空间点、线、面位置关系

合集下载

空间点、线、面的位置关系

空间点、线、面的位置关系

【证明】 (1)如图所示,连接B1D1.
因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体AC1 中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面,即 D,B,F,E四点共面.
(2)在正方体AC1中,设A1,C,C1三点确定的平面为α,平 面BDEF为β.因为Q∈A1C1,所以Q∈α.
2.异面直线的判定方法 (1)反证法:先假设两条直线不是异面直线,即两条直线平 行或相交,由假设出发,经过严格的推理,导出矛盾,从而否 定假设,肯定两条直线异面.此法在异面直线的判定中经常用 到. (2)定理:平面外一点A与平面内一点B的连线和平面内不经 过点B的直线是异面直线.
思考题2 (1)【多选题】如图所示,是正方体的平面 展开图,
间直角坐标系,则A(a,0,0),C1(0,a, 3 a),C(0,a,0),
D1(0,0, 3a), A→C1=(-a,a, 3a),C→D1=(0,-a, 3a), 设异面直线AC1与CD1所成角为θ, 则cosθ=|AA→→CC11|··C|C→→DD11|= 52a·a2 2a= 55.
∴异面直线AC1与CD1所成角的余弦值为
思考题1 如图所示,在正方体ABCD-A1B1C1D1中, E,F分别是AB和AA1的中点,求证:
(1)E,C,D1,F四点共面; (2)CE,D1F,DA三线共点.
【证明】 (1)如图所示,连接EF,CD1,A1B.
∵E,F分别是AB,AA1的中点,∴EF∥A1B. 又A1B∥D1C,∴EF∥CD1. ∴E,C,D1,F四点共面.
在这个正方体中,有以下四个命题,正确的结论是( CD ) A.BM与ED平行 B.CN与BE是异面直线 C.CN与BM成60°角 D.DM与BN垂直

空间中点线面的位置关系

空间中点线面的位置关系

空间中点、线、面的位置关系一、平面的基本性质(1)点和直线的基本性质:连接两点的线中,最短;过两点一条直线,并且一条直线。

(2)平面的基本性质:1如果一条直线的点在一个平面内,那么这条直线上的所有点在这个平面内。

这时我们就说或。

作用:判断直线在平面内。

2经过不在同一直线的三点,有且只有个平面。

也可以简单地说成:的三点确定一个平面。

过不共线的三点A、B、C的平面,通常记作:。

3如果不重合的两个平面有个公共点,那么它们有且只有条过这个点的公共直线。

如果两个平面有一条公共直线,则称这两个平面。

这条公共直线叫做这两个平面的(3)平面的基本性质的推论:1经过一条直线和直线的一点,有且只有个平面。

2经过两条直线,有且只有个平面。

3经过两条直线,有且只有个平面。

(4)共面与异面直线:共面:空间中的几个点或几条直线,如果都在,我们就说它们共面。

共面的两条直线的位置关系有和两种。

异面直线:既又的直线叫异面直线。

判断两条直线为异面直线的方法:与一平面相交于一点的直线与这个平面内任一不过该点的直线是异面直线。

(5)符号语言:点A在平面α内,记作;点A不在平面α内,记作。

直线l在平面α内,记作;直线l不在平面α内,记作。

平面α与平面β相交于直线a, 记作 .直线l和直线m相交于点A,记作,简记作:。

基本性质01可以用集合语言描述为:如果点A α,点B α,那么直线AB α。

例1. 已知三条直线a、b、c两两相交但不共点,求证:a、b、c共面。

例2.已知三条平行线a 、b 、c 都与直线d 相交.求证:它们共面.例 3.正方体1111D C B A ABCD -中,对角线C A 1与平面1BDC 交于AC O ,、BD 交于点M . 求证:点1C 、O 、M 共线.例4.已知三个平面α、β、γ两两相交,且α⋂β=c ,β⋂γ=a ,γ⋂α=b , 且直线a 和b 不平行.求证: a 、b 、c 三条直线必相交于同一点._1_ B _二、空间中的平行关系1.空间平行直线的本性质(空间平行线的传递性): 平行于同一直线的两条直线 。

空间几何与向量运算点线面的位置关系与运算

空间几何与向量运算点线面的位置关系与运算

空间几何与向量运算点线面的位置关系与运算空间几何与向量运算是数学中的重要分支,研究点、线、面在空间中的位置关系以及进行相应的运算操作。

在实际应用中,空间几何与向量运算广泛应用于物理学、工程学等领域。

本文将详细讨论点、线、面在空间中的位置关系和对应的运算方式。

一、点在空间中的位置关系在空间几何中,点是空间的最基本元素,它没有长度、宽度和高度。

点与点之间的位置关系可以通过坐标系来描述。

常用的坐标系有直角坐标系、柱坐标系和球坐标系。

1. 直角坐标系直角坐标系是最常用的坐标系,用三个坐标轴x、y、z相互垂直组成,固定在空间中的三个直线上。

点在直角坐标系中的位置可以用三个坐标(x, y, z)来表示,其中x表示点在x轴上的投影位置,y表示点在y轴上的投影位置,z表示点在z轴上的投影位置。

2. 柱坐标系和球坐标系柱坐标系和球坐标系是常用的极坐标系。

在柱坐标系中,点的位置由径向距离、极角和高度来确定,记作(r, θ, z),其中r表示点到极坐标原点的距离,θ表示点到正极轴的角度,z表示点在z轴上的投影位置。

在球坐标系中,点的位置由球半径、极角和方位角来确定,记作(r, θ, φ),其中r表示点到球心的距离,θ表示点到正半轴的角度,φ表示点到正极面的角度。

二、线在空间中的位置关系与运算线是由无数个点连接而成的集合,线在空间中的位置关系有直线、平行线、相交线等。

对于线的运算操作,主要包括长度、夹角、平移、旋转等。

1. 长度线的长度是线段两个端点之间的距离,可以通过计算两个点的坐标来求得。

对于直线则无法直接求得长度。

2. 夹角两条线之间的夹角是指这两条线在空间中交汇处的夹角。

可以通过计算两条线的方向向量来求得夹角。

3. 平移平移是指将一条线段按照指定的平移向量进行移动,其位置和形状保持不变。

平移操作可以通过向直线的每个点添加平移向量得到。

4. 旋转旋转是指将一条线段按照指定的旋转角度和旋转轴进行旋转,其位置和形状保持不变。

点、线、面投影关系

点、线、面投影关系

空间点对于由V、H和W面组成的投影体系有三种位置关系:(1)当点的x、y、z坐标均不为零时,点的三面投影均落在投影面内;(2)当点的x、y、z坐标有一个为零时,空间点在投影面上,其两个投影落在投影轴上,特别值得注意的是,当点在H面上时,其W面的投影落在Y 轴上,当按三视图的形成方法展开投影体系时,其W面投影随Y轴一起绕Z轴向后旋转落在YW 轴上。

(3)当点的x、y、z坐标均有两个为零时,空间点在投影轴上,其一个投影与原点重合。

点的三面投影规律⑴ 点的正面投影和水平投影的连线垂直于OX轴。

⑵ 点的正面投影和侧面投影的连线垂直于OZ轴。

⑶ 点的水平投影到OX轴的距离等于侧面投影到OZ轴的距离。

[投影面垂直线]空间直线对投影面有三种位置关系:平行、垂直和倾斜。

若空间直线垂直于一个投影面,则必平行于其他两个投影面,这样的直线称之为投影面垂直线,对于垂直于V、H、W面的直线分别称之为正垂线、铅垂线和侧垂线。

投影面垂直线在其垂直的投影面上的投影积聚为一个点,其他两个投影面上投影平行(或垂直)于投影轴,且反映实长。

若空间直线平行于一个投影面,倾斜于其他两个投影面,这样的直线称之为投影面平行线,按其平行于V、H、W面分别称之为正平线、水平线和侧平线。

投影面平行线在其平行的投影面上的投影反映实长,其他两个投影面上投影平行(或垂直)于投影轴,且投影线段的长小于空间线段的实长。

一般位置直线和三个投影面均处于倾斜位置,其三个投影和投影轴倾斜,且投影线段的长小于空间线段的实长。

从投影图上也不能直接反映出空间直线和投影平面的夹角。

[投影面平行面]空间平面对投影面有三种位置关系:平行、垂直和一般位置。

若空间平面平行于一个投影面,则必垂直于其他两个投影面,这样的平面称之为投影面平行,对平行于V、H、W面的平面分别称之为正平面、水平面和侧平面。

投影面平行面在其平行的投影面上的投影反映实形,其他两个投影面上投影积聚成一条直线,且垂直于该投影面内的投影轴[投影面垂直面]若空间平面垂直于一个投影面,而倾斜于其他两个投影面,这样的平面称之为投影面垂直面,按垂直于V、H、W面的平面分别称之为正垂面、铅垂面和侧垂面。

