)数轴上表示数a的点与原点的距离叫做数a的,记作;一个正数的绝对值是,一个负数的绝对值是,0的绝对值是 .(4)在数轴上表示有理数, 的数小于 的数,根据这个规定,可知:正数大于0,0大于 ,正数大于 ;两个负数, 反而小.(5)有理数加法法则:同号两数相加,取 的符号,并把 相加;异号两数相加,取 的符号,并用 减去 ;互为相反数的两个数相加得 ;一个数同0相加,仍得 .(6)加法交换律:a +b = ;加法结合律:(a +b )+c = .(7)有理数减法法则:减去一个数,等于加这个数的 ,即a -b = .(8)有理数乘法法则:两数相乘,同号得 ,异号得 ,并把 相乘;任何数同0相乘,都得 .(9)几个不是0的数相乘,负因数的个数是 数时,积是正数;负因数的个数是 数时,积是负数;几个数相乘,如果其中有因数为0,积等于 .(10)乘法交换律:ab = ;乘法结合律:(ab )c = ;分配律:a (b +c )= .(11)有理数除法法则1:除以一个不等于0的数,等于乘这个数的 ,即a ÷b = (b ≠0);有理数除法法则2:两数相除,同号得 ,异号得 ,并把绝对值相 ;0除以任何一个不等于0的数,都得 .(12)负数的奇次方是 ,负数的偶次方是 .(13)有理数混合运算的顺序是:先 ,再乘除,最后 ;同级运算,从 到 进行;如有括号,先做 内的运算.(14)把一个数表示成a ×10n 形式(其中a 是整数数位只有 的数,n 是正整数),使用的是科学记数法.2.填空:(1)在知识竞赛中,如果用+10表示加10分,那么扣10分记作 ;(2)在某次的乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示 ;(3)如果+20%表示增加20%,那么-6%表示 ;(4)电视里有时能听到“负增长”这个词,增长-5%的意思是 .3.在数轴上表示下列各数:0,1.5,-6,2,-314.根据数轴上所画的点,比较这五个有理数的大小:> > > > .4.填空:(1)某数与它的相反数相等,这个数是 ;-5-4-3-2-14321(2)-(-4)=;(3)绝对值等于6的数是;(4)绝对值最小的数是;(5)绝对值小于2的整数是;(6)填“>”或“<”:7.1 -9.5 0 -19.2 0.1 0.02-27 -17 3.1 -13 -25-12(7)互为相反数的两数的和是,互为倒数的两数的积是,互为相反数(除0外)的两数的商是;(8)太阳半径约696000千米,用科学记数法表示:696000=;(9)1.895精确到0.1是 _ ,精确到百分位是;(10)计算:(-2)3= _ ,(-2)4= _ ,-23= _ ,-24= _ .5.直接写出计算结果:(1)-150+250=(2)-15+(-23)=(3)-5-65=(4)-26-(-15)=(5)-6×(-16)=(6)-13×27=(7)8÷(-16)=(8)-25÷(-23)=(三)典型例题,加深理解(师擦掉知识结构图的板书)例1 如图,(1)A、B两点所表示的数的绝对值哪个大?(2)A、B两点所表示的数哪个大?(3)画出A点所表示数的相反数.例2 10袋青稞分别是91千克、91千克、91.5千克、89千克、91.2千克、91.3千克、88.7千克、88.8千克、91.8千克、91.1千克,求10袋青稞一共多少千克.(按教材P19两种解法解)例3 某公司去年1-3月平均每月亏损1.5万元,4-6月平均每月盈利2万元,7-10月平均每月盈利1.7万元,11-12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?(按教材P36解法解)(四)综合运用,发展能力6.写出符合下列条件的数:(1)最小的正整数是;(2)最大的负整数是;(3)大于-3且小于2的所有整数是;(4)绝对值大于2且小于5的所有负整数是;(5)在数轴上,与表示-1的点的距离为2的数是;(6)任意写出三个-1与0之间的数: .7.思考题:两数相加,和一定大于加数吗?举例说明;你能探究两数和与这两数的大小关系吗?。
人教版数学七年级上册第一章《有理数》复习小结 课程教学设计
人教版七年级上册第一章《有理数》复习小结教学设计一、教学目标:1.梳理有理数的有关概念,理解概念之间的内在联系。
2.熟练地进行有理数的运算,并能运用运算律简化运算,体会数系扩充之后运算的一致性。
3.通过利用数轴的直观性解决问题,体会数形结合的思想方法。
4.培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力。
5.在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
激发学生兴趣,感受数学之美。
二、教学重难点:1.教学重点:有理数概念、有理数的运算.2.教学难点:负数、有理数法则以及以及数形结合、转化思想、分类讨论、化归的思想方法的应用.三、学情分析:学生在此之前已经学习了第一章《有理数》,对有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解(由于其抽象程度较高)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
四、教学过程:为有序、有效地进行教学,本节课我主要安排以下教学环节:(一) 创设情境,引入新知建构知识框架;(二)创设情境提出问题设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
