电脑主板供电电路图分析
第八章 主板供电电路
第八章 主板供电电路分析及故障检修
8.2 .1 CPU供电电路组成 供电电路组成 (2)电感线圈 电感线圈是由导线在铁氧体磁芯环或磁棒上绕制而 成的。有线圈式、直立式、和固太式等几种。 CPU供电电路中电感线圈主要包括两种: 滤波电感:对电流进行滤波。 储能电感:它和场效应管、电容配合为CPU供 电。另外根据线圈蓄能的特点,实际电路中常利 用电感和电容组成低通滤波系统,过虑供电电路 中的高频杂波,以便向CPU干净的供电电流。
第八章 主板供电电路分析及故障检修
8.2 .2 CPU供电电路的工作原理 供电电路的工作原理 以上供电原理是所有主板最基本的供电原理。在实 际的主板中,根据不同型号CPU工作的需要, CPU的供电方式又分为许多种,主要有:
单相供电电路 两相供电电路 三相供电电路 四相供电电路 六相供电电路 多相供电电路等
第八章 主板供电电路分析及故障检修
8.2 .1 CPU供电电路组成 供电电路组成 (3)滤波电容 CPU供电电路中的电容一般采用的是大家通常所讲的“普通 电容”,图8-6所示。 在电路中电容具有“隔直通交”的特点,其作用包括: 滤波:大部分都用在直流转换后的滤波电路中,利用其 充放电特性,在储能电感的配合下,将脉冲直流电变成 较为平滑的直流电。一般大容量的电容适用于滤除低频 杂波,而小容量的电容滤除较高频杂波的效果比较好。 去耦:防止信号在电路间串扰。 耦合:用于将两个电路的直流电位进行隔离时使信号在 电路间传送。
第八章 主板供电电路分析及故障检修 8.2 .1 CPU供电电路组成 供电电路组成 (4)场效应管(MOSFET) 场效应管在供电电路中的作用: 在电源管理芯片脉冲信号的饿驱动下,不断 地导通和截止,然后将ATX电源输出的 电能储存在电感中,然后释放给负载。在 主板供电电路中,场效应管性能和数量, 通常决定着供电电路的性能。
(完整版)主板供电电路图解说明
主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
主板上的供电电路原理图1图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
图2但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
电脑主板供电电路图分析
1、结合msi-7144主板电路图分析主板四大供电的产生
一、四大供电的产生
1、CPU供电:
电源管理芯片:
场馆为6个N沟道的Mos管,型号为06N03LA,此管极性与一般N沟道Mos管不同,从左向右分别是S D G,两相供电,每相供电,一个上管,两个下管;
CPU供电核心电压在上管的S极或者电感上测量;
2、内存供电:
DDR400内存供电的测量点:
1、VCCDDR7脚位:VDD25SUS
MS-6 控制两个场管Q17 ,Q18产生 VDD25SUS 电压,如图:
VDD25SUS测量点在Q18的S极;
2、总线终结电压的产生
3参考电压的产生
VDD25SUS经电阻分压得到的;
3、总线供电:通过场管Q15产生 VDD_12_A.