空间点、线、面的位置关系(讲解部分)

空间点、线、面的位置关系(讲解部分)

考法二 求异面直线所成角的方法
例2 (1)已知四棱锥P-ABCD的侧棱长与底面边长都相等,点E是PB的中 点,则异面直线AE与PD所成角的余弦值为( )
A. 1 B. 2 C. 3 D. 2
3
3
3
3
(2)(2018四川泸州模拟,7)在正方体ABCD-A1B1C1D1中,E为BC的中点,F为B1
C1的中点,则异面直线AF与C1E所成角的正切值为 ( )
如图,直线a,b是异面直线,经过空间任一点O分别作直线a'∥a,b'∥b,相交直
线a',b'所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
特别地,当两条异面直线所成的角是直角时,称这两条异面直线互相垂直.
注意 异面直线所成的角的范围是
0,
π 2
,所以空间两直线垂直有
两种情况——异面垂直和相交垂直.
知能拓展
考法一 平面的基本性质及应用
例1 已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD= P,A1C1∩EF=Q. 求证:(1)D,B,F,E四点共面; (2)若A1C交平面DBFE于R点,则P,Q,R三点共线. 解题导引
证明 如图. (1)连接B1D1, 由已知得EF是△D1B1C1的中位线, ∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD. ∴EF,BD确定一个平面,即D,B,F,E四点共面. (2)正方体AC1中,设平面A1ACC1确定的平面为α,平面BDEF确定的平面为β. ∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β,故Q是α与β的公共点.同理P是α与β 的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C.∴R∈α,且R∈β,则R∈PQ.故 P,Q,R三点共线.

空间向量点线面的位置关系

空间向量点线面的位置关系

空间向量点线面的位置关系在三维空间中,点、线和面是基本的几何要素。

它们的位置关系在数学和几何学中扮演着重要的角色。

本文将探讨空间向量中点、线和面之间的不同位置关系及其特点。

一、点和线的位置关系在三维空间中,点和线的位置关系主要有以下几种情况。

1. 点在线上:如果一个点位于一条直线上,那么这个点与直线上的任意两点构成的向量都是共线的。

换句话说,点和线的向量共线。

2. 点在线的延长线上:点也可以位于一条线的延长线上,这时点与线上的任意两点构成的向量也是共线的。

3. 点与线相交:在三维空间中,点还可以与一条直线相交。

这时,点与线上的任意两点构成的向量不再共线。

4. 点与线平行:若一点与直线平行,则该点与直线上的任意两点构成的向量平行。

但是,点与线平行并不意味着点在线的延长线上。

二、点和面的位置关系点和面的位置关系也有几种情况,如下所示。

1. 点在面上:如果一个点位于一个平面上,那么这个点与平面上的任意三个点构成的向量都在同一个平面内。

2. 点在面的延长线上:点也可以位于一个平面的延长线上,这时点与平面上的任意三个点构成的向量仍在同一个平面内。

3. 点在平面内但不在平面上:有时,一个点位于一个平面内部但不在平面上。

这时,点与平面上的任意三个点构成的向量不在同一个平面内。

4. 点与平面相交:在三维空间中,点还可以与一个平面相交。

这时,点与平面上的任意三个点构成的向量不在同一个平面内。

三、线和面的位置关系线和面的位置关系主要有以下几种情况。

1. 线在平面上:如果一条直线位于一个平面上,那么直线上的任意两点构成的向量都在同一个平面内。

2. 线与平面相交于一点:一个直线也可以与一个平面相交于一点。

这时,直线上的任意两点构成的向量不在同一个平面内。

3. 线与平面平行:若一条直线与一个平面平行,则直线上的任意两点构成的向量与平面内的向量平行。

但是,直线与平面平行并不意味着直线在平面上。

4. 线在平面的延长线上:一条直线还可以位于一个平面的延长线上,这时直线上的任意两点构成的向量仍在同一个平面内。

空间点线面之间的位置关系

空间点线面之间的位置关系

空间点线面之间的位置关系一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角 画成45,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:b A =a α⊂α=∅ αBAβαABαβαβBAAβαBAα=l β= 二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 2. 公理3 如果两个不重合的平面有一个公共点,有且只有一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈公理3的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上 1、证明空间三点共线问题通常证明这些点都在两个平面的交线上,即先确定出某两点在两个平面的交线上,再证明第三点既在第一个平面内,又在第二个平面内。

高三数学 空间点线面之间的位置关系

高三数学 空间点线面之间的位置关系

课堂互动讲练
【名师点评】 题中是先说明D1、 E、F确定一平面,再说明B在所确定 的平面内,也可证明D1E∥BF,从而 说明四点共面.
课堂互动讲练
考点四 异面直线的判定
证明两直线为异面直线的方法: 1.定义法(不易操作). 2.反证法:先假设两条直线不 是异面直线,即两直线平行或相交, 由假设的条件出发,经过严密的推理, 导出矛盾,从而否定假设肯定两条直 线异面.此法在异面直线的判定中经 常用到.
A.A∈l,A∈α,B∈l, B∈α⇒l⊂α
B.A∈α,A∈β,B∈α, B∈β⇒a∩β=AB
C.l⊄α,A∈l⇒A∉α D.A∈α,A∈l,l⊄α⇒l∩α=A 答案:C
三基能力强化
4.如图所示,在正方体ABCD-
A1B1C1D1中,异面直线AC与B1C1
所成的角为
.
答案:45°
5.三条直线两两相交,可以确 定3进一步反映了平面的延展 性.其作用是:(1)判定两平面相交;(2) 作两平面相交的交线(当知道两个平面 的两个公共点时,这两点的连线就是交 线);(3)证明多点共线(如果几个点都是 某两个平面的公共点,则这几个点都在 这两个平面的交线上).
随堂即时巩固
点击进入
课时活页训练
PQ、CB的延长线交于M,RQ、DB的延
长线交于N,RP、DC的延长线交于K.求
证:M、N、K三点共线.
课堂互动讲练
【思路点拨】 要证明M、N、K 三点共线,由公理3可知,只要证明M、 N、K都在平面BCD与平面PQR的交 线上即可.
课堂互动讲练
【证明】
PQ∩CB=M
RQ∩DB=N⇒
RP∩DC=K
课堂互动讲练
解:选取平面BCF,该 平面有以下两个特点:①该 平面包含直线CF;②该平面 与DE相交于点E.在平面BCF 中,过点E作CF的平行线交 BF于点N,连结ND,可以看 出:EN与ED所成的角即为 异面直线FC与ED所成的角. 10分

