第四章 配位化合物
第四章 配位化合物的理论
Co 3d74s2: Co3+ 3d6: 在配位后, CoF63-:
6F-
sp3d2 在CoF63-中, 杂化轨道的类型为sp3d2, 配离子有4个单电子, 显 顺磁性, 为外轨型配合物(也叫电价配合物)。 6CN- Co(CN)63-: d2sp3 在Co(CN)63-中, Co3+中心离子以d2sp3杂化轨道成键, 配离子 没有成单电子, 显抗磁性, 为内轨型配合物(也叫共价型配合物)。
d 轨道的分裂并非纯粹的静电效应,
其中的共价因素也不可忽略。
2. 配合物高低自旋的预言
对于一个处于配位场中的金属离子, 其电子排布究竟采用高自 旋, 还是低自旋的状态, 可以根据成对能和分裂能的相对大小来进 行判断: ●当P>△时, 因电子成对需要的能量高, 电子将尽量以单电子 排布分占不同的轨道, 取高自旋状态;
3 拉长的八面体 在拉长八面体中, z轴方向上的两个配体逐渐远离中心原子, 排斥力下降, 即dz2能量下降。 同时, 为了保持总静电能量不变, 在x轴和y轴的方向上配体 向中心原子靠拢 , 从而 dx2 - y2 的能量升高 , 这样 eg 轨道发生分裂 。在t2g三条轨道中, 由于xy平面上的dxy轨道离配体要近, 能量升 高, xz和yz平面上的轨道dxz和dyz离配体远因而能量下降。结果, t2g轨道也发生分裂。①dx2-y2, ②dz2, ③dxy, ④dxz和dyz。
将一些常见配体按光谱实验测得的分裂能从小到大次序排列起来, 便得光 谱化学序:
这个化学序代表了配位场的强度顺序。由此顺序可见, 对同一金属离子, 造 成△值最大的是CN-离子, 最小的是I-离子, 通常把CN-、NO2-等离子称作强 场配位体, I-、Br-、F-离子称为弱场配位体。 须指出的是, 上述配体场强度顺序是纯静电理论所不能解释的。例如OH-比H2O 分子场强度弱, 按静电的观点OH-带了一个负电荷, H2O不带电荷, 因而OH-应 该对中心金属离子的 d轨道中的电子产生较大的影响作用 , 但实际上是OH- 的 场强度反而低, 显然这就很难纯粹用静电效应进行解释。这说明了
第4章 配位化合物
⑵ 配合物的命名
服从一般无机化合物的命名原则:在 含配离子的化合物中,命名时阴离子名称 在前,阳离子名称在后。
(命名口诀:先无后有,先阴后中,先A后B,先少后多。)
Page 24
a) 若配合物的外界是H+,叫做“某酸”,如
H2[SiF6]称为六氟合硅(Ⅳ)酸; b) 若配合物的外界是OH-,叫做氢氧化某,如 [Ag(NH3)2](OH)称为氢氧化二氨合银(Ⅰ); c) 若配合物的外界是金属阳离子,叫做某酸某, 如K2[PtCl6]称为六氯合铂(Ⅳ)酸钾; d) 若配合物的外界是含氧酸根离子,叫做某酸某, 如[Cu(NH3)4]SO4称为硫酸四氨合铜(Ⅱ)。 e) 若配合物的外界是无氧酸根离子,叫做某化某,
Page 22
④同类配体的配位原子相同时,将含较少原子数的 配体排在前面; [Pt(NO2)(NH3)(NH2OH)(Py)]Cl
氯化硝基· 羟氨· 氨· 吡啶合铂(II)
④配位原子相同,配体中所含的原子数目也相同时,
按结构式中与配位原子相连的原子的元素符号的
英文顺序排列。 [Pt(NH2)(NO2)(NH3)2] 氨基· 硝基· 二氨合铂(II)
②. 五元环或六元环的张力较小,使螯合物稳定。 螯合物具有特殊的稳定性,在水中很难解离,且一 般具有特征颜色。
Page 18
③配位数
与中心原子直接以配位键结合的配位原
子的总数称为该中心原子的配位数。
中心原子的配位数与配体的齿数有关。
a) 若配体是单齿的,配位数=配体的数目,如 [Cu(NH3)4]2+中,配位数是NH3分子的数目4;
b) 若配体是多齿的,配位数=配体的数目×齿数,如 乙二胺是双齿配体,在[Pt(en)2]2+中,Pt2+的配位数 为 2×2=4。
第四章 配位场理论
二、配位体
●每个配位体至少有一个原子具有一对(或多对)孤对电子,或 分子中有π 电子。如,N、O、C、P、S、Cl、F等。
● 根据配位体所提供的络合点数目和结构特征,可将配体分成以
2、CFSE的计算:
八面体强场: CFSE= [4n – 6(N-n)]Dq-mP 八面体弱场: CFSE= [4n – 6(N-n)]Dq 四面体场: CFSE= [2.67n – 1.78(N-n)]Dq
其中:N:d电子总数,n:低能轨道上的电子数,m:强场迫 使电子对增加的数。
例题:计算[Fe(H2O)6]2+和[Fe(CN)6]4 的稳定化能
t2g6
t2g4eg2
t2g6eg1
t2g5eg2
(2) 正四面体场
由于其分裂能 t 小,故一般 t < P ,因而 正四面体场络合物各种dn 离子均采用弱场 高自旋电子排布。
(3)平面正方形场
由于分裂能较大,故采取低自旋态电子排布
四、晶体场稳定化能(CFSE)
1、定义:d电子从未分裂的d轨道Es能级进入 分裂的d轨道时,所产生的总能量下降值, 称为晶体场稳定化能,用CFSE表示。CFSE 越大,络合物越稳定,故CFSE是衡量络合 物稳定性的因素。
2 2
3 Ee T 2.67 Dq 5 2 Et2 t 1.78 Dq 5
3. 平面正方形场( D4h )
dx2-y2 dxy
dz2 x y dxz, dyz
