实验四异方差性的检验与处理
实验四异方差的检验
LOGO
w1=1/e
表一
themegallery
LOGO
w2=1/e^2
表二
themegallery
LOGO
3、分析
由表一的估计结果如下
Y i 374.89340.737423X i
(211.4532 ) (0.039238)
t = (1.772938) (18.7937)
R20.982523 R 2 =0.999889 F=989.2625
themegallery
LOGO
themegallery
LOGO
2、构造子样本区间,建立回归模型。
本题中样本容量n=20,删除中间的 1/4(20/4=5)的观测值,因为余下的观测 值要平分样本容量n1=n2=8.
LOGO
实验四
下表列出了某年中国部分省市城镇居民每 个家庭平均全年可支配收入X与消费性支出Y的 统计数据
themegallery
LOGO
themegallery
LOGO
(1)使用最小二乘法建立消费性支出与 可支配收入的线性模型;
(2)检验模型是否存在异方差; (3)如果存在异方差,是采用适当的方
themegallery
LOGO
(2)再点击 “view→Representations”,得到居 民人均消费支出与可支配收入的线性模型:
themegallery
LOGO
themegallery
LOGO
由表知参数估计线 性方程为:
Y i 2 7 2 .3 6 3 5 0 .7 5 5 1 2 5 X i
themegallery
LOGO
themegallery
异方差检验
第四次实验报告---异方差检验一 实验内容建国以来,各地区的粮食产量有了较大提高。
近年来,城市开发占用了大量耕地面积,各地区政府为了在保证粮食产量的情况下尽可能的加快城镇化。
现根据1983年至2000年的数据,来研究粮食产量与播种面积之间的关系。
二 模型设定为了定量分析播种面积和粮食产量之间的关系,弄清是否是播种面积越大粮食产量越高,建立了粮食产量与播种面积的回归模型。
12i i i Y X u ββ=++其中i Y 表示第年的粮食产量;i X 表示播种面积。
数据如下:年份粮食产量Y (万吨) 粮食播种面积X3(千公顷) 1983 38728 114047 1984 40731 112884 1985 37911 108845 1986 39151 110933 1987 40208 111268 1988 39408 110123 1989 40755 112205 1990 44624 113466 1991 43529 112314 1992 44264 110560 1993 45649 110509 1994 44510 109544 1995 46662 110060 1996 50454 112548 1997 49417 112912 1998 51230 113787 1999 50839 113161 2000 46218 108463三 参数估计运用Eviews 软件,进行简单线性回归分析,得出参数估计值。
回归结果如下:Dependent Variable: Y Method: Least Squares Date: 10/26/11 Time: 08:47Sample: 1983 2000 Included observations: 18Variable Coefficient Std. Error t-Statistic Prob. C -33822.41 68409.15 -0.494414 0.6277 X20.6988800.6132731.1395900.2712R-squared 0.075073 Mean dependent var 44127.11 Adjusted R-squared 0.017265 S.D. dependent var 4409.100 S.E. of regression 4370.873 Akaike info criterion 19.70775 Sum squared resid 3.06E+08 Schwarz criterion 19.80668 Log likelihood -175.3698 F-statistic 1.298665 Durbin-Watson stat 0.118043 Prob(F-statistic)0.271231估计结果为 ˆ-33822.410.69888i iY X =+ (-0.494414)(1.13959) 20.075073,F=1.298665R =括号内为t 统计量从上述估计值中,我们可以看出其可决系数较低,F 统计量的值也很低。
异方差实验报告步骤(3篇)
第1篇一、实验目的1. 掌握异方差性的基本概念和检验方法。
2. 学会运用统计软件进行异方差的检验和修正。
3. 提高对计量经济学模型中异方差性处理能力的实践应用。
二、实验原理1. 异方差性:在回归分析中,若回归模型的误差项(残差)的方差随着自变量或因变量的取值而变化,则称模型存在异方差性。
2. 异方差性的检验方法:图形检验、统计检验(如F检验、Breusch-Pagan检验、White检验等)。
3. 异方差性的修正方法:加权最小二乘法(WLS)、广义最小二乘法(GLS)等。
三、实验步骤1. 数据准备1. 收集实验所需数据,确保数据质量和完整性。
2. 对数据进行初步处理,如剔除异常值、缺失值等。
2. 模型设定1. 根据研究问题,选择合适的回归模型。
2. 利用统计软件(如Eviews、Stata等)进行初步的回归分析。
3. 异方差性检验1. 图形检验:绘制散点图,观察残差与自变量或因变量的关系,初步判断是否存在异方差性。
2. 统计检验:- F检验:检验回归系数的显著性。
- Breusch-Pagan检验:检验残差平方和与自变量或因变量的关系。
- White检验:检验残差平方和与自变量或因变量的多项式关系。
4. 异方差性修正1. 若检验结果表明存在异方差性,则需对模型进行修正。
2. 选择合适的修正方法:- 加权最小二乘法(WLS):根据残差平方与自变量或因变量的关系,计算权重,加权最小二乘法进行回归分析。
- 广义最小二乘法(GLS):根据残差平方与自变量或因变量的关系,选择合适的方差结构,广义最小二乘法进行回归分析。
5. 结果分析1. 对修正后的模型进行回归分析,观察回归系数的显著性、拟合优度等指标。
2. 对实验结果进行分析,解释实验现象,验证研究假设。
6. 实验报告撰写1. 撰写实验报告,包括以下内容:- 实验目的- 实验原理- 实验步骤- 实验结果- 分析与讨论- 结论2. 实验报告应结构清晰、逻辑严谨、语言简洁。
异方差性的检验和补救
异方差性的检验和补救一、研究目的和要求表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型,检验其是否存在异方差,并加以补救。
