工程塑料的热导率、比热容、线膨胀系数

合集下载

pc料热膨胀系数

pc料热膨胀系数

pc料热膨胀系数
摘要:
一、前言
二、pc材料的介绍
1.定义
2.特性
三、热膨胀系数的概念
1.定义
2.影响因素
四、pc料热膨胀系数的计算方法
五、pc料热膨胀系数的具体数值
六、热膨胀系数对pc材料性能的影响
1.机械性能
2.热性能
七、结论
正文:
一、前言
pc材料,即聚碳酸酯,是一种广泛应用于各个领域的工程塑料。

了解其热膨胀系数对于研究其在不同环境下的性能变化具有重要意义。

二、pc材料的介绍
1.定义
pc材料,全称为聚碳酸酯,是一种无定形、透明、耐冲击的热塑性工程塑料。

2.特性
pc材料具有优良的机械性能、光学性能、热稳定性、耐化学腐蚀性和阻燃性能。

三、热膨胀系数的概念
1.定义
热膨胀系数是指材料在温度变化时,其长度或体积相对于温度变化的比例变化率。

2.影响因素
热膨胀系数的数值受材料本身的性质、化学结构和生产工艺等因素的影响。

四、pc料热膨胀系数的计算方法
由于pc材料的特殊性,其热膨胀系数的计算方法与其他材料有所不同,通常需要通过实验测定。

五、pc料热膨胀系数的具体数值
根据实验数据,pc材料的热膨胀系数一般在10^-5至10^-4 1/℃之间。

六、热膨胀系数对pc材料性能的影响
1.机械性能
热膨胀系数对pc材料的机械性能影响显著,如冲击强度、弯曲强度和弹性模量等。

2.热性能
热膨胀系数对pc材料的热性能也有影响,如热变形温度、玻璃化转变温度等。

常用塑料和橡胶的物理机械性能及热性能

常用塑料和橡胶的物理机械性能及热性能
常用塑料的物理机械性能及热性能
材料
主要特点
物理机械性能
热性能
相对
密度
吸水率
(%)
拉伸强
度(MPa)
弹性模
量(GPa)
伸长率
(%)
弯曲强
度(MPa)
冲击
强度
硬度
HB
比热容
KJ/Kg.℃
线膨胀系数10-5/℃
热导率
W/m.℃
热变形温度℃
连续耐温
聚丙烯
(PP)
密度小,耐腐蚀性优良,高频绝缘性良好,低温发脆,较易老化,可在100℃左右使用。
材料
物理性
耐热性
耐蚀性
拉伸强度
(MPa)
伸长率
(%)
压缩永久变形
抗撕性
回弹性
最高使用温度
(℃)
常用温度上限
(℃)
脆性温度
(℃)
耐酸碱
耐汽油
耐臭氧
丁睛橡胶
(NBR)
15~30
300~800



170
120
-10~-20
无机酸:良
有机酸:劣
碱:良
适用

三元乙丙
(EPDM)
15~25
400~800



320
50~
75
7~25
0.13~
0.17
丙烯晴-丁二烯-苯乙烯共聚体
(ABS)
综合性能好,耐冲击,尺寸稳定性好。
1.03~1.06
0.2~
0.25
34
2.3~2.9
60
64~68
130~180
8~
10