x
D4h场
y
dx2-y2
dxy
5 个 d 轨道在不同配位场中能级分裂情况的示意图:
中国药科大学《无机化学》第四章配位化合物习题及答案
中国药科大学《无机化学》第四章配位化合物习题及答案一、选择题1. 对于配合物中心体的配位数,说法不正确的是………………………………………()(A) 直接与中心体键合的配位体的数目(B) 直接与中心体键合的配位原子的数目(C) 中心体接受配位体的孤对电子的对数(D) 中心体与配位体所形成的配价键数2. [Ni(CN)4]2-是平面四方形构型,中心离子的杂化轨道类型和d电子数分别是……()(A) sp2,d7(B) sp3,d8(C) d2sp3,d6(D) dsp2,d8二、填空题3. 配合物[PtCl(NH3)5]Br和[Co(NO2)(NH3)5]2+ 存在的结构异构体的种类和结构简式分别为_______________________________ 和_______________________________________。
4. 已知铁的原子序数为26,则Fe2+在八面体场中的晶体场稳定化能(以△0 =10 Dq表示)在弱场中是_____________ Dq,在强场中是______________ Dq。
5. 对于八面体构型的配离子,若中心离子具有d7电子组态,则在弱场中,t2g轨道上有____个电子,e g轨道上有____个电子;在强场中,t2g轨道上有____个电子,e g轨道上有____个电子。
三、问答题6. 试举例说明π 配合物与π酸配合物的区别。
7. 画出[CoCl2(NH3)2(H2O)2]+配离子的几何异构体。
参考答案一、选择题1. (A)2. (D)二、填空题3. 电离异构体[PtBr(NH3)5]Cl键合异构体[Co(ONO)(NH3)5]2+4. -4 Dq;-24 Dq5. 5,2;6,1三、问答题6.π配合物:由配体提供π电子给中心体原子(离子)的空轨道,形成配位σ 键,例蔡斯盐[PtCl3(C2H4)]-。
Pt – C2H4间存在σ 键及反馈d -π*π键π酸配合物:由CO、NO等一类π酸配体(π受体)与金属原子或d电子较多的过渡金属原子、离子形成的配合物,一方面它们可以提供孤对电子与中心体形成配位σ 健,另一方面,它有空的π轨道可接受来自中心体原子上d轨道上积累的负电荷,配体本身是Lewis 碱,又是Lewis酸。
14第4章-配位化合物
赤血盐
—— 银氨配离子
最后,可以指出,事实上往往不是用名称而是用 化学式来表明配合物。这样既简单又明白。
§4 -2
配合物的异构现象与立体异构
结构异构 配位异 构现象 立体异构 对映异构 几何异构
2 —1
结构异构
组成相同而结构不同的异构现象称为结构异构。
例如:组成为CrCl3· 6H2O,但它有三种不同结构:
例:[Pt(NH3)4]2+、[Pt(NH3)2Cl2]:
在配体作用下,2个成单d电子归并成对,腾出1个d轨道来 进行dsp2杂化,平面正方形。
5d 6s
dsp2杂化
Pt2+:
2+
6p
H3N H3N
Pt
NH3 NH3
H3N H3N
Cl Pt Cl
顺式
H3N Cl
Cl Pt NH3
反式
配位数、杂化类型、立体结构的关系
径式 面式
紫色
绿色
2 —3
对映异构
又称手性异构、旋光异构、光学异构。是一种立体异构现象。
§4-3 配合物的价键理论
3 -1 价键理论 1.配位键的本质
⑴.配位键形成条件:
①.中心离子(或原子)具有空轨道。 ②.配位体具有孤对电子(或π 电子)。
如:[Cr(NH3)6]3+
Cr:3d54s1
Cr3+ :
二乙二胺合镍(Ⅱ)
H
H
H
H
CaY2-
叶绿素
血红素
1 -4
配合物的命名
配合物的命名法服从一般无机化合物的命名原则:
a.酸根是简单的阴离子,便叫做“某化某”。 b.酸根是复杂的阴离子,则称为“某酸某”。 c.外界为氢离子、配阴离子的名称之后用“酸”字结尾。
第四章 配合物
间无沉淀,其水溶液中主要组分为Cs+和
[Rh(H2O)4(SO4)2]-,后者也存在于晶体中。
4-1-4 配合物的命名
如果配合物中的酸根是一个简单的阴离 子,称某化某,如[Co(NH3)Cl3称三氯化六氨 和钴(III)。如果是一个复杂的阴离子,则称某 酸某,如[Cu(NH3)4]SO4称硫酸四氨合铜(II)。 若外界为氢离子,配阴离子的名称之后用酸 字结尾,如H2[PtCl6]称六氨合铂(IV)酸。若外 界为氢氧根离子则称氢氧化某,如 [Cu(NH3)4](OH)2称为氢氧化四氨合铜(II)。
例3:卟吩与卟啉配合物叶绿素、血红素等的基本结构
例4:多核配合物
OH2 H2O Fe H2O OH2
H O O H
OH2 OH2 Fe OH2 OH2
联结两个中心原子的配体称为桥联配体或桥联 集团,简称桥基。 如三价铁离子在水溶液中,于适当浓度和pH 之下可形成多核的配离子。
含有两个或两个以上中心原子的配合物,称多 核配合物。在多核配合物中,中心原子除与配 体结合外,金属原子间还互相接合,这样的配 合物称为金属簇配合物。
4.配位数
(1)配位数 直接与中心离子(或原子)结合的配位 原子的数目称为该中心离子(或原子)的配位数。 (2)配位数的计算 ① 配位离子(或分子)中的配体都是单齿配位时 ,则配位数与配位体的数目相同。例如在 + [Cu(NH3)4]²配阳离子中,Cu2+的配位数为4;在 [Fe(CN)6]3-配位离子中,Fe3+的配位数为6;在 [PtCl2(NH3)2]配位分子中,Pt的配位数为4。