4、桥供电:VCC2_5通过LT1087S 降压产生,LT1087S 1脚输入,2脚输出,3脚调整,与常见的1117稳压管功能相同;
5、其他供电
1AGP供电:A1脚 12V供电,A64脚:VDDQ
2、结合跑线分析intel865pcd主板电路
因找不到intel865pcd电路图,只能参考865pe电路图,结合跑线路完成分析主板的电路;
一、Cpu主供电Vcore
cpu主供电为2相供电,一个电源管理芯片控制连个驱动芯片,共8个场管,每相4个场管,上管、下管各两个,cpu 主供电在测量点在电感或者场管上管的S极测量;
二、内存供电
1、内存第7脚,场管Q6H1 S脚测量电压
参考电路图:
在这个电路图中,Q42 D极输出内存主供电,一个场管的分压基本上在,两个场管分压,、基准电压的产生:由分压产生,内存第一脚测量,。
如何看主板供电 - 专业讲述【图解】
如何看主板供电如果我们想掌握主板质量就必须深入了解主板供电电路,它负责电源电压——即+ 12v -并转化为CPU所需的适当电压,内存,芯片和其他电路的供给。
接下来,我们将更深入了解供电模块,如何鉴别该电路,它是如何工作的,最常见的元件以及如何确定优质部件。
想了解整个主板的质量和使用寿命,判断供电模块的质量是最好的途径之一。
一个好的供电模块输出将不会有任何的电压波动或杂波,其提供了CPU和其它部件干净和平稳的电压。
一个差的供电模块可以导致电压波动及杂波,乃致故障如电脑重启、死机、声名狼藉的的蓝屏。
如果该电路采用劣质的铝电解电容,它们将泄漏,鼓胀甚至爆炸。
其在主板电路中往往是易损件。
而一个高质量供电模块电路可以确保你有一个稳定的系统,经久耐用。
供电电路很容易识别。
因为它是唯一采用电感(线圈)的主板电路,电感附近一般就能找到供电模块。
通常供电模块环绕在CPU四周;不过你会发现一些电感散布在主板上,通常靠近内存和临近南桥芯片,同样的他们为这些组件提供所需电压。
图1:供电模块的电路。
解释工作原理前,先让让你熟悉供电模块的主要部件。
1.认识一下主要元件供电模块的主要元件,前面已提到的,1电感(可以由两种材料组成,铁芯或铁素体)、2.晶体管、3.电容(好的主板将提供耐久的铝电解电容)。
晶体管供电模块电路用称为MOSFET(金属氧化物半导体场效应晶体管) 的技术所制造,人们简称为―MOSFET‖。
有些主板来用被动冷却–散热器以冷却―MOSFET‖。
还有另一个非常重要的元件称为―PWM‖控制器,以及同样设计精良细小的―MOSFET driver‖。
接下来将解释他们的功用。
图2:供电模块的特写图3:主板上的被动冷却方式:散热器2.现在让我们深入介绍每个元件如前所述,你可以找到两种用于供电模块的电感: 铁芯或铁素体。
相对于铁芯电感,铁素体电感功率损耗更低:据技嘉称低了25%(技嘉在主板界的权威地位可见一斑,后面还会提到),较低的电磁干扰和更好的抗锈性。
计算机主板各供电电路图解
计算机主板各供电电路图解主板上的供电电路常见有CPU供电电路,内存供电电路,AGP、PCI、ISA供电电路以及I/O供电电路等,这些电源电路一种是开关电源,由双场效应管(MOSFT管)和电感线圈、电解电容组成;另一种是低压差线性调压芯片组成的调压电路。
这两种电路都能够为主板上不同的芯片和组件提供精密的电源电压。
1、CPU供电电路为了降低CPU制造成本,CPU核心电压变得越来越低,于是把ATX电源供给主板的12V、5V和3.3V直流电通过CPU的供电电路来进行高直流电压到低直流电压转换。
(1)CPU供电电路组成由于CPU工作在高频、大电流状态,它的功耗非常大。
因此,CPU供电电路要求具有非常快速的大电流响应能力,同时干扰少。
CPU供电电路使用开关电源,该电源由控制(电源管理)芯片、场效应管、电感线圈和电解电容等元件组成,其中控制芯片主要负责识别CPU供电幅值,振荡产生相应的矩形波,推动后级电路进行功率输出(控制芯片的型号常见有:HIP630l、CS5301、TL494、FAN5056等),场效应管起开关控制作用,电感线圈和电解电容起滤波作用。
主板的CPU供电电路框图如图1所示。
主板的CPU供电电路框:图1 CPU供电电路框图开机后,当控制芯片获得ATX电源输出的+5V或+12V供电后,为CPU提供电压,接着CPU电压自动识别引脚发出电压识别信号VID 给控制芯片,控制芯片通过控制两个场效应管导通的顺序和频率,使其输出的电压与电流达到CPU核心供电要求,为CPU提供工作需要的供电。
CPU的供电方式又分为许多种,有单相供电电路、两相供电电路、多相供供电电路。
(2)CPU供电电路原理图2是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源。
+12V是来自ATX电源的输入,通过一个由电感线圈L1和电容C1组成的滤波电路,然后进入两个开关管(场效应管)组成的电路,此电路受到PMW控制芯片控制(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的输出所要求的电压和电流,再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线,这就是“多相”供电中的“一相”,即单相。
