四川南充中考数学真题试题(带解析)
2024年四川省南充市中考真题数学试卷含答案解析
2024年四川省南充市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1 )A .点AB .点BC .点CD .点D2.学校举行篮球技能大赛,评委从控球技能和投球技能两方面为选手打分,各项成绩均按百分制计,然后再按控球技能占60%,投球技能占40%计算选手的综合成绩(百分制人选手李林控球技能得90分,投球技能得80分.李林综合成绩为( )A .170分B .86分C .85分D .84分【答案】B【分析】本题考查求加权平均数,利用加权平均数的计算方法,进行求解即可.【详解】解:9060%8040%86⨯+⨯=(分);故选B .3.如图,两个平面镜平行放置,光线经过平面镜反射时,1240∠=∠=︒,则3∠的度数为( )A .80︒B .90︒C .100︒D .120︒【答案】C 【分析】本题考查利用平行线的性质求角的度数,平角的定义求出4∠的度数,再根据平行线的性质,即可得出结果.【详解】解:∵1240∠=∠=︒,∴418012100∠=︒-∠-∠=︒,∵两个平面镜平行放置,∴经过两次反射后的光线与入射光线平行,∴34100∠=∠=︒;故选C .4.下列计算正确的是( )A .235a a a +=B .842a a a ÷=C .236a a a ⋅=D .()326327a a =【答案】D【分析】本题考查整式的运算,根据合并同类项,同底数幂的乘除法则,积的乘方和幂的乘方法则,逐一进行判断即可.【详解】解:A 、23,a a 不能合并,原选项计算错误,不符合题意;B 、844a a a ÷=,原选项计算错误,不符合题意;C 、235a a a ⋅=,原选项计算错误,不符合题意;D 、()326327a a =,原选项计算正确,符合题意;故选D .5.如图,在Rt ABC 中,90306C B BC ∠=︒∠=︒=,,,AD 平分CAB ∠交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A B C .2D .3【答案】C 【分析】本题主要考查解直角三角形和角平分线的性质,垂线段最短,根据题意求得BAC ∠和AC ,结合角平分线的性质得到CAD ∠和DC ,当DE AB ⊥时,线段DE 长度的最小,结6.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A .779(1)x y x y+=⎧⎨-=⎩B .779(1)x y x y +=⎧⎨+=⎩C .779(1)x y x y -=⎧⎨-=⎩D .779(1)x y x y-=⎧⎨+=⎩【答案】A 【分析】根据“如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房”分别列出两个方程,联立成方程组即可.【详解】根据题意有779(1)x y x y+=⎧⎨-=⎩故选:A .【点睛】本题主要考查列二元一次方程组,读懂题意找到等量关系是解题的关键.7.若关于x 的不等式组2151x x m -<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <,∴13m +≥,∴2m ≥;故选B .8.如图,已知线段AB ,按以下步骤作图:①过点B 作BC AB ⊥,使12BC AB =,连接AC ;②以点C 为圆心,以BC 长为半径画弧,交AC 于点D ;③以点A 为圆心,以AD 长为半径画弧,交AB 于点E .若AE mAB =,则m 的值为( )A B C 1D 29.当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或1【答案】A【分析】本题主要考查了一次函数的性质,以及解一元二次方程,分两种情况,当10m +>时和当10+<m ,根据一次函数性质列出关于m 的一元二次方程,求解即可得出答案.【详解】解:当10m +>即1m >-时,一次函数y 随x 的增大而增大,∴当5x =时,6y =,即25(1)16m m +++=,整理得:250m m +=解得:0m =或5m =-(舍去)当10+<m 即1m <-时,一次函数y 随x 的增大而减小,∴当2x =时,6y =,即22(1)16m m +++=,整理得:2230m m +-=解得:3m =-或1m =(舍去)综上,0m =或3m =-,故选:A10.如图是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成.在正方形ABCD 中,10AB =.下列三个结论:①若3tan 4ADF ∠=,则2EF =;②若Rt ABG △的面积是正方形EFGH 面积的3倍,则点F 是AG 的三等分点;③将ABG 绕点A 逆时针旋转90︒得到ADG '△,则BG '的最大值为5.其中正确的结论是( )A.①②B.①③C.②③D.①②③∴2255BO OA AB =+=∴555BG BO OG ''≤+=+即:BG '的最大值为55+故选D .【点睛】本题考查解直角三角形,勾股定理,旋转的性质,解一元二次方程,求圆外一点到圆上一点的最值,熟练掌握相关知识点,并灵活运用,是解题的关键.二、填空题11.计算---a b a b a b 的结果为 .12.若一组数据6,6,m ,7,7,8的众数为7,则这组数据的中位数为.【答案】7【分析】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据13.如图,AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=︒,则ADC ∠= 度.14.已知m 是方程2410x x -=+的一个根,则(5)(1)m m +-的值为.【答案】4-【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x -=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解.【详解】解:∵m 是方程2410x x -=+的一个根,∴241m m +=(5)(1)m m +-255m m m =-+-245m m =+-15=-4=-,故答案为:4-.15.如图,在矩形ABCD 中,E 为AD 边上一点,30ABE ∠=︒,将ABE 沿BE 折叠得FBE ,连接CF ,DF ,若CF 平分BCD ∠,2AB =,则DF 的长为 .∴90CMF CNF ∠=∠=︒,∵四边形ABCD 是矩形,∴90DCM ABC ∠=∠=︒,∴四边形CMFN 是矩形,16.已知抛物线21:C y x mx m =++与x 轴交于两点A ,B (A 在B 的左侧),抛物线22:()C y x nx n m n =++≠与x 轴交于两点C ,D (C 在D 的左侧),且AB CD =.下列四个结论:①1C 与2C 交点为(1,1)-;②4m n +=;③0mn >;④A ,D 两点关于(1,0)-对称.其中正确的结论是 .(填写序号)【点睛】本题考查了二次函数的图象与性质,二次函数与一元二次方程的关系,解一元二次方程,根的判别式,熟练掌握知识点的应用是解题的关键.三、解答题17.先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-.【答案】41x +,7-【分析】本题主要考查了整式的化简求值,运用完全平方公式展开,先算除法,再算加减法,最后代入求值即可.【详解】解:原式()()22443x x x =++-+22443x x x =++--41x =+,当2x =-时,原式4(2)17=⨯-+=-.18.如图,在ABC 中,点D 为BC 边的中点,过点B 作BE AC ∥交AD 的延长线于点E .(1)求证:BDE CDA ≌ .(2)若AD BC ⊥,求证:BA BE =【答案】(1)见解析(2)见解析【分析】本题考查全等三角形的判定和性质,中垂线的判定和性质:(1)由中点,得到BD CD =,由BE AC ∥,得到,E DAC DBE C ∠=∠∠=∠,即可得证;(2)由全等三角形的性质,得到ED AD =,进而推出BD 垂直平分AE ,即可得证.【详解】(1)证明:D 为BC 的中点,BD CD ∴=.,BE AC ∥,E DAC DBE C ∴∠=∠∠=∠;在BDE 和CDA 中,E DAC DBE C BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS BDE CDA ∴ ≌;(2)证明:,BDE CDA △≌△ED AD∴=,AD BC ⊥ BD ∴垂直平分AE ,BA BE ∴=.19.某研学基地开设有A ,B ,C ,D 四类研学项目.为了解学生对四类研学项目的喜爱情况,随机抽取部分参加完研学项目的学生进行调查统计(每名学生必须选择一项,并且只能选择一项),并将调查结果绘制成两幅不完整的统计图,(如图).根据图中信息,解答下列问题:(1)参加调查统计的学生中喜爱B 类研学项目有多少人?在扇形统计图中,求C 类研学项目所在扇形的圆心角的度数.(2)从参加调查统计喜爱D 类研学项目的4名学生(2名男生2名女生)中随机选取2人接受访谈,求恰好选中一名男生一名女生的概率.20.已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.【答案】(1)1k >(2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨21.如图,直线y kx b =+经过(0,2),(1,0)A B --两点,与双曲线(0)my x x=<交于点(,2)C a .(1)求直线和双曲线的解析式.(2)过点C 作CD x ⊥轴于点D ,点P 在x 轴上,若以O ,A ,P 为顶点的三角形与BCD △相似,直接写出点P 的坐标.综上:点P 坐标为(4,0)-或(1,0)-或(1,0)或(4,0).22.如图,在O 中,AB 是直径,AE 是弦,点F 是»AE 上一点,AF BE =,,AE BF 交于点C ,点D 为BF 延长线上一点,且CAD CDA ∠=∠.