什么是线膨胀系数

什么是线膨胀系数

什么是线膨胀系数一般指由于外界温度、压力(主要指温度)变化时,物体的线性尺寸随温度、压力(主要指温度)的变化率。

如铁温度每升高1度,长或宽或高尺寸增加12X10^-6,即增加0.0012%。

对应地还有体膨胀系数,即物体的体积随温度的变化率。

对于各向同性的物体,线膨胀系数较小时,体膨胀系数是线膨胀系数的3倍略多一点。

金属材料线膨胀系数的测量线膨胀系数在数值上等于当温度升高1℃时固体材料单位长度的伸长量。

对于不同的物质,线膨胀系数不同。

一般来说,塑料的线膨胀系数较大,金属的次之,熔凝石英的较小。

常见几种材料的线膨胀系数的数量级物质在一定的温度和压力下具有一定的体积。

温度变化时,物质的体积亦相应地变化。

物质的体积随温度升高而增大的现象称为热膨胀。

物质的热膨胀是由于构成物质的原子间的平均距离随温度升高而增大造成的。

物质的热膨胀性质与物质的结构、键型、键力、比热容、熔点等密切相关。

因此,不同的物质或者组成相同结构不同的物质,具有不同的热膨胀性质,常用体积膨胀系数这一物理量来表征物质的不同热膨胀性质。

固体材料在一维方向上的热膨胀伸长称为线膨胀,用线膨胀系数来描述不同物质的线膨胀特性。

物体的热膨胀性质反映了材料本身的属性,测量材料的线膨胀系数,不仅对新材料的研制具有重要意义,而且也是选用材料的重要指标之一。

在工程结构设计(如桥梁、铁路轨道、电缆工程等)、机械和仪表的制造、材料的加工和焊接等过程中都必须考虑材料的热膨胀特性。

材料的热膨胀特性也有许多有利方面的应用,如液体温度计、喷墨打印机等等。

在测量材料线膨胀系数的常用方法中,关键是测量材料受热膨胀后的微小长度伸长量。

这一微小长度变化量用一般的长度测量仪器很难测准,一般需要采用放大测量方法、借助测微装置或仪器来测量,如光杠杆光学放大法、千分尺螺旋放大法、光学干涉法等。

本实验采用非电量电测法通过霍尔位移传感器测量微小的长度变化。

【预习提示】1.什么是线膨胀系数?测量线膨胀系数需要测量哪些相关物理量?2.霍尔位移传感器的基本工作原理是什么?3.什么是定标?4.怎样设计测量数据记录表?【实验目的】1.掌握测量线膨胀系数的基本原理。

一般材料的热膨胀系数

一般材料的热膨胀系数

一般材料的热膨胀系数热膨胀系数(Coefficient of Thermal Expansion,简称CTE)是一种衡量材料在温度变化下长度变化的物理性质,通常用于工程和材料科学中的热应力分析和设计。

热膨胀系数的定义是材料在单位温度变化下的长度变化与原始长度的比值。

它通常由单位温度变化对应的线性热膨胀的长度变化与起始长度的比值表示。

热膨胀系数可以是正值、负值或零值,这取决于材料的热性质。

正值表示材料在加热时会膨胀,负值表示在加热时会收缩,零值表示材料在温度变化时不发生体积变化。

不同材料的热膨胀系数存在很大差异。

以下是一些常见材料的热膨胀系数范围:1.金属材料:-铝:23.1×10^(-6)/°C-铜:16.5×10^(-6)/°C-钢铁:10.8-13.0×10^(-6)/°C-钠:71×10^(-6)/°C2.陶瓷材料:-石英:0.55×10^(-6)/°C-石墨:8.1×10^(-6)/°C-球墨铸铁:10.4×10^(-6)/°C-高纯度氧化铝陶瓷:7-10×10^(-6)/°C3.聚合物材料:-聚乙烯:100-200×10^(-6)/°C-聚丙烯:100-200×10^(-6)/°C-聚氯乙烯:70-190×10^(-6)/°C-聚四氟乙烯(PTFE):120-200×10^(-6)/°C需要注意的是,材料的热膨胀系数不仅与材料的种类有关,还与温度的变化范围和使用条件有关。

热膨胀系数通常以线性近似表示,即在一定温度范围内认为热膨胀系数是恒定的。

在实际工程中,需要注意考虑温度变化对材料性能和结构稳定性的影响。

热膨胀系数的知识在工程设计和材料选择中非常重要。

工程塑料的热导率、比热容、线膨胀系数

工程塑料的热导率、比热容、线膨胀系数

工程塑料的热导率低、导热性较差。

热导率一般约为0.22W/(m·K),是铜的万分之六,不到钢铁材料的百分之一,是优良的绝热、保温材料。

热导率随温度升高变化不大,结晶型塑料的热导率随温度升高有所下降。

工程塑料的比热容比金属及无机材料大,一般为1-2kj/(kg·K),是钢铁材料的2-4倍。

工程塑料的线膨胀系数比金属和陶瓷大,是金属材料的3-10倍,因此,工程塑料制品容易因温度变化而影响尺寸的稳定性。

线膨胀系数随温度的升高而增大,但不是线性关系。

表1-3列出了工程塑料的热性能。

表1-4列出了一些工程塑料的线膨胀系数。

表1-3塑料的热性能
表1-4工程塑料的线膨胀系数。

详解工程塑料那些物理参数

详解工程塑料那些物理参数

1.热性能工程塑料的热性能包括与热传导有关的物理量,如热导率、比热容、线膨胀系数;与相态变化有关的性能,如玻璃化转变沮度、熔点;与耐热性有关的性质.如热变形沮度、维卡软化点;与燃烧有关的性质,如阻嫩性、燃烧速率。