主板上CPU核心供电电路的简单示意图
主板上CPU核心供电电路的简单示意图说明电脑主板供电电路原理(维修系列二)下图(1)下图(2)主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk 效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
电脑主板CPU供电电路原理图解
电脑主板CPI 供电电路原理图解.多相供电模块的优点1. 可以提供更大的电流,单相供电最大能提供25A 的电流,相对现在主流的处 理器来说,单相供电无法提供足够可靠的动力, 所以现在主板的供电电路设计都 采用了两相甚至多相的设计,比如 K7、K8多采用三相供电系统,而LGA755的 Pentium 系列多采用四相供电系统。
2. 可以降低供电电路的温度。
因为多了一路分流,每个器件的发热量就减少了。
3. 利用多相供电获得的核心电压信号也比两相的来得稳定。
一般多相供电的控 制芯片(PWM 芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证 了日后升级新处理器的时候的优势。
.完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。
输入部分由一个电感线圈和一个电容 组成;输出部分同样也由一个电感线圈和一个组成; 控制部分则由一个PW 控制 芯片和两个场效应管(MOS-FE )组成(如图1)。
0丁1艸 ------ 1 中国旭日电器輸入气分I::控制部分中国旭日电器符栋梁CPU 供电外,还要给其它设备的供电,如果做成 单相电路,需要采用大功率的管,发热量很大,成本也比较高。
所以各大主板厂商都采用多相供电回路。
多相供电是将多个单相电路XX 而成的,它可以提供N 倍的电流。
小知识 场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,输出部分 i« IVcor^其应用比较广泛,可以放大、恒流,也可以用作可变电阻。
PWM^片:PWM 卩 Pulse Width Modulation (脉冲宽度调制),该芯 片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。
图2主板上的电感线圈和场效应管 了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。
三.判断方法1. 一个电感线圈、两个场效应管和一个电容构成一相电路。
这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的 个数无关。
3、主板供电电路
主板供电电路当主板开机后,PS-ON变为低电平,从而电源电源开始输出 +3.3V、+5V、+12V 等各路电压为主板供电,主板上常见的供电电路有:内存供电电路,北桥芯片供电电路,南桥芯片供电电路,显卡供电电路,CPU 供电电路,时钟芯片供电电路,共六大电路。
主板供电电路有两种设计方式:一种是调压方式,一种是开关电源控制方式,这两种方式都是为负载提供稳定的直流电和负载所需的足够电流。
主板上的供电都是低压大电流,因此需要专用的供电电路来控制。
主板供电时序:内存供电(VDD-DDR)->北桥芯片供电(VCC-GMCH)->北桥总线电压(VTT-GMCH)->CPU供电(VCORE/VCCP)->显卡供电(VDDQ)->南桥供电->时钟(CLK)内存供电:3.3V、2.5V、1.8V、1.5V北桥供电:3.3V、2.5V、1.8V、1.5V北桥总线:1.2VCPU 供电:1.75V、1.5V(特殊:0.9V)显卡供电:3.3V、1.5V(特殊:0.8V)南桥:5VSB、3.3VSB、1.5VSB、1.2VSB时钟:3.3V、2.5V老主板的供电时序:CPU->内存->北桥->显卡->南桥->时钟内存供电电路一、SDR 内存 3.3V 供电电路(由稳压器和场管组成的调压式供电电路),开机后,南桥会输出一个高电平。
SDR内存供电电路图(3.3V)检修流程:1、测内存槽最后一脚(供电脚)有无 3.3V电压,若有则电压正常,如果内存仍检测不过,则考虑电流供给不足,一般是铝电解电容或场管老化或虚焊造成,可直接更换电容或加焊场管。
2、如果电压不正常,则测 1117 的 3 脚有无 5V 输入电压,有则更换 1117,如果还不行,则测 1117 的两个分压电阻。
3、如果 1117 的 3 脚无输入,则测 MOS 管(集成)的的 S 极有无 5VSB 输入,有则测 G 极有无低电平控制信号,有则更换集成 MOS 管,无则测之前的电阻,更换电阻后仍无输入,则加焊或更换南桥。
电脑主板供电全解析
从奔三后期开始,玩家逐渐接触到多相供电这个概念。
时至今日,CPU三相供电已经成为基本配置,最高供电相数可达夸张的16相,而内存和芯片组供电也开始用上两相乃至三相供电。