立体几何——点线面的位置关系

立体几何——点线面的位置关系

点线面的位置关系〔1〕四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号语言:A l,B l,且A ,B l .公理2:过不在一条直线上的三点,有且只有一个平面.三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面②经过两条相交直线,有且只有一个平面_______________________③经过两条平行直线,有且只有一个平面_______________________它给出了确定一个平面的依据.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线〔两个平面的交线〕.符号语言:P ,且P I l,P 1.公理4:〔平行线的传递性〕平行与同一直线的两条直线互相平行符号语言:a//l,nb//l a//b 0〔2〕空间中直线与直线之间的位置关系1 .概念异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线.两条异面直线a,b ,经过空间任意一点O作直线a //a,b //b ,我们把a与b所成的角〔或直角〕叫异面直线a, b所成的夹角.〔易知:夹角范围0 90 〕公理4:〔平行线的传递性〕平行与同一直线的两条直线互相平行.符号语言:a〃l,且b//l a//b 0定理:空间中如果一个角的两边分别与另一个角的两边分别平行, 那么这两个角相等或互补.〔注意:会画两个角互补的图形〕小,击〃心相交直线:同一平面内,有且只有一个公共点;u向宜线2 .位置关系:八’ 平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点〔3〕空间中直线与平面之间的位置关系直 线 与 平 面 的 位 置 关 系 有 三 种 直线在平面内〔l 〕有无数个公共点〔4〕空间中平面与平面之间的位置关系平面与平面之间的位置关系有两种 两个平面平行〔// 〕没有公共点 两个平面相交〔I 1〕有一条公共直线考点1:点,线,面之间的位置关系例1.〔2021辽宁,4,5分〕m,n 表示两条不同直线,a 表示平面.以下说法正确 的是〔〕A.假设 m// a ,n // a ,那么 m/l nB.假设 a ,n ? a ,那么 nC.假设 a ,m±n, WJ n // aD.假设 mil a ,m±n,那么 n± a[答案]1.B[解析]1.A 选项m n 也可以相交或异面,C 选项也可以n? a ,D 选项也可以n // a 或n 与a 斜交.根据线面垂直的性质可知选 B.例2.〔2021山东青岛高三第一次模拟测试,5〕设"、"是两条不同的直线,空 ,是两个不同的平面,那么以下命题正确的选项是〔〕A.假设 口〃瓦口〃/那么 6"a B .假设 01 人口那么."C .假设 ,, 「那么D .假设・ . . ..那么[答案]2. D[解析]2.A 选项不正确,由于方匚口是可能的;直线在平面外直线与平面相交〔11 直线与平面平行〔1 / / 〕 A 有且只有一个公共点没有公共点B选项不正确,由于以‘产,""靠时,""尸,"仁/都是可能的;C选项不正确,由于我上方,口工户时,可能有m;D选项正确,可由面面垂直的判定定理证实其是正确的.应选D例3. 〔2021广西桂林中学高三2月月考,4〕设小、"是两条不同的直线,以、川是两个不同的平面.以下命题中正确的选项是〔A〕';:」-•・;〃一/…」「;二.一不〔C〕滂,£©[8―明〃,••曾 = .,・,A[答案]3. D[解析]3. 假设m上R MU E用工'、那么平面"与“垂直或相交或平行,故〔A〕错误;假设“1凤阳1 g//Q,那么直线用与〃相交或平行或异面,故〔B〕错误;假设口L凤仪1.二风雨工,;那么直线片与平面#垂直或相交或平行,故〔C〕错误; 假设那么直线、1M,故©正确.选D.例4. 〔2021周宁、政和一中第四次联考, 示不同的平面,给出以下四个命题:①假设州且EU•那么u〞;②假设州// f,且阳// c.贝〞// 口;③假设Hl…内T = M ",那么'//巾//E ;④假设m D 且打// #,那么f //7〕设L E,H表示不同的直线,小丹「表( )(B) " ’(D)睽C f其中正确命题的个数是〔〕A. 1B. 2C. 3D. 4 [答案]4. B[解析]4. ①正确;②直线也或£上,错误;③错误,由于正方体有公共端点的三条棱两两垂直;④正确.故真正确的选项是①④,共2个.2.空间几何平行关系转化关系:i I城线平行---------- "线面平行" ------------ "面面平行直线、平面平行的判定及其性质归纳总结证实线线平行的方法:11 (平行线的传递性)平行与同一直线的两条直线互相平行.即公理4(2证实这条两条直线的方向量共线.③如果两个平行平面同时和第三个平面相交,那么它们的交线平行.即面面平行的性质.2 .证实直线和平面相互平行的方法(1证实直线和这个平面内的一条直线相互平行;②证实这条直线的方向量和这个平面内的一个向量相互平行;③证实这条直线的方向量和这个平面的法向量相互垂直.3 .证实两平面平行的方法:(1)利用定义证实.利用反证法,假设两平面不平行,那么它们必相交,再导出矛盾.(2)判定定理:一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,这个定理可简记为线面平行那么面面平行.用符号表示是:anb, aa , a// e , b// e , WJ a // e.(3)垂直于同一直线的两个平面平行.用符号表示是:a±a , a,B那么a// B.(4)平行于同一个平面的两个平面平行. 〃 ,// //4.两个平面平行的性质有五条:(1)两个平面平行,其中一个平面内的任一直线必平行于另一个平面,这个定理可简记为:〞面面平行,那么线面平行〞.用符号表示是:a // B, aa ,那么a // B.(2)如果两个平行平面同时与第三个平面相交,那么它们的交线平行,这个定理可简记为:〞面面平行,那么线线平行〞.用符号表示是:a//0, aP 丫=a, B C = =b,贝U a// bo(3) 一条直线垂直于两平行平面中的一个平面,它也垂直于另一个平面.这个定理可用于证线面垂直.用符号表示是:a // B , a, a ,那么a, B.(4)夹在两个平行平面间的平行线段相等口(5)过平面外一点只有一个平面与平面平行七3.空间几何垂直关系1 .线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一 条,必垂直于另一条.三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂 直,那么它也和这条斜线垂直.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂 直,那麽它也和这条斜线的射影垂直.注意:⑴三垂线指PA PQ AO 都垂直a 内的直线a 其实质是:斜线和平 面内一条直线垂直的判定和性质定理.⑵要考虑a 的位置,并注意两定理交替使 用.2 .线面垂直(1)定义:如果一条直线l 和一个平面a 相交,并且和平面a 内的任意一条直 线都垂直,我们就说直线l 和平面a 互相垂直,其中直线l 叫做平面的垂线,平面 a 叫做直线l 的垂面,直线与平面的交点叫做垂足.直线l 与平面a 垂直记作:I ,ob a J /不(2)直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.(3)直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条 直线平行. 3 .面面垂直(1)两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面. (2)两平面垂直的判定定理:(线面垂直 面面垂直)如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3)两平面垂直的性质定理:(面面垂直 线面垂直)假设两个平面互相垂直, 那么在一个平面内垂直于它们的交线的直线垂直于另一个平面PO 推理模式:PAI,OA ,a APa AOAOa考点2:证实线面之间的平行与垂直例1 .如图,四边形ABC时正方形,PD,平面ABCD/DPC=30 ,AF,PC于点F,FE // CD,交PD于点E.(1)证实:CFL平面ADF;[解析]1.⑴证实:V PDL平面ABCD/ PDL AD,又CDL AD,Pm CD=D,• ・ADL平面PCD/ ADL PC,又AF, PC,AFA AD=A,「• PC1平面ADF,即CF,平面ADF.例2. (2021江苏,16, 14分)如图,在四棱锥P-ABC时,平面PADL平面ABCD, AB=AD, / BAD=60 , E, F 分别是AP, AD的中点.求证:(I )直线EF//平面PCD;(R)平面BEFL平面PAD.J)[答案](I )在△ PAD中,由于E, F分别为AP, AD的中点,所以EF// PD.又因为EF?平面PCD, PC?平面PCD,所以直线EF//平面PCD.(n)连结BD.由于AB=AD, /BAD=60 ,所以△ ABM正三角形.由于F是AD 的中点,所以BF±AD.由于平面PADL平面ABCD, BF?平面ABCD,平面PAD? 平面ABCD=AD所以BF,平面PAD.又由于BF?平面BEF,所以平面BEFL平面PAD.例3. (2021 江苏,16, 14 分)如图,在直三棱柱ABC-ABG中,E、F分别是AB、A i C的中点,点D在BC上,A iD± B i C.求证:(I ) EF // 平面ABC;(II)平面AFD1平面BBCC.[答案]3.( I )由于E、F分别是A i B、A i C的中点,所以EF// BC, EF?面ABC, BC ?面ABC.所以EF//平面ABC.(II)由于直三棱柱ABC-AB i C i,所以BBL面A i B i C i, BB iX A i D,又A i DLBC,所以A i DL面BBCC,又AD?面A i FD,所以平面AFDL平面BBCC.例4. (2021江苏,i6, i4 分)如图,在四面体ABCm,CB=CD, ADLBD,点E、F分别是AB BD的中点.求证:(I )直线EF//平面ACD;(n)平面EFd平面BCD.[答案]4.( I )在4ABD中,由于E、F分别是AB BD的中点,所以EF// AD.又AD?平面ACD, EF?平面ACD,所以直线EF//平面ACD.(H)在AABD^ ,由于ADL BD, EF // AD,所以EF, BD.在△BCDt ,由于CD=CB, F为BD的中点,所以CF± BD.由于EF?平面EFC, CF?平面EFC, EF与CF交于点F,所以BDL平面EFC.又由于BD?平面BCD,所以平面EFCL平面BCD.例5. (2021北京海淀区高三三月模拟题,17,14分)在四棱锥P-/3m 中,产,!平面N夙力,匚是正三角形,金.与凡0的交点5/恰好是AC中点,又= ZCTH二120.,点A『在线段PB上,且(H)求证:AN"平面『DC;[答案]7.(1) 由于必出.是正三角形,■是JC'中点,所以m C',即8OLRC.又由于^ 平面HBCD , 80u平面月8CQ,所以以_LHD.又Rin」心=1,所以叨_L平面心C.又尸.仁平面尸〃’,所以皿_LPC.(H)在正三角形月中,3M =2V'3,在AJC.中,由于M为/C中点, DM±AC y所以才口二CD.又2OM = 120 ,所以NCMf = 60..1tan ZCDM = ♦"=々=出DM —二'所以由冈冈,得3 .所以a1九=31在等腰直角三角形尸/E中,2月"/lA",所以PB = 4五. 所以BMNPCA , BN 小)= BY : ,所以MN NPD .又“V之平面"DC , PD仁平面产比,所以W j平面热乂:.。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系基础梳理1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理2:经过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个平面(不重合的两个平面)有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a ,b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有平行、相交、在平面内三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.平行公理:平行于同一条直线的两条直线互相平行.6.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.一、选择题:1.以下四个命题中,正确命题的个数是( )①不共面的四点中,其中任意三点不共线;②若点A 、B 、C 、D 共面,点A 、B 、C 、E 共面,则A 、B 、C 、D 、E 共面;③若直线a 、b 共面,直线a 、c 共面,则直线b 、c 共面;④依次首尾相接的四条线段必共面.A.0B.1C.2D.32.已知a,b 是异面直线,直线c∥直线a,则c 与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线3.如图,α∩β=l,A 、B∈α,C∈β,且C ∉l,直线AB∩l=M,过A 、B 、C 三点的平面记作γ,则γ与β的交线必通过( )A.点AB.点BC.点C 但不过点MD.点C 和点M4.已知直线l,若直线m 同时满足以下三个条件:m 与l 是异面直线;m 与l 的夹角为3(定值);m 与l 的距离为π.那么,这样的直线m 的条数为( )A.0B.2C.4D.无穷5.如图,E 、F 是AD 上互异的两点,G 、H 是BC 上互异的两点,由图可知,①AB 与CD 互为异面直线;②FH 分别与DC 、DB 互为异面直线;③EG 与FH 互为异面直线;④EG 与AB 互为异面直线.其中叙述正确的是( )A.①③B.②④C.①④D.①②6.以下命题中:①点A ,B ,C ∈直线a ,A ,B ∈平面α,则C ∈α;②点A ∈直线a ,a ⊄平面α,则A ∈α;③α,β是不同的平面,a ⊂α,b ⊂β,则a ,b 异面;④三条直线两两相交,则这三条直线共面;⑤空间有四点不共面,则这四点中无三点共线.真命题的个数为( )A .0B .1C .2D .37.如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是A 1B 1、CC 1的中点,则异面直线AE 与BF 所成角的余弦值为( ) 1342 (5555)A B C D 8.正方体ABCDA 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点,那么,正方体的过P 、Q 、R 的截面图形是( ).A .三角形B .四边形C .五边形D .六边形9.在正方体ABCD -A 1B 1C 1D 1中,E 是棱A 1B 1的中点,则A 1B 与D 1E 所成角的余弦值为( ) A.510 B.1010 C.55 D.10510.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE ,SD 所成的角的余弦值为( )A.13B.23C.33D.23二、填空题:1.在空间四边形ABCD 中,各边边长均为1,若BD=1,则AC 的取值范围是________.2.如图,正方体ABCD —A 1B 1C 1D 1中,M 是DD 1的中点,O 是底面正方形ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成角的大小等于________.3.如图所示,正方体ABCD-A 1B 1C 1D 1中,给出下列五个命题:①直线AC 1在平面CC 1B 1B 内;②设正方形ABCD 与A 1B 1C 1D 1的中心分别为O 、O 1,则平面AA 1C 1C 与平面BB 1D 1D 的交线为OO 1;③由点A 、O 、C 可以确定一个平面;④由A 、C 1、B 1确定的平面是ADC 1B 1;⑤若直线l 是平面AC 内的直线,直线m 是平面D 1C 内的直线;若l 与m 相交,则交点一定在直线CD 上.其中真命题的序号是________.4.如图,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________(注:把你认为正确的结论的序号都填上).5.如图,矩形ABCD 中,AB =2,BC =4,将△ABD 沿对角线BD折起到△A ′BD 的位置,使点A ′在平面BCD 内的射影点O 恰好落在BC 边上,则异面直线A ′B 与CD 所成角的大小为________.三、解答题:1、如图,平面ABEF⊥平面ABCD,四边形ABEF 与ABCD 都是直角梯形,∠BAD=∠FAB=90°,BC∥ 12AD,BE ∥ 12FA,G 、H 分别为FA 、FD 的中点.(1)证明:四边形BCHG 是平行四边形.(2)C 、D 、F 、E 四点是否共面?为什么?2. 正方体ABCDA 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E 、C 、D 1、F 四点共面;(2)CE 、D 1F 、DA 三线共点.3.如图所示,S 是正三角形ABC 所在平面外一点,SA=SB=SC,且∠ASB=∠BSC=∠CSA=90°,M、N 分别是AB 和SC 的中点,求异面直线SM 和BN 所成角的余弦值.4、空间四边形ABCD 中,AB=CD 且AB 与CD 所成的角为30°,E、F 分别是BC 、AD 的中点,求EF 与AB 所成角的大小.。

