强烈推荐高中函数的常见类型.doc
高中数学函数知识点
高中数学函数知识点一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。
下面小编给大家分享一些高中数学函数知识点,希望能够帮助大家,欢迎阅读!高中数学函数知识一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
高中数学:函数解析式的十一种方法
高中数学:函数解析式的十一种方法一、定义法 二、待定系数法 三、换元(或代换)法 四、配凑法 五、函数方程组法七、利用给定的特性求解析式.六、特殊值法 八、累加法 九、归纳法 十、递推法 十一、微积分法一、定义法:【例1】设23)1(2+-=+x x x f ,求)(x f .2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2++-+x x 65)(2+-=∴x x x f【例2】设21)]([++=x x x f f ,求)(x f . 【解析】设xx x x x x f f ++=+++=++=111111121)]([xx f +=∴11)(【例3】设33221)1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f .【解析】2)(2)1(1)1(2222-=∴-+=+=+x x f x x x x x x f又x x x g x x x x xx x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([24623-+-=--=x x x x x x g f【例4】设)(sin ,17cos )(cos x f x x f 求=.【解析】)2(17cos )]2[cos()(sin x x f x f -=-=ππx x x 17sin )172cos()1728cos(=-=-+=πππ.二、待定系数法:在已知函数解析式的构造时,可用待定系数法。
【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知1392)2(2+-=-x x x f ,求)(x f .【解析】显然,)(x f 是一个一元二次函数。
函数知识点总结高中
函数知识点总结高中一、函数的定义1. 函数的定义函数是自变量和因变量之间的一种映射关系。
一般地,如果对于集合A中的每一个元素x,在集合B中有唯一确定的元素y与之对应,则称y是x的函数值,称这种对应关系为函数,记作y=f(x)。
2. 函数的定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
在定义函数的时候,需要确定函数的定义域和值域。
3. 函数的性质函数的性质包括奇偶性、周期性、单调性等,这些性质可以通过函数的图像来判断。
二、函数的图像1. 函数的图像函数的图像是函数在平面直角坐标系上的表示,对于一元函数y=f(x),可以通过画出函数的图像来直观地理解函数的性质和规律。
2. 基本初等函数的图像常见的初等函数包括线性函数、二次函数、指数函数、对数函数、幂函数、三角函数等,它们都有各自的特点和图像特征。
三、函数的性质1. 奇偶性函数的奇偶性是指函数的图像是否关于原点对称。
如果对于任意x∈D,有f(-x)=f(x),则函数f(x)是偶函数;如果对于任意x∈D,有f(-x)=-f(x),则函数f(x)是奇函数。
2. 周期性周期函数的函数值随自变量的变化而重复出现。
周期函数可以用来描述一些具有规律性变化的现象,如正弦函数、余弦函数等。
3. 单调性函数的单调性是指函数在定义域上的增减性。
如果对于任意x1<x2,有f(x1)<f(x2),则函数f(x)是单调增加的;如果对于任意x1<x2,有f(x1)>f(x2),则函数f(x)是单调减少的。
4. 极限和连续性函数的极限和连续性是函数的重要性质,它们可以用来描述函数在某一点的趋势和变化规律。
四、常见函数1. 线性函数线性函数是最简单的一种函数,它的图像是一条直线,表示为y=kx+b,其中k是斜率,b是截距。
2. 二次函数二次函数是一种常见的函数,它的图像是一个抛物线,表示为y=ax^2+bx+c,其中a、b、c为常数且a≠0。
高中数学函数的定义域及值域
高中数学函数的定义域及值域1500字函数是数学中常用的概念,它描述了两个集合之间的对应关系。
函数的定义域是指输入的值的集合,而值域是函数输出的值的集合。
在高中数学中,我们经常需要确定函数的定义域和值域,以便了解函数的性质和行为。
为了确定一个函数的定义域,我们需要考虑两个因素:函数的解析式和函数的定义限制。