数电路相数的时候玩家有时会犯一点错误,甚至一些见多识广的编辑也免不了要犯错,那么如何准确地识别主板供电的相数呢?2010-1-12 22:14回复givinglee 154位粉丝3楼“应该熟悉的元件一”首先让我们来认识一下CPU供电电路的器件,找一片技嘉X48做例子。
上图中我们圈出了一些关键部件,分别是PWM控制器芯片(PWMController)、MOSFET驱动芯片(MOSFET Driver)、每相的MOSFET、每相的扼流圈(Choke)、输出滤波的电解电容(Electrolytic Capacitors)、输入滤波的电解电容和起保护作用的扼流圈等。
下面我们分开来看。
2010-1-12 22:16回复4楼givinglee154位粉丝(图)PWM控制器(PWM Controller IC)在CPU插座附近能找到控制CPU供电电路的中枢神经,就是这颗PWM主控芯片。
主控芯片受VID的控制,向每相的驱动芯片输送PWM的方波信号来控制最终核心电压Vcore的产生。
2010-1-12 22:16回复5楼givinglee154位粉丝MOSFET驱动芯片(MOSFET Driver)MOSFET驱动芯片(MOSFET Driver)。
在CPU供电电路里常见的这个8根引脚的小芯片,通常是每相配备一颗。
每相中的驱动芯片受到PWM主控芯片的控制,轮流驱动上桥和下桥MOS管。
很多PWM控制芯片里集成了三相的Driver,这时主板上就看不到独立的驱动芯片了。
2010-1-12 22:17回复6楼givinglee154位粉丝早一点的主板常见到这种14根引脚的驱动芯片,它每一颗负责接收PWM 控制芯片传来的两相驱动信号,并驱动两相的MOSFET的开关。
#电脑主板供电电路原理图解
电脑主板供电电路原理图解一、多相供电模块的优点:1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。
2.可以降低供电电路的温度。
因为多了一路分流,每个器件的发热量就减少了。
3.利用多相供电获得的核心电压信号也比两相的来得稳定。
一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。
二、完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。
输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。
图1单相供电电路图主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。
所以各大主板厂商都采用多相供电回路。
多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。
小知识:场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其使用比较广泛,可以放大、恒流,也可以用作可变电阻。
PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。
实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。
图2主板上的电感线圈和场效应管了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。
三、判断方法:1.一个电感线圈、两个场效应管和一个电容构成一相电路。
这是最标准的供电系统,很多人认为:判定供电回路的相数和电容的个数无关。
这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。
主板CPU的PWM供电电路路图
主板CPU的PWM供电电路路图这是一个三相供电图,Q1和Q2组成一相,Q3和Q4组成一相,Q5和Q6组成一相。
每一相都是在PWM控制IC(CS5301)的控制下,轮流导流的,而不是同时导通。
CS5301通过Gate1(H)脚输出控制Q1导通与截止,通过Gate2(L)输出控制Q2的导通与截止。
当Gate1(H)输出时,Q1导通,此时Q2截止(Gate1(L)无输出),+12V端L4及滤波电容C15和C16的储能,通过Q1释放并向L1及其后并联的滤波电容充电,L1储能。
当Q1截止Q2导通时,L1上的储能通过Q2向滤波电容充电。
一相完成一个导通截止期后,下一相再工作。
多相轮流工作的好处是,功率管有更多的休息时间,减小了发热。
有的主板为减小发热,每一相上还并联一个MOS管,或预留有并联的位置。
(发给媒体评测的板子就焊上并联管,零售的就取消了变成了预留并联位)因为CPU的供电电压为低电压(1.1-1.8V),而电源为CPU供电的电压比较高(P4为+12V,AMD大部分是+5V现在AMD也越来越多的用+12V供电了),所以Q1通过的电流比Q2要小,Q1可以取指标小点。
同样,储能电感L4的指标也比后面的L1(L2、L3)小,我们在主板实物中看到:如果是环形的L4(和L1、L2、L3外形相同),但它上面绕的线也比L1等要稀。
这也是我们在一些主板上看到MOS管大小不一样的情景。