表1 我国制造工业1998年销售利润与销售收入情况二、参数估计EVIEWS 软件估计参数结果如下Dependent Variable: Y Method: Least Squares Date: 06/01/16 Time: 20:16 Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob. C 12.03349 19.51809 0.616530 0.5429 X0.1043940.008442 12.366580.0000R-squared 0.854694 Mean dependent var 213.4639 Adjusted R-squared 0.849105 S.D. dependent var 146.4905 S.E. of regression 56.90455 Akaike info criterion 10.98938 Sum squared resid 84191.34 Schwarz criterion 11.08453 Log likelihood -151.8513 Hannan-Quinn criter. 11.01847 F-statistic 152.9322 Durbin-Watson stat 1.212781 Prob(F-statistic)0.000000用规范的形式将参数估计和检验结果写下2ˆ12.033490.104394(19.51809)(0.008442) =(0.616530) (12.36658)0.854694152.9322iY X t R F =+ = =三、 检验模型的异方差(一) 图形法 1. 相关关系图X YX Y 相关关系图2. 残差图形生成残差平方序列22e resid ,做2e 与解释变量 X 的散点图如下。
实验四异方差问题及其修正
实验四异⽅差问题及其修正实验四异⽅差问题及其修正案例:中国农村居民⼈均消费函数 P116 数据:地区⼈均消费⽀出Y 从事农业经营的收⼊X1 其他收⼊X2北京 5724.50 958.3 7317.2天津 3341.10 1738.9 4489.0 河北 2495.30 1607.1 2194.7 ⼭西 2253.30 1188.2 1992.7 内蒙古 2772.00 2560.8 781.1 辽宁3066.90 2026.1 2064.3 吉林 2700.70 2623.2 1017.9 ⿊龙江 2618.20 2622.9 929.5 上海 8006.00 532.0 8606.7 江苏 4135.20 1497.9 4315.3 浙江 6057.20 1403.1 5931.7 安徽 2420.90 1472.8 1496.3 福建 3591.40 1691.4 3143.4 江西 2676.60 1609.2 1850.3 ⼭东 3143.80 1948.2 2420.1 河南 2229.30 1844.6 1416.4 湖北 2732.50 1934.6 1484.8 湖南 3013.30 1342.6 2047.0⼴东 3886.00 1313.9 3765.9 ⼴西 2413.90 1596.9 1173.6 海南 2232.20 2213.2 1042.3 重庆 2205.20 1234.1 1639.7 四川2395.00 1405.0 1597.4 贵州 1627.10 961.4 1023.2 云南 2195.60 1570.3 680.2 西藏 2002.20 1399.1 1035.9 陕西 2181.00 1070.4 1189.8 ⽢肃 1855.50 1167.9 966.2 青海 2179.00 1274.3 1084.1 宁夏 2247.00 1535.7 1224.4 新疆2032.40 2267.4469.9建⽴模型: µβββ+++=22110ln ln ln X X Y⼀、模型的OLS 估计(1)录⼊数据打开EViews6,点“File ”→“New ”→“Workfile ”选择“Unstructured/Undated”,在Observations 后输⼊31,如下所⽰:点“ok”。
异方差的检验与修正
西安财经学院本科实验报告学院(部)统计学院实验室313课程名称计量经济学学生姓名学号1204100213专业统计学教务处制2014年12 月15 日《异方差》实验报告五、实验过程原始记录(数据、图表、计算等) 一.选择数据1.建立工作文件并录入数据File\New\workfile, 弹出Workfile create 对话框中选择数据类型.Object\new object\group,按向上的方向键,出现两个obs 后输入数据.中国内地2006年各地区农村居民家庭人均纯收入与消费支出 单位:元城市 y x1 x2 城市 y x1 x2 北京 5724。
5 958.3 7317。
2 湖北 2732。
5 1934。
6 1484。
8 天津 3341。
1 1738.9 4489 湖南 3013。
3 1342.6 2047 河北 2495。
3 1607。
1 2194。
7 广东 3886 1313。
9 3765.9 山西 2253.3 1188。
2 1992.7 广西 2413。
9 1596。
9 1173。
6 内蒙古 2772 2560.8 781.1 海南 2232。
2 2213。
2 1042.3 辽宁 3066。
9 2026。
1 2064。
3 重庆 2205。
2 1234.1 1639。
7 吉林 2700.7 2623。
2 1017。
9 四川 2395 1405 1597.4 黑龙江 2618。
2 2622.9 929.5 贵州 1627。
1 961。
4 1023。
2 上海 8006 532 8606.7 云南 2195.6 1570。
3 680。
2 江苏 4135.2 1497。
9 4315.3 西藏 2002。
2 1399.1 1035.9 浙江 6057。
2 1403.1 5931。
7 陕西 2181 1070。
4 1189。
8 安徽 2420。
9 1472。
8 1496。
3 甘肃 1855.5 1167。
异方差性的概念、类型、后果、检验及其修正方法(含案例).
~2
~2
异方差。
怀特(White)检验的EViews软件操作要点
• 在OLS的方程对象Equation中,选择View/Residual tests/White Heteroskedasticity。
– 在选项中,EViews提供了包含交叉项的怀特检验“White Heteroskedasticity(cross terms)”和没有交叉项的怀特 检验“White Heteroskedasticity(no cross terms)” 这样 两个选择。
nR2 ~ 2 ( )
显然,辅助回归仍是检验 ei 与解释变量可能的组合的相关性。如果存 在异方差性, 那么 ei 与解释变量的某种组合之间必定存在显著的相关 性,这时往往显示出有较大的可决系数 R 2 ,并且某一参数的 t 检验值 较大。
2 所以,检验准则是:如果 nR2 ≥ ( ) ,则存在异方差;反之,则不存在
如果存在某一种函数形式,使得方程显著成立,则说明原 模型存在异方差性。 由于f(Xj)的具体形式未知,因此需要选择各种形式进行试验。
4.戈德菲尔德-匡特(Goldfeld-Quandt)检验
G-Q检验以F检验为基础,仅适用于样本容量较大、 异方差为单调递增或单调递减的情况。 G-Q检验的思想:
先按某一被认为有可能引起异方差的解释变量对样
本排序,再将排序后的样本一分为二,对子样本①和 子样本②分别进行OLS回归,然后利用两个子样本的 残差平方和之比构造F统计量进行异方差检验。
G-Q检验的步骤:
①将n对样本观察值(Xi1, Xi2, …,Xik,Yi)按某一被认为有 可能引起异方差的解释变量观察值Xij的大小排队。 ②将序列中间的c=n/4个观察值除去,并将剩下的观 察值划分为较小与较大的容量相同的两个子样本, 每个子样本的样本容量均为(n-c)/2 。
计量经济学--异方差的检验及修正
经济计量分析实验报告一、实验项目异方差的检验及修正二、实验日期2015.12.06三、实验目的对于国内旅游总花费的有关影响因素建立多元线性回归模型,对变量进行多重共线性的检验及修正后,进行异方差的检验和补救。
四、实验内容建立模型,对模型进行参数估计,对样本回归函数进行统计检验,以判定估计的可靠程度,包括拟合优度检验、方程总体线性的显著性检验、变量的显著性检验,以及参数的置信区间估计。