函数的解析式告诉我们函数如何计算输出值,而定义限制告诉我们输入值可以是哪些数。
首先,让我们考虑一些常见的函数类型及其定义域和值域。
1. 线性函数:线性函数的解析式可以写为y = mx + c,其中m是斜率,c是截距。
线性函数的定义域是所有实数集合,值域也是所有实数集合。
2. 幂函数:幂函数的解析式可以写为y = x^n,其中n是一个实数。
幂函数的定义域是所有实数集合,但值域取决于指数n的值。
例如,如果n是正偶数,那么幂函数的值域是非负实数集合;如果n是负偶数,那么幂函数的值域是正实数集合;如果n是奇数,那么幂函数的值域是所有实数集合。
3. 指数函数:指数函数的解析式可以写为y = a^x,其中a是一个正实数且不等于1。
指数函数的定义域是所有实数集合,值域是正实数集合。
4. 对数函数:对数函数的解析式可以写为y = log_a(x),其中a是一个正实数且不等于1。
对数函数的定义域是正实数集合,值域是所有实数集合。
5. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等。
三角函数的定义域是所有实数集合,值域取决于具体的函数类型。
例如,正弦函数的值域是[-1, 1];余弦函数的值域也是[-1, 1];正切函数的值域是所有实数集合。
除了上述函数类型外,还有其他函数类型的定义域和值域也需要特别注意。
例如,有理函数的定义域由分母的零点确定,值域取决于分子的次数和分母的次数;反比例函数的定义域是除了零的所有实数,值域也是除了零的所有实数。
在确定函数的定义域和值域时,我们还需要注意一些常见的限制,如根式的奇次指数、分母不能为零、对数的底不能为1等。
高中数学必修1函数分类(精心整理版)
2.1函数的概念(一)函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .(y 就是x 在f 作用下的对应值)其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. (二)构成函数的三要素:定义域、对应关系和值域 (三)区间的概念函数概念1、如下图可作为函数)(x f =的图像的是( )ABCD2. 下列四个图形中,不是..以x 为自变量的函数的图象是求函数定义域(1)|x |x 1)x (f -=(2)x111)x (f +=(3)5x 4x )x (f 2+--=(4)1x x 4)x (f 2--=(5)10x 6x )x (f 2+-=(6)13x x 1)x (f -++-=(7)f ( x ) = (x -1) 0 (8)xx x f -++=211)( (9)xx f -=11)((10)2()1f x x=-(11)()1x f x x =-(12)22111x x y x -+-=-1、函数226y kx kx k =-++的定义域为R ,求k 的取值范围2、函数224(21)x y x m x m -=+++的定义域为R ,求m 的取值范围判断两函数是否为同一函数1、判断两个函数是否为同一函数,说明理由(1)f ( x ) = (x -1) 0;g ( x ) = 1 (2)f ( x ) = x ; g ( x ) = 2x (3)f ( x ) = x 2;f ( x ) = (x + 1) 2 (4)f ( x ) = | x | ;g ( x ) = 2x2、判断两个函数是否为同一函数,说明理由(1)(3)(5)3x x y x +-=+; 5y x =- (2)11y x x =-+; (1)(1)y x x =-+x y O xy O xyOxyO xyO xyOxyOOyxA.B.C.D.(3)343y x x =-; 31y x x =- (4)11y x =+; 11u v =+求函数解析式(1)代入法1、 已知函数2()1f x x =-,求()f x -,(1)f x +2、 已知函数)31(12)(≤≤+=x x x f ,则 ( )A .)1(-x f =)20(22≤≤+x xB . )1(-x f =)42(12≤≤-x xC . )1(-x f =)20(22≤≤-x xD . )1(-x f =)42(12≤≤+-x x3、 已知2()f x x m =+,()(())g x f f x =,求()g x 的解析式。
高中数学常见的九大奇函数和偶函数类型
高中数学常见的九大奇函数和偶函数类型
高中数学中常见的奇函数和偶函数类型如下:
奇函数:
1.正弦函数:f(x) = sin(x)
2.余弦函数:f(x) = cos(x)(注意:虽然余弦函数本身是偶函数,但其负值,即f(x) = -cos(x),是奇函数)
3.正切函数:f(x) = tan(x)