(1)求证:AD 是O 的切线.(2)若4,BE AD ==,求O 的半径长.23.2024年“五一”假期期间,阆中古城景区某特产店销售A ,B 两类特产.A 类特产进价50元/件,B 类特产进价60元/件.已知购买1件A 类特产和1件B 类特产需132元,购买3件A 类特产和5件B 类特产需540元.(1)求A 类特产和B 类特产每件的售价各是多少元?(2)A 类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A 类特产降价x 元,每天的销售量为y 件,求y 与x 的函数关系式,并写出自变量x 的取值范围.(3)在(2)的条件下,由于B 类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w 元,求w 与x 的函数关系式,并求出每件A 类特产降价多少元时总利润w 最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A 类特产的售价为60元/件,B 类特产的售价为72元/件(2)1060y x =+(010x ≤≤)(3)A 类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,()1根据题意设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元,进一步得到关于x 的一元一次方程求解即可;()2根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x 得取值范围;()3结合(2)中A 类特产降价x 元与每天的销售量y 件,得到A 类特产的利润,同时求得B类特产的利润,整理得到关于x 的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元.根据题意得()35132540x x +-=.解得60x =.则每件B 类特产的售价1326072-=(元).答:A 类特产的售价为60元/件,B 类特产的售价为72元/件.(2)由题意得1060y x =+∵A 类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴010x ≤≤.答:1060y x =+(010x ≤≤).(3)(6050)(1060)100(7260)w x x =--++⨯-221040180010(2)1840x x x =-++=--+.100,-<Q ∴当2x =时,w 有最大值1840.答:A 类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.24.如图,正方形ABCD 边长为6cm ,点E 为对角线AC 上一点,2CE AE =,点P 在AB 边上以1cm /s 的速度由点A 向点B 运动,同时点Q 在BC 边上以2cm /s 的速度由点C 向点B 运动,设运动时间为t 秒(03t <≤).(1)求证:AEP CEQ ∽.(2)当EPQ △是直角三角形时,求t 的值.(3)连接AQ ,当1tan 3AQE ∠=时,求AEQ △的面积.①当90EPQ ∠=︒时,有即22416324t t t -+=-解得12623,6t t =-=②当90PEQ ∠=︒时,有又2CE AE = ,13AE AE AC AF ∴==1tan 3AFE ∴∠=.125.已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值;(3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.l y=,则(N'由题意得直线:4。
2023年四川省南充市中考数学试卷(含答案)142341
2023年四川省南充市中考数学试卷试卷考试总分:141 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1. 如图,在方格纸中(假设每个小方格的边长为单位),将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中,正确的是( )A.先向下平移个单位长度,再向右平移个单位长度B.先向下平移个单位长度,再向右平移个单位长度C.先向下平移个单位长度,再向右平移个单位长度D.先向下平移个单位长度,再向右平移个单位长度2. 如图,在某时段有辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这辆车车速的众数(单位:)为 A.B.C.D.3. 如图,活动课小明利用一个锐角是的三角板测量一棵树的高度,已知他与树之间的水平距离为,为(即小明的眼睛距地面的距离),那么这棵树高是 A.B.C.D.5×51313222215050km/h ()6050403530∘BE 9m AB 1.5m ()3m3–√27m3–√(3+)m 3–√32(27+)m 3–√324. 《九章算术》中记载着这样一个问题:“今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:‘我羊食半马.’马主曰:‘我马食半牛.’今欲衰偿之,问各出几何?”其大意是:牛、马、羊吃了别人地里的青苗,要赔偿粟斗.羊吃的是马的一半,马吃的是牛的一半,问牛、马、羊的主人各应赔多少?设羊的主人赔斗,根据题意,可列方程为 ( )A.B.C.D.5. 小亮同学身高,经太阳照射,在地面上的影长为,此时测得一棵树在同一地面的影长为,则树高为A.B.C.D.6. 抛物线的顶点坐标是( )A.B.C.D.7. 如图,平分,为上一点,、分别在、上且,若,则的度数是( )A.B.C.D.8. 下列计算中,正确的是( )A.B.C.D.9. 如图是二次函数,,是常数,图象的一部分,与轴的交点在点5x +x+2x =5x 24x+2x+x =5x++=5x 2x 4x+2x+3x =51.8m 3m 10m ()10m8m6m4my =(x−2+3)2(2,3)(−2,3)(2,−3)(−2,−3)OC ∠AOB P OC D E OA OB PD =PE ∠EPD =135∘∠AOB 40∘30∘60∘45∘+=x 3x 3x 6(=x 3)3x 6⋅x 3=x 3x 6÷=xx 3x 3y =a +bx+c(a x 2b c a ≠0)x A9. 如图是二次函数,,是常数,图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是( )A.①②④B.①②⑤C.②③④D.③④⑤二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10. 若分式的值为,则________.11. 在一个不透明的袋中,装有个黄球和个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是________.12. 如图,四边形内接于,为直径,点是中点.若=,=,则的长________.13. 近视眼镜的度数(度)与镜片焦距(米)呈反比例,其函数关系式为.如果近似眼镜镜片的焦距=米,那么近视眼镜的度数为________.14. 方程组的解是________;直线与直线的交点是________.15. (如图所示)两个长宽分别为、的矩形如图叠放在一起,则图中阴影部分的面积是________.三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16. 化简求值: ,其中 .17. 如图所示,在▱中,对角线与相交于点,点,在对角线上,且,求证:y =a +bx+c(a x 2b c a ≠0)x A (2,0)(3,0)x =1ab <02a +b =03a +c >0a +b ≥m(am+b)m −1<x <3y >0|x|−22−x0x =23ABCD ⊙O AB C AB 26AD 10BC y x y =120x x 0.3y {y =3x−1,y =x+3y =3x−1y =x+37cm 3cm 2x(2x−1)+4x(+x−1)−4(1+2)x 2x 2x =−2ABCD AC BD O M N AC AM =CN BM//DN.18. 随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响,为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于年月日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神、某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图.(其中表示一等奖”,表示“二等奖”,表示“三等奖”,表示“优秀奖”)请你根据统计图中所提供的信息解答下列问题:获奖总人数为________人,________.请将条形统计图补充完整;学校将从获得一等奖的名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率. 19. 已知关于的一元二次方程有实数根.求的取值范围;设方程的两个实数根分别为,若,求的值.20. 如图,一次函数=的图象与反比例函数的图象相交于,两点,与轴相交于点.(1)求一次函数与反比例函数的表达式;(2)若点与点关于轴对称,求的面积. 21. 如图,是的外接圆,,交的延长线于,交于.求证:是的切线;若,求图中阴影部分(弦和劣弧围成的部分)的面积. 22. 的一场湖人对勇士的篮球比赛中,湖人球员詹姆斯正在投篮,已知球出手时离地面高2021115A B C D (1)m=(2)(3)4x +(2k +1)x+=0x 2k 2(1)k (2),x 1x 22−−=1x 1x 2x 1x 2k y kx+b y =m x A(−1,n)B(2,−1)y C D C x △ABD ⊙O △ABC ∠ABC =,OC//AD 45∘AD BC D AB OC E (1)AD ⊙O (2)AE =2,CE =410−−√AC AC NBA 20,与篮圈中心的水平距离.