大多数主板为了采购生产方便,Q1和Q2型号相同。
以上实质上就是一个DC-DC变换,L4及C15-16组成前级DC。
L1(L2、L3及并联的滤波电容)构成后级DC通过上面介绍,我们知道PWM供电电路必须包含前DC-DC的前级电路和DC -DC后级各相组成的电路。
根据这个特点,我们就比较好分辨出主板是几相供电了。
电脑主板供电电路图
电脑主板供电电路图最近一些用户在户户户户主板的户候~越越多的户户到来供户户路~原的只户心芯片户、户展功能和价格从来最近一些用户在户户户户主板的户候~越越多的户户到供户户路~原的只户心芯片户、户展功来从来能和价格~到户在户心到供户~可以看出用户的消户户越越理性。
户户户户主板户如何能户辨户些主来哪板的供户户路有户工料~我户户要户例出户~以富士康的一款主板户大家户一下~之所以户户没减呢从了户款主板~一方面是因户富士康一直户INTEL等代工主板~户量上有保户~一方面是因户会另富士康一直以用的材料有保户~我户也户户一下是否情户。
下面来况属945GZ7MC主板上面有vista PRE户户的LOGO~可户是支持微户最新VISTA 系户的~户在同户的板子中是户户少户的~户当外的收户。
先看一下来CPU供户户路整户~不知道能看出什户端倪,行的行家可能户了,三相供户、体您懂密户户感。
户看明白的~户系~接着看就明白了。
没没您会主板供户的三相相之由已久~在以往户理器户供户户流要求比户低的户候~户户低劣的与两争来三相肯定不如做工户的相户路户定~但是着户理器的功耗和户流不攀升~相供户已户走扎两随断两到了生命的户。
新一代的尽AMD和Intel户理器都户供户提出了更高的要求~所以我户户在看到的三相供户基本已成户户配~而且已户出户多四相供户的主板了。
如果户在户再户二相比三相户定很之户的户~要户就有技户户户能力太低~要户是成心户工料了。
减三相供户的原理太户户了~一下也户不楚~使用者的角度~我户只要知道三相户路可清从以提供更大的户流~户户户的要求也更高一些~户有一些可能是缺点的特点~那就是成本上三相户是大一些。
作户成供户户路重要的三大元器件~我户户是要了解一些的~户就是户容、户感和户效户管。
户构成上户户中的四方户是框个CPU上方的MOS管~四上四下~多户板子都用了上下~户很两两定性要差不少。
MOS管越多越好~的作用是可以防止户流户毁它CPU。
主板供电电路图解说明
主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在C P U电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、C P U插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合发实力和经主板上的供电电路原理图1是主板上C P U核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自AT X电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore现在的P4处理器Vcore=1.525V)这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
主板供电电路分析及故障
第七章主板供电电路分析及检修
滤波电容:滤波、信号去耦、信号耦合。 场效应管:在电源管理芯片的脉冲信号下, 不断的导通与截止、然后将ATX电源输出 的电能存储在电感中,释放给负载。场效 应管的性能和数量,通常决定供电电路的 新能。
第七章主板供电电路分析及检修
2,CPU供电电路的工作原理 CPU供电电路通常采用PWM开关方式供电,由电 源管理芯片根据CPU工作电压需求,向连接的场 管法术脉冲控制信号,场管导通和截止,将电能 储存在电感中,通过电容滤波后向CPU输出工作 电压。
第七章主板供电电路分析及检修
第七章主板供电电路分析及检修
四项供电电路图
第七章主板供电电路分析及检修
单项供电与多项供电的电压波形图
第七章主板供电电路分析及检修
六、多组CPU供电电路 多组供电电路又叫双列直插式供电电路, 应用于一些低端主板上,没有电源保护功 能。 主要有KA7500B、TL494电源管理芯片组成 的供电电路。 多组供电中的低端管用的是二极管 多组CPU供电,由于二极管发热量远大于场 管,不利于系统散热,容易烧毁电路。
第七章主板供电电路分析及检修
四、两项CPU供电电路详解 两项CPU供电电路其实就是两个单项CPU供 电电路并联,所以能提供双倍的单项供电 电流并且能稳定电压。 CPU两项供电电压波形图
第七章主板供电电路分析及检修
两项CPU供电电路有两种: 1,单个电源管理芯片管理两组供电输出。 2,主电源管理芯片管理从电源管理芯片, 从电源管理芯片负责单组的供电输出。 一般常见第二种居多。 主电源管理芯片一般引脚较多,多为16脚以 上。从电源管理芯片多为8脚。
第七章主板供电电路分析及检第七章主板供电电路分析及检修