检验变量是否具有多重共线性并修正。
检验是否存在异方差并补救。
五、实验步骤1、建立模型。
以国内旅游总花费Y 作为被解释变量,以年底总人口表示人口增长水平,以旅行社数量表示旅行社的发展情况,以城市公共交通运营数表示城市公共交通运行状况,以城乡居民储蓄存款年末增加值表示城乡居民储蓄存款增长水平。
2、模型设定为:t t t t t μβββββ+X +X +X +X +=Y 443322110t 其中:t Y — 国内旅游总花费(亿元) t 1X — 年底总人口(万人) t 2X — 旅行社数量(个) t 3X — 城市公共交通运营数(辆)t 4X — 城乡居民储蓄存款年末增加值(亿元)3、对模型进行多重共线性检验。
4、检验异方差是否存在。
六、实验结果(一)、消除多重共线性之后的模型多元线性回归模型估计结果如下:4321000779.0053329.0151924.0720076.0-99.81113ˆX +X +X +X =Y i SE=(26581.73) (0.230790) (0.108223) (0.013834) (0.020502) t =(3.051494) (-3.120046) (1.403805) ( 3.854988) (0.038020)R2=0.969693R2=0.957571F=79.98987(1)拟合优度检验:可决系数R 2=0.969693较高,修正的可决系数R 2=0.957571也较高,表明模型拟合较好。
异方差性的检验方法和修正
Z N UE L异方差性的检验方法和修正一、 实验目的熟练掌握异方差性的检验方法和修正处理方法二、实验原理异方差(heteroskedasiticity )是计量经济工作红线性回归模型经常遇到的问题,异方差的存在对线性回归分析有很强的破坏作用。
利用异方差的图形检验、戈德菲尔特-夸特检验、怀特检验方法,检验案例中线性回归模型的异方差是否存在,若存在的话,如何通过加权最小二乘法进行修正,建立能够真正反应案例的经济模型,实现对经济的正确指导作用。
三、实验要求通过Eviews 软件应用给定的案例做异方差模型的图形检验法、Glodfeld-Quanadt(戈德菲尔特-夸特)检验与White(怀特)检验,并使用加权最小二乘法(WLS)对异方差进行修正。
四、 实验步骤在现实经济活动中,最小二乘法的基本假定并非都能满足,本案例讲讨论随机误差项违背基本假定的一个方面—异方差性。
本案例将介绍:异方差模型的图形检验、戈德菲尔特-夸特检验、怀特检验;异方差模型的加权最小二乘法修正。
1、建立workfile 和对象,录入2007年城镇居民收入X 和消费额Y 的数据。
2、参数估计按住ctrl 键,同时选中序列X 和序列Y ,点右键,在所出现的右键菜单中,选择open\as Group 弹出一对话框,点击其上的“确定”,可生成并打开一个群对象。
在群对象窗口工具栏中点击view\Graph\Scatter\Simple Scatter, 可得X 与Y 的简单散点图,可以看出X 与Y 是带有截距的近似线性关系。
点击朱界面菜单Quick\Estimate Equation, 在弹出的对话框中输入 Y C X,点确定即可到回归结果,如下:VariableCoefficientStd. Errort-StatisticProb. C 756.6871570.1912 1.3270760.1948X0.3076930.01908216.124970.0000R-squared0.899659 Mean dependent var 8689.161Durbin-Watson stat1.694571 Prob(F-statistic)0.0000003、异方差检验本案例用的是2007年的全国各个诚实城镇居民收入和消费额,由于地区之间这种差异使得模型很容易产生异方差,从而影响模型的估计和运行,为此必须对该模型是否存在异方差进行检验。
实验四异方差性的检验与处理修订稿
实验四异方差性的检验与处理集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]实验四 异方差性的检验及处理(2学时)一、实验目的(1)、掌握异方差检验的基本方法; (2)、掌握异方差的处理方法。
二、实验学时:2学时 三、实验要求(1)掌握用MATLAB 软件实现异方差的检验和处理; (2)掌握异方差的检验和处理的基本步骤。
四、实验原理1、异方差检验的常用方法(1) 用X-Y 的散点图进行判断(2). 22ˆ(,)(,)e x e y 或的图形 ,),x )i i y i i ((e 或(e 的图形)(3) 等级相关系数法(又称Spearman 检验)是一种应用较广的方法,既可以用于大样本,也可与小样本。
检验的三个步骤 ① ˆt t y y=-i e②|i x i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21ni i d =∑s 26r =1-n(n -1)③ 做等级相关系数的显着性检验。
n>8时,/2(2),t t n α>-反之,若||i i e x 说明与之间存在系统关系,异方差问题存在。
(4) 帕克(Park)检验帕克检验常用的函数形式:若在统计上是显着的,表明存在异方差性。
2、异方差性的处理方法: 加权最小二乘法 如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:121(i i p pi iy x x uf xβββ=+⋅++⋅+在该模型中:即满足同方差性。
于是可以用OLS估计其参数,得到关于参数12,,,pβββ的无偏、有效估计量。
五、实验举例例101i i iy x u=++若用线性模型,研究不同收入家庭的消费情况,试问原数据有无异方差性如果存在异方差性,应如何处理解:(一)编写程序如下:(1)等级相关系数法(详见文件)%%%%%%%%%%%%%%% 用等级相关系数法来检验异方差性 %%%%%%%%[data,head]=xlsread('');x=data(:,1); %提取第一列数据,即可支配收入xy=data(:,2); %提取第二列数据,即居民消费支出yplot(x,y,'k.'); % 画x和y的散点图xlabel('可支配收入x(千元)') % 对x轴加标签ylabel('居民消费支出y(千元)') % 对y轴加标签%%%%%%%% 调用regres函数进行一元线性回归 %%%%%%%%%%%%xdata=[ones(size(x,1),1),x]; %在x矩阵最左边加一列1,为线性回归做准备[b,bint,r,rint,s]=regress(y,xdata);yhat=xdata*b; %计算估计值y% 定义元胞数组,以元胞数组形式显示系数的估计值和估计值的95%置信区间head1={'系数的估计值','估计值的95%置信下限','估计值的95%置信上限'};[head1;num2cell([b,bint])]% 定义元胞数组,以元胞数组形式显示y的真实值,y的估计值,残差和残差的95%置信区间head2={'y的真实值','y的估计值','残差','残差的95%置信下限','残差的95%置信上限'};[head2;num2cell([y,yhat,r,rint])]% 定义元胞数组,以元胞数组形式显示判定系数,F统计量的观测值,检验的P值和误差方差的估计值head3={'判定系数','F统计量的观测值','检验的P值','误差方差的估计值'};[head3;num2cell(s)]%%%%%%%%%%%%% 残差分析 %%%%%%%%%%%%%%%%%%figure;rcoplot(r,rint) % 按顺序画出各组观测值对应的残差和残差的置信区间%%% 画估计值yhat与残差r的散点图figure;plot(yhat,r,'k.') % 画散点图xlabel('估计值yhat') % 对x轴加标签ylabel('残差r') % 对y轴加标签%%%%%%%%%%%% 调用corr函数计算皮尔曼等级相关系数res=abs(r); % 对残差r取绝对值[rs,p]=corr(x,res,'type','spearman')disp('其中rs为皮尔曼等级相关系数,p为p值');(2)帕克(park)检验法(详见文件)%%%%%%%%%%%%%%% 用帕克(park)检验法来检验异方差性 %%%%%%%[data,head]=xlsread(''); %导入数据x=data(:,1);y=data(:,2);%%%%%% 调用regstats函数进行一元线性回归,linear表带有常数项的线性模型,r表残差ST=regstats(y,x,'linear',{'yhat','r','standres'});scatter(x,.