第三讲 空间中的点线面的基本关系

第三讲 空间中的点线面的基本关系
公共点个数 有一个公共共点
没有 没有
(3)直线与平面的位置关系
图形表示
数学符号
位置关系
公共点
a
a
直线 a 在平面内
无数个公共点
a
a
直线 a 与平面无公共点
a A
a A
直线 a 与平面交于点 A
(4)两平面的位置关系
位置关系
图形表示
没有公共点 有一个公共点 符号表示
2
相交
平行
//
(5)平行公理及其等角定理 (1)平行公理:平行于同一条直线的两直线平行 (2)等角定理: 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等.
4.(2019•西湖区校级模拟)下列说法正确的是( ) A.三点确定一个平面 B.过一条直线的平面有无数多个 C.两条直线确定一个平面 D.两条相交平面的交线是一条线段
5.(2019•西湖区校级模拟)在空间中,下列命题正确的是( )
4
A.经过三个点有且只有一个平面
B.经过直线和直线外一点有且只有一个平面
(3).等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角) 相等。
平面(公理 1、公理 2、公理 3、公理 4)
空间直线、平面的位置关系
直线与直线的位置关系
直线与平面的位置关系
平面与平面的位置关系
二、常用结论
1.公理 2 的三个推论 推论 1:经过一条直线和这条直线外一点有且只有一个平面. 推论 2:经过两条相交直线有且只有一个平面. 推论 3:经过两条平行直线有且只有一个平面. 2.异面直线判定的一个定理 过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线. 3.唯一性定理 (1)过直线外一点有且只有一条直线与已知直线平行. (2)过直线外一点有且只有一个平面与已知直线垂直. (3)过平面外一点有且只有一个平面与已知平面平行. (4)过平面外一点有且只有一条直线与已知平面垂直.