(ii)配体的半径较大时,在同一中心离子周围 所能容纳的配体的数目减少,故配位数降低。
例如,Al3+离子同卤数离子形成配合物时,与 半径较小的F-离子可形成6配位的[AlF6]3-,而 与半径较大的Cl-、Br-、I-离子则形成4配位的 [AlCl4]-、[AlBr4]-和[AlI4]-。
第四章 配合物0
例
类型 配酸 化学式 H3[AlF6]
题
命名 六氟合铝(Ⅲ)酸
配碱 [Cr(OH)(H2O)5](OH)2 氢氧化一羟基五水合铬(Ⅲ)
配 位 盐 中性 分子 K[Al(OH)4] [Co(NH3)5(H2O)]Cl3 [Pt(NH3)6][PtCl4] [Ni(CO)4] [PtCl2(NH3)2] 四羟基合铝 (Ⅲ)酸钾
ONO亚硝酸根
SCNNCS硫氰酸根 异硫氰酸根
2. 多齿配体 配体中含有两个或两个以上配位原子的叫多齿配体。其齿数 可以是2,3,4,5,6。
如无机含氧酸根: SO42– 、 CO32– 、 PO43–
:O S :O 如有机酸根: CH3 COO– 既可作单齿也可作二齿配体。 O
O
3. 螯合配体 同一配体中两个或两个以上的配位原子直接与同一金 属离子配合成环状结构的配体称为螯合配体。螯合配体是多齿
第四章 配位化合物
考试要求:
配位键。重要而常见的配合物的中心离子(原子) 和重要而常见的配体(水、羟离子、卤离子、拟卤 离子、氨、酸根离子、不饱和烃等)。螯合物及螯 合效应。重要而常见的配合反应。配合反应与酸碱 反应、沉淀反应、氧化还原反应的关系(定性说 明)。配合物几何构型和异构现象基本概念和基本 事实。配合物的杂化轨道理论。用杂化轨道理论说 明配合物的磁性和稳定性。用八面体配合物的晶体 场理论说明Ti(H2O)63+离子的颜色。不要求记忆单 电子磁矩计算公式。不要求晶体场、配位场理论的 基本概念。
乙烯
丁二烯 苯
C2H4
CH2=CH-CH=CH2 C6H6 C5H5-
环戊二烯基
等。由π配体形成的配合物称为π配合物。π配合物通常出 现在过渡金属配合物中。
第四章 配位键和配位化合物第一节 配位化合物的基本概念
∶B称电子对给予体。A称电子对接受体。配离子中,中心离子是 电子对接受体,配体是电子对给予体。配位键用一个指向电子对 接受体的箭头“→”表示
●配位键的形成条件
——成键原子中的一个原子的价电子层有孤对电子
——另一原子的价电子层有可接受孤对电子的空轨道
2023/2/19
2023/2/19
3
Байду номын сангаас
一、配合物的定义 1980年, IUPAC (International Union of Pure
and Applied Chemistry,国际纯化学与应用化学联合会)
●由可以给出孤对电子或多个不定域电子的一定数目的离子或分 子(称为配体)和具有接受孤对电子或多个不定域电子原子或离 子(统称中心离子),按一定的组成和空间构型形成的化合物称 配位化合物,简称配合物
[Ag(NH3)2]OH
氢氧化二氨合银(Ⅰ)
[CoCl(NH3)5]Cl2
二氯化一氯•五氨合钴(Ⅲ)
[PtCl(NO2)(NH3)4]CO3
碳酸一氯•一硝基•四氨合铂(Ⅳ)
[CrCl2(NH3)4]Cl•2H2O
二水合一氯化二氯•四氨合铬(Ⅲ)
[Cr(NH3)6][Co(CN)6]
六氰合钴(Ⅲ)酸六氨合铬(Ⅲ)
例,Fe3+与SCN-配位,随着SCN-浓度增加,可形成配位数为1~6 的配离子
2023/2/19
12
(五)配离子的电荷
是中心离子电荷和配体总电荷的代数和
例,Zn2+与CN-形成[Zn(CN)4]x,电荷数x为x=2+4(-1)=-2,故为 [Zn(CN)4]2-配离子,[Zn(NH3)6]x的电荷x为+2
4章配位化合物-杨莉
4-1 配合物的基本概念
化合价理论。 符合化合价理论的化合物:简单化合物。 复杂化合物:配位化合物。 4-1-1 配合物的定义 一、定义
1、配合物的形成:
实验演示
2
BaCl2溶液
CuSO4溶液
BaCl2溶液
CuSO4溶液+过量氨水
NaOH溶液
CuSO4溶液
NaOH溶液
CuSO4溶液+过量氨水
无水乙醇
[Co(NH3)5H2O]Cl3 三氯化五氨·一水合钴(III)
27
(4) 同类配体同一配位原子时,将含较少原子 数的配体排在前面。
[Pt(NO2)(NH3)(NH2OH)(Py)]Cl 氯化硝基·氨·羟氨·吡啶合铂(II) (5) 配位原子相同,配体中所含的原子数目也相 同时,按结构式中与配原子相连的原子的元素符 号的英文顺序排列。 [Pt (NH2)(NO2)(NH3)2] 氨基·硝基·二氨合铂(II) (6)配体化学式相同但配位原子不同,(- SCN, NCS)时,则按配位原子元素符号的字母顺序排列。
多核配合物:含有两个或两个以上中心原子的 配合物。
OH2
OH2
2+
N
O
O
N
Ni
Ni
O N
OH2
O N
OH2
-草酸根·二(二水·乙二胺合镍(II))离子
8
2、配位体
a、定义:提供孤对电子或多个不定域电 子的离子或分子。
配位原子:在每个配位体中,直接提供孤 电子对的原子.