4.双曲正弦函数(sinh函数):f(x) = sinh(x)
5.双曲余弦函数(cosh函数)的负值:f(x) = -cosh(x)(注意:双曲余弦函数本身是偶函数)
偶函数:
1.余弦函数:f(x) = cos(x)
2.平方函数:f(x) = x^2
3.双曲余弦函数(cosh函数):f(x) = cosh(x)
4.双曲正切函数(tanh函数):f(x) = tanh(x)
5.绝对值函数:f(x) = |x|
这些函数是高中数学中经常遇到的,掌握它们的性质和图形对于理解和解决与奇偶性有关的问题是非常有帮助的。
同时,值得注意的是,对于任意定义在实数集R上的函数f(x),如果它满足f(-x) = -f(x),则称其为奇函数;如果满足f(-x) = f(x),则称其为偶函数。
这两个性质是奇函数和偶函数的定义。
1。
420个函数公式释义以及实例
1. 引言在数学领域,函数是一个非常重要的概念,被广泛应用于数学理论、物理学、工程学等各个领域。
函数的定义和性质对于理解和解决实际问题具有重要意义。
本文将对420个函数公式进行详细释义,并提供实例进行说明,以便读者对函数概念有更深入的了解。
2. 基本概念函数是一个对应关系,它将一个或多个输入值映射到唯一的输出值。
函数通常用f(x)来表示,其中x表示自变量,f(x)表示因变量。
函数在数学中有着丰富的性质和应用,因此学习和理解函数的公式和性质是十分重要的。
3. 常见函数类型(1) 线性函数线性函数的一般形式为y=ax+b。
其中,a和b都是常数,a表示斜率,b表示截距。
线性函数的图像是一条直线,它的特点是斜率恒定。
实例:y=2x+3(2) 二次函数二次函数的一般形式为y=ax^2+bx+c。
其中,a、b、c都是常数且a≠0。
它的图像是抛物线,开口方向由a的正负性决定。
实例:y=x^2+2x+1(3) 指数函数指数函数的一般形式为y=a^x。
其中,a为底数,x为指数。
指数函数的图像呈现出指数增长或指数衰减的趋势。
实例:y=2^x(4) 对数函数对数函数的一般形式为y=logₐx。
其中,a为底数,x为真数。
对数函数的图像呈现出对数增长或对数衰减的特点。
实例:y=log₂x(5) 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们与角度的正弦、余弦、正切值相关。
实例:y=sin(x)4. 其他常用函数公式(1) 绝对值函数:y=|x|(2) 反比例函数:y=k/x(3) 求和函数:y=f(x)+g(x)(4) 求积函数:y=f(x)g(x)(5) 最大值函数:y=max{f(x),g(x)}(6) 最小值函数:y=min{f(x),g(x)}5. 函数的性质函数具有许多重要的性质,包括奇偶性、周期性、单调性、极值、零点等。
理解函数的性质有助于深入理解函数的行为和特点,有利于解决实际问题。
6. 函数公式的应用函数公式在实际问题中有着广泛的应用,例如在物理学中描述物体的运动规律、在经济学中描述供求关系、在工程学中描述信号处理等。
高一函数怎么学 知识点
高一函数怎么学知识点函数是高中数学中的重要内容,它是代数、几何与解析几何的重要桥梁。
高一是学习函数的起点,理解和掌握好高一函数的知识点对后续学习和应用都至关重要。
本文将介绍高一函数的基本定义、性质以及常见的函数类型。
一、函数的基本定义与性质函数是一种将一个集合的元素对应到另一个集合的规则。
一个具体的函数可以表示为$f(x)=y$的形式,其中$x$是自变量,$y$是函数的值或因变量。
在函数的定义中,自变量$x$的取值范围称为定义域,函数的值域即为所有可能的函数值。
函数的性质包括奇偶性、单调性、周期性以及对称性等。
奇函数具有关于原点对称的性质,即$f(-x)=-f(x)$;偶函数则具有关于$y$轴对称的性质,即$f(-x)=f(x)$。
单调性描述了函数值随自变量变化的趋势,可以分为增函数和减函数。
周期性指函数在一定的周期内具有相同的性质。
对称性描述了函数的特殊图像关系,如轴对称和中心对称等。
二、常见的函数类型高一阶段主要学习了线性函数、幂函数、指数函数、对数函数和三角函数等常见的函数类型。
1. 线性函数线性函数的定义为$f(x)=kx+b$,其中$k$和$b$为常数。
线性函数的图像呈直线,且斜率决定了直线的倾斜程度,截距则决定了直线与坐标轴的交点。
2. 幂函数幂函数的定义为$f(x)=ax^b$,其中$a$和$b$为常数,且$b$可以为整数或分数。
幂函数的图像形状多样,可以是上凸函数、下凸函数或者直线。
3. 指数函数指数函数的定义为$f(x)=a^x$,其中$a$为底数,$a>0$且$a\neq1$。
指数函数的图像特点是递增或递减的曲线,且以$x$轴或$y$轴为渐近线。