^2) % 画x与残差平方的散点图xlabel('可支配收入(x)') % 对x轴加标签ylabel('残差的平方') %对y轴加标签%%%%%%% 对原数据x和残差平方r^2取对数,并对log(x)和log(r^2)进行一元线性回归ST1=regstats(log(.^2),log(x),'linear',{'r','beta','tstat','fstat'})% 输出参数的估计值% 输出回归系数t检验的P值% 输出回归模型显着性检验的P值(3)加权最小二乘法(详见文件)%%%%%%%%%%% 调用robustfit函数作稳健回归 %%%%%%%%%%%%[data,head]=xlsread(''); % 导入数据x=data(:,1);y=data(:,2);% 调用robustfit函数作稳健回归,返回系数的估计值b和相关统计量stats[b,stats]=robustfit(x,y) %调用函数作稳健回归% 输出模型检验的P值%%% 绘制残差和权重的散点图 %%%%%%%plot,,'o') %绘制残差和权重的散点图xlabel('残差')ylabel('权重'(二)实验结果与分析:第一步::用OLS方法估计参数,并保留残差(1)散点图图可支配收入(x)居民消费支出(y)散点图因每个可支配收入x的值,都有5个居民消费收入y与之对应,所以上述散点图呈现此形状。
异方差性的检验及管理组织方法
实验四异方差性【实验目的】掌握异方差性的检验及处理方法【实验内容】建立并检验我国制造业利润函数模型【实验步骤】【例1】表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
行业名称销售利润销售收入行业名称销售利润销售收入食品加工业187.25 3180.44 医药制造业238.71 1264.1食品制造业111.42 1119.88 化学纤维制品81.57 779.46饮料制造业205.42 1489.89 橡胶制品业77.84 692.08烟草加工业183.87 1328.59 塑料制品业144.34 1345 纺织业316.79 3862.9 非金属矿制品339.26 2866.14 服装制品业157.7 1779.1 黑色金属冶炼367.47 3868.28皮革羽绒制品81.7 1081.77 有色金属冶炼144.29 1535.16木材加工业35.67 443.74 金属制品业201.42 1948.12家具制造业31.06 226.78 普通机械制造354.69 2351.68造纸及纸品业134.4 1124.94 专用设备制造238.16 1714.73 印刷业90.12 499.83 交通运输设备511.94 4011.53 文教体育用品54.4 504.44 电子机械制造409.83 3286.15石油加工业194.45 2363.8 电子通讯设备508.15 4499.19化学原料纸品502.61 4195.22 仪器仪表设备72.46 663.68一、检验异方差性⒈图形分析检验⑴观察销售利润(Y)与销售收入(X)的相关图(图1):SCAT X Y图1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。
异方差的检验与修正
38.60038 -2.341252 0.001006 -0.012679 38.51209 108272.2 -379.2297 0.073505 0.787065
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat
sales 0 1 price e
根据最小二乘估计的思想估计模型参数, (此过程参见附 B)结果如下图:
Coefficient C PRICE R-squared Adjusted R-squared 121.9002 -7.829074 0.391301 0.382963 Std. Error 6.526291 1.142865 t-Statistic 18.67832 -6.850394 Prob. 0.0000 0.0000 77.37467 6.488537
实验报告异方差模型的检验和处理
实验实训报告课程名称:计量经济学实验开课学期: 2012-2013学年第一学期开课系(部):经济系开课实验(训)室:数量经济分析实验室学生姓名:专业班级:学号:重庆工商大学融智学院教务处制实验题目实验概述【实验(训)目的及要求】通过本次实验,使学生掌握异方差模型的检验方法及校正方法。
其中,检验方法主要掌握图形法检验、怀特检验;校正方法主要掌握加权最小二乘法、White 校正法。
【实验(训)原理】对于不同的样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性。
异方差的实质表现为随机误差项的方差随着解释变量(引起异方差的解释变量)观测值的变化而变化。
对于出现异方差的原模型主要采用校正其异方差,再对校正后的模型采用普通最小二乘法估计。
实验内容【实验(训)方案设计】1、图形法检验:(1)回归分析;(2)得到残差趋势图和残差散点图;(3)分析异方差。
2、使用White检验异方差:(1)回归分析;(2)得到White检验统计量及伴随概率;(3)根据结果判断分析异方差的存在性。
3、在发现存在异方差的基础上,进行异方差的处理:(1)使用加权最小二乘法校正异方差:①输入回归方程;②在Option 中选择加权最小二乘法,并输入权重序列名称;③得到校正后的结果。
(2)使用White校正法解决异方差:①输入回归方程;②在Option中选择White校正;③得到校正后的结果。
【实验(训)过程】(实验(训)步骤、记录、数据、分析)实验背景本例用的是四川省2000年各地市州的医疗机构数和人口数。
为了给制定医疗机构的规划提供依据,分析比较医疗机构(Y,单位:个)与人口数量(X,单位:万人)的关系,建立卫生医疗机构数与人口数的回归模型。
假定医疗机构数与人口数之间满足线性约束,则理论模型设定为其中,i Y 表示卫生医疗机构数,i X 表示人口数。
【实验(训)过程】(实验(训)步骤、记录、数据、分析 )1、根据实验数据的相关信息建立Workfile ;在菜单中依次点击File\New\Workfile,在出现的对话框“Workfile range ”中选择数据频率。
实验4-异方差性的检验和修正(更新至20131015)
验,F 统计量为
F
e e
2 2i 2 1i
735844.7 5.0762 144958.9
(2.3.2)
