人教版、苏教版初中数学知识点总结

合集下载

最新苏教版初中数学知识点归纳汇总(七、八、九年级)

最新苏教版初中数学知识点归纳汇总(七、八、九年级)

第一部分教材知识梳理系统复习

第一单元数与式 第1讲实数

知识清单梳理

知识点一:实数的概念及分类

③开方开不尽的数:女口,;④三角

负实数

无限不循环小数

关键点拨及对应举例

(1

) 按定义

(1)0既不属于正数,也不属于负数.

(2)按正、负性分

(2)无理数的几种常见形式判断:①

有理数

限小澈或 正有理数

正实数

含π的式子;②构造型:如

3.010010001…(每两个1之间多

个0)就是一个无限不循环小数;

负有理数

函数型:女口 sin60 ° tan25 °

1.实数

限循环小数 实数 0

(3)失分点警示:开得尽方的含根号

实数

的数属于有理数,如=2,=-3 ,它们 正无理

都属于有理数.

最后加减;同级运算,从 左

向右进行;如有括号,先 做括号内的运算,按小括 号、

中括号、大括号一次进

行.计算时,可以结合运 算律,

使问题简单化

第2讲整式与因式分解

二、知识清单梳理

10.混合运算

第3讲分式三、知识清单梳理

第4讲二次根式四、知识清单梳理

第二单元方程(组)与不等式(组)

第5讲一次方程(组)

五理

第6讲一元二次方程六、知识清单梳理

第7讲分式方程

七理

第8讲一元一次不等式(组) 八、知识清单梳理

元一次不等

式,贝U m的值

为-1.

(1)步骤:去分母;去括号;移项;合并同类项;系数化为1

.

失分点警示

系数化为1

4.解知识点三(2)解集在数轴上表示

x> a

兀一次不等式组的定义及其解法

5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.

6.解

先分别求岀各个不等式的解集,再求岀各个解集的公共部分

7.不

苏教版初中数学知识点总结(适合打印)

苏教版初中数学知识点总结(适合打印)

初中数学知识点大全

第一章 实数

一、 重要概念

1.数的分类及概念 数系表:

2.非负数:正实数与零的统称。(表为:x ≥0) 常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。 3.倒数: ①定义及表示法 ②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法 ②性质:A.a ≠0时,a ≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。 5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数) 7.绝对值:①定义(两种):

代数定义:

几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 二、实数的运算

运算法则(加、减、乘、除、乘方、开方)

运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)

运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。 第二章 代数式

1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做

苏教版初中数学知识点总结(适合打印)

苏教版初中数学知识点总结(适合打印)

.

.

初中数学知识点大全

第一章 实数 一、

重要概念

1.数的分类及概念 数系表:

2.非负数:正实数与零的统称。〔表为:x ≥0〕 常见的非负数有:

性质:假设干个非负数的和为0,那么每个非负担数均为0。 3.倒数: ①定义及表示法

②性质:A.a≠1/a〔a≠±1〕;B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。 4.相反数: ①定义及表示法

②性质:A.a≠0时,a≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。 5.数轴:①定义〔“三要素〞〕

②作用:A.直观地比拟实数的大小;B.明确表达绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数〔正整数—自然数〕 定义及表示:奇数:2n-1 偶数:2n 〔n 为自然数〕 7.绝对值:①定义〔两种〕: 代数定义:

几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。 ②│a│≥0,符号“││〞是“非负数〞的标志; ③数a 的绝对值只有一个;

④处理任何类型的题目,只要其中有“││〞出现,其关键一步是去掉“││〞符号。

实数

无理数(无限不循环小数)

有理数

正分数 负分数 正整数 0 负整数 (有限或无限循环性整数

分数

正无理数

负无理数 0

实数

负数

整数 分数 无理数

有理数

正数

整数

分数

无理数

有理数

│a │ 2a

a (a ≥0)

(a 为一切实数) a(a≥0) -a(a<0)

│a │=

二、实数的运算

运算法那么〔加、减、乘、除、乘方、开方〕

运算定律〔五个—加法[乘法]交换律、结合律;[乘法对加法的分配律〕

苏教版初中数学知识点总结(适合打印)