七、CPU供电电路检修流程 1,外观检查,主要检查是否电容爆浆。 2,检测高端管Q1的D极输入电压是否5V,如不是 则测量D极至ATX红5V供电 3,检测Q1的G极供电是否为3-6V,如不是,Q1悬 空G极,测G点电压。如果没有检查IC供电。 4,检测Q2管G极是否有3-6V电压,如不是,Q2悬 空G极,测G点电压。如果没有检查IC供电。 5,检查IC供电是否正常,PG供电(5V)是否正 常。 6,更换IC。
电脑主板CPU供电电路原理图解
电脑主板CPU供电电路原理图解一.多相供电模块的优点1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。
2.可以降低供电电路的温度。
因为多了一路分流,每个器件的发热量就减少了。
3.利用多相供电获得的核心电压信号也比两相的来得稳定。
一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。
二.完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。
输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。
图1单相供电电路图主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。
所以各大主板厂商都采用多相供电回路。
多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。
小知识场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其应用比较广泛,可以放大、恒流,也可以用作可变电阻。
PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。
实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。
图2 主板上的电感线圈和场效应管了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。
三.判断方法1.一个电感线圈、两个场效应管和一个电容构成一相电路。
这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的个数无关。
这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。
台式机主板供电电路
主板供电电路当主板开机后,PS-ON变为低电平,从而电源电源开始输出 +3.3V、+5V、+12V 等各路电压为主板供电,主板上常见的供电电路有:内存供电电路,北桥芯片供电电路,南桥芯片供电电路,显卡供电电路,CPU 供电电路,时钟芯片供电电路,共六大电路。
主板供电电路有两种设计方式:一种是调压方式,一种是开关电源控制方式,这两种方式都是为负载提供稳定的直流电和负载所需的足够电流。
主板上的供电都是低压大电流,因此需要专用的供电电路来控制。
主板供电时序:内存供电(VDD-DDR)->北桥芯片供电(VCC-GMCH)->北桥总线电压(VTT-GMCH)->CPU供电(VCORE/VCCP)->显卡供电(VDDQ)->南桥供电->时钟(CLK)内存供电:3.3V、2.5V、1.8V、1.5V北桥供电:3.3V、2.5V、1.8V、1.5V北桥总线:1.2VCPU 供电:1.75V、1.5V(特殊:0.9V)显卡供电:3.3V、1.5V(特殊:0.8V)南桥:5VSB、3.3VSB、1.5VSB、1.2VSB时钟:3.3V、2.5V老主板的供电时序:CPU->内存->北桥->显卡->南桥->时钟内存供电电路一、SDR 内存 3.3V 供电电路(由稳压器和场管组成的调压式供电电路),开机后,南桥会输出一个高电平。
SDR内存供电电路图(3.3V)检修流程:1、测内存槽最后一脚(供电脚)有无 3.3V电压,若有则电压正常,如果内存仍检测不过,则考虑电流供给不足,一般是铝电解电容或场管老化或虚焊造成,可直接更换电容或加焊场管。
2、如果电压不正常,则测 1117 的 3 脚有无 5V 输入电压,有则更换 1117,如果还不行,则测 1117 的两个分压电阻。
3、如果 1117 的 3 脚无输入,则测 MOS 管(集成)的 S 极有无 5VSB 输入,有则测 G 极有无低电平控制信号,有则更换集成 MOS 管,无则测之前的电阻,更换电阻后仍无输入,则加焊或更换南桥。
电脑主板CPU供电电路原理图解
电脑主板C P U供电电路原理图解Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】电脑主板CPU供电电路原理图解一.多相供电模块的优点1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。
2.可以降低供电电路的温度。
因为多了一路分流,每个器件的发热量就减少了。
3.利用多相供电获得的核心电压信号也比两相的来得稳定。
一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。