例:NH3分子的N原子是配位原子。 通常能做配位原子的元素多为非金属原 子。见书169页。
例如: CsRh(SO4).4H2O, 其水溶液和 晶体中存 在
第4章 配位键及配位化合物
配位原子:配体中与中心原子直接相连的原子。 H,C,N,P,As,Sb,O,S,Se,Te,F, Cl,Br,I
单齿配体:只含有一个配位原子的配体。 分类 多齿配体:含多个配位原子的配体。
常见的单齿配体及名称
中性分子配位体及其名称 H2 O 水 F 阴离子配位体及其名称 氟 NH2 胺基
NH3
4.1 配位化合物的基本概念
4.1.1 配位化合物的定义 中心离子 (原子)
[Cu(NH3)4]SO4
定义:以具有接受电子对的空轨道的原子和离子为中心, 与一定数量的可以给出电子对的离子或分子按一定的组成
和空间构型形成的化合物。
配位体
配位键的形成:中心离子(原子)提供空轨道,配位体上 的配位原子提供孤对电子。
(1) 简单配合物 单齿配体——一个配位原子 (NH3, H2O, CN-) (2) 螯合物 多齿配体——两个(含)以上 配位原子 (en, EDTA)
H3N Cu H3N
H2 CH2N CH2N H2 Cu
NH3 NH3
2+
2+ H2 NCH2
NCH2 H2
(3) 特殊配合物
金属羰基配合物 Ni(CO)4 簇状配合物 有机金属配合物 大环配合物
↑↓ ↑↓ ↑↓ ↑↓
3d
[FeF6]3↑ ↑ ↑ ↑ ↑ ↑↓ ↑↓
4d
3d
F- F- F-
F-
F- F-
Fe3+的一条4s三条4p二条4d轨道sp3d2杂化,形成6 条sp3d2 杂化轨道,与F-形成6个σ配位键,配离子 空间构型为正八面体。
(2) [Fe(CN)6]3(d2sp3杂化) Fe3+(3d54s04p0) 4p 3+ 5 4s Fe 3d
配位化合物
4、 配位数及电荷 、
与中心离子(或 原子)成键的配 位原子的总数
配 数 = ∑配 体i 的 目 齿 位 位 数 × 数
单 配 齿 体 C H 3 ) 4+ u(N 多 配 齿 体 4 3 +1 = 4 2 + 2× 2 = 6 3× 2 = 6 1×6 = 6
[PtCl 3 (NH3 )]− [CoCl 2 (en)2 ]2+ [Al(C2O4 )3 ]3− [Ca(EDTA) ]2−
−
配离子与形成体 的电荷数
(+) (+2) l Ag(S2O3 ) 2 , Pt C 3 (NH3 ) (+3) (+2) K3 Fe (C 6 赤 盐, N) 血 K4 Fe (C 6 N) (0) (+3) o l H O) C C 3 (N 3 )3 , Fe(C 5
2价金属离子 Ca2+ 6 Mg2+ 6 Fe2+ 6 Co2+ 4,6 Cu2+ 4,6 Zn2+ 4,6
3价金属离子 Al3+ 4,6 Cr3+ 6 Fe3+ 6 Co3+ 6 Au3+ 4
19
三 类型 (types)
1、简单配合物 、 一个中心离子,每个配体均为单齿配体
4 如 Fe(CN)6− [Co(NH3 )5 (H2O)] 3+
维尔纳 (Werner, A, 1866—1919) 瑞士无机化学家.因创立配位化学 而获得1913年诺贝尔化学奖
5
4-1 配合物基本概念
让我们先看一个实验: 让我们先看一个实验:
[Cu(NH3)4]SO4溶液 Cu(OH)2沉淀 CuSO4溶液
第四讲 配位化合物
的四配位络合物几乎全是四面体形的。 镍离子与镍试剂形成的配合物
配位键的杂化理论
六配位的Fe(CN)63-、Fe(CN)64-、Fe(H2O)63+等的配 F e [Ar] 位原子的孤对电子进入中心原子的2个d轨道、1个s轨道 3+ F e [Ar] 和3个p轨道,形成八面体的杂化轨道。
[Ar] 这种杂化有两种:d2sp3和sp3d2──前者参与杂化的 sp 3 d 2 (外轨型) 是3d轨道,后者参与杂化的是4d轨道,又叫内轨型与 3+ 3 2 42 [Ar] d 2 d 2 sp 3 d dspsp F e sp 2 3 sp 3 3 3 dsp sp 2 d d dsp 2 d 4 s 3 dsp 外轨型。 d 2 sp 3(内轨型) 配离子的空间构型与中心原子的杂化类型 铁(III)离子的内轨型和外轨型电子构型 Fe
子和配位体电荷的代数和。如[Cu(NH3)4]2+的 电荷是+2+(0)×4=+2。
螯合物
C H2 CH2
配体中只有一个配位原子叫单齿配体,有多 NH2
个配位原子的叫多齿配体(又分双齿、三齿、 2+ 四齿等等)。 H 3 N H 2N C u NO 3 C H 由多齿配体形成的配合物又被形象地叫做螯 H 合物。 2 C 2O O
路易斯酸碱
定义:
能够接受电子对的分子称为“路易斯酸”, 能够提供电子对的分子称为“路易斯碱”。 路易斯酸和路易斯碱以配价键相互结合形 成的化合物叫做“路易斯酸碱对”。
1923年美国G.N.路易斯提出。
路易斯酸碱
例、下列化合物中哪些是路易斯酸?哪些是
路易斯碱? BH4 、PH3、 BeCl2 、CO2 、CO、 Hg(NO3)2 SnCl2 解: 路易斯酸 BeCl2 、CO2 、CO、Hg(NO3、 SnCl2 路易斯碱 PH3 、CO、 SnCl2
第四章配位化合物
第四章配位化合物1、举例说明什么叫配合物,什么叫中心离子(或原子)。
答:配合物的定义是:由一个中心离子(或原子)和几个配位体(阴离子或原子)以配位键相结合形成一个复杂离子(或分子)通常称这种复杂离子为结构单元,凡是由结构单元组成的化合物叫配合物,例如中心离子Co3+和6个NH3分子以配位键相结合形成[Co(NH3)6]3+复杂离子,由[Co(NH3)6]3+配离子组成的相应化合物[Co(NH3)6]Cl3是配合物。