热导率、比热容、线脚胀系数工程塑料的热导率低、导热性较差。

热导率一般约为0.22W /(m"K),是铜的万分之六,不到钢铁材料的百分之一,是优良的绝热、保沮材料。

热导率随twL度升高变化不大,结晶型塑料的热导率随沮度升高有所下降。

工程塑料的比热容比金属及无机材料大,一般为1一2峥/(kg-K),是钢铁材料的2一4倍。

工程塑料的线形胀系数比金属和陶瓷大,是金属材料的3一10倍,因此,工程塑料制品容易因温度变化而影响尺寸的稳定性。

线膨胀系数随沮度的升高而增大,但不是线性关系。

生硬的文字也许让人云里雾里,小编在此总结一下。

关于工程塑料的特性,我们比较常说的就是耐高温,那么这个性能指标就应该从热变形温度里观察了。

当然维卡软化点也是可以的。

另外对工程塑料的评级还有一个是否防火,防火则是其燃烧性能,这一点直接看产品是否有UL94即可。

2.电性能继热性能后,小编今天为大家讲解一下什么是塑料的电性能。

塑料的电性能包括电阻率、介电强度、相对介电常数,介电损耗角正切等与电有关的性能,统称为电性能。

那么电性能实际上有什么应用呢?下面举几个例子给大家看看,想必一下就懂了电机,需要选择介电强度高,介电损耗小的绝缘材料;电容器,必须用介电损耗小二介电常数尽量大的材料绝缘部件,需要选电阻率高的材料消除去静电,材料要有较低的电阻率电气材料根据使用电场的高低分为弱电材料和强电材料。

用于通信设备、各种民用电子设备、家电、高频绝缘、印制电路等的电子材料属弱电材料;用于变压器、电动机、发电机等电器及电力输送线路的材料为强电材料。

弱电材料的主要电性能指标是介电常数和介质损耗角因数;强电材料主要应满足绝缘性、耐电压和长期使用性能。

1工程塑料性能特点解析

1工程塑料性能特点解析

1.4 工程塑料的耐化学学性能
耐酸、碱、有机溶剂、油料、气体、盐水等 表现在外观、物性会发生失光、变色、雾化、开裂、龟裂、翘 曲、分解、溶胀、溶解、发动等变化。
1.2.2电性能
电气材料根据使用电场的高低分为弱电材料和强电材料。用于 通信设备、各种民用电子设备、家电、高频绝缘、印制电路等的电 子材料属弱电材料;用于变压器、电动机、发电机等电器及电力输 送线路的材料为强电材料。弱电材料的主要电性能指标是介电常数
和介质损耗角因数;强电材料主要应满足绝缘性、耐电压和长期使
1.2 工程塑料的性能
1.2.1热性能 与热传导有关的物理量,如热导率 、比热容、线膨胀系数; 与相态变化省关的性能,如玻璃化转变温 度、熔点; 与耐热性有关的性质,如热变形温度、维 卡软化点; 与燃烧有关的性质,如阻燃性、燃烧速率。
1.2 工程塑料的性能
1.2.1热性能 热导率、比热容、线膨胀系数。
Байду номын сангаас
1.2 工程塑料的性能
表1-1常见工程塑料热性能 工程塑料 PA66 比热容 kJ/(kg· K) 1.67 导热系数 W/(m· K) 0.24 线胀系数 ×10-5/K 9 最高使用温度 ℃ 90-130
PC
POM(共聚) PPO PET+30%玻纤 PTFE PSF PES PI LCP PEEK PPS
1.2 工程塑料的性能
1.2.3光学性能
2.黄色指数
无色透明、半透明和近白色不透明塑料偏离白色的程度,称为塑料黄色指数, 或塑料黄色度。
某些工程塑料(如PC、PA6等)常以黄色指数的变化,作为经长期暴露于光和热 环境中性能变化的评定依据。 3.白度
塑料白度是指不透明白色或近白色的粉末状树脂和板状塑料表

复合材料线胀系数

复合材料线胀系数

复合材料线胀系数
复合材料的线膨胀系数是指复合材料在温度升高时,其长度的变化率。

这个系数用于描述复合材料在温度变化时如何响应并改变其尺寸。

具体来说,线膨胀系数的计算公式为:α = ΔL / (L ΔT) 10^6,其中,α是线膨胀系数,ΔL是样品在温度变化ΔT时的长度变化量,L是样品的初始长度。

复合材料的使用能带来更大的设计灵活性,在尾门的线条和角度上有更多可能。

对于塑料产品来说,线胀系数是指温度升高1℃时,每1cm的塑料伸长的厘米数。

若表示塑料在某一温度区间的线胀特性时,就称为平均线胀系数。

复合材料的线膨胀系数因材料种类、制造工艺和使用环境而异,因此在实际应用中需要对其进行测量和评估,以确保其性能和安全性。

聚碳酸酯(PC)的各种性能及其成型特性(个人总结含图表)

聚碳酸酯(PC)的各种性能及其成型特性(个人总结含图表)