当球出手后水平距离为时到达最大高度,设篮球运行的轨迹为抛物线,假设篮圈距地面.建立适当的平面直角坐标系,求出此轨迹所在抛物线的解析;问此球能否准确投中?此时,若勇士球员杜兰特在詹姆斯前面处跳起拦截,已知杜兰特这次起跳的最大摸高为,那么他能否拦截成功?为什么? 23. 如图,在中,,,,四边形是矩形,,,与边交于点,点从点出发沿以每秒个单位长的速度向点匀速运动,伴随点的运动,矩形在射线上滑动;点从点出发沿折线以每秒个单位长的速度匀速运动.点,同时出发,当点到达点时停止运动,点也随之停止.设点,运动的时间是秒(1)当时,________,________;(2)当点到达点时,求出的值;(3)为何值时,是直角三角形?24. 如图,抛物线与直线相交于,两点,与轴相交于点 ,其中点的横坐标为.计算,的值;求出抛物线与轴的交点坐标.m 2097m 4m 4m 3m (1)(2)2m 3.1m Rt △ABC ∠C =90∘AC =6BC =8PDEF PD =2PF =4DE AB G P B BC 1C P PDEF BC Q P PD−DE 1P Q Q E P P Q t (t >0)t =1QD =DG =Q G t t △PQC y =a +c(a ≠0)x 2y =3A B y C(0,−1)A −4(1)a c (2)y =a +c x 2x参考答案与试题解析2023年四川省南充市中考数学试卷试卷一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1.【答案】B【考点】平移的性质【解析】根据图形,对比图与图中位置关系,对选项进行分析,排除错误答案.【解答】解:观察图形可知:平移是先向下平移个单位长度,再向右平移个单位长度.故选.2.【答案】C【考点】众数条形统计图【解析】根据中位数的定义求解可得.【解答】解:由条形图知,车速的车辆有辆,为最多,所以众数为.故选.3.【答案】C【考点】解直角三角形的应用【解析】此题暂无解析【解答】解:由题中图知,,,①②32B 40km/h 1540C =tan CD AD30∘AD =BE =9m D =AD×tan=BE×tan =9×–√所以,所以.故选.4.【答案】B【考点】由实际问题抽象出一元一次方程【解析】此题暂无解析【解答】解:设羊的主人赔斗,则马的主人赔斗,牛的主人赔斗,由题意可得,故选.5.【答案】C【考点】相似三角形的应用【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设树高为米,由同一时刻物高与影子长成比例可得,解得.故选.6.【答案】A【考点】二次函数图象上点的坐标特征【解析】已知解析式为抛物线的顶点式,可直接写出顶点坐标.【解答】解:∵抛物线为顶点式,∴抛物线顶点坐标为.CD =AD×tan =BE×tan =9×30∘30∘3–√3CE =CD+DE =(3+)m3–√32C x 2x 4x x+2x+4x =5B x =x 10 1.83x =6C y =(x−2+3)2(2,3)故选.7.【答案】D【考点】角平分线的性质全等三角形的性质与判定多边形的内角和【解析】过点分别作,,垂足为,,然后证明,得出,最后根据即可求出的度数.【解答】解:如图,过点分别作,,垂足为,.∵平分,∴.∵,∴.∴.∴.∵,∴.故选.8.【答案】C【考点】同底数幂的除法幂的乘方与积的乘方合并同类项同底数幂的乘法【解析】只有同类项才能相加减,不是同类项不能合并,合并同类项时,字母和字母的系数不变,系数相加减;积的乘方等于乘方的积;同底数相除,底数不变,指数相减.【解答】解:,,故本选项不符合题意;,,故本选项不符合题意;A P PM ⊥OA PN ⊥OB M N Rt △PMD ≅Rt △PNE∠MPN =∠EPD =135∘∠AOB+∠PMO +∠MPN +∠PNO =360∘∠AOB P PM ⊥OA PN ⊥OB M N OC ∠AOB PM =PN PD =PE Rt △PMD ≅Rt △PNE(HL)∠MPD =∠NPE ∠MPN =∠EPD =135∘∠AOB+∠PMO +∠MPN +∠PNO =360∘∠AOB =−∠PMO −∠MPN −∠PNO360∘=−−−=360∘90∘90∘135∘45∘D A +=2x 3x 3x 3B =()x 33x 9⋅=336,,故本选项符合题意;,,故本选项不符合题意.故选.9.【答案】A【考点】抛物线与x 轴的交点二次函数图象与系数的关系【解析】由抛物线的开口方向判断与的关系,由抛物线与轴的交点判断与的关系,然后根据对称轴判定与的关系以及;当时,;然后由图象确定当取何值时,.【解答】解:①∵对称轴在轴右侧,∴、异号,∴,故正确;②∵对称轴,∴,故正确;③∵,∴,∵当时,,∴,故错误;④根据图示知,当时,有最大值;当时,有,所以(为实数),故正确;⑤根据题图知,当时,不只是大于,故错误.综上,正确的是①②④.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10.【答案】【考点】分式的值为零的条件【解析】根据分式的分子分子为零,分母不为零,可得答案.【解答】解:∵分式的值为,∴,且,解得.故答案为:.11.【答案】C ⋅=x 3x 3x 6D ÷=1x 3x 3C a 0y c 0b 02a +b =0x =−1y =a −b +c x y >0y a b ab <0x =−=1b 2a2a +b =02a +b =0b =−2a x =−1y =a −b +c <0a −(−2a)+c =3a +c <0m=1m≠1a +bm+c ≤a +b +c m 2a +b ≥m(am+b)m −1<x <3y 0A −2|x|−22−x 0|x|−2=02−x ≠0x =−2−23【考点】概率公式【解析】此题暂无解析【解答】解:∵一个不透明的袋中,装有个黄球和个红球,任意摸出两个球有种等可能结果,其中摸出的球颜色不同的结果有种,∴从袋中任意摸出两个球,颜色不同的概率.故答案为: .12.【答案】【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】此题暂无解析【解答】此题暂无解答13.【答案】【考点】反比例函数的应用【解析】把=代入,即可算出的值.【解答】把=代入,=,14.【答案】3523106=61035354400x 0.3y =120xy x 0.3120x y 400,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.所以方程组的解为所以直线与直线的交点为.故答案为:.15.【答案】【考点】菱形的判定与性质矩形的性质【解析】由两个长宽分别为、的矩形如图叠放在一起,可证得阴影部分是菱形,然后设,则,,利用勾股定理可得方程:,则可求得的长,继而求得答案.【解答】解:如图:根据题意得:,,∴四边形是平行四边形,∵两个矩形等高,即,∴,∴,∴四边形是菱形,∴,设,则,,在中,,∴,解得:,∴,∴.故答案为:.三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16.{x =2,y =5(2,5)2x−4=0x =2y =5{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)c 877m 27cm 3cm BF =xcm DF =xcm AF =AD−DF =7−x(cm)+(7−x =32)2x 2BE AD//BC BF //DE ABCD DH =AB =BE ⋅AB =BF ⋅DH S ▱BEDF BE =BF BEDF BF =DF BF =xcm DF =xcm AF =AD−DF =7−x(cm)Rt △ABF A +A =B B 2F 2F 2+(7−x =32)2x 2x =297BE =cm 297=BE ⋅AB =c S 菱形BEDF 877m 2c 877m 2【答案】解:原式 ,当 时,原式 .【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式 ,当 时,原式 .17.【答案】证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴【考点】平行四边形的性质全等三角形的性质与判定平行线的判定【解析】由平行四边形的性质得出,,再证出,由证明,得出对应角相等,再由内错角相等,两直线平行,即可得出结论.【解答】证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴18.【答案】(1),=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.OA =OC OB =OD OM =ON SAS △BOM ≅△DON ∠OBM =∠ODN ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.4030(2)“三等奖”人数为(人),条形统计图补充为:获奖情况条形统计图(3)画树状图为:共有种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为,所以抽取同学中恰有一名男生和一名女生的概率.【考点】列表法与树状图法扇形统计图【解析】此题暂无解析【解答】解:()获奖总人数为 (人),,即,故答案为:.(2)“三等奖”人数为(人),条形统计图补充为:获奖情况条形统计图(3)画树状图为:共有种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为,所以抽取同学中恰有一名男生和一名女生的概率.19.【答案】解:由题意得,40−4−8−16=12126==6121218÷20%=40m%=×100%=30%40−4−8−1640m=3040;3040−4−8−16=12126==61212(1)Δ≥0∴Δ=−4ac b 2=(2k +1−4)2k 2,;由题意得,分别为方程的两个实数根,,∴,,,,,由知,.【考点】根与系数的关系根的判别式【解析】此题暂无解析【解答】解:由题意得,,;由题意得,分别为方程的两个实数根,,∴,,,,,由知,.20.