4. 对数函数对数函数的定义为$f(x)=\log_a x$,其中$a$为底数,$a>0$且$a\neq1$。
对数函数与指数函数互为反函数,对数函数的图像特点是递增或递减的曲线。
5. 三角函数高一阶段主要学习了正弦函数、余弦函数和正切函数等三角函数。
免费初高中函数知识点总结
免费初高中函数知识点总结一、函数的定义和基本性质1. 函数的定义函数是一种特殊的对应关系,即对于每一个自变量的取值,对应且仅对应一个因变量的取值。
符号表示为:y = f(x),其中y称为因变量,x称为自变量,f(x)为函数符号。
函数通常用一种对图表或几何图形的表示方法来表达。
2. 函数的基本性质(1)定义域:函数中自变量的取值范围。
(2)值域:函数中因变量的取值范围。
(3)奇偶性:若函数满足f(x) = f(-x),称为偶函数;若函数满足f(x) = -f(-x),称为奇函数;若既不是偶函数也不是奇函数,称为非奇非偶函数。
(4)单调性:函数在定义域内的值随自变量的增大而增大(或减小)的性质。
(5)周期性:若存在正数T,使得对于函数f(x),有f(x+T) = f(x),则称函数f(x)为周期函数。
二、常见函数类型及图像特征1. 一次函数形式为y = kx + b,其中k为斜率,b为截距。
特征:图像为一条直线,斜率k决定了直线的倾斜程度,截距b决定了直线与y轴的交点。
2. 二次函数形式为y = ax² + bx + c,其中a≠0。
特征:图像为开口朝上或者开口朝下的抛物线,抛物线的开口方向取决于a的正负值,抛物线在y轴上的交点为c。
3. 幂函数形式为y = x^n,其中n为常数。
特征:n为偶数时,函数图像在第一和第四象限均为非负值,n为奇数时,函数图像在整个坐标系都有定义。
4. 指数函数形式为y = a^x,其中a为常数且a>0,a≠1。
特征:函数图像在经过点(0,1),当a>1时函数图像递增,当0<a<1时函数图像递减。
5. 对数函数形式为y = logₐx,其中a为常数且a>0,a≠1。
特征:函数图像在x轴的正半轴上有定义,对数函数的导数在x>0时为正值。
6. 三角函数包括正弦函数y = sinx,余弦函数y = cosx,正切函数y = tanx等。
高中数学函数性质大全
一.函数奇偶性1.函数奇偶性判断途径:定义法①定义域关于原点对称(易被忽略)②途径:经验法①且为偶数)②常见奇函数:(为奇数),上式证明方法:③运算型判断若是奇函数(或偶函数),则:若为奇函数,为偶函数,则:为偶函数,(可将看做号,看做对应相应奇偶性)2.奇偶性与单调性奇函数在原点对称区间上单调性一致。
偶函数原点对称区间上单调性相反。
3.奇偶性与对称性奇函数关于原点对称 偶函数关于轴对称。
已知函数)(t x f +是R 上的奇函数,则)(x f 关于点)0,(t 对称。
已知)(t x f +是偶函数,则)(x f 关于直线t x =对称。
4.奇函数特殊和性质,其中为奇函数,已知,为奇函数,则5.奇函数的一条特殊性质若为奇函数,且在6.奇偶函数与零点在0处有定义的奇偶函数有唯一零点,则0为零点。
二.函数奇偶性考点简述1.函数奇偶性判断(方法同上)例1.奇函数除于偶函数为奇函数。
2.利用函数奇偶性的定义来确定函数中的参数值例2.故的定义域为,又因为为奇函数,则例3.解析:可看做的乘积,为偶函数,例4.例5.例上的偶函数,则的值域是.例7.是奇函数,则的值为例8.是偶函数,则的值为3.奇函数特殊和性质例9.,为奇函数,例10.例11.为奇函数,例12.解析:例13.4.函数奇偶性的结合性质例15.设()f x 、()g x 是R 上的函数,且()f x 是奇函数,()g x 是偶函数,则结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数例16.设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是 ( ) A .)()(x g x f +是偶函数 B .)()(x g x f −是奇函数 C .)()(x g x f +|是偶函数 D .)()(x g x f −|是奇函数例17.设函数与的定义域是且,是偶函数, 是奇函数,且,求和的解析式。
函数定义域求解的常见类型
函数定义域求解的常见类型重庆市涪陵五中 邓云华关键词:函数定义域 求解 类型摘要:函数的定义域是函数三大要素之一,因此,会求函数的定义域是学好函数的关键,而“定义域优先”的思想又是研究函数的前提.在高中数学学习中,许多同学不习惯建立“定义域优先”这一数学理念,即使建立了“定义域优先”这一数学理念,又不知怎样来求函数的定义域?在此,笔者归纳一下认为求函数的定义域主要有以下五种常见类型。