•聚碳酸酯(PC)的性能聚碳酸酯(PC)是一种线型碳酸聚酯,分子中碳酸基团与另一些基团交替排列,这些基团可以是芳香族,可以是脂肪族,也可以两者皆有。

双酚A型PC是最重要的工业产品。

双酚A型PC是一种无定形的工程塑料,具有良好的韧性、透明性和耐热性。

碳酸酯基团赋予韧性和耐用性,双酚A基团赋予高的耐热性。

而PC的一些主要应用至少同时要求这两种性能。

表2-30列出了通用级聚碳酸酯的性能。

表2-30 通用级聚碳酸酯的性能力学性能聚碳酸酯的缺点是耐疲劳强度较低,耐磨性较差,摩擦因数大。

聚碳酸酯制品容易产生应力开裂,内应力产生的原因主要是由于强迫取向的大分子间相互作用造成的。

如果将聚碳酸酯的弯曲试样进行挠曲并放置一定时间,当超过其极限应力时便会发生微观撕裂。

在一定应变下发生微观撕裂时间与应力之间的关系依赖于聚碳酸酯的平均相对分子质量。

如果聚碳酸酯制品在成型加工过程中因温度过高等原因发生分解老化,或者制品本身存在缺口或熔接缝,以及制品在化学气体中使用,那么,发生微观撕裂的时间将会大大缩短,其极限应力值也将大幅度下降。

热性能聚碳酸酯的耐热性较好,未填充聚碳酸酯的热变形温度大约为130℃,玻璃纤维增强后可使这个数值再增加10℃。

长期使用温度可达120℃,同时又具有优良的耐寒性,脆化温度为-100℃。

低于100℃时,在负载下的蠕变率很低。

聚碳酸酯没有明显的熔点,在220-230℃呈熔融状态。

由于其分子链刚性大,所以它的熔体粘度较高。

电性能聚碳酸酯由于极性小,玻璃化转变温度高,吸水率低,因此具有优良的电性能。

表2-31列出了通用级聚碳酸酯的电性能。

表2-31 通用级聚碳酸酯的电性能耐化学药品性能聚碳酸酯对酸性及油类介质稳定,但不耐碱,溶于氯代烃。

PC有较好的耐水解性,但长期浸入沸水中易引起水解和开裂,不能应用于重复经受高压蒸汽的制品。

PC易受某些有机溶剂的侵蚀,虽然它可以耐弱酸、脂肪烃、醇的水溶液,但可以溶解在含氯的有机溶剂中。

各种材料弹性模量与热物理性质

各种材料弹性模量与热物理性质

1.08
0.39 0.31-0.34 1083
17.5
398
386
7
冷拔纯铜
1.27
0.4-0.48
1083
17.5
407
418
8
轧制磷青铜
1.13
0.41 0.32-0.35
17.9
22.2 镍青铜 410/镍青铜
9
冷拔黄铜
0.90-0.97 034-0.37 0.32-0.42 1083
18.8
弹性模量与热物理性质
序号
材料名称
弹性模量 剪切模量 (×105MPa) (×105MPa) 泊松比
熔点 (oC)
线膨胀系数 热导率 (×10-6/K) (W/(mꞏk))
比热容 (J/(kgꞏK))
1 灰口铸铁/白口铸铁 1.13-1.57
0.45 0.23-0.27 1200
8.5-11.6
39.2
470
2
可锻铸铁
1.55
0.45
81.1/纯铁 455/纯铁
3
碳钢
2.0-2.1 0.79-0.81 0.25-0.28 1400-1500 11.3-13
49.8
465
4 镍铬钢、合金钢
2.06
0.79-0.81 0.25-0.3
11.5-14.5
15
460
5
铸钢
1.75
0.3
49.8
470
6
轧制纯铜
熔点 线膨胀系数
泊松比 (oC)
(×10-6/K)
0.47
0.35-0.38
0.4
热导率 (W/(mꞏk))
比热容 (J/(kgꞏK))

塑料的各项物理性能

塑料的各项物理性能

塑料的各项物理性能塑料的物理性能:■比重(密度)塑料的比重是在一定的温度下,秤量试样的重量与同体积水的重量之比值,单位为g/cm3,常用液体浮力法作测定方法。

■吸水性塑料的吸水性是指规定尺寸的试样浸入一定温度(25±2)℃的蒸馏水中,经过24小时后所吸收的水份量;吸收水份后影响其尺寸及形状,吸水率用重量表达时,常以%表示。

■透气性透气性是指一定厚度的塑料薄膜在一个大气压力下,一平方米的面积中,在24小时内所透过气体的体积(cm3)值,但透气量与薄腊厚度、面积、时间、温度、气压差值等有关.■透湿性透湿性是指水蒸气对塑料薄膜的透过情况,基本原理及定义与透气性相同。