判断:在 0.05 下,在式 2.3.1 中分子、分母的自由度均为 6,查 F 分布 表得临界值为 F0.05 (6,6) 4.28 ,因为 F 5.0762 F0.05 (6,6) 4.28 ,所以拒绝原假设, 表明模型确实存在异方差。 (3)White 检验 由 图 2.3.3 估 计 结 果 , 按 路 径 view/Residual tests/white
图 2.3.5
4
判断。由图 2.3.5 可以看出,残差平方 ei2 对解释变量 X i 的散点图主要分布 在图形中的下三角部分,大致看出残差平方 ei2 随 X i 的变动呈增大的趋势,因此, 模型很可能存在异方差。但是否确实存在异方差还应通过更进一步的检验。 (2)Goldfeld-Quanadt 检验 对变量取值排序(按递增或递减) 。直接在工作文件窗口中按 Proc\Sort Current Page…,在弹出的对话框中输入 X 即可(默认项是 Ascending(升序))。 本例选升序排序,这时变量 Y 与 X 将以 X 按升序排序(如图 2.3.6)。
所以拒绝原假设,接受备择假设,表明模型存在异方差。 根据 White 统计量所对应 p 值的分析: 给定显著性水平 0.05 ,因为 Probabilit y (White) 0.000119 0.05 ,所 以拒绝原假设,表明模型存在异方差。
图 2.3.10
8
4.异方差性的修正
计量经济学异方差的检验与修正实验报告
计量经济学异方差的检验与修正实验报告本文以Salvatore(2001)《计量经济学》第13章为基础,通过实际数据测试,探究异方差的检验与修正方法及影响。
一、实验数据说明本实验采用的数据为美国1980年的50个州的经济数据,其中X1为人均所得(单位:美元),X2为每个州的城市百分比,Y为人口出生率(单位:千分之一),数据来源于《Applied Linear Regression Models》(Kutner, Nachtsheim, & Neter, 2004)。
二、实验原理当数据呈现异方差性时,传统的OLS估计方法将会失效,此时需要使用其他的估计方法。
其中常用的是加权最小二乘(WLS)估计方法。
WLS估计方法的思想是对存在异方差(方差不相等)的观测值进行权重调整,使得加权后的平方残差最小。
本实验将通过检验异方差条件、使用原有OLS估计进行对比以及应用WLS修正方法的实现来说明异方差对实证分析的影响。
三、实验内容及结果首先,为了检验异方差条件是否成立,可以采用Breusch-Pagan检验。
测试结果如下:\begin{equation}H_0:Var(\epsilon_i)=\sigma^2=\textit{常数},\nonumber\\H_1:Var(\epsilon_i)\neq \sigma^2,i=1,2,…,n\end{equation}结果如下表:Breusch-Pagan Test: u^2 = 112.208 Prob > chi2 = 0.0000通过检验结果可知,Breusch-Pagan检验统计量的p值为0.0000,小于0.05的水平,因此拒绝原假设,认为方差存在异方差。
接下来,我们将使用传统的OLS估计方法进行回归分析(OLS 1),并与WLS估计方法(WLS 1)进行对比。
OLS 1结果如下:\begin{equation}Y=0.0514X1+1.0871X2-58.7254 \nonumber\end{equation}\begin{table}[h]\centering\caption{OLS1结果}\begin{tabular}{cccc}\toprule& coef. & std. err. & t \\\midruleconst & -58.7254 & 23.703 & -2.477 \\X1 & 0.0514 & 0.027 & 1.895 \\X2 & 1.0871 & 0.402 & 2.704 \\\bottomrule\end{tabular}\end{table}从OLS 1的结果中可以看出,X1和X2对Y的影响都是正的,但没有达到显著水平,此时需要进行进一步分析。
实验 异方差的检验与修正
实验异方差的检验与修正实验目的1、理解异方差的含义后果、2、学会异方差的检验与加权最小二乘法实验内容一、准备工作。
建立工作文件,并输入数据,用普通最小二乘法估计方程(操作步骤与方法同前),得到残差序列。
表2列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
表2 我国制造工业1998年销售利润与销售收入情况二、异方差的检验1、图形分析检验⑴观察销售利润(Y)与销售收入(X)的相关图(图3-1):SCAT X Y图3-1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。
在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews 工作文件窗口中点击resid对象来观察)。
图3-2 我国制造业销售利润回归模型残差分布图3-2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。
2、Goldfeld-Quant检验⑴将样本安解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本)⑵利用样本1建立回归模型1(回归结果如图3-3),其残差平方和为2579.587。
SMPL 1 10LS Y C X图3-3 样本1回归结果⑶利用样本2建立回归模型2(回归结果如图3-4),其残差平方和为63769.67。
SMPL 19 28 LS Y C X图3-4 样本2回归结果⑷计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72,21RSS RSS 和分别是模型1和模型2的残差平方和。
取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而44.372.2405.0=>=F F ,所以存在异方差性3、White 检验⑴建立回归模型:LS Y C X ,回归结果如图3-5。
实验四-异方差性的检验与处理
实验四异方差性的检验及处理〔2学时〕一、实验目的〔1〕、掌握异方差检验的基本方法; 〔2〕、掌握异方差的处理方法.二、实验学时:2学时 三、实验要求〔1〕掌握用MATLAB 软件实现异方差的检验和处理; 〔2〕掌握异方差的检验和处理的基本步骤.四、实验原理1、异方差检验的常用方法<1> 用X-Y 的散点图进行判断<2>.22ˆ(,)(,)e x e y 或的图形,),x )i i y i i ((e 或(e 的图形)<3> 等级相关系数法〔又称Spearman 检验〕是一种应用较广的方法,既可以用于大样本,也可与小样本. 检验的三个步骤 ①ˆt t y y=-i e②|i x i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21ni i d =∑s 26r =1-n(n -1)③做等级相关系数的显著性检验.n>8时,/2(2),t t n α>-反之,若||i i e x 说明与之间存在系统关系,异方差问题存在.<4> 帕克<Park>检验帕克检验常用的函数形式:若α在统计上是显著的,表明存在异方差性. 2、异方差性的处理方法: 加权最小二乘法 如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:1211(i i p pi iy x x u f x βββ=+⋅++⋅+在该模型中:即满足同方差性.于是可以用OLS 估计其参数,得到关于参数12,,,pβββ的无偏、有效估计量.五、实验举例例101i i i ,研究不同收入家庭的消费情况,试问原数据有无异方差性?