同理,K2[HgI4]、[Cu(NH3)4]SO4等都是配合物。
每一个配位离子或配位分子中都有一个处于中心位置的离子,这个离子称为中心离子或称配合物的形成体。
2、什么叫中心离子的配位数,它同哪些因素有关。
答:直接同中心离子(或原子)结合的配位原子数,称为中心离子(或原子)的配位数。
影响中心离子配位数的因素比较复杂,但主要是由中心离子和配位体的性质(半径、电荷)来决定。
(1)中心离子的电荷越高,吸引配位体的能力越强,因此配位数就越大,如Pt4+形成--PtCl62,而Pt2+易形成PtCl42,是因为Pt4+电荷高于后者Pt2+。
(2)中心离子半径越大,其周围可容纳的配位体就越多,配位数就越大,例如Al3+的半径--大于B3+的半径。
它们的氟配合物分别是AlF63和BF4。
但是中心离子半径太大又削弱了它对配位体的吸引力,反而配位数减少。
(3)配位体的负电荷增加时,配位体之间的斥力增大,使配位数降低。
例如:[Co(H2O)6]2+-和CoCl42。
(4)配位体的半径越大,则中心离子周围容纳的配位体就越小,配位数也越小。
例如----AlF63和AlCl4因为F半径小于Cl半径。
2、命名下述配合物,并指出配离子的电荷数和中心离子的氧化数?根据配合物分子为电中性的原则,由配合物外界离子的电荷总数确定配离子的电荷数、中心离子氧化数。
解:配合物命名配离子电荷数中心离子氧化数[Co(NH3)6]Cl3三氯化六氨合钴(Ⅲ)+3+3K2[Co(NCS)4]四异硫氰合钴(Ⅱ)酸钾-2+2Na2[SiF6]六氟合硅(Ⅳ)酸钠-2+4[Co(NH3)5Cl]Cl2二氯化一氯·五氨合钴(Ⅲ)+2+3K2[Zn(OH)4]四羟基合锌(Ⅱ)酸钾-2+2[Co(N3)(NH3)5]SO4硫酸一叠氮·五氨合钴(Ⅲ)+2+3[Co(ONO)(NH3)3(H2O)2]Cl2二氯化亚硝酸根·三氨·二水合钴(Ⅲ)+2+33、指出下列配离子中中心离子的氧化数和配位数:配离子中心离子氧化数配位数(1)[Zn(NH3)4]2++24(2)[Cr(en)3]3++36-(3)[Fe(CN)6]3+36-(4)[Pt(CN)4(NO2)I]2+46-(5)[Fe(CN)5(CO)]3+26(6)[Pt(NH3)4(NO2)Cl]2++464、指出下列化合物中的配离子、中心离子及其配位数。
配位化学 第4章 配合物的合成方法
3. 配体上的取代反应
当西佛碱、戊二酮和偶氮化合物作为配体时,可发生取代 反应并生成新配合物。例如
M C NH+ R'NH2 M C NH+ RNH2
具体的例子如将N-溴代丁二酰亚胺加到乙酰丙酮合铬 (III)的氯仿溶液中后搅拌,再蒸去溶剂,重结晶可得三(3- 溴代-2,4-戊二酮)合铬(III)配合物:
有时在直接加成合成时也用混合溶液,例如
H2OC2 H5OH [Fe(H2O)6 ]2 3bipy [ Fe(bipy)3 ]2(深红色) 6H2O
§6.1.2
取代反应合成法
取代合成也叫组份交换合成,即通过对配合物 中的某一组分进行交换,替代,并生成新的配合 物.一般可分为下列三种方法: 1. 配体取代 2. 中心金属离子取代 3. 配体上的取代反应
第四章
配位化合物的合成化学
请自学有关配合物的合成方法
广义地讲,配位化合物除经典的中心离 子与其它分子或离子(配体)通过授受电子 对形成配键结合而成werner型之外,还应包 括许多新型的化合物,如金属π配合物、夹 心配合物、笼状配合物、分子氮配合物,大 环配合物,金属有机化合物和簇合物。但习 惯上一般把含有金属-碳键的配合物称为金 属有机化合物;而把含有两上以上的金属原 子且分子内存在有金属-金属键的配合物称 为金属簇化合物(Cluster compounds或 Cluster complex)。
对Werner型配合物来说,最常用的方法是结晶,其 中包括:
(a)浓缩、蒸发除去溶剂,用冰盐浴等冷却,使产物析出。
(b)缓慢地加入与溶剂有互相混溶,但又不能溶解目标配合物 的溶剂使产物析出。 (c)若目标配合物是配阳离子,可加入能与它生成难溶盐的合 适阴离子将它分离出来,而要制备配阳离子时,可以加入一 种合适的阳离子使其分离出来。当一次结晶不能制得纯目标 化合物时,还需多次结晶,使其纯化。
无机与分析化学第4章_习题答案
第四章配位化合物习题参考解答1•试举例说明复盐与配合物,配位剂与螯合剂的区别。
解复盐(如KCI・MgCl2 6H2O)在晶体或在溶液中均无配离子,在溶液中各种离子均以自由离子存在;配合物K2[HgI 4]在晶体与溶液中均存在[Hgl4]2-配离子,在溶液中主要以[Hgl4]2-存在,独立的自由Hg2+很少。
配位剂有单基配位剂与多基配位剂:单基配位剂只有一个配位原子,如NH3(配位原子是N);多基配位剂(如乙二胺H2N —CH2- CH2- NH2)含有两个或两个以上配位原子,这种多基配位体能和中心原子M 形成环状结构的化合物,故称螯合剂。
2. 哪些元素的原子或离子可以作为配合物的形成体?哪些分子和离子常作为配位体?它们形成配合物时需具备什么条件?解配合物的中心原子一般为带正电的阳离子,也有电中性的原子甚至还有极少数的阴离子,以过渡金属离子最为常见,少数高氧化态的非金属元素原子也能作中心离子,如Si(W )、P(V )等。
配位体可以是阴离子,如X-、OH-、SCN-、CN-、C2O4-等; 也可以是中性分子,如H2O、CO、乙二胺、醚等。
它们形成配合物时需具备的条件是中心离子(或原子)的价层上有空轨道,配体有可提供孤对电子的配位原子。