■透明度透过物体的光通量和射到物体上的光通量之比称为透光度;在入射光方向上的散射光对所有透射光之比,称雾度或混浊度.雾度通常是半透明的,并对射入光有漫透的性质.■拉伸强度拉伸强度是指在规定的试验温度、湿度和拉伸速度下,沿试样的纵轴方向施加拉伸载荷,测定试样破坏时的最大载荷。

■弯曲强度弯曲强度是指试样在两个支点上,施加集中载荷,使试样变形或直至破裂时的强度.■冲击强度冲击强度是指试样受冲击破断时,单位面积上所消耗的焦耳,对于某些冲击强度高的塑料,常在试样中间开有规定尺寸之缺口,这样可以降低它在破断时所需要的焦耳.不同的试件可用不同的试验方法:落球式冲击试验、高速拉伸冲击试验.■摩擦系数摩擦系数是指摩擦力与正压力之比值.在试样上加一个正压力,测定试样刚性运动时的动和静比值.■磨耗磨耗是指塑料在摩擦过程中,微粒从摩擦表面不断分离,引起摩擦件尺寸不断地改变的机械性破坏过程,也有称为磨损或磨蚀.■硬度塑料硬度是指塑料抵抗其他硬物体压入的性能,通用的有洛氏硬度和肖氏硬度两种。

肖氏硬度是指在规定的压力、时间下计算压痕器的压针所压入的深度。

肖氏压痕器可分为两类,即:A、D型.施加负荷重量为1.0、5.0公斤,压下时间为15秒,A型适用于软质塑料,D型适用于半硬质塑料;当用A型,测出超过95%量程时,应改用D型,当D型测出超过95%量程时,则需要改用洛氏压痕.■疲劳强度是指在一个静态破坏力而有小量交变循环的环境下,使塑料破坏的强度;疲劳载荷来源有拉压、弯曲、扭转、冲击等。

聚碳酸酯(PC)的各种性能及其成型特性(个人总结含图表)

聚碳酸酯(PC)的各种性能及其成型特性(个人总结含图表)

•聚碳酸酯(PC)的性能聚碳酸酯(PC)是一种线型碳酸聚酯,分子中碳酸基团与另一些基团交替排列,这些基团可以是芳香族,可以是脂肪族,也可以两者皆有。

双酚A型PC是最重要的工业产品。

双酚A型PC是一种无定形的工程塑料,具有良好的韧性、透明性和耐热性。

碳酸酯基团赋予韧性和耐用性,双酚A基团赋予高的耐热性。

而PC的一些主要应用至少同时要求这两种性能。

表2-30列出了通用级聚碳酸酯的性能。

表2-30 通用级聚碳酸酯的性能力学性能聚碳酸酯的缺点是耐疲劳强度较低,耐磨性较差,摩擦因数大。

聚碳酸酯制品容易产生应力开裂,内应力产生的原因主要是由于强迫取向的大分子间相互作用造成的。

如果将聚碳酸酯的弯曲试样进行挠曲并放置一定时间,当超过其极限应力时便会发生微观撕裂。

在一定应变下发生微观撕裂时间与应力之间的关系依赖于聚碳酸酯的平均相对分子质量。

如果聚碳酸酯制品在成型加工过程中因温度过高等原因发生分解老化,或者制品本身存在缺口或熔接缝,以及制品在化学气体中使用,那么,发生微观撕裂的时间将会大大缩短,其极限应力值也将大幅度下降。

热性能聚碳酸酯的耐热性较好,未填充聚碳酸酯的热变形温度大约为130℃,玻璃纤维增强后可使这个数值再增加10℃。

长期使用温度可达120℃,同时又具有优良的耐寒性,脆化温度为-100℃。

低于100℃时,在负载下的蠕变率很低。

聚碳酸酯没有明显的熔点,在220-230℃呈熔融状态。

由于其分子链刚性大,所以它的熔体粘度较高。

电性能聚碳酸酯由于极性小,玻璃化转变温度高,吸水率低,因此具有优良的电性能。

表2-31列出了通用级聚碳酸酯的电性能。

表2-31 通用级聚碳酸酯的电性能耐化学药品性能聚碳酸酯对酸性及油类介质稳定,但不耐碱,溶于氯代烃。

PC有较好的耐水解性,但长期浸入沸水中易引起水解和开裂,不能应用于重复经受高压蒸汽的制品。

PC易受某些有机溶剂的侵蚀,虽然它可以耐弱酸、脂肪烃、醇的水溶液,但可以溶解在含氯的有机溶剂中。

工程塑料POM的应用范围和物理特性

工程塑料POM的应用范围和物理特性

工程塑料POM的应用范围和物理特性工程塑料POM的应用范围和物理特性资料由友人塑胶提供塑胶热线:TEL 136 **** ****英文名称:Polyoxymethylene(Polyformaldehyde)POM[1](聚甲醛树脂)定义:聚甲醛是一种没有侧链、高密度、高结晶性的线型聚合物。