考点:空间点线面之间的关系(完整版)

考点:空间点线面之间的关系(完整版)

理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.·公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.·公理2:过不在同一条直线上的三点,有且只有一个平面.·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.·公理4:平行于同一条直线的两条直线互相平行.·定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.一、平面的基本性质及应用1.平面的基本性质名称图形文字语言符号语言公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α公理2过不在同一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒有且只有一个平面α,使A∈α,B∈α,C∈α公理2的推论推论1经过一条直线和直线外的一点,有且只有一个平面若点A∉直线a,则A和a确定一个平面α推论2经过两条相交直线,有且只有一个平面a b P=⇒有且只有一个平面α,使aα⊂,bα⊂推论3经过两条平行直线,有且只有一个平面∥a b ⇒有且只有一个平面α,使a α⊂,b α⊂公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P ∈α,且P ∈β⇒α∩β=l ,P ∈l ,且l 是唯一的公理4———l 1———l 2———l平行于同一条直线的两条直线互相平行l 1∥l ,l 2∥l ⇒l 1∥l 22.等角定理(1)自然语言:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)符号语言: 如图(1)、(2)所示,在∠AOB 与∠A ′O ′B ′中,,OA O A OB O B ''''∥∥,则AOB A O B ∠=∠'''或180AOB A O B ∠+∠'''=︒.图(1) 图(2)二、空间两直线的位置关系 1.空间两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线 (2)从是否共面的角度分类:⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线【注意】异面直线:不同在任何一个平面内,没有公共点.2.异面直线所成的角(1)异面直线所成角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成角的范围异面直线所成的角必须是锐角或直角,异面直线所成角的范围是π(0,]2. (3)两条异面直线垂直的定义如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .三、空间直线与平面、平面与平面的位置关系 1.直线与平面、平面与平面位置关系的分类 (1)直线和平面位置关系的分类 ①按公共点个数分类:⎧⎪⎨⎪⎩直线和平面相交—有且只有一个公共点直线和平面平行—没有公共点直线在平面内—有无数个公共点 ②按是否平行分类:⎧⎪⎧⎨⎨⎪⎩⎩直线与平面平行直线与平面相交直线与平面不平行直线在平面内③按直线是否在平面内分类:⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线和平面相交直线不在平面内(直线在平面外)直线和平面平行(2)平面和平面位置关系的分类两个平面之间的位置关系有且只有以下两种:(1)两个平面平行——没有公共点;(2)两个平面相交——有一条公共直线.2.直线与平面的位置关系的符号表示和图形表示图形语言符号语言公共点α=1个直线a与平面α相交a A∥0个直线a与平面α平行aα⊂无数个直线a在平面α内aα∥0个平面α与平面β平行αβαβ=无数个平面α与平面β相交l3.常用结论(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行.②过直线外一点有且只有一个平面与已知直线垂直.③过平面外一点有且只有一个平面与已知平面平行.④过平面外一点有且只有一条直线与已知平面垂直.(2)异面直线的判定方法经过平面内一点的直线与平面内不经过该点的直线互为异面直线.考向一平面的基本性质及应用(1)证明点共线问题,就是证明三个或三个以上的点在同一条直线上,主要依据是公理3.常用方法有:①首先找出两个平面,然后证明这些点都是这两个平面的公共点,根据公理3知这些点都在这两个平面的交线上;学#②选择其中两点确定一条直线,然后证明其他点也在这条直线上.(2)证明三线共点问题,一般先证明待证的三条直线中的两条相交于一点,再证明第三条直线也过该点.常结合公理3,证明该点在不重合的两个平面内,故该点在它们的交线(第三条直线)上,从而证明三线共点.(3)证明点或线共面问题,主要有两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.典例1(1)在下列命题中,不是公理的是A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(2)给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是A.0 B.1C.2 D.3【答案】(1)A (2)B1.如图所示,正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.考向二 空间线面位置关系的判断两条直线位置关系判断的策略:(1)异面直线的判定常用到的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.(2)点、线、面之间的位置关系可借助正方体为模型,以正方体为主线,直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直. (3)对于异面直线的条数问题,可以根据异面直线的定义逐一排查. 学@典例2 如图,在正方体1111ABCD A BC D 中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论: ①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为 A .③④ B .①② C .①③D .②④【答案】A故选A .2.若直线l与平面α相交,则A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交典例3如图所示,正方体ABCD-A1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由.(2)D1B和CC1是否是异面直线?说明理由.3.如图,平面,,,a b b a A c αβαβ=⊂=⊂平面,且c a ∥,求证:b ,c 是异面直线.考向三 异面直线所成的角求异面直线所成的角的常见策略: (1)求异面直线所成的角常用平移法.平移法有三种类型,利用图中已有的平行线平移,利用特殊点(线段的端点或中点)作平行线平移,利用补形平移.(2)求异面直线所成角的步骤①一作:即根据定义作平行线,作出异面直线所成的角; ②二证:即证明作出的角是异面直线所成的角; ③三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角. (3)判定空间两条直线是异面直线的方法①判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线. ②反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.典例4 如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 和PB 所成角的大小为A .90B .75C .60D .45【答案】A则222AG GH AH =+,所以90AEF ∠=,故选A. #网【方法点睛】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几何体的结构特征,把空间中异面直线CD 和PB 所成的角转化为平面角AEF ∠,放置在三角形中,利用解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题.4.如图,已知棱长为a的正方体ABCD-A1B1C1D1,设M,N分别是A1B1,BC的中点.(1)求MN与A1C1所成角的正切值;(2)求B1D与A1C1所成角的大小.1.在正方体中,与成异面直线的棱共有A.条B.条C.条D.条2.下面四个条件中,能确定一个平面的条件是A.空间中任意三点B.空间中两条直线C.一条直线和一个点D.两条平行直线3.已知直线平面,直线平面,则A.B.异面C.相交D.无公共点4.若直线a α,给出下列结论:①α内的所有直线与a异面;②α内的直线与a都相交;③α内存在唯一的直线与a平行;④α内不存在与a平行的直线其中成立的个数是A.0 B.1C.2 D.35.如图,在四面体中,若直线和相交,则它们的交点一定A .在直线上B .在直线上C .在直线上D .都不对6.在空间中,下列命题正确的是A .若平面内有无数条直线与直线l 平行,则l α∥B .若平面内有无数条直线与平面平行,则αβ∥C .若平面内有无数条直线与直线l 垂直,则l α⊥D .若平面内有无数条直线与平面垂直,则αβ⊥ 7.给出下列四种说法:①两个相交平面有不在同一直线上的三个公共点; ②一条直线和一个点确定一个平面; ③若四点不共面, 则每三点一定不共线; ④三条平行线确定三个平面. 正确说法的个数为 A .1 B .2 C .3D .48.已知,m n 为异面直线,平面平面,直线满足,则A .αβ∥且l α∥B .且C .与相交,且交线垂直于D .与相交,且交线平行于9.若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是 A .14l l ⊥ B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定 10.在如图所示的正方体1111ABCD A BC D -中分别是棱的中点,则异面直线与所成角的余弦值为A .147 B .57C .105D .25511.已知在正方体1111ABCD A BC D -中(如图),l ⊂平面1111A B C D ,且l 与11B C 不平行,则下列一定不可能的是A .l 与AD 平行B .l 与AB 异面C .l 与CD 所成的角为30°D .l 与BD 垂直12.在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点.若AC BD a ==,且AC 与BD所成的角为60,则四边形EFGH 的面积为A .238a B .234a C .232a D .23a13.我国古代《九章算术》里,记载了一个例子:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?”该问题中的羡除是如图所示的五面体,其三个侧面皆为等腰梯形,两个底面为直角三角形,其中尺,尺,尺,间的距离为尺,间的距离为尺,则异面直线与所成角的正弦值为A .B .C .D .14.如图是正四面体的平面展开图,分别是的中点,在这个正四面体中:①与平行;②与为异面直线;③与成60°角;④与垂直.以上四个命题中,正确命题的个数是A .1B .2C .3D .415.若直线和平面平行,且直线,则两直线和的位置关系为 _____ .16.