【答案】∵反比例函数的图象经过点,∴==,∴反比例函数解析式为;∵点在的图象上,∴=,则,把点,的坐标代入=,得,解得∴一次函数的表达式为=;∵直线=交轴于点,∴.∵点与点关于轴对称,∴.∵,∴轴.∴=.【考点】=4k +1≥0∴k ≥−14(2)x 1x 2∴=,+=−(2k +1)x 1x 2k 2x 1x 22−−=2−(+)x 1x 2x 1x 2x 1x 2x 1x 2=2+(2k +1)k 2=2+2k +1=1k 2∴2k(k +1)=0∴=0k 1=−1k 2(1)k ≥−14∴k =0(1)Δ≥0∴Δ=−4acb 2=(2k +1−4)2k 2=4k +1≥0∴k ≥−14(2)x 1x 2∴=,+=−(2k +1)x 1x 2k 2x 1x 22−−=2−(+)x 1x 2x 1x 2x 1x 2x 1x 2=2+(2k +1)k 2=2+2k +1=1k 2∴2k(k +1)=0∴=0k 1=−1k 2(1)k ≥−14∴k =0y =m x B(2,−1)m 2×(−1)−2y =−2xA(−1,n)y =−2x n 2A(−1,2)A B y kx+b { −k +b =2,2k +b =−1.{k =−1,b =1.y −x+1y −x+1y C C(0,1)D C x D(0,−1)B(2,−1)BD//x =×2×3S △ABD 123反比例函数与一次函数的综合【解析】(1)先把点坐标代入中求出得到反比例函数解析式为;再利用确定点坐标,然后利用待定系数法求一次函数解析式;(2)先利用一次函数解析式确定.利用关于轴对称的性质得到.则轴,然后根据三角形面积公式计算.【解答】∵反比例函数的图象经过点,∴==,∴反比例函数解析式为;∵点在的图象上,∴=,则,把点,的坐标代入=,得,解得∴一次函数的表达式为=;∵直线=交轴于点,∴.∵点与点关于轴对称,∴.∵,∴轴.∴=.21.【答案】证明:连接,如图,∵,∴.∵,∴,∴.又为的半径,是的切线.解:设的半径为,则,,在中,,,解得.(负根已经舍去).【考点】切线的判定圆周角定理勾股定理B y =m x m y =−2x y =−2x A C(0,1)x D(0,−1)BD//x y =m x B(2,−1)m 2×(−1)−2y =−2x A(−1,n)y =−2xn 2A(−1,2)A B y kx+b {−k +b =2,2k +b =−1.{ k =−1,b =1.y −x+1y −x+1y C C(0,1)D C x D(0,−1)B(2,−1)BD//x =×2×3S △ABD 123(1)OA AD//OC ∠AOC +∠OAD =180∘∠AOC =2∠ABC =2×=45∘90∘∠OAD =90∘OA ⊥AD OA ⊙O ∴AD ⊙O (2)⊙O R OA =R OE =R−4Rt △OAE ∵A +O =A O 2E 2E 2∴+(R−4=(2R 2)210−−√)2R =6∴=−S 阴影S 扇形OAC S △OAC=−×90⋅π⋅623601262=9π−18扇形面积的计算求阴影部分的面积【解析】左侧图片未给出解析.左侧图片未给出解析.【解答】证明:连接,如图,∵,∴.∵,∴,∴.又为的半径,是的切线.解:设的半径为,则,,在中,,,解得.(负根已经舍去).22.【答案】解:根据题意,球出手点、最高点和篮圈的坐标分别为:,,,设二次函数解析式为,将点代入可得:,解得:,∴抛物线解析式为:;将点坐标代入抛物线解析式得:∴,∴左边右边,即点在抛物线上,∴此球一定能投中.不能拦截成功,理由:将代入得,∵,(1)OA AD//OC ∠AOC +∠OAD =180∘∠AOC =2∠ABC =2×=45∘90∘∠OAD =90∘OA ⊥AD OA ⊙O ∴AD ⊙O (2)⊙O R OA =R OE =R−4Rt △OAE ∵A +O =A O 2E 2E 2∴+(R−4=(2R 2)210−−√)2R =6∴=−S 阴影S 扇形OAC S △OAC=−×90⋅π⋅623601262=9π−18(1)A(0,)209B(4,4)C(7,3)y =a(x−4+4)2(0,)20916a +4=209a =−19y =−(x−4+419)2C(7,3)−(7−4+4=319)2=C (2)x =2y =−(x−4+419)2y =3593>3.159∴他不能拦截成功.【考点】二次函数的应用【解析】(1)根据抛物线的顶点坐标及球出手时的坐标,可确定抛物线的解析式;【解答】解:根据题意,球出手点、最高点和篮圈的坐标分别为:,,,设二次函数解析式为,将点代入可得:,解得:,∴抛物线解析式为:;将点坐标代入抛物线解析式得:∴,∴左边右边,即点在抛物线上,∴此球一定能投中.不能拦截成功,理由:将代入得,∵,∴他不能拦截成功.23.【答案】,当时,,点到达点时:,解得,∴时,点到达点.①当点在上时,即时,是直角三角形②如图中,当点在线段上时,作于.当时,,可得,∴,解得或,(1)A(0,)209B(4,4)C(7,3)y =a(x−4+4)2(0,)20916a +4=209a =−19y =−(x−4+419)2C(7,3)−(7−4+4=319)2=C (2)x =2y =−(x−4+419)2y =3593>3.159153t =0DG =PD ⋅=4383Q G t−2=−t 83t =73t =s 73Q G Q PD 0<t ≤2△QPC (∠QPC =)90∘2Q DE QH ⊥PC H ∠PQC =90∘△QHP ∽△CHQ Q =PH ⋅HC H 2=(t−2)(8−t−t+2)22t =34∴或时,,综上所述,当或或时,是直角三角形.【考点】四边形综合题【解析】(1)如图中,设交于点.利用,可得,由此求出.(2)根据的长度,构建方程即可解决问题;(3)分两种情形分别求解即可解决问题;【解答】如图中,设交于点.时,,∴,∵,∴,,∵,∴,∴,∴,故答案为,.当时,,点到达点时:,解得,∴时,点到达点.①当点在上时,即时,是直角三角形②如图中,当点在线段上时,作于.当时,,可得,∴,解得或,∴或时,,综上所述,当或或时,是直角三角形.24.t =34∠PQC =90∘0<t ≤2t =3t =4△PCQ 1BG PD K DG//PB =DG PB DK PKDG DG 1BG PD K t =1PB =PQ =1DQ =1tan ∠KBP ==KP PB 34PK =34DK =54DG//PB =DG PB DK PK =DG 15434DG =53153t =0DG =PD ⋅=4383Q G t−2=−t 83t =73t =s 73Q G Q PD 0<t ≤2△QPC (∠QPC =)90∘2Q DE QH ⊥PC H ∠PQC =90∘△QHP ∽△CHQ Q =PH ⋅HC H 2=(t−2)(8−t−t+2)22t =34t =34∠PQC =90∘0<t ≤2t =3t =4△PCQ【答案】解:(1)由题意,得抛物线过点,点,∴解得即的值为,的值为.(2)由(1)知,当时,,解得,即抛物线与轴的交点坐标为.【考点】二次函数综合题【解析】此题暂无解析【解答】解:(1)由题意,得抛物线过点,点,∴解得即的值为,的值为.(2)由(1)知,当时,,解得,即抛物线与轴的交点坐标为.y =a +c x 2A(−4,3)C(0,−1){16a +c =3,c =−1,a =,14c =−1,a 14c −1y =−114x 2y =00=−114x 2=−2,=2x 1x 2y =a +c x 2x (−2,0),(2,0)y =a +c x 2A(−4,3)C(0,−1){16a +c =3,c =−1,a =,14c =−1,a 14c −1y =−114x 2y =00=−114x 2=−2,=2x 1x 2y =a +c x 2x (−2,0),(2,0)。
四川省南充市中考数学试卷及答案
四川省南充市中考数学试卷及答案(满分100分,考题时间90分钟)一、选择题(本大题共8个小题,每小题3分,共24分)每小题都有代号为A 、B 、C 、D 的四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记3分,不填、填错或填出的代号超过一个记0分.1. 计算22--的结果是( A ).(A )0 (B )-2 (C )-4 (D )4 2. 下面调查统计中,适合做全面调查的是( D ).(A )雪花牌电冰箱的市场占有率 (B )蓓蕾专栏电视节目的收视率 (C )飞马牌汽车每百公里的耗油量 (D )今天班主任张老师与几名同学谈话3. 如图,立体图形由小正方体组成,这个立体图形有小正方体( C ). (A )9个 (B )10个(C )11个 (D )12个 4. 如果分式2xx-的值为0,那么x 为( D ). (A )-2 (B )0 (C )1 (D )25. 如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最合适...的是( B ). (A )20双 (B )30双 (C )50双 (D )80双6. 一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ). (A )30海里(B )40海里 (C )50海里 (D )60海里(第6题) (第7题) (第8题)小正方体 立体图形 (第3题)7. 如图是一个零件示意图,A 、B 、C 处都是直角,MN 是圆心角为90º的弧,其大小尺寸如图标示.MN 的长是( ). (A )π(B )32π (C )2π (D )4π8. 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( ).(A )②④ (B )①④ (C )②③ (D )①③二、填空题(本大题共4个小题,每小题3分,共12分)请将答案直接填写在题中横线上.9. 计算: 20120072-⎛⎫+ ⎪⎝⎭=__________.10. 据四川省统计信息网《1季度四川民营经济发展状况解析》,1季度四川民营经济增加(第12题)请判断扇形统计图中对应组别名称:A 对应______,B 对应_______,C 对应______. 11. 已知反比例函数的图象经过点(3,2)和(m ,-2),则m 的值是____.12. 点M 、N 分别是正八边形相邻的边AB 、BC 上的点,且AM =BN ,点O 是正八边形的中心,则∠MON =____度. OA BCM N (第12题)三、(本大题共2个小题,每小题6分,共12分)13. 化简:22221422x x x x x x +⋅----.14. 如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.四、(本大题共2个小题,每小题6分,共12分)15. 某商场举行“庆元旦,送惊喜” 抽奖活动,10000个奖券中设有中奖奖券200个.(1)小红第一个参与抽奖且抽取一张奖券,她中奖的概率有多大?(2)元旦当天在商场购物的人中,估计有2000人次参与抽奖,商场当天准备多少个奖品较合适?16. 在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.图① 图②ABCD FE五、(本大题共2个小题,每小题8分,共16分)17. 如图是某城市一个主题雕塑的平面示意图,它由置放于地面l 上两个半径均为2米的半圆与半径为4米的⊙A 构成.点B 、C 分别是两个半圆的圆心,⊙A 分别与两个半圆相切于点E 、F ,BC 长为8米.求EF 的长.18. 平面直角坐标系中,点A 的坐标是(4,0),点P 在直线y =-x +m 上,且AP =OP =4.求m 的值.六、(本题满分8分)19. 某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表: 类 别 电视机 洗衣机 进价(元/台) 1800 1500 售价(元/台)20001600元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用) (2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)得分评卷人得分评卷人AOxyA E Fl BC七、(本题满分8分)20. 如图, 等腰梯形ABCD 中,AB =15,AD =20,∠C =30º.点M 、N 同时以相同速度分别从点A 、点D 开始在AB 、AD (包括端点)上运动.(1)设ND 的长为x ,用x 表示出点N 到AB 的距离,并写出x 的取值范围. (2)当五边形BCDNM 面积最小时,请判断△AMN 的形状.八、(本题满分8分)21. 如图,点M (4,0),以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线216y x bx c =++过点A 和B ,与y 轴交于点C . (1)求点C 的坐标,并画出抛物线的大致图象. (2)点Q (8,m )在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的最小值.(3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.D南充市二OO七年高中阶段学校招生统一考题数学试题参照答案及评分意见说明:1.正式阅卷前务必认真阅读参照答案和评分意见,明确评分标准,不得随意拔高或降低标准.2.全卷满分100分,参照答案和评分意见所给分数表示考生正确完成当前步骤时应得的累加分数.3.参照答案和评分意见仅是解答的一种,如果考生的解答与参照答案不同,只要正确就应该参照评分意见给分.合理精简解答步骤,其简化部分不影响评分.4.要坚持每题评阅到底.如果考生解答过程发生错误,只要不降低后继部分的难度且后继部分再无新的错误,可得不超过后继部分应得分数的一半,如果发生第二次错误,后面部分不予得分;若是相对独立的得分点,其中一处错误不影响其它得分点的评分.一、选择题(本大题共8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 A D C D B B C B二、填空题(本大题共4个小题,每小题3分,共12分)9.5;10.第一产业,第三产业,第二产业;11.-3;12.45.三、(本大题共2个小题,每小题6分,共12分)13.解:原式221(2)(2)(2)2x xx x x x x+=⋅-+---………………………………(3分)222(2)(2)x xx x-=---………………………………(5分)22.(2)x=-………………………………(6分)14.解:AD是△ABC的中线.………………………………(1分)理由如下:在Rt△BDE和Rt△CDF中,∵BE=CF,∠BDE=∠CDF,∴Rt△BDE≌Rt△CDF.………………………………(5分)∴BD=CD.故AD是△ABC的中线.………………………………(6分)四、(本大题共2个小题,每小题6分,共12分)15.解:(1)小红中奖的概率20011000050==;………………………………(3分)(2)1200050⨯=40,因此商场当天准备奖品40个比较合适.………………………………(6分)16.解:设金色纸边的宽为x分米,根据题意,得(2x+6)(2x+8)=80. ………………………………(3分)解得:x 1=1,x 2=-8(不合题意,舍去).答:金色纸边的宽为1分米. ………………………………(6分) 五、(本大题共2个小题,每小题8分,共16分)17. 解:∵ ⊙A 分别与两个半圆相切于点E 、F ,点A 、B 、C 分别是三个圆的圆心,∴ AE =AF =4,BE =CF =2,AB =AC =6. ………………………………(3分) 则在△AEF 和△ABC 中,∠EAF =∠BAC ,4263AE AF AB AC ===. ∴ △AEF ∽△ABC .………………………………(6分)故EF AE BC AB =.则 EF =AE BC AB ⋅=216833⨯=. …………………………(8分) 18. 解:由已知AP =OP ,点P 在线段OA 的垂直平分线PM 上. ………………(2分) 如图,当点P 在第一象限时,OM =2,OP =4.在Rt △OPM 中,PM== ……………………(4分) ∴ P (2,.∵ 点P 在y =-x +m 上,∴ m =2+………………………………(6分)当点P 在第四象限时,根据对称性,P '((2,-.∵ 点P'在y =-x +m 上,∴ m =2- ………………………………(8分) 则m 的值为2+2-六、(本题满分8分) 19. 解:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得1(100),218001500(100)161800.x x x x ⎧≥-⎪⎨⎪+-≤⎩ ………………………………(3分)解不等式组,得 1333≤x ≤1393. ………………………………(5分)即购进电视机最少34台,最多39台,商店有6种进货方案. ………………(6分) (2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000. ………………(7分) ∵ 100>0,∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多为13900元. ………………………………(8分) 七、(本题满分8分) 20. 解:(1)过点N 作BA 的垂线NP ,交BA 的延长线于点P . ………………(1分)由已知,AM =x ,AN =20-x .∵ 四边形ABCD 是等腰梯形,AB ∥CD ,∠D =∠C =30º, ∴ ∠PAN =∠D =30º.在Rt △APN 中,PN =AN sin ∠PAN =12(20-x ), 即点N 到AB 的距离为12(20-x ).………………………………(3分)∵ 点N 在AD 上,0≤x ≤20,点M 在AB 上,0≤x ≤15,∴ x 的取值范围是 0≤x ≤15. ………………………………(4分) (2)根据(1),S △AMN =12AM •NP =14x (20-x )=2154x x -+. ……(5分)∵ 14-<0,∴ 当x =10时,S △AMN 有最大值. …………………………(6分)又∵ S 五边形BCDNM =S 梯形-S △AMN ,且S 梯形为定值,∴ 当x =10时,S 五边形BCDNM 有最小值. …………………………(7分) 当x =10时,即ND =AM =10,AN =AD -ND =10,即AM =AN . 则当五边形BCDNM 面积最小时,△AMN 为等腰三角形. …………(8分)八、(本题满分8分) 21. 解:(1)由已知,得 A (2,0),B (6,0),∵ 抛物线216y x bx c =++过点A 和B ,则 221220,61660,6b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得4,32.b c ⎧=-⎪⎨⎪=⎩ 则抛物线的解析式为 214263y x x =-+. 故 C (0,2). …………………………(2分)(说明:抛物线的大致图象要过点A 、B 、C ,其开口方向、顶点和对称轴相对准确)…………………………(3分)(2)如图①,抛物线对称轴l是x=4.∵Q(8,m)抛物线上,∴m=2.过点Q作QK⊥x轴于点K,则K(8,0),QK=2,AK=6,∴AQ=…………………………(5分)又∵B(6,0)与A(2,0)关于对称轴l对称,∴PQ+PB的最小值=AQ=(3)如图②,连结EM和CM.由已知,得EM=OC=2.CE是⊙M的切线,∴∠DEM=90º,则∠DEM=∠DOC.又∵∠ODC=∠EDM.故△DEM≌△DOC.∴OD=DE,CD=MD.又在△ODE和△MDC中,∠ODE=∠MDC,∠DOE=∠DEO=∠DCM=∠DMC.则OE∥CM.…………………………(7分)设CM所在直线的解析式为y=kx+b,CM过点C(0,2),M(4,0),∴40,2,k bb+=⎧⎨=⎩解得1,22,kb⎧=-⎪⎨⎪=⎩直线CM的解析式为122y x=-+.又∵直线OE过原点O,且OE∥CM,则OE的解析式为y=12-x.…………………………(8分)。
2022年四川南充中考数学真题及参考答案
2022年四川南充中考数学真题及答案一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D 四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1.(4分)下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5|【分析】根据相反数判断A,B,C选项;根据绝对值判断D选项.【解答】解:A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【点评】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.2.(4分)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA 的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°【分析】利用旋转不变性,三角形内角和定理和平角的意义解答即可.【解答】解:∵∠B=30°,∠C=90°,∴∠CAB=180°﹣∠B﹣∠C=60°,∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,∴∠C′AB′=∠CAB=60°.∵点B′恰好落在CA的延长线上,∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°.故选:B.【点评】本题主要考查了图形旋转的性质,三角形的内角和定理,平角的意义,利用旋转不变性解答是解题的关键.3.(4分)下列计算结果正确的是()A.5a﹣3a=2 B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b9【分析】根据合并同类项判断A选项;根据单项式除以单项式判断B选项;根据同底数幂的除法判断D选项;根据积的乘方判断D选项.【解答】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项不符合题意;故选:D.【点评】本题考查了合并同类项,单项式除以单项式,同底数幂的除法,幂的乘方与积的乘方,掌握(ab)n=a n b n是解题的关键.4.(4分)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94﹣x)=35 B.4x+2(35﹣x)=94C.2x+4(94﹣x)=35 D.2x+4(35﹣x)=94【分析】由上有三十五头且鸡有x只,可得出兔有(35﹣x)只,利用足的数量=2×鸡的只数+4×兔的只数,即可得出关于x的一元一次方程,此题得解.【解答】解:∵上有三十五头,且鸡有x只,∴兔有(35﹣x)只.依题意得:2x+4(35﹣x)=94.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5.(4分)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E【分析】根据正多边形定义可知,每一个内角相等,每一条边相等,再根据内角和公式求出每一个内角,根据以AB为边向内作正△ABF,得出∠FAB=∠ABF=∠F=60°,AF=AB=FB,从而选择正确选项.【解答】解:在正五边形ABCDE中内角和:180°×3=540°,∴∠C=∠D=∠E=∠EAB=∠ABC=540°÷5=108°,∴D不符合题意;∵以AB为边向内作正△ABF,∴∠FAB=∠ABF=∠F=60°,AF=AB=FB,∵AE=AB,∴AE=AF,∠EAF=∠FBC=48°,∴A、B不符合题意;∴∠F≠∠EAF,∴C符合题意;故选:C.【点评】此题主要考查正多边形的计算问题、等边三角形的性质,掌握正多边形定义及内角和公式、等边三角形的性质的综合应用是解题关键.6.(4分)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差【分析】根据条形统计图中的数据,可以判断出平均数、众数、方差无法计算,可以计算出中位数,本题得以解决.【解答】解:由统计图可知,平均数无法计算,众数无法确定,方差无法计算,而中位数是(9+9)÷2=9,故选:B.【点评】本题考查条形统计图、平均数、中位数、众数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.7.(4分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC 于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1 B.DC=3 C.AE=5 D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、C正确;∴CE==4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDF+∠FDB=90°,∵∠CDF+∠DEC=90°,∴∠DEC=∠FDB,∵∠C=∠DFB,CD=FD,∴△ECD≌△DFB(AAS),∴CE=BF=4,故选项A错误;故选:A.【点评】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.(4分)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为()A.70°B.65°C.50°D.45°【分析】先根据三角形的内角和定理可得∠B=25°,由垂径定理得:=,最后由圆周角定理可得结论.【解答】解:∵OF⊥BC,∴∠BFO=90°,∵∠BOF=65°,∴∠B=90°﹣65°=25°,∵弦CD⊥AB,AB为⊙O的直径,∴=,∴∠AOD=2∠B=50°.故选:C.【点评】本题考查垂径定理,圆周角定理,直角三角形的性质等知识,解题的关键是灵活运用所学知识,属于中考常考题型.9.(4分)已知a>b>0,且a2+b2=3ab,则(+)2÷(﹣)的值是()A.B.﹣C.D.﹣【分析】利用分式的加减法法则,乘除法法则把分式进行化简,由a2+b2=3ab,得出(a+b)2=5ab,(a﹣b)2=ab,由a>b>0,得出a+b=,a﹣b=,代入计算,即可得出答案.【解答】解:(+)2÷(﹣)=÷=•=﹣,∵a2+b2=3ab,∴(a+b)2=5ab,(a﹣b)2=ab,∵a>b>0,∴a+b=,a﹣b=,∴﹣=﹣=﹣=﹣,故选:B.【点评】本题考查了分式的化简求值,掌握分式的加减法法则,分式的乘除法法则,把分式正确化简是解决问题的关键.10.(4分)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2【分析】根据题意和题目中的抛物线,可以求得抛物线的对称轴,然后分类讨论即可得到m的取值范围.【解答】解:∵抛物线y=mx2﹣2m2x+n(m≠0),∴该抛物线的对称轴为直线x=﹣=m,∵当x1+x2>4且x1<x2时,都有y1<y2,∴当m>0时,0<2m≤4,解得0<m≤2;当m<0时,2m>4,此时m无解;由上可得,m的取值范围为0<m≤2,故选:A.【点评】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)比较大小:2﹣2<30.(选填>,=,<)【分析】先分别计算2﹣2和30的值,再进行比较大小,即可得出答案.【解答】解:∵2﹣2=,30=1,∴2﹣2<30,故答案为:<.【点评】本题考查了负整数指数幂,零指数幂,掌握负整数指数幂的意义,零指数幂的意义是解决问题的关键.12.(4分)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是.【分析】用物理变化的张数除以总张数即可.【解答】解:从中随机抽取一张卡片共有6种等可能结果,抽中生活现象是物理变化的有2种结果,所以从中随机抽取一张卡片,抽中生活现象是物理变化的概率为=,故答案为:.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.(4分)数学实践活动中,为了测量校园内被花坛隔开的A,B两点的距离,同学们在AB 外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是20 m.【分析】利用三角形中位线定理解决问题即可.【解答】解:∵CD=AD,CE=EB,∴DE是△ABC的中位线,∴AB=2DE,∵DE=10m,∴AB=20m,故答案为:20.【点评】本题考查三角形中位线定理,解题的关键是掌握三角形中位线定理,属于中考常考题型.14.(4分)若为整数,x为正整数,则x的值是4或7或8 .【分析】利用二次根式的性质求得x的取值范围,利用算术平方根的意义解答即可.【解答】解:∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵为整数,∴=0或1或2,当=0时,x=8,当=1时,x=7,当=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【点评】本题主要考查了算术平方根的意义,二次根式的性质,利用二次根式的性质求得x的取值范围是解题的关键.15.(4分)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8 m时,水柱落点距O点4m.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+3;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+3;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,直接利用二次函数的平移性质是解题关键.16.(4分)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重合),将△ADE沿直线DE折叠,点A落在点A1处,连接A1B,将A1B绕点B顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P 是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是①②③.(填写序号)【分析】①正确.根据SAS证明三角形全等即可;②正确.过点D作DT⊥CA1于点T,证明∠ADE+∠CDT=45°,∠CDT=∠BCA1即可;③正确.连接PA,AC.因为A,A1关于DE对称,推出PA=PA1,推出PA1+PC=PA+PC≥AC=,可得结论;④错误.过点A1作A1H⊥AB于点H,求出EB,A1H,可得结论.【解答】解:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵∠A1BA2=∠ABC=90°,∴∠ABA1=∠CBA2,∵BA1=BA2,∴△ABA1≌△CBA2(SAS),故①正确,过点D作DT⊥CA1于点T,∵CD=DA1,∴∠CDT=∠A1DT,∵∠ADE=∠A1DE,∠ADC=90°,∴∠ADE+∠CDT=45°,∵∠CDT+∠DCT=90°,∠DCT+∠BCA1=90°,∴∠CDT=∠BCA1,∴∠ADE+∠BCA1=45°,故②正确.连接PA,AC.∵A,A1关于DE对称,∴PA=PA1,∴PA1+PC=PA+PC≥AC=,∴PA1+PC的最小值为,故③正确,过点A1作A1H⊥AB于点H,∵∠ADE=30°,∴AE=A1E=AD•tan30°=,∴EB=AB﹣AE=1﹣,∵∠A1EB=60°,∴A1H=A1E•sin60°=×=,∴=×(1﹣)×=,故④错误.故答案为:①②③.【点评】本题考查正方形的性质,解直角三角形,翻折变换,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明,证明过程或演算步骤.17.(8分)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x=﹣1.【分析】提取公因式x+2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x=﹣1时,原式=(﹣1)2﹣4=﹣2.【点评】本题考查整数的混合运算﹣化简求值,解题的关键是熟练灵活运用所学知识解决问题,属于中考常考题型.18.(8分)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)△ADE≌△CDF.(2)ME=NF.【分析】(1)根据菱形的性质和全等三角形的判定SAS,可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质,可以得到DE=DF,DM=DN,从而可以得到ME=NF.【解答】证明:(1)∵四边形ABCD是菱形,∴DA=DC,∠DAE=∠DCF,AB=CB,∵BE=BF,∴AE=CF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS);(2)由(1)知△ADE≌△CDF,∴∠ADM=∠CDN,DE=DF,∵四边形ABCD是菱形,∴∠DAM=∠DCN,∴∠DMA=∠DNC,∴∠DMN=∠DNM,∴DM=DN,∴DE﹣DM=DF﹣DN,∴ME=NF.【点评】本题考查菱形的性质、全等三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:项目A B C D人数/人 5 15 a b(1)a=20 ,b=10 .(2)扇形统计图中“B”项目所对应的扇形圆心角为108 度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.【分析】(1)由A项目人数及其所占百分比可得总人数,总人数乘以D项目人数所占比例求出b,再根据四个项目人数之和等于总人数得出a;(2)用360°乘以B项目人数所占比例即可;(3)七(1)班3人分别用A、B、C表示,七(2)班2人分别D、E表示,列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)被调查的总人数为5÷10%=50(人),∴b=50×20%=10(人),则a=50﹣(5+15+10)=20,故答案为:20、10;(2)扇形统计图中“B”项目所对应的扇形圆心角为360°×=108°,故答案为:108;(3)七(1)班3人分别用A、B、C表示,七(2)班2人分别D、E表示,根据题意画图如下:共有25种等可能的情况数,其中这两人来自不同班级的有12种,则这两人来自不同班级的概率是.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.【分析】(1)根据一元二次方程x2+3x+k﹣2=0有实数根,可知Δ≥0,即可求得k的取值范围;(2)根据根与系数的关系和(x1+1)(x2+1)=﹣1,可以求得k的值.【解答】解:(1)∵关于x的一元二次方程x2+3x+k﹣2=0有实数根,∴Δ=32﹣4×1×(k﹣2)≥0,解得k≤,即k的取值范围是k≤;(2)∵方程x2+3x+k﹣2=0的两个实数根分别为x1,x2,∴x1+x1=﹣3,x1x2=k﹣2,∵(x1+1)(x2+1)=﹣1,∴x1x2+(x1+x2)+1=﹣1,∴k﹣2+(﹣3)+1=﹣1,解得k=3,即k的值是3.【点评】本题考查根与系数的关系、根的判别式,解答本题的关键是明确一元二次方有根时Δ≥0,以及根与系数的关系.21.(10分)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.(1)求直线AB与双曲线的解析式.(2)求△ABC的面积.【分析】(1)根据点A的坐标可以求得双曲线的解析式,然后即可求得点B的坐标,再用待定系数法即可求得直线AB的解析式;(2)先求出直线BO的解析式,然后求出点C的坐标,再用割补法即可求得△ABC的面积.【解答】解:(1)设双曲线的解析式为y=,∵点A(1,6)在该双曲线上,∴6=,解得k=6,∴y=,∵B(m,﹣2)在双曲线y=上,∴﹣2=,解得m=﹣3,设直线AB的函数解析式为y=ax+b,,解得,即直线AB的解析式为y=2x+4;(2)作BG∥x轴,FG∥y轴,FG和BG交于点G,作BE∥y轴,FA∥x轴,BE和FA交于点E,如右图所示,直线BO的解析式为y=ax,∵点B(﹣3,﹣2),∴﹣2=﹣3a,解得a=,∴直线BO的解析式为y=x,,解得或,∴点C的坐标为(3,2),∵点A(1,6),B(﹣3,﹣2),C(3,2),∴EB=8,BG=6,CG=4,CF=4,AF=2,AE=4,∴S△ABC=S矩形EBGF﹣S△AEB﹣S△BGC﹣S△AFC=8×6﹣﹣﹣=48﹣16﹣12﹣4=16.【点评】本题考查反比例函数与一次函数的交点问题、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.22.(10分)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.(1)求证:CD是⊙O的切线.(2)若CE=OA,sin∠BAC=,求tan∠CEO的值.【分析】(1)连接OC,证明OC⊥CD即可;(2)过点O作OH⊥BC于点H.由sin∠BAC==,可以假设BC=4k,AB=5k,则AC=OC=CE=3k,用k表示出OH,EH,可得结论.【解答】(1)证明:连接OC,∵AB是直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠OCB=∠OBC,∵∠BCD=∠BAC,∴∠OCB+∠DCB=90°,∴OC⊥CD,∵OC为⊙O的半径,∴CD是⊙O的切线;(2)解:过点O作OH⊥BC于点H.∵sin∠BAC==,∴可以假设BC=4k,AB=5k,则AC=OC=CE=3k,∵OH⊥BC,∴CH=BH=2k,∵OA=OB,∴OH=AC=k,∴EH=CE﹣CH=3k﹣2k=k,∴tan∠CEO===.【点评】本题考查切线的判定,解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.23.(10分)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)种类真丝衬衣真丝围巾进价(元/件)a80售价(元/件)300 100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【分析】(1)利用总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出a 的值;(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,根据真丝围巾进货件数不低于真丝衬衣件数的2倍,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,设两种商品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于x的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设每件真丝围巾降价y元,利用总利润=每件的销售利润×销售数量,结合要保证销售利润不低于原来最大利润的90%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,依题意得:300﹣x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x=300﹣100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,解得:y≤8.答:每件真丝围巾最多降价8元.【点评】本题考查了一元一次方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,找出w关于x的函数关系式;(3)根据各数量之间的关系,正确列出一元一次不等式.24.