1、整数和分数统称为_____;2、数轴:(1)数轴的概念:规定了_______、_______、____________的直线,叫做数轴;(2)数轴上的点与有理数的关系:所有的有理数都可以用数轴上的点表示,零用______表示,正有理数用__________的点表示,负有理数用____________的点表示.3.相反数:(1)概念:如果两个数只有_______不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是____.(2)几何意义:在数轴上,表示互为相反数的两个点,位于原点_______,并且与原点的距离_______.4.绝对值:(1)概念:在数轴上,一个数所对应的点与________的距离叫做该数的绝对值;(2)绝对值的求法:正数的绝对值是它________,负数的绝对值是它的___________,0的相反数是____;5.有理数的加法:(4)运算律:①交换律:a·b=_______;②结合律:(a·b)·c=__________;③乘法对加法的分配律:a(b+c)=___________.8.有理数的除法(1)法则一:两数相除,同号得____,异号得____,并把绝对值_______ ;0除以任何不等于0的数都得____;(2)法则二:除以一个数不等于0的数等于乘以这个数的________.9.有理数的乘方:(1)意义:一般地,求n个相同因数a的________的运算叫做乘方;记作:a n,其中乘方的结果叫做____,a叫做_______,n叫做________;(2)乘方运算的符号法则:正数的任何次幂都是________,负数的奇数次幂是______,负数的偶数次幂是________.10.有理数的混合运算的运算顺序先算_______,再算________,最后算________;如果有括号,就先算______________.(三)运用知识,体验成功:设计意图:分层教学,让每一个学生获得成功,让不同层次的学生有不同的发展,感受成功的喜悦.例1:规定正常水位为0米,高于正常水位0.2米记作+0.2米,则下列说法错误的是( )A.高于正常水位3米记作+3米 B.低于正常水位5米记作-5米C.+6米表示水深为6米 D.-1米表示比正常水位低1米例2:把下列各数分别填在相应的括号内.-12,13,-2,+6,227,0,0.8,314,-4.2.正数:{ ,…};负数:{ ,…};正整数:{ ,…};正分数:{ ,…};负整数:{ ,…};负分数:{ ,…}.例3:实数a、b在数轴上对应点的位置如图2-1所示,则a____b(填“<”、“>”或“=”) .例4:有理数a、b在数轴上的位置如图2—2所示,化简|a-1|-|b-a|.例5: 绝对值等于3的数有________个,它们分别是________,它们表示的是一对________数.例6:用“>”或“<”填空:(1)9________-16;(2)-715________-215; (3)0________-7. 例7:有理数a 、b 在数轴上的位置如图2-3所示,则a +b a 2b 的值是( )图2-3A .正数B .0C .负数D .无法判断例8:(1)-22×34÷13-23; (2)(-6)×(-4)-(-32)÷(-8)-3; (3)5×⎝⎛⎭⎫25-2+12÷⎝⎛⎭⎫12―13―14. (四)知识深化,应用提高:设计意图:引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳有理数是初中数学中的重要概念,它是进一步学习数学的基础。
下面我们来详细总结归纳一下有理数的知识点、考点和难点。
一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。
整数可以看作是分母为 1 的分数。
分数则是两个整数的比值,形式为\(\frac{m}{n}\)(其中\(n\neq 0\))。
二、有理数的分类1、按定义分类整数:正整数、0、负整数。
分数:正分数、负分数。
2、按性质分类正有理数:正整数、正分数。
负有理数:负整数、负分数。
三、数轴数轴是规定了原点、正方向和单位长度的直线。
数轴的作用:1、可以直观地表示有理数,任何一个有理数都可以用数轴上的一个点来表示。
2、可以比较有理数的大小,数轴上右边的数总比左边的数大。
四、相反数只有符号不同的两个数叫做互为相反数。
例如,\(5\)的相反数是\(-5\),\(-3\)的相反数是\(3\),\(0\)的相反数是\(0\)。
相反数的性质:1、互为相反数的两个数之和为\(0\),即\(a +(a) = 0\)。
2、数轴上表示相反数的两个点位于原点两侧,且到原点的距离相等。
五、绝对值数轴上表示数\(a\)的点与原点的距离叫做数\(a\)的绝对值,记作\(\vert a\vert\)。
绝对值的性质:1、正数的绝对值是它本身,即当\(a > 0\)时,\(\vert a\vert = a\)。
2、 0 的绝对值是 0,即\(\vert 0\vert = 0\)。
3、负数的绝对值是它的相反数,即当\(a < 0\)时,\(\vert a\vert = a\)。
绝对值的计算:例如,\(\vert -5\vert = 5\),\(\vert 3\vert = 3\)。
六、有理数的大小比较1、正数大于 0,0 大于负数,正数大于负数。
2、两个负数比较大小,绝对值大的反而小。
例如,比较\(-3\)和\(-5\)的大小,因为\(\vert -3\vert =3\),\(\vert -5\vert = 5\),\(3 < 5\),所以\(-3 >-5\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲
0
乙
三、解答题:
14、在数轴上画出表示下列各数的点:-4,1.5,3,0,-1
15、一个点从数轴上表示-1的点出发,先向右移动3个单位长 度,再向左移动5个单位长度,这时表示的数是多少?这个点共 移动了多少个单位长度?终点与始点相距多少个单位长度?
16、某数的绝对值小于2,在数轴上,这个数表示的点到-0.6 表示的点的距离是1.5个单位,求这个数,
7、某一天杭州的最低气温是零下3℃,最高气温是零上8 ℃,则一天的最大温差是______;
8、如图,两个圏分别表示负数和分数,请写出属于两个 圈的重叠部分的数___________;
二选择题:
9、下列说法不具有相反意义的量的是( )负数
分数
(A)向东2.5千米和向西2千米
(B)上升3米和下降1.5米
1)绝对值不大于 2 的整数是___________ 2)绝对值小于 2 的非负整数是_________ 3)相反数等于它本身的数是__________ 4)绝对值等于它本身的数是__________
1) |-4|的相反数是___________ 2) 数轴上表示互为相反数的两个点之间的距 离为8,则这两个数为___________
(1)当将最后一位老师送到目的地时,小张在什么位置? (2)哪个教师的目的地离出发地最远? (3)若出租车每公里的油耗为0.4升,那么这天上午出租车一共耗油多少升? (4)若小张必须回到出发点,请你设计一个路线,使得送完最后一位教 师时,总油耗最省? (5)若小张不必回到出发点,请你设计一个路线,使得送完最后一位教 师时,总油耗最省?
3) 数轴上点A到表示数 2 的点的距离为 3 , 则点A表示的数为___________
4)若|a-2013|与|b-2012|互为相反数,则 a-b=
教师节这一天上午,出租车司机小张在东西走向的公路上免 费接送教师,如果规定向东为正,向西为负,出租车从A出发的 行程如下(单位:千米)
①②③④⑤⑥⑦ 5 -5.5 +4 6 -4 2.5 -8
某检修队从A 地出发,在东西方向的公路上的六个 检修点检修线路,如果规定向东行驶为正,向西行 驶为负,这个检修队到达各检修点所行驶的记录如 下(单位:千米)
-4,+7,-9,+8,+6,-8.
(1)若检修队所乘的汽车每千米耗油0.3升,从出 发到收工时总共耗油多少升?
(23)收哪工个时检检修修点队离在A地什最么远位?置?
请在纸上写出几个有理数
①②③④⑤⑥⑦ 5.5 -2.5 +4 10 -4 3.5 -8
问问题题一 三二: :你 针能 对否上将将述这这题些些目数数,从进你小行还到分能大类提排? 什列么吗数? 依学据问是题什?么?
1) 3 的相反数是 ___________ 2) 3的绝对值是 ___________ 3) 绝对值等于 3 的数是___________ 4) 最大的负整数是___________ 5) 最小的正整数是___________
2、最大的负整数是________;
3、绝对值是它的本身的数是___________;
4、写出所有不大于|-2|的自然数__________;
5、比较下列各数的大小(填入<,>,或=):
(1)1____-2; (2) - 1 ____-0.3;(3)| 1 |___-(- 1)
3
3
3
6、数轴上到原点的距离为4的点表示的有理数是____;
(C)零上6 ℃ 和零下5 ℃
(D)收入5000元和亏损5000元
10(A、) 在--4 4(,B)--99,-(C1)01-0 ,1-0100.1(D中),-最0.1大的数是(
)
11、下列说法错误的是( )
(A)任何有理数有相反数
(B)-1是最大的负有理数
(C)任何有理数都 有绝对值
(D)零是最小的自然数
D
B
A
EC
F
-6 -5 - 4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
(4)请你设计一个行进路线,使当检修完6个检
修点时,总耗油最省。
小结
这节课你有何收获或困惑吗?
请大胆说出来与大家分享与交流 吧!
Hale Waihona Puke 一填空:1、如果节约20千瓦时电记做+20千瓦时,那么浪费10千瓦时电 记做_________;
12、一个数小于它的绝对值,那么这个数是( ) (A)正数 (B)负数 (C)整数 (D)零
13、甲乙两个数在数轴上表示如图,下列说法正确的是( ) (A)甲数的相反数比0小,乙数的相反数比0大 (B)甲数的相反数小于乙数的相反数,都比0小 (C)甲数的相反数比0大,乙数的相反数比0小 (D)甲数的相反数大于乙数的相反数,都比0大