按其分子链中化学结构的不同,可分为均聚甲醛和共聚甲醛两种。

两者的重要区别是:均聚甲醛密度、结晶度、熔点都高,但热稳定性差,加工温度范围窄(约10℃),对酸碱稳定性略低;而共聚甲醛密度、结晶度、熔点、强度都较低,但热稳定性好,不易分解,加工温度范围宽(约50℃),对酸碱稳定性较好。

是具有优异的综合性能的工程塑料。

有良好的物理、机械和化学性能,尤其是有优异的耐摩擦性能。

俗称赛钢或夺钢,为第三大通用塑料。

适于制作减磨耐磨零件,传动零件,以及化工,仪表等零件。

[2]合成树脂中的一种,又名聚甲醛树脂、POM塑料、赛钢料等;是一种白色或黑色塑料颗粒,具有高硬度、高钢性、高耐磨的特性。

主要用于齿轮,轴承,汽车零部件、机床、仪表内件等起骨架作用的产品聚甲醛结构式聚甲醛是一种没有没有侧链,高密度,高结晶性的线性聚合物,具有优异的综合性能。

聚甲醛是一种表面光滑,有光泽的硬而致密的材料,淡黄或白色,可在-40- 100°C温度范围内长期使用。

它的耐磨性和自润滑性也比绝大多数工程塑料优越,又有良好的耐油,耐过氧化物性能。

很不耐酸,不耐强碱和不耐月光紫外线的辐射。

聚甲醛的拉伸强度达70MPa,吸水性小,尺寸稳定,有光泽,这些性能都比尼龙好,聚甲醛为高度结晶的树脂,在热塑性树脂中是最坚韧的。

具抗热强度,弯曲强度,耐疲劳性强度均高,耐磨性和电性能优良。

一般性能聚甲醛是一种表面光滑、有光泽的硬而致密的材料,淡黄或白色,薄壁部分呈半透明。

燃烧特性为容易燃烧,离火后继续燃烧,火焰上端呈黄色,下端呈蓝色,发生熔融滴落,有强烈的刺激性甲醛味、鱼腥臭。

各种材料热膨胀系数

各种材料热膨胀系数

各种材料热膨胀系数热膨胀是指物体在温度变化时由于分子热运动而产生的体积变化现象。

热膨胀系数是一个物质对温度变化所产生的体积变化的度量。

各种材料的热膨胀系数不同,下面将介绍几种常见材料的热膨胀系数。

1.金属金属对温度变化的热膨胀系数一般比较大,这是因为金属内部的金属键相对较松散,分子间力较弱,易于被温度变化所导致的分子热运动所影响。

常见金属的热膨胀系数如下(单位:10^-6/℃):-铁:12.0-铝:24.0-铜:17.0-铬:6.0-镍:13.02.玻璃玻璃对温度变化的热膨胀系数一般较小,这是因为玻璃中的分子键相对较强,分子间力比较大,抵抗分子热运动的影响。

常见玻璃的热膨胀系数如下(单位:10^-6/℃):-硅酸盐玻璃:0.4-1.0-硼硅酸盐玻璃:3.25-硅硼酸盐玻璃:4.53.塑料塑料对温度变化的热膨胀系数一般较大,这是因为塑料分子链较长,分子间力较弱,易于被分子热运动所影响。

常见塑料的热膨胀系数如下(单位:10^-6/℃):-聚乙烯:180-240-聚丙烯:100-340-聚氯乙烯:50-150-聚苯乙烯:70-110-聚四氟乙烯:110-1304.陶瓷陶瓷对温度变化的热膨胀系数一般较小,这是因为陶瓷中的分子键相对较强,分子间力比较大,抵抗分子热运动的影响。

常见陶瓷的热膨胀系数如下(单位:10^-6/℃):-氧化铝陶瓷:8.0-氧化锆陶瓷:10.0-氮化硅陶瓷:4.0-碳化硅陶瓷:3.4除了上述常见材料外,还有许多其他材料的热膨胀系数也是非常重要的。

例如,混凝土的热膨胀系数为12-15,天然石材的热膨胀系数为5-10,纤维增强塑料的热膨胀系数为30-50等。

在工程设计和材料选择中,了解材料的热膨胀系数是非常重要的,因为在温度变化时,材料的热膨胀系数将决定其体积的变化程度,从而影响结构的稳定性。

另外,热膨胀系数还在材料的热处理和加工过程中发挥重要作用,可以用来预测材料在热处理或加工后的尺寸变化。

常用材料的热物性参数

常用材料的热物性参数

常用材料的热物性参数1.金属材料:金属是最常用的工程材料之一,具有良好的导热性、导电性和热膨胀性。

以下是几种常见金属材料的热物性参数:- 铜:导热系数为401 W/(m·K),比热容为394 J/(kg·K),线膨胀系数为16.8 × 10^-6 K^-1- 铝:导热系数为237 W/(m·K),比热容为897 J/(kg·K),线膨胀系数为22.2 × 10^-6 K^-1- 钢(一般钢材):导热系数为43-52 W/(m·K),比热容为450-550 J/(kg·K),线膨胀系数为12-14 × 10^-6 K^-12.无机非金属材料:无机非金属材料在工程应用中也非常常见,如陶瓷、玻璃等,它们通常具有较低的导热性和热膨胀性,但比较脆弱。