二.完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。
输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。
图1单相供电电路图主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。
所以各大主板厂商都采用多相供电回路。
多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。
小知识场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其应用比较广泛,可以放大、恒流,也可以用作可变电阻。
PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。
实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。
图2 主板上的电感线圈和场效应管了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。
三.判断方法1.一个电感线圈、两个场效应管和一个电容构成一相电路。
电脑主板供电全解析(祥图)
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载电脑主板供电全解析(祥图)地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容•2010-1-12 22:14•回复••givinglee•154位粉丝•“应该熟悉的元件一”首先让我们来认识一下CPU供电电路的器件,找一片技嘉X48做例子。
上图中我们圈出了一些关键部件,分别是PWM控制器芯片(P WM Controller)、MOSFET驱动芯片(MOSFET Driver)、每相的MOSFET、每相的扼流圈(Choke)、输出滤波的电解电容(Electrolytic Capacitors)、输入滤波的电解电容和起保护作用的扼流圈等。
下面我们分开来看。
•2010-1-12 22:16 •回复••givinglee•154位粉丝•(图)PWM控制器(PWM Controller IC)在CPU插座附近能找到控制CPU供电电路的中枢神经,就是这颗PWM主控芯片。
主控芯片受VID的控制,向每相的驱动芯片输送PWM的方波信号来控制最终核心电压Vcore的产生。
•2010-1-12 22:16•回复5楼••givinglee•154位粉丝•MOSFET驱动芯片(MOSFET Driver)MOSFET驱动芯片(MOSFET Driver)。
在CPU供电电路里常见的这个8根引脚的小芯片,通常是每相配备一颗。
每相中的驱动芯片受到PWM主控芯片的控制,轮流驱动上桥和下桥MOS管。
很多PWM控制芯片里集成了三相的Driver,这时主板上就看不到独立的驱动芯片了。
•2010-1-12 22:17•回复6楼••givinglee•154位粉丝•早一点的主板常见到这种14根引脚的驱动芯片,它每一颗负责接收PWM控制芯片传来的两相驱动信号,并驱动两相的MOSFET的开关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、结合msi-7144主板电路图分析主板四大供电的产生
一、四大供电的产生
1、CPU供电:
电源管理芯片:
场馆为6个N沟道的Mos管,型号为06N03LA,此管极性与一般N沟道Mos管不同,从左向右分别是S D G,两相供电,每相供电,一个上管,两个下管。
CPU供电核心电压在上管的S极或者电感上测量。
2、内存供电:
DDR400内存供电的测量点:
(1)、VCCDDR(7脚位):VDD25SUS
MS-6 控制两个场管Q17 ,Q18产生VDD25SUS 电压,如图:
VDD25SUS测量点在Q18的S极。
(2)、总线终结电压的产生
(3)参考电压的产生
VDD25SUS经电阻分压得到的。
3、总线供电:通过场管Q15产生VDD_12_A.
4、桥供电:VCC2_5通过LT1087S 降压产生,LT1087S 1脚输入,2脚输出,3脚调整,与常见的1117稳压管功能相同。
5、其他供电
(1)AGP供电:A1脚12V供电,A64脚:VDDQ
2、结合跑线分析intel865pcd主板电路
因找不到intel865pcd电路图,只能参考865pe电路图,结合跑线路完成分析主板的电路。
一、Cpu主供电(Vcore)
cpu主供电为2相供电,一个电源管理芯片控制连个驱动芯片,共8个场管,每相4个场管,上管、下管各两个,cpu 主供电在测量点在电感或者场管上管的S极测量。
二、内存供电
1、内存第7脚,场管Q6H1S脚测量2.5v电压
参考电路图:
在这个电路图中,Q42 D极输出2.5V内存主供电,一个场管的分压基本上在0.4-0.5V,两个场管分压0.8V,3.3-0.8=2.5V 2、基准电压的产生:由2.5V分压产生,内存第一脚测量,。