如图所示,1111ABCD A BC D 是长方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,给出下列结论:①A 、M 、O 三点共线;②A 、M 、O 、A 1不共面;③A 、M 、C 、O 共面;④B 、B 1、O 、M 共面. 其中正确结论的序号为____________.17.已知m ,n 是两条不同的直线,,β是两个不同的平面,给出下列命题:①若⊥β,∩β=m ,n ⊥m ,则n ⊥α或n ⊥β; ②若α∩β=m ,n //α,n //β,则n //m ;③若m 不垂直于平面α,则m 不可能垂直于α内的无数条直线; ④若m ⊥α,n ⊥β, α//β,则m //n .其中正确的是__________.(填上所有正确的序号) 18.在四面体中,分别是的中点,若所成的角为,且,则的长度为__________. 19.如图,已知四棱锥中,底面为菱形,分别是的中点,在上,且13PG PD.证明:点四点共面.20.已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.(1)求证:BC与AD是异面直线;(2)求证:EG与FH相交.21.如图,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.1.(2018新课标全国Ⅱ理科)在长方体1111ABCD A B C D -中,1AB BC ==,13AA 1AD 与1DB 所成角的余弦值为A .15B 5C 5D 2 2.(2017新课标全国Ⅱ理科)已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A .32B .155C .105D .333.(2015安徽理科)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是 A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面 4.(2016新课标全国Ⅰ理科)平面α过正方体ABCDA 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面ABB 1 A 1=n ,则m ,n 所成角的正弦值为A 3B .22C 3D .135.(2017新课标全国Ⅲ理科) a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)6.(2015浙江理科)如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .7.(2016上海理科)将边长为1的正方形11AAOO (及其内部)绕1OO 旋转一周形成圆柱,如图,AC 长为2π3,11A B 长为π3,其中1B 与C 在平面11AAOO 的同侧.(1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小.1.【解析】(1)如图,连接EF ,CD 1,BA 1.因为E ,F 分别是AB ,AA 1的中点,所以EF ∥BA 1. 又BA 1∥CD 1,所以EF ∥CD 1. 所以E ,C ,D 1,F 四点共面.(2)因为EF ∥CD 1,EF <CD 1,所以CE 与D 1F 必相交,设交点为P ,如图所示.2.【答案】A【解析】当直线l 与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A 正确;该平面内不存在与直线l 平行的直线,故B 错误;该平面内有无数条直线与直线l 垂直,所以C 错误;平面α内的直线与l 可能异面,故D 错误,故选A . 学@ 3.【解析】反证法:若b 与c 不是异面直线,则或b 与c 相交.①若,∵,∴,这与矛盾. ②若b ,c 相交于点B ,则.∵,∴,∴AB β⊂,即b β⊂,这与矛盾.∴b ,c 是异面直线.变式拓展4.【解析】(1)如图,取B1C1的中点Q,连接MQ,∵M是A1B1的中点,∴MQ//A1C1,∴MQ与MN所成的角为MN与A1C1所成的角,即∠NMQ.连接QN,则QN⊥平面A1B1C1D1,而MQ⊂平面A1B1C1D1,∴QN⊥MQ.在Rt△MQN中,QN=a,MQ =a,∴tan∠NMQ =.即MN与A1C1所成角的正切值为.(2)如图,连接BD,B1D1.∵DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴DD1⊥A1C1.又A1C1⊥B1D1,DD1∩B1D1=D1,∴A1C1⊥平面BDD1B1.∵B1D⊂平面BDD1B1,∴A1C1⊥B1D,∴B1D与A1C1所成角的大小为90°.考点冲关1.【答案】A【解析】如图,与成异面直线的棱有、、、,共4条.故选A.2.【答案】D3.【答案】D【解析】若直线平面,直线平面,则或异面,即无公共点.故选D.4.【答案】A【解析】∵直线a α,∴a∥α或a∩α=A.如图,显然①②③④都有反例,所以应选A.【名师点睛】判断一个命题是否正确要善于找出空间模型(长方体是常用的空间模型),另外,考虑问题要全面,即注意发散思维.5.【答案】A【解析】根据条件可知,和的交点都在平面ABD与平面BCD中,故和相交于两平面的交线BD上.故选A.6.【答案】D【解析】由题可得,要使直线与平面平行,则直线应平行于平面内的一条直线,且该直线在平面外,由此可得,选项A错误;要使平面与平面平行,则只需平面内两条相交直线与平面平行即可,选项B中,没说明直线是否相交,所以结论不一定成立,所以选项B错误;要使直线垂直平面,则直线垂直于平面内的任意一条直线,而无数条直线不能代表任意条,所以选项C错误,所以正确的选项是D.7.【答案】A8.【答案】D【解析】若,则由平面,知平面,而平面,所以,与为异面直线矛盾,所以平面与平面相交.由平面,且,可知,,同理可知,所以与两平面的交线平行.故选D . 9.【答案】D【解析】如下图所示,在正方体1111ABCD A BC D -中,取1AA 为2l ,1BB 为3l .若取AD 为1l ,BC 为4l ,则14l l ∥;若取AD 为1l ,AB 为4l ,则14l l ⊥;若取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此14,l l 的位置关系不确定,故选D.D 1C 1B 1A 1DCBA10.【答案】D【解析】取DD 1的中点G ,连接BG,FG ,易知四边形BED 1G 是平行四边形,则BG //ED 1,则∠FBG 是异面直线与所成的角或其补角,令正方体的棱长为2,则BF =FG =BG =3,cos ∠FBG 255235=⨯⨯. 11.【答案】A【解析】假设l AD ∥,则由11AD BC B C ∥∥,可得11l B C ∥,这与“l 与11B C 不平行”矛盾,所以l 与AD 不平行. 12.【答案】A13.【答案】B【解析】过点作,如图:根据题意知,所以是异面直线与所成的角,又因为尺,尺,且侧面为等腰梯形,则尺,间的距离为尺,故尺,由勾股定理得尺,所以,故选B.14.【答案】C【解析】将正四面体的平面展开图复原为正四面体A(B、C)﹣DEF,如图:15.【答案】平行或异面【解析】由条件可知直线和没有公共点,故直线和的位置关系为平行或异面. 学……16.【答案】①③【解析】连接A1C1、AC,则A1C1∥AC,∴A1、C1、C、A四点共面,∴A1C⊂平面ACC1A1.∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理O、A在平面ACC1A1与平面AB1D1的交线上,∴A、M、O三点共线,故①正确.由①易知②错误,③正确.易知OM与BB1为异面直线,故④错误.17.【答案】②④【解析】若,则与的位置关系不确定,即①错误;由线面平行的性质和平行公理可得②正确;若不垂直于平面,则可垂直于内的无数条直线,即③错误;若,则,又,所以,即④正确.故填②④.18.【答案】19.【解析】在平面内,连接并延长,交的延长线于点,则有, 在平面内,连接并延长,交于点.取中点,连接,AF,20.【解析】(1)假设BC与AD共面,不妨设它们所共平面为,则.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾. @网所以BC与AD是异面直线.(2),因此;同理,则EFGH为平行四边形.又EG,FH是平行四边形的对角线,所以EG与HF相交.21.【解析】取AC的中点F,连接BF、EF,1.【答案】C【解析】用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1=5DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得222111115455cos 2545DB B P DP DB P DB PB +-+-∠===⋅.故选C.2.【答案】C直通高考【解析】如图所示,补成直四棱柱1111ABCD A BC D -, 则所求角为21111,2,21221cos 603,5BC D BC BDC D AB ∠==+-⨯⨯⨯︒===,易得22211C D BD BC =+,因此111210cos 55BC BC D C D ∠===,故选C .【名师点睛】平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; 学@④取舍:由异面直线所成的角的取值范围是(0,]2π,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围. 3.【答案】D4.【答案】A【解析】如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角. 过1D 作11D E B C ∥,交AD 的延长线于点E ,连接CE ,则CE 为'm . 连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11BF 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60 , 故,m n 所成角的正弦值为32,选A.【名师点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补. 5.【答案】②③【名师点睛】(1)平移直线法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是π0,2⎛⎤⎥⎝⎦,可知当求出的角为钝角时,应取它的补角作为两条异面直线所成的角.(2)求异面直线所成的角要特别注意异面直线之间所成角的范围.6.【答案】87【解析】如下图,连接DN,取DN中点E,连接EM,EC,则可知EMC∠即为异面直线AN,CM 所成角(或其补角),易得122EM AN==22213EC EN CN+=+2222=-=AMACCM,∴7 cos82222EMC∠==⨯⨯,31 即异面直线AN ,CM 所成角的余弦值为87. 7.【解析】(1)由题意可知,圆柱的高1h =,底面半径1r =.由11A B 长为π3,可知111π3ΑΟΒ∠=. 111111111113sin 24ΟΑΒS ΟΑΟΒA ΟΒ=⋅⋅∠=△, 11111113312C O A B ΟΑΒV S h -=⋅=△.【名师点睛】此类题目是立体几何中的常见问题.解答本题时,关键在于能利用直线与直线、直线与平面、平面与平面位置关系的相互转化,将空间问题转化成平面问题.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等.。