3. 指出下列配合物中心离子的氧化数、配位数、配体数及配离子电荷。
[CoCl2(NH3)(H2O)(en)]CI Na^AIF 6] K/FeQN"] Na2[Ca Y] [PtCl4(NH3)2]解K 2[PtCI 6] [Ag(NH 3)2]CI [Cu(NH 3)4]SO 4 K 2Na[Co(ONO )6]Ni(C0)4[Co(NH 2)(NO 2)(NH 3)(H 2O)(e n)]CI ©[Z nY]K 3【F e (C N )6】解二硫代硫酸合银⑴酸钠 酸铵; 四氯合铂(II)酸六氨合铂(II) 合铁(III)离子 硫酸一氯 一氨 二乙二胺合铬(III) 解 Na 3[Ag(S 2O 3)2] [Pt(NH 3)6][PtCl 4] [FeCl 2(C 2O 4)(en)] [CrCl(NH3)(en )2】SO 46. 下列配离子具有平面正方形或者八面体构型,试判断哪种配 离四硫氰酸根 二氨合铬(III) 二氯一草酸根一乙二胺NH 4[Cr(SCN )4(NH 3)2]子中的CO32—为螯合剂?[Co(CO3)(NH3)5]+[Co(CO3)(NH 3)4]+[Pt(C O 3)(en)] [Pt(CO3)(NH3)(en)]解[Co(CO3)(NH3)4]+、[Pt(C03)(en)]中CO32-为螯合剂。
第四章-_配位化合物与配位平衡
[Ag(S2O3)2]3- + I-沉淀剂→
K Ө稳=2.9×1013
AgI(s)黄色,K Өs=8.5×10-17 +2CN- (aq)配位剂
2CN- (aq) + 1/2Ag2S(s)黑色 ←
结论:
K Өs=1.1×10-49
[Ag(CN)2]- + 1/2S2-沉淀剂
K Ө稳=1.3×1021
•外界:
SO42-
•形成体: Co3+( 中心离子电荷数:+3)
•配位体: Cl-, NH3, en (:NH2-CH2-CH2-H2N:) •配位原子: Cl(1个); N(5个) •配位数: 6
Cu(NH 3 )4 SO4 Nhomakorabea硫酸四氨合铜(Ⅱ)
K3Fe(NCS)6
六异硫氰根合铁(Ⅲ)酸钾*
H2 PtCl6
= 2.0×10-3
= x2/(6.0-2x)2
两边同时开平方得:
0.0447 = x/(6.0-2x) (因K Ө稳大,x 较大, x不能近似)
x = 0.25mol/Kg
换算成AgCl的质量:
0.25mol/Kg×143.35g/mol×1Kg= 35g
答:1.0Kg 6mol/Kg氨水可溶解35g (0.25mol) AgCl。
K(稳) 1.67 107
0.010 x 0.010
0.010 2x 0.010
0.010 x 0.0102
1.67 107
x 6.0 106
[Ag ] 6.0 106 mol L1
[
N
H3
]
[Ag(N
H
3
)
2
]
暨南大学有机无机化学第四章 配位化合物课件
①中心原子与配体之间用“合”字连接:配体数-配体名 称-“合”-中心原子(氧化数)。
[Co(NH3)6]3+ 六氨合钴(III)离子
②先无机配体,后有机配体,配体相互间以黑点分开。 [Pt(en)Cl2] 二氯 ·一乙二胺合铂(II)
二、配位化合物的命名
原则是先阴离子后阳离子,先简单后复杂,先无机后有 机。
配位键理论认为:配位键形成过程中,中心原子提供 的原子轨道必然发生杂化。
配 空间构型 杂化轨道
位
类型
数
实例
2 直线形
sp
Ag(NH3)2+ ,Ag(CN)2–
3 平面三角形
sp2
Cu(CN)32 –, HgI3–
4 正四面体
sp3
Zn(NH3)42+ ,Cd(CN)42–
4 平面四边形 dsp2 Pt(NH3)42+
6个 键
NH3 NH3 NH3 NH 3 NH3 NH3
Co(NH3)63+: Co3+: 3d6
3d
调整 3d
内轨型配合物,低自旋 µ = 0
4d 4p 4s
4d 4p 4s
d2 sp3杂化 3d
d2 sp3杂化轨道
6个 键
NH3 NH3 NH3 NH 3 NH3 NH3
Co(NH3)63+: Co3+: 3d6
一个人的成就越大,对他说忙的人就越少;一个人的成就越小,对 他说忙的人就越多。
对大部分人来说,工作是我们憎恨的一种乐趣,一种让我们脚步变 得轻盈的重负,一个没有它我们就无处可去的地狱。
世界上任何书籍都不能带给你好运,但是它们能让你悄悄成为你自 己。
大学无机化学-配位化合物
三、含配阴离子的配合物
[ ]SO4
硫酸[ 硫酸[
]
在配阴离子与外界阳离子之间用“ 在配阴离子与外界阳离子之间用“酸”字相 连 例:K4[Fe(CN)6] 六氰合铁(II)酸钾 六氰合铁 酸钾 四、含配阳离子的配合物
[ ]Cl
氯化[ 氯化 ]
阴离子在前, 阴离子在前,配阳离子在后
例:[Cr(en)3](ClO4)3 高氯酸三(乙二胺)合铬 高氯酸三(乙二胺)合铬(III) 例:[Cr(en)3]Cl3 五、俗名命名 黄血盐, 黄血盐,赤血盐等 亚硝酰铁氰化钠 Na2[Fe(CN)5NO]·2H2O 氯化三(乙二胺)合铬 氯化三(乙二胺)合铬(III)
常见的配位数为2, , 常见的配位数为 ,4,6
配体个数× 中心离子配位数 = 配体个数×每个配体中配位原子的个数
[Co(en)3]Cl3中每个乙二胺分子(en)中有 个配 中每个乙二胺分子( )中有2个配 离子的配位数为3× 位原子, 。 位原子,故Co3+离子的配位数为 ×2=6。
影响配位数的因素