苏教版初中数学知识点总结(适合打印)

初中数学知识点大全

第一章 实数 一、

重要概念

1.数的分类及概念 数系表:

2.非负数:正实数与零的统称。(表为:x ≥0) 常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法 ②性质:≠1/a (a≠±1);a 中,a≠0;<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法 ②性质:≠0时,a≠-a; 与-a 在数轴上的位置; C.和为0,商为-1。

5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数)

实数

无理数(无限不循环小数)

有理数

正分数 负分数 正整数 0 负整数 (有限或无限循环性整数

分数

正无理数

负无理数

实数

负数

整数 分数

无理数

有理数

正数

整数

分数

无理数

有理数

│a │ 2a

a (a ≥0)

(a 为一切实数)

7.绝对值:①定义(两种):

代数定义:

几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。 ②│a│≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 二、实数的运算

运算法则(加、减、乘、除、乘方、开方)

运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)

运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号

苏教版初中数学知识点总结(适合打印)

苏教版初中数学知识点总结(适合打印)

初中数学知识点大全

第一章 实数 一、

重要概念

1.数的分类及概念 数系表:

2.非负数:正实数与零的统称。(表为:x ≥0) 常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法 ②性质:A.a≠1/a (a≠±1);B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法 ②性质:A.a≠0时,a≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。

5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数)

实数

无理数(无限不循环小数)

有理数

正分数 负分数 正整数 0 负整数 (有限或无限循环性整数

分数

正无理数

负无理数

实数

负数

整数 分数

无理数

有理数

正数

整数

分数

无理数

有理数

│a │ 2a

a (a ≥0)

(a 为一切实数)

定义及表示:奇数:2n-1 偶数:2n (n 为自然数) 7.绝对值:①定义(两种):

代数定义:

几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。 ②│a│≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 二、实数的运算

运算法则(加、减、乘、除、乘方、开方)

运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)

运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。 第二章 代数式

(完整版)苏教版初中数学知识点总结(适合打印)

(完整版)苏教版初中数学知识点总结(适合打印)
⑵算术平方根与绝对值
1联系:都是非负数, =│a│②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化:把分母中的根号划去叫做分母有理化。
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
㈤注意单位换算如,“小时”“分钟”的换算;s、v、t单位的一致等。
第六章 一元一次不等式(组)
1.定义:a>b、a<b、a≥b、a≤b、a≠b。
2.一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。
3.一元一次不等式组:
4.不等式的性质:⑴a>b←→a+c>b+c⑵a>b←→ac>bc(c>0)
6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线⑴中点配中点构成中位线; ⑵加倍中线; ⑶添加辅助平行线
8.证明方法
⑴直接证法:综合法、分析法⑵间接证法—反证法:①反设②归谬③结论
⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法
⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来
11.科学记数法: (1≤a<10,n是整数)
第三章 统计初步

苏教版初中数学最全面知识点大全

苏教版初中数学最全面知识点大全

七年级数学(上)知识点

人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.

第一章 有理数

一. 知识框架

二.知识概念

1.有理数:

(1)凡能写成)0p q ,p (p

q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;

(2)有理数的分类: ① ⎪⎪⎩

⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)

0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

苏教版初中数学知识点总结(适合打印)

苏教版初中数学知识点总结(适合打印)

初中数学知识点大全

第一章 实数

一、 重要概念

1.数的分类及概念 数系表:

2.非负数:正实数与零的统称。(表为:x ≥0)

常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。 3.倒数: ①定义及表示法 ②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。 4.相反数: ①定义及表示法 ②性质:A.a ≠0时,a ≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。 5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数) 7.绝对值:①定义(两种):

代数定义:

几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 二、实数的运算

运算法则(加、减、乘、除、乘方、开方)

运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)

运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。 第二章 代数式

1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做

苏教版人教版初中数学中考必考知识点21个

苏教版人教版初中数学中考必考知识点21个

苏教版人教版初中数学中考必考知识点21个

必考的21个知识点

1.数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

2.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值

1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.