如果存在异方差性,应如何处理?解:〔一〕编写程序如下:〔1〕等级相关系数法〔详见test4_1.m 文件〕%%%%%%%%%%%%%%% 用等级相关系数法来检验异方差性%%%%%%%% [data,head]=xlsread<'test4.xlsx'>; x=data<:,1>; %提取第一列数据,即可支配收入x y=data<:,2>; %提取第二列数据,即居民消费支出y plot<x,y,'k.'>; % 画x 和y 的散点图xlabel<'可支配收入x 〔千元〕'> % 对x 轴加标签 ylabel<'居民消费支出y<千元>'> % 对y 轴加标签%%%%%%%% 调用regres 函数进行一元线性回归 %%%%%%%%%%%%xdata=[ones<size<x,1>,1>,x]; %在x 矩阵最左边加一列1,为线性回归做准备 [b,bint,r,rint,s]=regress<y,xdata>; yhat=xdata*b; %计算估计值y% 定义元胞数组,以元胞数组形式显示系数的估计值和估计值的95%置信区间 head1={'系数的估计值','估计值的95%置信下限','估计值的95%置信上限'}; [head1;num2cell<[b,bint]>]% 定义元胞数组,以元胞数组形式显示y 的真实值,y 的估计值,残差和残差的95%置信区间 head2={'y 的真实值','y 的估计值','残差','残差的95%置信下限','残差的95%置信上限'};[head2;num2cell<[y,yhat,r,rint]>]% 定义元胞数组,以元胞数组形式显示判定系数,F统计量的观测值,检验的P值和误差方差的估计值head3={'判定系数','F统计量的观测值','检验的P值','误差方差的估计值'};[head3;num2cell<s>]%%%%%%%%%%%%% 残差分析 %%%%%%%%%%%%%%%%%%figure;rcoplot<r,rint> % 按顺序画出各组观测值对应的残差和残差的置信区间%%% 画估计值yhat与残差r的散点图figure;plot<yhat,r,'k.'> % 画散点图xlabel<'估计值yhat'> % 对x轴加标签ylabel<'残差r'> % 对y轴加标签%%%%%%%%%%%%调用corr函数计算皮尔曼等级相关系数res=abs<r>; % 对残差r取绝对值[rs,p]=corr<x,res,'type','spearman'>disp<'其中rs为皮尔曼等级相关系数,p为p值'>;〔2〕帕克〔park〕检验法〔详见test4_2.m文件〕%%%%%%%%%%%%%%% 用帕克〔park〕检验法来检验异方差性%%%%%%%[data,head]=xlsread<'test4.xlsx'>; %导入数据x=data<:,1>;y=data<:,2>;%%%%%% 调用regstats函数进行一元线性回归,linear表带有常数项的线性模型,r表残差ST=regstats<y,x,'linear',{'yhat','r','standres'}>;scatter<x,<ST.r>.^2> % 画x与残差平方的散点图xlabel<'可支配收入<x>'> % 对x轴加标签ylabel<'残差的平方'> %对y轴加标签%%%%%%% 对原数据x和残差平方r^2取对数,并对log<x>和log〔r^2〕进行一元线性回归ST1=regstats<log<<ST.r>.^2>,log<x>,'linear',{'r','beta','tstat','fsta t'}>% 输出参数的估计值% 输出回归系数t检验的P值% 输出回归模型显著性检验的P值<3>加权最小二乘法〔详见test4_3.m文件〕%%%%%%%%%%% 调用robustfit函数作稳健回归 %%%%%%%%%%%%[data,head]=xlsread<'test4.xlsx'>; % 导入数据x=data<:,1>;y=data<:,2>;% 调用robustfit函数作稳健回归,返回系数的估计值b和相关统计量stats[b,stats]=robustfit<x,y> %调用函数作稳健回归stats.p% 输出模型检验的P值%%% 绘制残差和权重的散点图%%%%%%%plot<stats.resid,stats.w,'o'> %绘制残差和权重的散点图xlabel<'残差'>ylabel<'权重'〔二〕实验结果与分析:第一步::用OLS方法估计参数,并保留残差〔1〕散点图图4.1 可支配收入〔x〕居民消费支出〔y〕散点图因每个可支配收入x的值,都有5个居民消费收入y与之对应,所以上述散点图呈现此形状.〔2〕回归模型参数估计值与显著性检验表1'系数的估计值' '估计值的95%置信下限' '估计值的95%置信上限'[ -0.5390] [ -3.7241] [ 2.6460][ 0.8091] [ 0.6768] [ 0.9415]'判定系数' 'F统计量的观测值' '检验的P值' '误差方差的估计值'[ 0.8485] [ 156.8387] [5.4040e-13] [ 9.1316]由输出结果看,常数项和回归系数的估计值分别为-0.539和0.8091,从而可以写出线性回归方程为^=−0.539+0.8091∗xy回归系数的估计值的95%置信区间为[0.6768,0.9415].对回归直线进行显著性检验,原假设和对立假设分别为H0:β1=0 H1:β1≠0检验的P值为5.4040×10−13<0.01,可知在显著性水平α=0.01下应拒绝原假设H0,可认为y〔居民消费收入〕与x〔可支配收入〕的线性关系是显著的.〔3〕方差分析图4.2原始数据对应残差图从残差图可以看到有2条线段〔红色虚线〕与水平线y=0没有交点,它对应的观测号为22和29,也就是说这两组观测对应的残差的置信区间不包含0点,可认为这两组观测数据为异常数据.它们分别是〔30,16.7〕,〔35,20〕.第二步:异方差性检验〔1〕图示法图4.3<2> 等级相关系数法在y与x 的OLS 回归的基础上计算出残差的绝对值,并记为res,并计算出皮尔曼等级相关系数rs=0.4860与对应的p值为0.0065<0.05〔*〕,说明残差r与x 存在系统关系,即存在异方差问题.〔3〕帕克<Park>检验法1〕散点图图4.4可支配收入与残差平方的散点图从图4.4可知,可考虑拟合指数曲线.现将其取对数,即可进行一元线性拟合.2〕回归系数与模型检验做ln<r^2>对ln<x>回归,得到表2β0=-8.49730.02950.0207β1=2.96790.0207从上表可以看出,得到的回归模型为ln (r 2)=−8.4973+2.9679∗ln (x),常数项和线性项的t 检验的P 值均小于0.05,说明回归方程中常数项和线性项均是显著的.并且,检验的P 值为0.0207小于0.05,说明整个回归方程是显著的,表明存在异方差性.综上所述,通过以上3种方法的检验,我们得到原数据存在异方差性.第三步:用加权最小二乘法处理异方差性表3‘回归系数’回归系数t 检验的P 值β0=-1.6091 0.2375β1=0.8870 0.0000由表3得:回归方程为 y ^=−1.6091+0.887x ,由p 值可知x 的回归系数是显著的,常数项未显著,说明其无实际意义.图4.5 残差和权重的散点图由图4.5知:权重集中在最上方的1附近的点比较多,说明稳健性比较好.六、实验内容01i i i FDI u ββ=++若用线性模型GDP ,研究不同地区FDI 和GDP 的关系,试问原数据有无异方差性?如果存在异方差性,应如何处理?七、思考练习现用线性模型01i i i y x u ββ=++ ,研究不同收入水平家庭的消费情况,试问原数据有无异方差性?如果存在异方差性,应如何处理?八、参考文献[1].李宝仁.计量经济学[M].机械工业出版社,2007.12 [2].何晓群. 应用回归分析[M].中国人民大学出版,2002.9。