第一类:已知函数解析式求定义域函数定义域通常由问题实际背景确定,如果给出解析式y=f(x),而未指出它的定义域,则函数定义域就是指使这个解析式有意义的实数x 集合。
常见的解析式有:1、分式型:()()01≠⇒=x f x f y2、 根式型:()()0≥⇒=x f x f y3、零次幂型:()[]()00≠⇒=x f x f y4、对数型:)(log )(x f y x ϕ=解:∵ ⎩⎨⎧≠+>-010x x x ∴ ()()0,11,-⋃-∞-∈x 例2:求函数)1(log 221-=x y 的定义域解:∵ ()⎪⎩⎪⎨⎧>-≥-0101log 2221x x ∴ ⎩⎨⎧-<>≤-11112x x x 或 ∴ ()()2,11,2⋃--∈x第二类:求复合函数定义域原理1:若f(x)定义域[a,b ](f 对x ∈[a,b]作用),则复合函数f[g(x)]中:a ≤g(x)≤b 解出x 的范围即为f[g(x)]定义域。
例3:若f(x)定义域[0,4],求f(x 2)定义域解:∵ 402≤≤x ∴ []2,2-∈x ∴ f(x 2)定义域为:[]2,2- 原理2:若复合函数f[g(x)]的定义域[a,b](g 作用于x ∈[a,b]),则令t=g(x),那么f(x)的定义域为g(x)值域例4:已知f(x 2-2)定义域[1,+∝],求f(x)定义域解:∵ 1≥x ∴ 122-≥-x 定义域求例x x x x f -+=||)1()(:10∴ f(x)定义域为:[)+∞-,1例5、已知y=f(2x-1)定义域[-1,1] ,求f(1-x 2)定义域解:∵ 11≤≤-x ∴ 1123≤-≤-x∴ 1132≤-≤-x ∴ []2,2-∈x 即f(1-x 2)定义域为:[]2,2-第三类:利用已知函数定义域,求相关函数定义域这种函数定义域的求法是要使相关函数中的每个函数都要有意义.例6:已知y=f(x)定义域[0,1],求函数g(x)=f(x+m)+f(x-m)(m >0)的定义域解:∵ 10≤≤x ∴ ⎩⎨⎧≤-≤≤+≤1010m x m x ∴ ⎩⎨⎧+≤≤-≤≤-m x m m x m 11 ∴ ① 当⎪⎭⎫ ⎝⎛∈21,0m 时,[]m m x -∈1, ②当21=m 时,21=x ③当⎪⎭⎫ ⎝⎛+∞∈,21m 时,Φ为x 。
最全函数知识点总结高中
最全函数知识点总结高中一、函数的基本概念1.1 函数的定义函数是一个非常基本的数学概念。
在数学上,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
用数学符号表示就是:对于两个集合A和B,如果存在一个规则f,它使得对于A中的每个元素x,都有一个唯一的y属于B与之对应,那么我们说f是从A到B的一个函数,记作f:A→B。
其中A称为定义域,B称为值域。
1.2 函数的概念在我们的日常生活中,我们可以看到很多函数的例子。
比如,将一个数字加上3,或者乘以2,这就是两个函数的例子。
我们可以看到,函数本质上就是一种输入与输出的关系。
1.3 函数的符号表示函数一般用字母f,g,h等表示,其定义为:y=f(x),表示x是自变量,y是因变量。
1.4 函数的自变量和因变量在函数中,自变量是输入的值,它在定义域中取值;而因变量是输出的值,它在值域中取值。
1.5 函数的图象函数的图象是函数在一个坐标系中的表示,它可以帮助我们更直观地了解函数的性质和规律。
1.6 函数的性质函数有很多的性质,比如奇偶性、单调性、周期性等等。
1.7 函数的分类函数可以分为初等函数和非初等函数。
初等函数包括多项式函数、有理函数、指数函数、对数函数、三角函数和反三角函数。
非初等函数包括无穷级数、常微分方程等。
1.8 逆函数如果函数f有定义域A和值域B,对于B中的每一个y,存在一个唯一的x属于A与之对应,那么我们称这个函数有逆函数,记作f^(-1)。
1.9 复合函数如果有两个函数f和g,使得f的值域是g的定义域,那么我们可以定义一个新的函数h(x)=f(g(x)),这就是复合函数。
1.10 函数的性质与变化函数有很多的性质和变化规律,比如极值、单调性、周期性、奇偶性等等。
对于这些性质和变化,我们可以通过函数的图象和导数来进行分析。
1.11 函数的运算函数之间可以进行加减乘除的运算,还可以进行求泛函、求复合函数、求逆函数等。
二、函数的表示与运用2.1 函数的表示方法函数可以用方程的形式、图象的形式、表格的形式、文字的形式等来表示。
高一函数题型及解题技巧
高一函数题型及解题技巧函数是数学中非常重要的一个概念,高中阶段学习的函数包括常用基本函数、一次函数、二次函数、指数函数、对数函数、幂函数等。
掌握函数的概念和特点可以帮助学生更好地理解数学知识,并且在解题过程中能够更加灵活地运用函数的性质和特点。
接下来就让我们来了解一下高一阶段常见的函数题型及其解题技巧。
一次函数一次函数是一种最为基础也最为常见的函数类型,它的一般形式为y = kx + b,其中k和b是常数。
在一次函数的解题过程中,常见的题型有求解函数的值、求解函数的解析式、函数的图像、函数的特性等。
求解函数的值:对于给定的一次函数y = kx + b,当给定x的值时,我们需要计算出对应的y的值。
这样的题目主要考察对一次函数的计算能力,需要注意根据函数的解析式直接代入x的值并计算得出结果。
求解函数的解析式:有时候我们需要根据已知的函数图像或者函数的性质来求解一次函数的解析式。
这种题型需要根据已知条件列方程组,然后解方程求解函数的解析式。
函数的图像:对于给定的一次函数,有时我们需要根据函数的解析式画出函数的图像。
这里需要注意一次函数的图像是一条直线,根据函数的解析式可以确定其斜率和截距,并且根据斜率和截距可以画出函数的图像。
函数的特性:一次函数的斜率和截距是其最为重要的特性,根据斜率和截距可以确定函数的增减性、奇偶性、单调性等特性。
在解题过程中需要根据函数的特性来分析问题并求解答案。
二次函数二次函数是另外一种比较常见的函数类型,它的一般形式为y = ax^2 + bx + c,其中a、b和c是常数。
在解题过程中,常见的题型有求解函数的值、求解函数的解析式、函数的图像、函数的特性等。
求解函数的值:对于给定的二次函数y = ax^2 + bx + c,当给定x的值时,我们需要计算出对应的y的值。
这需要我们将x的值代入函数的解析式中,并通过计算得出对应的y的值。
求解函数的解析式:有时候我们需要根据已知的函数图像或者函数的性质来求解二次函数的解析式。
高一上学期函数知识点总结
高一上学期函数知识点总结在高一上学期的数学学习中,我们接触到了许多与函数相关的知识点。
函数作为数学中的重要概念之一,不仅在高中阶段占据着重要地位,而且在高中数学基础的学习中也占据着关键的位置。
下面将对高一上学期所学的函数知识点进行总结和归纳。
一、函数的概念与性质函数是一个具有特定输入输出关系的对应关系。
通常表示为f(x),其中x为自变量,f(x)为函数值或因变量。
函数具有以下性质:1. 定义域(Domain):函数的自变量的取值范围。
2. 值域(Range):函数的所有可能的函数值的集合。
3. 单调性:函数在定义域内的取值随自变量的增加而单调增加或单调减少。
4. 奇偶性:函数的图像关于原点对称为偶函数,关于y轴对称为奇函数。
5. 周期性:在一定区间内,函数图像重复出现的性质。
二、函数的表示方法1. 用解析式表示函数:y = f(x),其中f(x)是关于x的表达式。
2. 用列表法表示函数:列出自变量与函数值之间的对应关系。
三、函数的图像与性质1. 函数的图像可以通过函数的解析式和列表法得出,用平面直角坐标系绘制。
2. 函数图像的平移、伸缩、翻转也对应着函数的变化。
3. 函数图像的对称和周期性也反映了函数的性质。
4. 函数图像可以通过函数的一些基本性质(奇偶性、单调性、极值点等)进行判断。
四、常见函数类型1. 线性函数(Linear Function):表达式为y = kx + b,其中k 和b为常数。
2. 幂函数(Power Function):表达式为y = ax^m,其中a为系数,m为指数。
3. 指数函数(Exponential Function):表达式为y = a^x,其中a为底数,x为指数。
4. 对数函数(Logarithmic Function):表达式为y = log_a(x),其中a为底数,x为真数。
5. 三角函数(Trigonometric Function):包括正弦函数、余弦函数、正切函数等。
高中函数必考知识点总结
高中函数必考知识点总结一、函数的概念与性质1. 函数的概念函数是一种特殊的关系,它是一个或多个自变量和因变量之间的对应关系。
在数学中,通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数也可以用y表示,即y=f(x)。
函数的定义域为自变量能取得的值的集合,值域为函数在定义域内所有可能取得的值的集合。
2. 函数的性质(1)定义域和值域:一个函数的定义域和值域是描述这个函数在横坐标和纵坐标上的取值范围。
(2)奇函数与偶函数:奇函数的图像对称于原点,即f(-x)=-f(x);偶函数的图像对称于y 轴,即f(-x)=f(x)。
(3)周期函数:周期函数是指满足f(x+T)=f(x)的函数,其中T为函数的周期。
(4)单调性:函数在定义域上的单调性分为递增和递减两种情况。
二、函数的图像与性质1. 一次函数(1)一次函数的图像是一条直线,其表达式一般为y=kx+b,其中k为斜率,b为截距。
(2)一次函数的图像是一条直线,斜率k表示了直线的斜率,而截距b表示了直线与y 轴的交点。
2. 二次函数(1)二次函数的图像是一个抛物线,其表达式一般为y=ax^2+bx+c,其中a不为0。
(2)二次函数的顶点坐标为(-b/2a,c-b^2/4a),对称轴方程为x=-b/2a,开口向上或开口向下取决于a的正负。
3. 指数函数(1)指数函数的图像是一条过点(0,1)的递增曲线,其表达式一般为y=a^x,其中a为底数,a>0且a≠1。
(2)指数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。
(3)指数函数的图像在x轴上没有横截点,y轴上有一个横截点(0,1)。
4. 对数函数(1)对数函数的图像是一条过点(1,0)的递增曲线,其表达式一般为y=loga(x),其中a为底数,a>0且a≠1。
(2)对数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。
高中数学函数单调性的几种常见题型总结
高中数学函数单调性的几种常见题型总结在高中数学学习中,函数是非常重要的一部分内容。
其中,函数的基本性质——单调性更是重中之重。
在对函数问题的考查中,函数的单调性占很大的比重。
因此,需要对函数单调性的常见题型进行系统的归纳总结。
本文将从以下四方面结合具体的例子来分析总结涉及到函数单调性的几种常见题型。
一、分段函数单调性问题目前,高中数学教材必修一中这样定义函数单调性:一般地,设函数定义域为 :如果对于定义域内某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是增函数;如果对于定义域内某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是减函数。
根据定义,我们可以得到,若函数在上单调递增,则满足两个条件:(1)在上单调递增,在上单调递增;(2);同理,若函数在上单调递减,则满足两个条件:(1)在上单调递减,在上单调递减;(2) .例题:已知函数在上是减函数,则的取值范围是.这道题考查的是分段函数的单调性问题。
根据题意,时,是二次函数,在对称轴左侧单调递减;时,是对数函数,在时单调递减;再利用端点处的函数值大小关系即可得出满足条件的的取值范围。
解答:当时,为二次函数,对称轴为,在对称轴左侧单调递减,所以,解得;当时,,当时单调递减。
所以可得到,需满足,解得 .所以答案为.这里需要注意的是端点处函数值的大小关系是学生容易忽略或出错的地方,我们在教学中需要加以解释与强调。
利用函数单调性参数取值范围在这一类问题中,我们重点分析以下这种与对数函数相关的复合函数类型的题目,这是学生们的易错点,我们在上课时需要引起重视。
例题:若在区间上递减,则的取值范围为().这道题考查与对数函数相关的复合函数的单调性,我们知道复合函数单调性遵从“同增异减”的原则。
解答:令,则,由题意,在区间上,的取值需令真数,且函数在区间上单调递减。
配方得,故对称轴为,如图所示:由图像可知,当对称轴时,在区间上单调递减,又真数,二次函数在上单调递减,故只需当时,,则时,真数恒成立,代入解得,所以得取值范围是 .故选 .在教学过程中,我发现“真数大于0”这一条件在解题过程中很容易被忽略,或者有的学生对“真数大于0”这一条件该如何列不等式计算模棱两可,所以这一类型的题目在学生们中出现了“屡教不改”的现象。
高中八大基本函数
高中八大基本函数1. 线性函数:线性函数是指一个二元函数,它的自变量和因变量都是一个一次的多项式的二元函数,可以用函数式来表示:y=ax+b,其中a 是斜率,b是截距。
线性函数的图像是一条直线,特征是斜率和截距不变。
2. 二次函数:二次函数是一类自变量和因变量都是一次多项式的二元函数,可用函数式来写:y=ax²+bx+c,其中a是二次项系数,b是一次项系数,c是常数项。
它的图像是一条U型曲线,其特征是二次项系数必须大于零,它的极值点位于坐标原点,并且它仅有一个极值点。
3. 幂函数:幂函数是一类自变量和因变量都是一次多项式的函数,可表示为y=xᵐ(m为常数),其中m是幂函数的指数。
它的图像是曲线,它的曲线形状端点平滑,根据m的正负来决定它的曲线的凹凸特征应如何变化。
4. 指数函数:指数函数是一类自变量和因变量都是一次多项式的函数,可表示为y=aₐᵐ,其中a是指数函数的基数,m是指数函数的指数。
它的图像是一条抛物线,当m为正数时,它的抛物线是一条凸曲线;如果m为负数时,它的抛物线是一条凹曲线。
5. 对数函数:对数函数是一类自变量和因变量都是一次多项式的函数,可表示为y=logam,其中a是对数函数的基数,m是对数函数的系数。
它的图形是一条对数曲线,它是一条U型曲线,但这条U型曲线只有一个极值点,而且这个极值点位于坐标轴原点。
6. 反比例函数:反比例函数是一类自变量和因变量都是一次多项式的函数,可用函数式来表示:y=a/x,其中a是反比例函数中的常数。
它的图像是一条右侧不闭合的U型曲线,它的U型曲线左侧有无数个垂直交点,它的特征是反比例函数中的常数决定了它的曲率。
7. 周期函数:周期函数是一类自变量和因变量都是一次多项式的函数,可表示为 y=sinx,其中s是周期函数的振幅。
它的图形是一条正弦曲线,正弦曲线在一定的x值范围内不断变化,曲线左右两侧顶点都是圆锥状,曲线顶点有无数个,并且曲线幅度和s的大小有关系。
高中数学函数常见奇偶模型
高中数学函数常见奇偶模型在高中数学中,函数是一个重要的概念,而奇偶性则是函数中常见的性质之一。
在解题过程中,我们经常需要利用函数的奇偶性来简化计算或者判断函数的性质。
本文将按照函数的类型,介绍一些常见的奇偶模型。
一、多项式函数多项式函数是高中数学中最基础的函数之一,其一般式为$f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$。
对于多项式函数,我们可以通过判断其各项系数的奇偶性来判断其奇偶性。
当$n$为偶数时,$f(x)$为偶函数,当$n$为奇数时,$f(x)$为奇函数。
这是因为当$x$取相反数时,多项式函数中各项的幂次均为偶数或奇数,从而各项系数的符号不变,因此函数的奇偶性也不变。
二、三角函数三角函数是高中数学中另一个重要的函数类型,包括正弦函数、余弦函数、正切函数等。
对于三角函数,我们可以通过利用其周期性来判断其奇偶性。
正弦函数$f(x)=\sin x$是奇函数,余弦函数$f(x)=\cos x$是偶函数。
这是因为正弦函数的周期为$2\pi$,当$x$取相反数时,$\sin(-x)=-\sin x$,即正弦函数的值也取相反数,因此为奇函数。
而余弦函数的周期也为$2\pi$,当$x$取相反数时,$\cos(-x)=\cos x$,即余弦函数的值不变,因此为偶函数。
三、指数函数和对数函数指数函数和对数函数也是高中数学中常见的函数类型。
对于指数函数$f(x)=a^x$,我们可以通过判断底数$a$的奇偶性来判断其奇偶性。
当$a$为偶数时,指数函数$f(x)$为偶函数,当$a$为奇数时,指数函数$f(x)$为奇函数。
这是因为当$x$取相反数时,$a^x$的值不变,因此当$a$为偶数时,$a^x$的值也不变,从而为偶函数;当$a$为奇数时,$a^x$的值取相反数,从而为奇函数。
对于对数函数$f(x)=\log_a x$,我们可以通过判断底数$a$的奇偶性来判断其奇偶性。
当$a$为偶数时,对数函数$f(x)$无定义,因为对于$x<0$时,$\log_ax$无实数解;当$a$为奇数时,对数函数$f(x)$为奇函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中函数的常见类型
高中数学中的六大类函数及其定义:
1.一次函数:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数≠0,k≠0,b为常数,),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.
2.二次函数:在数学中,二次函数最高次必须为二次,二次函数(quadratic function)的基本表示形式为y=ax²+bx+c.二次函数的图像是一条对称轴平行或重合于y轴的抛物线.
二次函数表达式y=ax²+bx+c的定义是一个二次多项式.
3.指数函数:一般地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数 .也就是说以指数为自变量,幂为因变量,底数为常量的函数称为指数函数,它是初等函数中的一种.可以扩展定义为R
4.对数函数:一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数.
5.幂函数:一般地,形如y=xa(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.例如函数y=x0 y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0时x≠0)等都是幂函数.
6.三角函数:三角函数是数学中常见的一类关于角度的函数.也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义.常见的三角函数包括正弦函数、余弦函数和正切函数。