2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)

4.有理数大小比较

苏教版初中数学最全面知识点大全

苏教版初中数学最全面知识点大全

苏教版初中数学最全面知识点大全

苏教版初中数学包含了丰富的知识点,从基础的四则运算和整数,到代数、几何和概率统计等各个方面。以下是一个基本的数学知识点大全,供你参考:

1. 四则运算及其性质

- 加法

- 减法

- 乘法

- 除法

2. 整数

- 整数的读写与比较

- 整数的加减乘除

- 整数的绝对值和相反数 - 整数的乘方和乘方根

3. 分数

- 分数的读写与比较

- 分数的加减乘除

- 分数的化简与约分

- 分数的运算性质

4. 小数

- 小数的读写与比较

- 小数的加减乘除

- 小数与分数的相互转换

- 小数的运算性质

5. 负数

- 负数的加减乘除

- 负数的乘方和乘方根

- 负数在实际问题中的应用

6. 代数与方程

- 代数式的化简

- 简单方程的求解

- 一元一次方程与二元一次方程的求解 - 一次方程组的解法

7. 平面图形与空间图形

- 直线和角的性质

- 三角形、四边形、多边形的性质

- 圆和圆的性质

- 立体图形的名称和性质

8. 空间几何

- 直线和面的关系

- 线段、角的部分与线段的垂直、平行关系 - 平行线的判定及其性质

- 同位角、内错角和同旁内角的性质

9. 比例与相似

- 比例的概念与性质

- 比例的四则运算

- 图形的相似性质与相似判定

- 相似三角形的性质和应用

10. 数据分析

- 平均数、中位数、众数的概念与计算 - 简单统计图的绘制与分析

- 折线图、柱状图、扇形图的制作与应用 - 概率的概念与计算

11. 几何证明

- 线段垂直的证明

- 等腰三角形性质的证明

- 相等角、相似三角形的证明

- 过定点作直线的证明

以上只是一些基本的数学知识点,初中数学知识非常广泛,无法一一列举。希望这些知识点对你有所帮助。如果你对特定的知识点有问题,欢迎继续提问。

最完整苏教版初中数学知识点总结(精华版)

最完整苏教版初中数学知识点总结(精华版)

初中数学知识点大全

第一章 实数 正整数

0 负整数 正分数 负分数 一、

重要概念

整数

( 有 限或无 分数

限循 环性 有理数

1.数的分类及概念 数系表:

实数

正无理数

负无理数

有理数

无理数 (无限不循环小数 ) 整数 分数

正数

无理数

实数

整数 2.非负数: 正实数与零的统称。(表为:x ≥ 0) 常见的非负数有:

有理数

分数

负数

2

a

无理数

(a 为一切实数 ) │a │ a (a ≥0)

性质:若干个非负数的和为 0,则每个非负担数均为 0。 3.倒数: ①定义及表示法

②性质: A.a ≠1/a (a ≠±)1;B.1/a 中, a ≠0;C.0<a <1 时 1/a > 1;a > 1 时, 1/a <1;D. 积为 1。 4.相反数: ①定义及表示法

②性质: A.a ≠0时, a ≠-a;B.a 与-a 在数轴上的位置 ;C.和为 0, 商为-1。 5.数轴:①定义(“三要素”)

②作用: A. 直观地比较实数的大小 ;B. 明确体现绝对值意义 ;C. 建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数: 2n-1 偶数: 2n (n 为自然数) 7.绝对值:①定义(两种) : 代数定义:

a(a ≥ 0) -a(a<0)

│a │=

几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。 ②│a │≥ 0符, 号 “││是”“非负数 ”的标志 ; ③数 a 的绝对值只有一个 ;

二、实数的运算

运算法则(加、减、乘、除、乘方、开方)

(完整版)苏教版初中数学知识点总结(适合打印)

(完整版)苏教版初中数学知识点总结(适合打印)

初中数学知识点大全

第一章 实数 一、

重要概念

1.数的分类及概念 数系表:

2.非负数:正实数与零的统称。(表为:x ≥0) 常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法 ②性质:A.a≠1/a (a≠±1);B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法 ②性质:A.a≠0时,a≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。

5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数)

实数

无理数(无限不循环小数)

有理数

正分数 负分数 正整数 0 负整数 (有限或无限循环性整数

分数

正无理数

负无理数

实数

负数

整数 分数

无理数

有理数

正数

整数

分数

无理数

有理数

│a │ 2a

a (a ≥0)

(a 为一切实数)

7.绝对值:①定义(两种):

代数定义:

几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。 ②│a│≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 二、实数的运算

运算法则(加、减、乘、除、乘方、开方)

运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)

运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括

人教版、苏教版初中数学知识点总结

人教版、苏教版初中数学知识点总结

七年级数学(上)知识点

人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.

第一章有理数

一.知识框架

二.知识概念

1.有理数:

(1)凡能写成

)0

p

q,p(

p

q

为整数且

形式的数,都是有理数.正整数、0、负整数统称整数;

正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;π不是有理数;

(2)有理数的分类: ①

负分数

负整数

负有理数

正分数

正整数

正有理数

有理数

⎪⎩

负分数

正分数

分数

负整数

正整数

整数

有理数

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为:

⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

苏教版初中数学知识点总结(适合打印)

苏教版初中数学知识点总结(适合打印)

初中数学知识点大全

第一章 实数 一、

重要概念

1.数的分类及概念 数系表:

2.非负数:正实数与零的统称。(表为:x ≥0) 常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法 ②性质:A.a≠1/a (a≠±1);B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法 ②性质:A.a≠0时,a≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。

5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数)

实数

无理数(无限不循环小数)

有理数

正分数 负分数 正整数 0 负整数 (有限或无限循环性整数

分数

正无理数

负无理数

实数

负数

整数 分数

无理数

有理数

正数

整数

分数

无理数

有理数

│a │ 2a

a (a ≥0)

(a 为一切实数)

7.绝对值:①定义(两种):

代数定义:

几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。 ②│a│≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 二、实数的运算

运算法则(加、减、乘、除、乘方、开方)

运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)

运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。 第二章 代数式

苏教版初中数学知识点总结(适合打印)

苏教版初中数学知识点总结(适合打印)

初中数学知识点大全

第一章 实数 一、

重要概念

1.数的分类及概念 数系表:

2.非负数:正实数与零的统称。(表为:x ≥0) 常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法 ②性质:A.a≠1/a (a≠±1);B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法 ②性质:A.a≠0时,a≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。

5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数)

实数

无理数(无限不循环小数)

有理数

正分数 负分数 正整数 0 负整数 (有限或无限循环性整数

分数

正无理数

负无理数

实数

负数

整数 分数 无理数

有理数

正数

整数

分数

无理数

有理数

│a │

(a ≥0)

(a 为一切实数)

7.绝对值:①定义(两种):

代数定义:

几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。 ②│a│≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 二、实数的运算

运算法则(加、减、乘、除、乘方、开方)

运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)

运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。 第二章 代数式

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(上)知识点

人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.

第一章有理数

一.知识框架

二.知识概念

1.有理数:

(1)凡能写成

)0

p

q,p(

p

q

为整数且

形式的数,都是有理数.正整数、0、负整数统称整数;

正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;π不是有理数;

(2)有理数的分类: ①

负分数

负整数

负有理数

正分数

正整数

正有理数

有理数

⎪⎩

负分数

正分数

分数

负整数

正整数

整数

有理数

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为:

⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上

a 1

;89(a

-b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,

这种记数法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:先乘方,后乘除,最后加减.

本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.

体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

第二章整式的加减

一.知识框架

二.知识概念

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

通过本章学习,应使学生达到以下学习目标:

1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

第二章 一元一次方程

一. 知识框架

二.知识概念

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

2.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).

3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).

4.列一元一次方程解应用题:

(1)读题分析法:………… 多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法: ………… 多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

11.列方程解应用题的常用公式:

(1)行程问题: 距离=速度·时间

时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效=

工效工作量工时=;

相关文档
最新文档