以下是几种常见无机非金属材料的热物性参数:- 石英:导热系数为1.3 W/(m·K),比热容为745 J/(kg·K),线膨胀系数为0.5 × 10^-6 K^-1- 硅胶:导热系数为0.007 W/(m·K),比热容为1000 J/(kg·K),线膨胀系数为1.2 × 10^-6 K^-1- 硅酸盐陶瓷:导热系数为1.5-3.5 W/(m·K),比热容为700-1100 J/(kg·K),线膨胀系数为5.0-10.0 × 10^-6 K^-13.有机材料:有机材料通常指由碳元素为主要成分的材料,如塑料、橡胶等。

- 聚乙烯:导热系数为0.3-0.4 W/(m·K),比热容为2000-2300J/(kg·K),线膨胀系数为80-140 × 10^-6 K^-1- 聚氯乙烯:导热系数为0.14-0.19 W/(m·K),比热容为1000-1300 J/(kg·K),线膨胀系数为50-90 × 10^-6 K^-1- 橡胶:导热系数为0.1 W/(m·K),比热容为1700-2300 J/(kg·K),线膨胀系数为80-200 × 10^-6 K^-1以上仅是几种常见材料的热物性参数,实际上不同的材料具有不同的热物性参数,因此在具体工程中应根据实际情况进行选择和计算。