高中数学必修二课件:空间点、直线、平面之间的位置关系

高中数学必修二课件:空间点、直线、平面之间的位置关系

5.若点M是两条异面直线a,b外的一点,则过点M且与a,b都平行的平面 有__0_或__1___个.
解析 当点M在过a且与b平行的平面或过b且与a平行的平面内时,没有满足 条件的平面;当点M不在上述两个平面内时,满足题意的平面只有1个.
那么这两个平面的位置关系一定是( C )
A.平行
B.相交
C.平行或相交
D.以上都不对
(2)已知平面α,β ,且α∥β ,直线a⊂α,直线b⊂β,则直线a与直线b具
有怎样的位置关系?画出图形.
【思路】 由α∥β,a⊂α,b⊂β,可知直线a,b无公共点.
【解析】 由题意得直线a,b无公共点,所以直线a,直线b可能平行或异 面.如图所示,在长方体模型中若直线AC就是直线a,B1D1就是直线b,则直线a 与直线b异面;若直线BD就是直线a,B1D1就是直线b,则直线a与直线b平行.
综合①②可知c与b相交或异面.
探究1 判断两直线的位置关系,不能局限于平面内,要把直线置身于空间 考虑,有时可分为平面和空间两种情形讨论.
思考题1 (1)正方体ABCD-A1B1C1D1中和AB平行的棱有_A_1_B_1,__C_D_,_C_1_D_1; 和AB异面的棱有__C_C_1_,_D_D_1_,_A_1_D_1,__B_1C_1___.
平面α与β平行,记作α∥β.
1.如何画异面直线?
答:画异面直线时,为了充分显示出它们既不平行又不相交的特点,即不 共面的特点,常常需要以辅助平面作为衬托,以加强直观性,如下图①②③, 若画成如图④的情形,就区分不开了,因此千万不能画成如图④的图形.
2.如何判断异面直线? 答:①定义法.②两直线既不平行也不相交.
③直线a不平行于平面α,则a不平行于α内任何一条直线.

点,线,面的位置关系(向量法的应用)

点,线,面的位置关系(向量法的应用)

点、线、面是空间几何学中的基本概念,它们存在着一定的位置关系。

向量法是解决几何问题的重要方法之一,可以有效地描述点、线、面的位置关系。

本文将探讨向量法在点、线、面位置关系中的应用,并给出相关参考内容。

一、点、线、面的向量表示向量是对空间中的点、线、面进行表示的一种数学工具。

在向量法中,我们通常使用坐标表示点的位置、用箭头表示线的方向、用平面方程表示面的位置。

具体表示如下:1.点的向量表示设点A在空间中的坐标为(Ax, Ay, Az),则A点的位置向量表示为OA = (Ax, Ay, Az)。

2.线的向量表示设直线L上一点A的位置向量为OA,且直线上一点B的位置向量为OB,则直线L的向量表示为(OA, OB)。

3.面的向量表示设平面α通过点A,并以直线L为法线,则平面α的向量表示为α: AX + BY + CZ + D = 0,其中(x, y, z)为空间中的任意一点坐标。

二、点、线、面的位置关系1.点和线的位置关系给定直线L的向量表示为(OA, OB),设点P的位置向量为OP。

点P在直线L上的充分必要条件是OP = λ1·OA + λ2·OB,其中λ1和λ2为实数。

当λ1和λ2满足该条件时,点P在线段AB上;当λ1和λ2为0或非零时,点P在线段AB的延长线上。

2.点和面的位置关系给定面α的向量表示为α: AX + BY + CZ + D = 0,设点P的位置向量为OP。

点P在平面α上的充分必要条件是OP·n = 0,其中n为α的法向量。

当OP·n = 0时,点P在平面α上;当OP·n ≠ 0时,点P在平面α的一侧。

3.线和面的位置关系给定直线L的向量表示为(OA, OB),平面α的向量表示为α: AX + BY + CZ + D = 0。

直线L与平面α的位置关系可以通过求交点进行判断。

设直线L与平面α的交点为点P,则有OP·n = 0和OP = λ1·OA + λ2·OB。

点线面之间的位置关系

点线面之间的位置关系

公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

适用于:求证直线或点在平面内
公理2:过不在一条直线上的三点,有且只有一个平面。

适用于:求证点在平面上
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的直线。

适用于:求证点在直线上或者点在平面上。

公理4:平行于同一条直线的两条直线互相平行。

适用于:求证两条线平行。

定理:空间中如果两个角的两边分别对应平行,那么两个角相等或互补。

适用于:求证角相等或互补。

定理:平面外一条直线与此平面内一条直线平行,则该直线与平面平行。

适用于:求证直线与平面平行。

定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

适用于:求证平面和平面平行。

定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

适用于:求证直线与直线平行。

定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

适用于:求证直线与直线平行。

定理:一条直线与一个平面内的两条相交线都垂直,则该直线与该平面垂直。

适用于:求证直线与平面垂直。

定理:一个平面过另一个平面的垂线,则这两个平面垂直。

适用于:求证平面与平面的垂直。

定理:垂直于同一平面的两条直线平行。

适用于:求证直线与直线平行。

定理:两个平面垂直,则同一个平面内垂直于交线的直线与另一个平面垂直。

适用于:求证直线与平面垂直。

点线面之间的位置关系定理

点线面之间的位置关系定理

一、四个公理:1;两点在平面内,直线在平面内;两点决定一条直线2:两平面有交点,必有交线,所有交点(公共点)在交线上3:不共线三点决定一个平面:a 直线和线外一点b 两条相交直线c 两条平行直线 决定一个平面 4:两条直线平行于第三条直线,这两条直线平行等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等二、异面直线的定义:不可能找到一个平面同时包含这两条直线;不同在任何一个平面内的两条直线除定义外,还可以用下列定理:过平面内一点和平面外一点的直线,和平面内不经过该点的直线是异面直线。

三、异面直线所成角的范围:0<θ≤90度;过空间任一点o ,做a1∥a ,b ∥b1 ,把a 1、b 1所成的锐角或直角叫做异面直线所成的角若两条异面直线所成的角是直角,则称两条异面直线互相垂直。

通过构造辅助平面、辅助几何体来平移直线,在同一三角形中,求异面直线所成的角,可以选择两条异面直线上一点做另一条异面直线的平行线。

所求的角为钝角时,两条异面直线所成的角应为其补角。

直线和平面所成的角范围0≤θ≤90度,平行于平面或在平面内为0度,垂直于平面为90度斜线和平面所成的角范围0<θ<90度四、空间两条直线的位置关系共有三种:相交直线、平行直线、异面直线,前两种情况两条直线在同一平面内,后 种情况两条直线不在同一平面内。