亚硝酰合铁(II)离子 例1:[Fe(CN)5(NO)]2- 五氰·亚硝酰合铁 离子 : 例2:[Ni(phen)2(H2O)2]2+ : 二水·二(1,10-邻菲罗啉)合镍 离子 邻 合镍(II)离子 合镍 例3:[Cu(acac)(bpy)(py)]2+ : 联吡啶)合铜 乙酰丙酮根·吡啶·(2,2’-联吡啶 合铜 离子 联吡啶 合铜(II)离子
周期数(离子半径) 周期数(离子半径): Cr(CN)63-, Mo(CN)74氧化数: PtIICl42-, PtIVCl62氧化数 体积大小 ( 离子半径 ) : AlF63-, AlCl4离子半径)
• 中心原子的影响
无机化学精品教程 第4章 配位化合物
第四章配位化合物第四章配位化合物[教学要求] 1.掌握配位化合物的基本概念,组成,命名,分类。
2.了解配位化合物的顺反异构和对映异构概念,初步学会上述两种异构体的判断。
3.掌握配合物价键理论的基本要点、配合物的几何构型与中心离子杂化轨道的关系。
4.了解内轨型、外轨型配合物的概念、中心离子价电子排布与配离子稳定性、磁性的关系。
5.了解晶体场理论的基本内容,八面体场中d电子的分布和高、低自旋的概念,分裂能和晶体场稳定 化能概念,推测配合物的稳定性、磁性;了解配合物的颜色与d-d 跃迁的关系。
[教学重点] 1. 配合物的价键理论、晶体场理论 [教学难点] 配合物的几何异构和对映异构, 晶体场理论 [教学时数] 4学时 [教学内容]4.1 配合物的的基本概念4.1.1 配合物的定义 配位化合物(简称配合物)是由可以给出孤对电子或多个不定域电子的一定数目的离子 或分子(称为配体)和具有接受孤对电子或多个不定域电子的空位原子或离子(统称为中心 原子)按一定组成和空间构型所形成的化合物。
L→M形成配合物的条件:配体有孤对电子或不定域电子;中心离子有空轨道 配位键的存在是配合物与其它物质最本质的区别 4.1.2 配合物的组成[Cu(NH3)4]SO4配 合 物 外 界 配合物内界(配离子) 中 心 离 子 配 配 配 位 位 位 原 体 数 子K 3 [Fe(CN) 6 ]配 合 物 外 界 中 心 离 子 配配 配 位位 位 原体 数 子[CoCl3(NH3)3] [Ni(CO)4]中 心 离 子 配配 位位 原数 子 配配 配 位位 位 原体 数 子中 心 原 子 配 配配 位 位位 原 体数 子配 合 物 内 界 (配 离 子 )1. 中心原子 中心原子又称中心体。
它是配合物中具有接受孤对电子或不定域电子的空位的离子或原 子。
例: [SiF6]2-[FeF6]3-Fe(CO)5Ni(CO)42. 配位体与配位原子: ① 配位体(亦称配体):在配合物中提供孤对电子或不定域电子的分子或离子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断
例: 试 判断 [Fe(CN)6]3- 属于何种类型配合物?
已知实测μ=2.0 ∴ n=1个 而 Fe 3+ [Ar]3d5 n=5个 ( μ=5.8 )
由此可知: 中心离子的电子构型发生了改变 形成内轨型(空出2个d轨道) 配位数为6
中心离子发生 d2sp3 杂化
呈正八面体
4.2.4 配合物的价键理论总结
直线型
Ag [Kr]4d105s1
4d
[Ag(NH3)2]+
Ag+ [Kr]4d10
5p 5s
μ=0 单 电 子 数 未 变
μ=0
5p
4d
sp杂化
4.2.2.2 四配位配合物
(1) [Ni(NH3)4]2+ 配离子的形成 28Ni [Ar]3d84s2 Ni2+ [Ar]3d8
μ>0
4p
4s 3d
配合物
[PtCl2(NH3)2]m [Cu(en)2]n
[Ca(EDTA)]x
Ni(CO)4 [Fe(C2O4)3]3-
配离子
1.m=? 2+ 2.n=? 2+ 3.x=? 2Ni(CO)4 [Fe(C2O4)3]3-
配体
Cl-, NH3 en
EDTA CO
C2O42-
中心离子
Pt4+ Cu2+ Ca2+ 4.Niy, y=?0 5.Fez, z=?3+
4.2.3.2 形成内、外轨型配合物的影响因素
(1) 中心离子的电子构型
(n-1)d轨道全充满
形成外轨型
如中心离子d10型, Zn2+, Cu+ , 无空(n-1)d轨道, 形成外轨型
(n-1)d轨道有空轨道 形成内轨型
如中心离子d3型, Cr3+, 有空(n-1)d轨道,形成内轨型
(n-1)d轨道有单电子 内轨型或外轨型
µ磁距 = n(n + 2) µo
[Ni(NH3)4]2+
μ>0
正四面体
3d
sp3杂化
sp3杂化 [Ni(NH3)4]2+ 配离子的空间结构
(2) [Ni(CN)4]2- 配离子的形成
28Ni [Ar]3d84s2
Ni2+ [Ar]3d8 μ>0
3d [Ni(CN)4]2-
4p 4s
μ=0
4p dsp2杂化
“配位化学之父”
1. 配合物
中心
配位键 几个配位体
离子或原子
(分子或阴离子)
复杂 的离 子或 分子
配合物
2. 配位键
配位体中配位原子含有孤对电子的轨道 中心离子(或原子)的空轨道
重叠
LM
NH3
H3N
Cu2+
NH3
[Cu(NH3)4]2+
NH3
3. 配合物的组成
1) 中心离子(或原子)
配合物形成体 (M)
配合物
中心离子或原子
[Ag(NH3)2]+ Ni(CO)4 KBF4
Ag+ 金属阳离子
Ni
金属原子
B3+
高氧化值的非 金属元素原子
2) 配(位)体
配位体L :与中心离子或原子直接相连的阴离子或分子
配位原子:配体中提供孤对电子并直接与中心离子 或原子成键的原子
配合物
[Ag(NH3)2]+ Ni(CO)4 KBF4