各种材料的热膨胀系数

各种材料的热膨胀系数

各种材料的热膨胀系数
首先,让我们来看一下金属材料的热膨胀系数。

金属是常用的工程材料,其热
膨胀系数一般较大。

例如,铝的线膨胀系数约为23×10^-6/℃,而铁的线膨胀系数
约为11×10^-6/℃。

这意味着在相同温度变化下,铝材料的长度变化会比铁材料更
显著。

因此,在工程设计中,需要考虑到材料的热膨胀系数,避免因温度变化而引起的尺寸变化对设备和结构的影响。

除了金属材料,非金属材料的热膨胀系数也具有一定的特点。

例如,玻璃的体
积膨胀系数约为9×10^-6/℃,而混凝土的体积膨胀系数约为12×10^-6/℃。

相比
之下,玻璃的热膨胀系数较小,而混凝土的热膨胀系数较大。

这也是为什么在建筑结构中会使用玻璃作为窗户材料,而不会将混凝土用于窗框的原因之一。

此外,塑料等聚合物材料的热膨胀系数也是工程设计中需要考虑的因素。

聚合
物材料的热膨胀系数一般较大,而且会随着温度的升高而增大。

因此,在高温环境下,聚合物材料的热膨胀效应会更加显著,需要特别注意。

总的来说,不同材料的热膨胀系数各有特点,工程设计中需要根据实际情况选
择合适的材料。

同时,通过合理的结构设计和材料组合,也可以减小热膨胀效应对设备和结构的影响。

希望本文对读者对各种材料的热膨胀系数有所帮助,谢谢阅读!。

什么是线膨胀系数

什么是线膨胀系数

什么是线膨胀系数一般指由于外界温度、压力(主要指温度)变化时,物体的线性尺寸随温度、压力(主要指温度)的变化率。

如铁温度每升高1度,长或宽或高尺寸增加12X10^-6,即增加0.0012%。

对应地还有体膨胀系数,即物体的体积随温度的变化率。

对于各向同性的物体,线膨胀系数较小时,体膨胀系数是线膨胀系数的3倍略多一点。

金属材料线膨胀系数的测量线膨胀系数在数值上等于当温度升高1℃时固体材料单位长度的伸长量。

对于不同的物质,线膨胀系数不同。

一般来说,塑料的线膨胀系数较大,金属的次之,熔凝石英的较小。

常见几种材料的线膨胀系数的数量级物质在一定的温度和压力下具有一定的体积。

温度变化时,物质的体积亦相应地变化。

物质的体积随温度升高而增大的现象称为热膨胀。

物质的热膨胀是由于构成物质的原子间的平均距离随温度升高而增大造成的。

物质的热膨胀性质与物质的结构、键型、键力、比热容、熔点等密切相关。

因此,不同的物质或者组成相同结构不同的物质,具有不同的热膨胀性质,常用体积膨胀系数这一物理量来表征物质的不同热膨胀性质。

固体材料在一维方向上的热膨胀伸长称为线膨胀,用线膨胀系数来描述不同物质的线膨胀特性。

物体的热膨胀性质反映了材料本身的属性,测量材料的线膨胀系数,不仅对新材料的研制具有重要意义,而且也是选用材料的重要指标之一。

在工程结构设计(如桥梁、铁路轨道、电缆工程等)、机械和仪表的制造、材料的加工和焊接等过程中都必须考虑材料的热膨胀特性。

材料的热膨胀特性也有许多有利方面的应用,如液体温度计、喷墨打印机等等。

在测量材料线膨胀系数的常用方法中,关键是测量材料受热膨胀后的微小长度伸长量。

这一微小长度变化量用一般的长度测量仪器很难测准,一般需要采用放大测量方法、借助测微装置或仪器来测量,如光杠杆光学放大法、千分尺螺旋放大法、光学干涉法等。

本实验采用非电量电测法通过霍尔位移传感器测量微小的长度变化。

【预习提示】1.什么是线膨胀系数?测量线膨胀系数需要测量哪些相关物理量?2.霍尔位移传感器的基本工作原理是什么?3.什么是定标?4.怎样设计测量数据记录表?【实验目的】1.掌握测量线膨胀系数的基本原理。

聚碳酸酯(PC)的各种性能及其成型特性(个人总结含图表)

聚碳酸酯(PC)的各种性能及其成型特性(个人总结含图表)

聚碳酸酯(PC)的性能聚碳酸酯(PC)是一种线型碳酸聚酯,分子中碳酸基团与另一些基团交替排列,这些基团可以是芳香族,可以是脂肪族,也可以两者皆有。

双酚A型PC 是最重要的工业产品。

双酚A型PC是一种无定形的工程塑料,具有良好的韧性、透明性和耐热性。

碳酸酯基团赋予韧性和耐用性,双酚A基团赋予高的耐热性。

而PC的一些主要应用至少同时要求这两种性能。

表2-30列出了通用级聚碳酸酯的性能。

表2-30 通用级聚碳酸酯的性能性能数值性能数值拉升强度/MPa60-70玻璃环转变温度/℃150拉伸率(%)60-130熔融温度/℃220-230弯曲强度/MPa100-120比热容/[J/(g.℃)]1.17弯曲弹性模量/GPa2.0-2.5热导率/[W/(m .℃)]0.24压缩强度/MPa80-90 线膨胀系数/(x10-5/℃)5-7简支梁冲击强度(缺口)/(kJ/m2) 50-70 热变形温度(1.82MPa)/℃130-140 布氏硬度150-160 热分解温度/℃≥340力学性能聚碳酸酯的缺点是耐疲劳强度较低,耐磨性较差,摩擦因数大。

聚碳酸酯制品容易产生应力开裂,内应力产生的原因主要是由于强迫取向的大分子间相互作用造成的。

如果将聚碳酸酯的弯曲试样进行挠曲并放置一定时间,当超过其极限应力时便会发生微观撕裂。

在一定应变下发生微观撕裂时间与应力之间的关系依赖于聚碳酸酯的平均相对分子质量。

如果聚碳酸酯制品在成型加工过程中因温度过高等原因发生分解老化,或者制品本身存在缺口或熔接缝,以及制品在化学气体中使用,那么,发生微观撕裂的时间将会大大缩短,其极限应力值也将大幅度下降。

热性能聚碳酸酯的耐热性较好,未填充聚碳酸酯的热变形温度大约为130℃,玻璃纤维增强后可使这个数值再增加10℃。

长期使用温度可达120℃,同时又具有优良的耐寒性,脆化温度为-100℃。

低于100℃时,在负载下的蠕变率很低。

聚碳酸酯没有明显的熔点,在220-230℃呈熔融状态。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程塑料的热导率低、导热性较差。

热导率一般约为0.22W/(m·K),是铜的万分之六,不到钢铁材料的百分之一,是优良的绝热、保温材料。

热导率随温度升高变化不大,结晶型塑料的热导率随温度升高有所下降。

工程塑料的比热容比金属及无机材料大,一般为1-2kj/(kg·K),是钢铁材料的2-4倍。

工程塑料的线膨胀系数比金属和陶瓷大,是金属材料的3-10倍,因此,工程塑料制品容易因温度变化而影响尺寸的稳定性。

线膨胀系数随温度的升高而增大,但不是线性关系。

表1-3列出了工程塑料的热性能。

表1-4列出了一些工程塑料的线膨胀系数。

表1-3塑料的热性能
表1-4工程塑料的线膨胀系数。

相关文档
最新文档