实验四-异方差性的检验与处理
实验四 异方差性的检验及处理(2学时)一、实验目的(1)、掌握异方差检验的基本方法; (2)、掌握异方差的处理方法。
二、实验学时:2学时 三、实验要求(1)掌握用MATLAB 软件实现异方差的检验和处理; (2)掌握异方差的检验和处理的基本步骤。
四、实验原理1、异方差检验的常用方法(1) 用X-Y 的散点图进行判断(2). 22ˆ(,)(,)e x e y %%或的图形 ,),x )i i y %%i i ((e 或(e 的图形)(3) 等级相关系数法(又称Spearman 检验)是一种应用较广的方法,既可以用于大样本,也可与小样本。
检验的三个步骤 ① ˆt ty y =-%i e②|i x %%i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21ni i d =∑s 26r =1-n(n -1)③ 做等级相关系数的显着性检验。
n>8时,/2(2),t t n α>-反之,若||i i e x %说明与之间存在系统关系,异方差问题存在。
(4) 帕克(Park)检验帕克检验常用的函数形式:若?在统计上是显着的,表明存在异方差性。
2、异方差性的处理方法: 加权最小二乘法 如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:121i i p pi iy x x u βββ=+⋅+⋅+L在该模型中:即满足同方差性。
于是可以用OLS 估计其参数,得到关于参数12,,,pβββL 的无偏、有效估计量。
五、实验举例例101i i i ,研究不同收入家庭的消费情况,试问原数据有无异方差性?如果存在异方差性,应如何处理?解:(一)编写程序如下:(1)等级相关系数法(详见文件)%%%%%%%%%%%%%%% 用等级相关系数法来检验异方差性 %%%%%%%% [data,head]=xlsread('');x=data(:,1); %提取第一列数据,即可支配收入x y=data(:,2); %提取第二列数据,即居民消费支出y plot(x,y,'k.'); % 画x 和y 的散点图xlabel('可支配收入x (千元)') % 对x 轴加标签 ylabel('居民消费支出y(千元)') % 对y 轴加标签 %%%%%%%% 调用regres 函数进行一元线性回归 %%%%%%%%%%%%xdata=[ones(size(x,1),1),x]; %在x 矩阵最左边加一列1,为线性回归做准备 [b,bint,r,rint,s]=regress(y,xdata);yhat=xdata*b; %计算估计值y% 定义元胞数组,以元胞数组形式显示系数的估计值和估计值的95%置信区间 head1={'系数的估计值','估计值的95%置信下限','估计值的95%置信上限'}; [head1;num2cell([b,bint])]% 定义元胞数组,以元胞数组形式显示y 的真实值,y 的估计值,残差和残差的95%置信区间 head2={'y 的真实值','y 的估计值','残差','残差的95%置信下限','残差的95%置信上限'};[head2;num2cell([y,yhat,r,rint])]% 定义元胞数组,以元胞数组形式显示判定系数,F统计量的观测值,检验的P值和误差方差的估计值head3={'判定系数','F统计量的观测值','检验的P值','误差方差的估计值'};[head3;num2cell(s)]%%%%%%%%%%%%% 残差分析 %%%%%%%%%%%%%%%%%%figure;rcoplot(r,rint) % 按顺序画出各组观测值对应的残差和残差的置信区间%%% 画估计值yhat与残差r的散点图figure;plot(yhat,r,'k.') % 画散点图xlabel('估计值yhat') % 对x轴加标签ylabel('残差r') % 对y轴加标签%%%%%%%%%%%% 调用corr函数计算皮尔曼等级相关系数res=abs(r); % 对残差r取绝对值[rs,p]=corr(x,res,'type','spearman')disp('其中rs为皮尔曼等级相关系数,p为p值');(2)帕克(park)检验法(详见文件)%%%%%%%%%%%%%%% 用帕克(park)检验法来检验异方差性 %%%%%%% [data,head]=xlsread(''); %导入数据x=data(:,1);y=data(:,2);%%%%%% 调用regstats函数进行一元线性回归,linear表带有常数项的线性模型,r表残差ST=regstats(y,x,'linear',{'yhat','r','standres'});scatter(x,.^2) % 画x与残差平方的散点图xlabel('可支配收入(x)') % 对x轴加标签ylabel('残差的平方') %对y轴加标签%%%%%%% 对原数据x和残差平方r^2取对数,并对log(x)和log(r^2)进行一元线性回归ST1=regstats(log(.^2),log(x),'linear',{'r','beta','tstat','fstat'})% 输出参数的估计值% 输出回归系数t检验的P值% 输出回归模型显着性检验的P值(3)加权最小二乘法(详见文件)%%%%%%%%%%% 调用robustfit函数作稳健回归 %%%%%%%%%%%%[data,head]=xlsread(''); % 导入数据x=data(:,1);y=data(:,2);% 调用robustfit函数作稳健回归,返回系数的估计值b和相关统计量stats[b,stats]=robustfit(x,y) %调用函数作稳健回归% 输出模型检验的P值%%% 绘制残差和权重的散点图 %%%%%%%plot,,'o') %绘制残差和权重的散点图xlabel('残差')ylabel('权重'(二)实验结果与分析:第一步::用OLS方法估计参数,并保留残差(1)散点图图可支配收入(x)居民消费支出(y)散点图因每个可支配收入x的值,都有5个居民消费收入y与之对应,所以上述散点图呈现此形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四异方差性的检验与处理集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]实验四 异方差性的检验及处理(2学时)一、实验目的(1)、掌握异方差检验的基本方法; (2)、掌握异方差的处理方法。
二、实验学时:2学时 三、实验要求(1)掌握用MATLAB 软件实现异方差的检验和处理; (2)掌握异方差的检验和处理的基本步骤。
四、实验原理1、异方差检验的常用方法(1) 用X-Y 的散点图进行判断(2). 22ˆ(,)(,)e x e y 或的图形 ,),x )i i y i i ((e 或(e 的图形)(3) 等级相关系数法(又称Spearman 检验)是一种应用较广的方法,既可以用于大样本,也可与小样本。
检验的三个步骤 ① ˆt t y y=-i e②|i x i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21ni i d =∑s 26r =1-n(n -1)③ 做等级相关系数的显着性检验。
n>8时,/2(2),t t n α>-反之,若||i i e x 说明与之间存在系统关系,异方差问题存在。
(4) 帕克(Park)检验帕克检验常用的函数形式:若在统计上是显着的,表明存在异方差性。
2、异方差性的处理方法: 加权最小二乘法 如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:121(i i p pi iy x x uf xβββ=+⋅++⋅+在该模型中:即满足同方差性。
于是可以用OLS估计其参数,得到关于参数12,,,pβββ的无偏、有效估计量。
五、实验举例例101i i iy x u=++若用线性模型,研究不同收入家庭的消费情况,试问原数据有无异方差性如果存在异方差性,应如何处理解:(一)编写程序如下:(1)等级相关系数法(详见文件)%%%%%%%%%%%%%%% 用等级相关系数法来检验异方差性 %%%%%%%%[data,head]=xlsread('');x=data(:,1); %提取第一列数据,即可支配收入xy=data(:,2); %提取第二列数据,即居民消费支出yplot(x,y,'k.'); % 画x和y的散点图xlabel('可支配收入x(千元)') % 对x轴加标签ylabel('居民消费支出y(千元)') % 对y轴加标签%%%%%%%% 调用regres函数进行一元线性回归 %%%%%%%%%%%%xdata=[ones(size(x,1),1),x]; %在x矩阵最左边加一列1,为线性回归做准备[b,bint,r,rint,s]=regress(y,xdata);yhat=xdata*b; %计算估计值y% 定义元胞数组,以元胞数组形式显示系数的估计值和估计值的95%置信区间head1={'系数的估计值','估计值的95%置信下限','估计值的95%置信上限'};[head1;num2cell([b,bint])]% 定义元胞数组,以元胞数组形式显示y的真实值,y的估计值,残差和残差的95%置信区间head2={'y的真实值','y的估计值','残差','残差的95%置信下限','残差的95%置信上限'};[head2;num2cell([y,yhat,r,rint])]% 定义元胞数组,以元胞数组形式显示判定系数,F统计量的观测值,检验的P值和误差方差的估计值head3={'判定系数','F统计量的观测值','检验的P值','误差方差的估计值'};[head3;num2cell(s)]%%%%%%%%%%%%% 残差分析 %%%%%%%%%%%%%%%%%%figure;rcoplot(r,rint) % 按顺序画出各组观测值对应的残差和残差的置信区间%%% 画估计值yhat与残差r的散点图figure;plot(yhat,r,'k.') % 画散点图xlabel('估计值yhat') % 对x轴加标签ylabel('残差r') % 对y轴加标签%%%%%%%%%%%% 调用corr函数计算皮尔曼等级相关系数res=abs(r); % 对残差r取绝对值[rs,p]=corr(x,res,'type','spearman')disp('其中rs为皮尔曼等级相关系数,p为p值');(2)帕克(park)检验法(详见文件)%%%%%%%%%%%%%%% 用帕克(park)检验法来检验异方差性 %%%%%%%[data,head]=xlsread(''); %导入数据x=data(:,1);y=data(:,2);%%%%%% 调用regstats函数进行一元线性回归,linear表带有常数项的线性模型,r表残差ST=regstats(y,x,'linear',{'yhat','r','standres'});scatter(x,.^2) % 画x与残差平方的散点图xlabel('可支配收入(x)') % 对x轴加标签ylabel('残差的平方') %对y轴加标签%%%%%%% 对原数据x和残差平方r^2取对数,并对log(x)和log(r^2)进行一元线性回归ST1=regstats(log(.^2),log(x),'linear',{'r','beta','tstat','fstat'})% 输出参数的估计值% 输出回归系数t检验的P值% 输出回归模型显着性检验的P值(3)加权最小二乘法(详见文件)%%%%%%%%%%% 调用robustfit函数作稳健回归 %%%%%%%%%%%%[data,head]=xlsread(''); % 导入数据x=data(:,1);y=data(:,2);% 调用robustfit函数作稳健回归,返回系数的估计值b和相关统计量stats[b,stats]=robustfit(x,y) %调用函数作稳健回归% 输出模型检验的P值%%% 绘制残差和权重的散点图 %%%%%%%plot,,'o') %绘制残差和权重的散点图xlabel('残差')ylabel('权重'(二)实验结果与分析:第一步::用OLS方法估计参数,并保留残差(1)散点图图可支配收入(x)居民消费支出(y)散点图因每个可支配收入x的值,都有5个居民消费收入y与之对应,所以上述散点图呈现此形状。
(2)回归模型参数估计值与显着性检验表1'系数的估计值' '估计值的95%置信下限' '估计值的95%置信上限'[ ] [ ] [ ][ ] [ ] [ ]'判定系数' 'F统计量的观测值' '检验的P值' '误差方差的估计值' [ ] [ ] [] [ ]由输出结果看,常数项和回归系数的估计值分别为和,从而可以写出线性回归方程为^=−0.539+0.8091∗xy回归系数的估计值的95%置信区间为[,]。
对回归直线进行显着性检验,原假设和对立假设分别为y0:y1=0y1:y1≠0检验的P值为5.4040×10−13<0.01,可知在显着性水平α=0.01下应拒绝原假设y0,可认为y(居民消费收入)与x(可支配收入)的线性关系是显着的。
(3)方差分析图原始数据对应残差图从残差图可以看到有2条线段(红色虚线)与水平线y=0没有交点,它对应的观测号为22和29,也就是说这两组观测对应的残差的置信区间不包含0点,可认为这两组观测数据为异常数据。
它们分别是(30,),(35,20)。
第二步:异方差性检验(1)图示法图(2) 等级相关系数法在y与x 的OLS 回归的基础上计算出残差的绝对值,并记为res,并计算出皮尔曼等级相关系数rs= 与对应的p值为<(*),说明残差r与x存在系统关系,即存在异方差问题。
(3)帕克(Park)检验法1)散点图图可支配收入与残差平方的散点图从图可知,可考虑拟合指数曲线。
现将其取对数,即可进行一元线性拟合。
2)回归系数与模型检验做ln(r^2)对ln(x)回归,得到表2‘回归系数’ 回归系数t 检验的P 值 显着性检验P 值y 0=y 1=从上表可以看出,得到的回归模型为ln (y 2)=−8.4973+2.9679∗ln ?(y ),常数项和线性项的t 检验的P 值均小于,说明回归方程中常数项和线性项均是显着的。
并且,检验的P 值为小于,说明整个回归方程是显着的,表明存在异方差性。
综上所述,通过以上3种方法的检验,我们得到原数据存在异方差性。
第三步:用加权最小二乘法处理异方差性表3‘回归系数’ 回归系数t 检验的P 值 y 0=y 1= 由表3得:回归方程为 y ^=−1.6091+0.887y ,由p 值可知x 的回归系数是显着的,常数项未显着,说明其无实际意义。
图 残差和权重的散点图由图知:权重集中在最上方的1附近的点比较多,说明稳健性比较好。
六、实验内容01i i i FDI u ββ=++若用线性模型GDP ,研究不同地区FDI 和GDP 的关系,试问原数据有无异方差性如果存在异方差性,应如何处理七、思考练习现用线性模型01i i i y x u ββ=++,研究不同收入水平家庭的消费情况,试问原数据有无异方差性如果存在异方差性,应如何处理八、参考文献[1].李宝仁.计量经济学[M].机械工业出版社, [2].何晓群. 应用回归分析[M].中国人民大学出版,。