罗马数字:ⅠⅡ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ
中心离子氧化数为0时一般不标
注意:
同类配体按配位原子元素符号 的第一个英文字母顺序排列
(NH3)3 (H2O) 三氨·一水· · ·
配合物
CoCl2(NH3)3 (H2O)]Cl K4[Fe (CN)6]
NH4[Cr(SCN)4 (NH3)2] Na3[Ag(S2O3)2] Na2[Ca(EDTA)] H[AuCl4] [Cr(OH)(H2O)5](OH)2
Ni(CO)4
命名
氯化二氯·三氨·一水合钴(Ⅲ) 六氰合铁(II)酸钾
四硫氰·二氨合铬(Ⅲ)酸铵 二硫代硫酸根合银(I)酸钠 EDTA合钙(II)酸钠 四氯合金(Ⅲ)酸 氢氧化一羟基⋅五水合铬(Ⅲ) 四羰基合镍
H2[SiF6]
氟硅酸
K4[Fe(CN)6] 普鲁士兰 亚铁氰化钾 黄血盐
K3[Fe(CN)6]
成功之处:
1. 能合理地说明配合物形成的本质; 2. 能解释配合物的结构、磁性和稳定性。
局限性:
1. 不能定量说明配合物稳定次序; 2. 不能解释配合物的特征颜色; 3. 不能说明内轨、外轨型配合物产生的原因。
未考虑配位体对中心离子的影响
第四章 配合物结构
4.1 配合物的基本概念 4.2 配合物结构的价键理论 4.3 配合物结构的晶体场理论
排,为外轨型、高自旋配
合物,有4个成单电子
F-
[CoF6]3- 为正八面体结构
(2) [Co(NH3)6]3+ 配离子的形成
27Co [Ar]3d74s2
Co 3+ [Ar]3d6
3d
4s 4p
4d
[Co(NH3)6]3+
μ>0 μ=0
3d
d2sp3杂化
4d 正八面体
NH3
NH3 NH3
NH3 Co
[Cu(en)2]2+ [Ca(EDTA)]2-
配位体
NH3 CO Fen(乙二胺) EDTA(乙二胺四乙酸
根离子)
配位原子
N C F N N,O
单齿(基)配体和多齿(基)配体
单齿配体: 每个配位体只含有一个配位原子 如NH3, H2O, F-, CN-, OH-
多齿配体:每个配位体含有两个或两个以上的配位原子 如en, OX, EDTA等。
铁氰化钾 赤血盐
有些配体具有相同的化学式,但由于配位原子 不同,而有不同的命名 某些分子或基团,作配体后读法上有所改变
如: ONO-(O为配位原子) NO2-(N为配位原子) SCN-(S为配位原子) NCS-(N为配位原子)
CO
NO OH-
亚硝酸根 硝基 硫氰酸根 异硫氰酸根
羰基 亚硝基
羟基
NH4[Cr(NCS)4(NH3)2] 四异硫氰酸根·二氨合铬(Ⅲ)酸铵
正八面体场中配体与 dxy 轨道的相对位置
正八面体场中配体与 dyz 轨道的相对位置
正八面体场中配体与 dxz 轨道的相对位置
正八面体场中 d 轨道分裂 eg(dγ)
[Ag(NH3)2]+ Ni(CO)4
KBF4 [Cu(en)2]2+ [Ca(EDTA)]2-
配体数
2 4
4 2 ×2 1 ×6
配位数
2 配位数和配 4 体数一致 4 4 配位数和配 6 体数不一致
4) 配离子电荷
(1) 已知中心离子和配体的电荷,确定配离子的电荷 (2) 已知配离子和配体的电荷数,确定中心离子的电荷
4.2.3 内轨型和外轨型配合物
4.2.3.1 分类、性质
内轨型
外轨型
配位体 中心离子 电子排布
配体CN - 大部分变
配体X- 不变
杂化类型
(n-1)d ,ns ,np
单电子数 (较少)没有
磁性 大部分μ减小
键性质 共价性强、离子性弱
稳定性 反应活性
稳定 不活泼
ns, np, nd 较多
μ不变
共价性弱、离子性强 不稳定 活泼
硝基-NO2- (以N 配位) 亚硝酸根 -O-N=O- (以O 配位)
9
3) 配位数
配位数:直接与中心离子或原子相连的配位原子数目
单基配位体 [Cu(NH3)4]SO4
配位数=配位体个数 配位数=4
多基配位体
配位数=配位体个数×每个配位体中配位原子个数
[Co(en)3]Cl3
配位数=2×3=6
配离子
配合物
内界
中心离子
(配合物形成体)
(d、ds区元素的离子或 原子、高价p区元素的 离子)
外界
(反离子)
配位体
(含孤对电子 的分子或离子)
配离子
[ ] ( ) 例: Cu NH3 4 2+ SO42−
中 配 配配 外
心 位 位离 界
离 体 数子 离
子
电子
荷
内界 外界
配合物
4.1.2 配合物的命名
4.2.2.3 六配位配合物
(1)[CoF6]3- 配离子的形成
27Co [Ar]3d74s2
Co 3+ [Ar]3d6
μ>0
3d
4s 4p
[CoF6]3-
3d
sp3d2杂化
4d μ>0
4d 正八面体
F-
F-
F-
Co F-
[CoF6]3- 配离子中Co3+采 用sp3d2 杂化,d 电子未重
F-
4.1.3 螯合物(chelate)
螯合物(内配合物):由多齿配体通过两个或两个以上的配 位原子与同一中心离子形成的具有环状结构的配合物
[Ca(EDTA)]2-配离子的结构示意图
螯合剂:能形成螯合物的配体称为螯合剂
形成螯合物的条件:
同一配体的两个或两个以上的配位原子间 有一定的间隔(一般为2~3个原子),才能 形成比较稳定的五元环或六元环
第四章 配合物结构
4.1 配合物的基本概念 4.2 配合物结构的价键理论 4.3 配合物结构的晶体场理论
4.1.1 配合物的组成
瑞士无机化学家 Alfred Werner
维尔纳是配位化学理论的 开创者,获得了1913年的 诺贝尔化学奖。他对自己 从事研究工作的体会是: