声表面波滤波器原理和应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

声表面波滤波器原理及应用

1.声表面波滤波器(SAWF)的结构和工作原理

声表面波滤波器(SAWF)是利用压电材料的压电效应和声特性来工作的。具有压电效应的材料能起到换能器的作用,它可以将电能转换成机械能,反之亦然。压电效应包括正压电效应和反压电效应。所谓正压电效应是指压电材料受力变形产生电荷,因而产生电场的效应,即由机械能转换为电能,反压电效应是指压电材料在外加电场的作用下,产生机械形变的效应,也即由电能转换为机械能。

声表面波滤波器(SAWF)的结构如图2—12所示。这种滤波器的基片是由压电材料(如铌酸锂或石英晶体)制成,在基片上蒸镀两组“叉指电极”,一般由金属薄膜用光刻工艺刻成。左侧接信号源的一组称为发送换能器,右侧接负载的一组称为接收换能器,图中a、b分别为电极宽度和极间距离,W为相邻叉指对的重叠长度,称为“叉指孔径”。当交变的电信号u s 加到发送换能器的两个电极上时,通过反压电效应,基片材料就会产生弹性形变,这个随信号变化的弹性波,即“声表面波”,它将沿着垂直于电极轴向(图中x方向)向两个方向传播,一个方向的声表面波被左侧的吸声材料吸收,另一方向的声表面波则传送到接收换能器,由正压电效应产生了电信号,再送到负载R L。但叉指换能器的形状不同时,滤波器对不同频率信号的传送与衰减能力就会不一样。

图2—12 声表面波滤波器结构示意图

为了简便起见,仅分析“均匀”型叉指换能器的频率特性。所谓“均匀”型就是指图2—12中各叉指对的参数a、b、W 都相同,设换能器有n+1个电极,并把换能器分为n节或N个周期(N=n/2),各电极将激发出相同数量的声表面波,声表面波的波长由指装点基的宽度a和间隔b决定,声表面波的频率与传播速度有关,其自然谐振频率(或机械谐振频率)为

v是声表面波的传播速度,约为3×103m/s,比光速小很多,比声速高9倍多。在f0一定,速度v低时(a+b)就可以小,所以声表面波器件的尺寸可以做得很小,但f0很低,则(a+b)就增大,SAWF的尺寸就增大,因此它适合工作在高频或超高频段。

叉指换能器的尺寸决定后,换能器的f0就固定了,当外加信号的频率等于f0时,换能器各节电极所激发的声表面波同相叠加,振幅最大,即所激发出的声表面波幅值最大;当外加信号的频率偏离f0时,换能器各节电极所激发的声表面波振

幅值基本不变,但相位发生变化,其矢量叠加会使振幅值减小,并随频率偏离的大小而变化,有时完全对消。根据理论分析可知,其频率特性曲线呈现 sinx/x函数形式,式中x=Nπ∆f/f0。由信号分析可知,矩形脉冲信号的幅频特性也呈现sinx/x 函数形式,所以上述均匀叉指换能器的信号脉冲是矩形,与叉指重叠部分的几何形状(矩形)完全相同。由此可见,叉指换能器的几何形状同它的冲击响应h(t)对应,由此可求得其网络函数H(jω)。叉指换能器的特点即它的几何形状同信号响应之间存在着特别简单的关系。

在实际应用中,上述对称的幅频特性往往满足不了要求,所以常常采用不均匀结构,即使叉指电极尺寸和形状作适当的设计和调整,使幅频特性满足特定的要求。如图2—13所示,使叉指孔径(重叠)的结构形状包络与sinx/x 曲线的形状相同,即可得到接近矩形形状的振幅频率特性。

图2—13 叉指图形与振幅频率特性

通常对于具有复杂滤波特性的SAWF,其设计通常采用加权的方式,必须借助于计算机才能进行。加权的方式很多,常见的有两种:

(1)振幅加权,保持叉指换能器宽度a和极间距b不变,使叉指孔径w按某特定函数规律变化,则它的频率响应即可满足所需的滤波特性;

(2)相位加权,保持叉指孔径W不变,使宽度a和极间距b变化,这对加大带宽,改善相频特性有显著效果。

由于声表面波滤波器的群时延特性仅与输入、输出电极宽度a和极间距b有关,所以,它基本上是一个常数,也就是说,用声表面波滤波器做成的滤波器,其相频特性基本上是线性的,且与幅频特性无关,这是用电感电容做成的滤波器所无法做到的。

2.声表面波滤波器的电性能

(1)振幅频率特性

在电视机高频头中,经混频电路将电视台发送的各频段电视信号差频出一个中频信号,使得各频道的图象载频变成

38MHz,伴音载频变成31.5MHz。电视机的中放通道则要求各频率点都有不同幅度。如图象载频位置在幅度的50%处,即-4.8dB。为了使检波后的伴音不致影响图象。另一方面也为了使伴音中不出现场频哼声,所以在中放通道中伴音中频的增益比图象中频的增益低20 dB。中放频率特性在伴音中频位置上应有一小平台,否则调频的等幅伴音中频信号受倾斜的频率特性的影响,会变成调幅调频波。伴音中频增益也不能降低太多,否则伴音幅度太小。图象中放的频带宽度计算方法,是从右边-6dB(50%)的图象载频位置算起,至左边-3 dB(70%)处为止的频带宽度,一般要求约5MHz。

要不受其它信号干扰,中放应该只使所需频道频率成分顺利通过,在通频带之外必须要有很大的衰减,使不需要信号都

有不能通过。也就是说,中放应有很好的选择性。故此对邻近频道的图象载频(30MHz)和伴音载频(39.5MHz)以及两端带外要有很强的抑制。

(2)相频特性(群时延特性)

声表面波滤波器的主要优点之一就是在整个通带内(包括边缘处)具有近似线性的相频特性,线性相位偏移±1.5°,其群时延特性在通带内是平坦的,不需专门对此进行补偿,但通带内同样存在有群时延的快速波动,达±(30~50)ns,不过对图像传输质量影响不大。

(3)插入损耗

声表面波滤波器的插入损耗由两部分组成:叉指换能器的电—机—电之间的转换损耗和两个换能器之间声表面波的传输损耗。对于压电基片材料为铌酸锂或石英晶体时,传输损耗可以忽略。那么插入损耗就是叉指换能器之间的电声转换损耗,它可以由声表面波滤波器的等效电路来求出。当声表面波滤波器的叉指换能器电极阻抗与负载阻抗匹配时,在输出端才能获得最大功率。即使在这种情况下,由于叉指换能器具有双向性幅射能量的特点,因此声表面波滤波器也有6dB的插入损耗,输出端只能取得全部输入能量的一半。另外,在下面还要提到,为了减小三次回波,需要使电极阻抗和外电路失配,这样又增加了一定的插入损耗,于是一般声表面波滤波器的插入损耗约在6dB~20dB之间。

声表面波滤波器的插入损耗将会影响到所在整个通道

相关文档
最新文档