五、直线和平面的位置关系直线和平面相交、直线和平面平行统称为直线在平面外。

直线与平面的平行1、直线和平面平行的判定定理:直线∥面内线 ⇒ 直线∥面;要证明一条直线和一个平面平行,只要在平面内找一条直线和平面外的那条直线平行即可。

2、直线和平面平行的性质定理:直线∥平面 ⇒ 直线∥交线;线面平行,直线不平行于此平面内的任一条直线。

直线与平面的垂直3、直线和平面垂直的判定定理;直线⊥交线⇒直线⊥平面4、直线和平面垂直的性质定理:两直线⊥同一平面⇒直线∥直线过一点做直线和平面垂直:过一点有且只有一个平面和已知直线垂直;过一点有且只有一条直线与已知平面垂直 过一点做平面和平面平行:过平面外一点有且只有一个平面和已知平面平行。

空间几何中的点线面的位置关系

空间几何中的点线面的位置关系

空间几何中的点线面的位置关系在空间几何学中,点、线和面是最基本的几何元素。

它们在空间中的位置关系对于理解和解决几何问题至关重要。

本文将讨论点线面在空间中的常见位置关系以及它们之间的相互作用。

一、点与线的位置关系1.1 点在直线上当一个点位于一条直线上时,称该点在直线上。

点在直线上的特点是它与直线上的任意两个点都在同一直线上。

1.2 点在直线上的延长线上当一个点位于直线的延长线上时,称该点在直线上的延长线上。

点在直线延长线上的特点是它与直线上的任意两个点都在同一直线上,包括线的两个端点。

1.3 点在线段上当一个点位于一条线段上时,称该点在线段上。

点在线段上的特点是它位于线段的两个端点之间。

1.4 点在线段的延长线上当一个点位于线段的延长线上时,称该点在线段的延长线上。

点在线段延长线上的特点是它位于线段的两个端点之外。

二、点与面的位置关系2.1 点在平面上当一个点位于一个平面上时,称该点在平面上。

点在平面上的特点是它与平面上的任意两个点都在同一平面上。

2.2 点在平面上的延长线上当一个点位于平面的延长线上时,称该点在平面上的延长线上。

点在平面延长线上的特点是它与平面上的任意两个点都在同一平面上,包括平面的边界和内部点。

2.3 点在平面外当一个点不在平面上时,称该点在平面外。

点在平面外的特点是它无法与平面上的任意两个点构成一条直线。

三、线与面的位置关系3.1 线在平面上当一条线位于平面内时,称该线在平面上。

线在平面上的特点是它与平面上的任意两个点都在同一平面上。

3.2 线平行于平面当一条线与平面上的所有点都不相交时,称该线平行于平面。

平行于平面的特点是线上的所有点与平面上的任意两个点的连线都平行。

3.3 线与平面相交于一点当一条线与平面上的某个点相交时,称该线与平面相交于一点。

线与平面相交于一点的特点是线上的所有点与平面上的任意两个点的连线都相交于同一点。

四、面与面的位置关系4.1 平行面当两个面的法向量平行时,称这两个面为平行面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间点、线、面的位置关系 【基础回顾】1.平面的基本性质公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线.公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧异面直线:不同在任何一个平面内(2)异面直线判定定理过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的____________叫做异面直线a ,b 所成的角.②范围:____________. 3.公理4平行于____________的两条直线互相平行. 4.定理如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.自我检测1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________.2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________.4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________.5.下列命题:①空间不同三点确定一个平面;②有三个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形.其中正确的命题是________(填序号).【例题讲解】1、平面的基本性质例1 如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH.求证:EH、FG、BD三线共点.变式迁移1如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG相交于点O.求证:B、D、O三点共线.2、异面直线的判定例2 如图所示,直线a、b是异面直线,A、B两点在直线a上,C、D两点在直线b上.求证:BD和AC是异面直线.变式迁移2如图是正方体或四面体,P、Q、R、S分别是所在棱的中点,这四个点不共面的是________(填序号).3、异面直线所成的角例3 已知三棱柱ABC—A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为________________________________________________________________________.变式迁移3在空间四边形ABCD中,已知AD=1,BC=3,且AD⊥BC,对角线BD=132,AC=32,求AC和BD所成的角.二、空间的平行关系基础回顾1.空间直线与平面、平面与平面的位置关系(1)直线a和平面α的位置关系有三种:________、__________、__________.(2)两个平面的位置关系有两种:________和________.2.直线与平面平行的判定与性质(1)判定定理:如果平面外一条直线和这个________________平行,那么这条直线与这个平面平行.(2)性质定理:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.3.平面与平面平行的判定与性质(1)判定定理:如果一个平面内有________________都平行于另一个平面,那么这两个平面平行.(2)性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线________.自我检测1.下列各命题中:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③一条直线与两个平行平面中的一个相交,那么这条直线必和另一个相交;④垂直于同一直线的两个平面平行.不正确的命题个数是________.2.经过平面外的两点作该平面的平行平面,可以作______个.3.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是________.4.已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的________条件.【例题讲解】1、线面平行的判定例1 已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ.求证:PQ∥平面CBE.变式迁移1在四棱锥P—ABCD中,四边形ABCD是平行四边形,M、N分别是AB、PC的中点,求证:MN∥平面PAD.2、 面面平行的判定例2 在正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 分别是C 1C 、B 1C 1、C 1D 1的中点,求证:平面MNP ∥平面A 1BD .变式迁移2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.求证:平面G 1G 2G 3∥平面ABC ;3、 平行中的探索性问题例3 如图所示,在四棱锥P —ABCD 中,CD ∥AB ,AD ⊥AB ,AD =DC =12AB ,BC ⊥PC .(1)求证:PA ⊥BC ;(2)试在线段PB 上找一点M ,使CM ∥平面PAD ,并说明理由.变式迁移3如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?三、空间的垂直关系基础回顾1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:如果一条直线和一个平面内的两条________直线垂直,那么这条直线垂直于这个平面.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也________这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内________直线.②垂直于同一个平面的两条直线________.③垂直于同一直线的两个平面________.2.直线与平面所成的角平面的一条斜线与它在这个平面内的________所成的锐角,叫做这条直线与这个平面所成的角.一条直线垂直于平面,说它们所成的角为________;直线l∥α或l⊂α,说它们所成的角是______角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:如果一个平面经过另一个平面的____________,那么这两个平面互相垂直.(2)平面与平面垂直的性质如果两个平面互相垂直,那么在一个平面内垂直于它们________的直线垂直于另一个平面.4.二面角的平面角以二面角的棱上的任意一点为端点,在两个面内分别作________棱的射线,这两条射线所成的角叫做二面角的平面角.自我检测1.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是________(填序号).①若l⊥m,m⊂α,则l⊥α;②若l⊥α,l∥m,则m⊥α;③若l∥α,m⊂α,则l∥m;④若l∥α,m∥α,则l∥m.2.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都垂直于γ;②存在平面γ,使得α,β都平行于γ;③存在直线l⊂α,直线m⊂β,使得l∥m;④存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β.其中,可以判定α与β平行的条件有________个.【例题讲解】1、线面垂直的判定与性质例1 Rt△ABC所在平面外一点S,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC.求证:BD⊥平面SAC.变式迁移1 四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠ABC =45°,SA=SB.证明:SA⊥BC.2、面面垂直的判定与性质例2 如图所示,已知四棱柱ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC⊥平面ABCD.变式迁移2如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.3、直线与平面、平面与平面所成的角例3 如图,四棱锥S—ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=2a,点E是SD上的点,且DE=λa(0<λ≤2).(1)求证:对任意的λ∈(0,2],都有AC⊥BE;(2)设二面角C—AE—D的大小为θ,直线BE与平面ABCD所成的角为φ,若tan θtan φ=1,求λ的值.变式迁移3如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC.(2)当D为PB的中点时,求AD与平面PAC所成角的正弦值.(3)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.。

相关文档
最新文档