(10分)如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM上(不与点A重合),OP=AB.(1)判断△ABP的形状,并说明理由.(2)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.(3)点Q在边AD上,AB=5,AD=4,DQ=,当∠CPQ=90°时,求DM的长.【分析】(1)由已知得:OP=OA=OB,根据等腰三角形的性质和三角形内角和定理可得结论;(2)如图1,延长AM,BC交于点Q,先证明△ADM≌△QCM(ASA),得AD=CQ=BC,根据直角三角形斜边中线的性质可得PC=BQ=BC,由等边对等角和等量代换,及角的和差关系可得结论;(3)分两种情况:作辅助线,构建相似三角形,设DM=x,QG=a,则CH=a+,BH=AG=4﹣﹣a=﹣a,①如图2,点M在CD上时,②如图3,当M在DC的延长线上时,根据同角的三角函数和三角形相似可解答.【解答】(1)解:△ABP是直角三角形,理由如下:∵点O是AB的中点,∴AO=OB=AB,∵OP=AB,∴OP=OA=OB,∴∠OBP=∠OPB,∠OAP=∠APO,∵∠OAP+∠APO+∠OBP+∠BPO=180°,∴∠APO+∠BPO=90°,∴∠APB=90°,∴△ABP是直角三角形;(2)证明:如图1,延长AM,BC交于点Q,∵M是CD的中点,∴DM=CM,∵∠D=∠MCQ=90°,∠AMD=∠QMC,∴△ADM≌△QCM(ASA),∴AD=CQ=BC,∵∠BPQ=90°,∴PC=BQ=BC,∴∠CPB=∠CBP,∵∠OPB=∠OBP,∴∠OBC=∠OPC=90°,∴∠OPN=∠OPA+∠APN=90°,∵∠OAP+∠PAN=90°,∠OAP=∠OPA,∴∠APN=∠PAN,∴PN=AN;(3)解:分两种情况:①如图2,点M在CD上时,过点P作GH∥CD,交AD于G,交BC于H,设DM=x,QG=a,则CH=a+,BH=AG=4﹣﹣a=﹣a,∵PG∥DM,∴△AGP∽△ADM,∴=,即,∴PG=x﹣ax,∵∠CPQ=90°,∴∠CPH+∠QPG=90°,∵∠CPH+∠PCH=90°,∴∠QPG=∠PCH,∴tan∠QPG=tan∠PCH,即=,∴PH•PG=QG•CH,同理得:∠APG=∠PBH,∴tan∠APG=tan∠PBH,即=,∴PG•PH=AG•BH=AG2,∴AG2=QG•CH,即(﹣a)2=a(+a),∴a=,∵PG•PH=AG2,∴(x﹣x)•(5﹣x+x)=(﹣)2,解得:x1=12(舍),x2=,∴DM=;②如图3,当M在DC的延长线上时,同理得:DM=12,综上,DM的长是或12.【点评】本题主要考查了四边形综合题,涉及相似三角形的性质,动点问题,三角函数,三角形全等的性质和判定,直角三角形斜边中线的性质等知识,解题的关键是正确的画出图形,分情况讨论,难度较大.25.(12分)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).(1)求抛物线的解析式.(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.【分析】(1)将A、B两点坐标代入抛物线的解析式,从而求得b,c,进而得出抛物线的解析式;(2)在BC的下方存在一个点P,在BC的上方时两个,其中过BC下方的点P的直线l 与BC平行的直线与抛物线相切,根据直线l的解析式与抛物线解析式可以得出一个一元二次方程,该一元二次方程的根的判别式为0,从而求得b的值,进而得出在BC的上方的直线解析式,与抛物线联立成方程组,进一步求得结果;(3)作MG⊥x轴于G,作NH⊥x轴于H,作MK⊥DF,交DF的延长线于K,设D点的横坐标为a,根据△BHN∽△BFD得出DF=2NH,根据△OMG∽△ONH得出MG=2NH,OG=2OH=a+4,从而KF=MG=DF,根据tan∠DEB=2tan∠DBE可表示出EF,根据△DEF∽△DMK可得出a的值,进一步求得结果.【解答】解:(1)由题意得,,∴,∴y=﹣;(2)如图1,作直线l∥BC且与抛物线相切于点P1,直线l交y轴于E,作直线m∥BC且直线m到BC 的距离等于直线l到BC的距离,∵BC的解析式为y=x﹣4,∴设直线l的解析式为:y=x+b,由=x+b得,x2﹣4x﹣3(b+4)=0,∵Δ=0,∴﹣3(b+4)=4,∴b=﹣,∴x2﹣4x+4=0,y=x﹣,∴x=2,y=﹣,∴P1(2,﹣),∵E(0,﹣),C(0,﹣4),∴F(0,﹣4×2﹣(﹣)),即(0,﹣),∴直线m的解析式为:y=x﹣,∴,∴,,∴P2(2﹣2,﹣2﹣),P3(2+2,2﹣),综上所述:点P(2,﹣)或(2﹣2,﹣2﹣)或(2+2,2﹣);(3)如图2,作MG⊥x轴于G,作NH⊥x轴于H,作MK⊥DF,交DF的延长线于K,设D点的横坐标为a,∵BN=DN,∴BD=2BN,N点的横坐标为:,∴OH=,∵MH∥DF,∴△BHN∽△BFD,∴,∴DF=2NH,同理可得:△OMG∽△ONH,∴=,∴MG=2NH,OG=2OH=a+4,∴KF=MG=DF,∵tan∠DEB=2tan∠DBE∴=2•,∴EF=,∵BF=4﹣a,∴EF=,∵EF∥MK,∴△DEF∽△DMK,∴=,∴,∴a=0,∴OG=a+4=4,∴G(﹣4,0),当x=﹣4时,y=﹣﹣4=,∴M(﹣4,).【点评】本题考查了求二次函数的解析式,求一次函数的解析式,一次函数和二次函数图象的交点与方程组之间的关系,相似三角形的判定和性质等知识,解决问题的关键是利用相似三角形寻找线段间的数量关系.。
中考数学真题分项汇编(四川专用)专题10 二次函数(解析版)
专题10二次函数一、选择题1.(2023·四川绵阳·统考中考真题)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是()A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8【答案】D【分析】先根据平移原则:上加下减,左加右减写出解析式,再列方程组,有公共点则△≥0,则可求出b 的取值.【详解】解:由题意得:平移后得到的二次函数的解析式为:2=(3)1y x --,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12--=+x x b ,2880-+-=x x b ,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选:D .【点睛】主要考查的是二次函数图象的平移和两函数的交点问题,二次函数与一次函数图象有公共点.2.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0,对称轴为直线=1x -,下列四个结论:①<0abc ;②420a b c -+<;③30a c +=;④当31x -<<时,20ax bx c ++<;其中正确结论的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】根据二次函数开口向上,与y 轴交于y 轴负半轴,00a c ><,,根据对称轴为直线=1x -可得20b a =>,由此即可判断①;求出二次函数与x 轴的另一个交点坐标为()3,0-,进而得到当2x =-时,0y <,由此即可判断②;根据1x =时,0y =,即可判断③;利用图象法即可判断④.A.4个B【答案】B【分析】由抛物线的开口方向、与正确;由抛物线的对称轴为判断③正确;由图知x=A .1个B .【答案】B 【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与可.【详解】解:由图可知,二次函数开口方向向下,与 图象与x 轴交于点(3,0A -10420a b c ∴-+=.5a ∴- 12b a-=-,2b a ∴=.当30a c ∴+=,3c a ∴=-,∴A .1个B .2【答案】C 【分析】开口方向,对称轴,与④即可.【详解】∵抛物线的开口向下,对称轴为直线0,0,0a b c <<<∴()11,A x y 和点()22,B x y 关于对称轴对称,∴abc B.A.<0【答案】C【分析】根据开口方向,与即可判断A;根据对称性可得当线开口向上,对称轴为直线【详解】解:∵抛物线开口向上,与A.抛物线的对称轴为直线C.A,B两点之间的距离为【答案】C【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.【详解】解:∵二次函数∴二次函数解析式为y故A,B选项不正确,不符合题意;a=>,抛物线开口向上,当∵10y=时,2x x+意;当0A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,5⎛ ⎝【答案】C 【分析】如图所示,过点C 作CD AB ⊥于D ,连接CP 三角形,即90C ∠=︒,进而利用等面积法求出24CD =【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.11.(2023·四川雅安·统考中考真题)如图,二次函数A.①②【答案】C【分析】根据抛物线开口方向可得函数的对称性可得∴-【点睛】本题考查圆的的性质,二次函数图象的性质,19.(2022·四川广元·统考中考真题)二次函数1,0),对称轴为直线x=2,下列结论:2,y1)、点B(﹣12,y2)、点C(72,为常数).其中正确的结论有()【详解】解:A 、根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),且对称轴在y 轴的左侧可知0a >,该说法正确,故该选项不符合题意;B 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3)可知03a b c c ++=⎧⎨=-⎩,解得3a b +=,该说法正确,故该选项不符合题意;C 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),对称轴在y 轴的左侧,则抛物线不经过(-1,0),该说法错误,故该选项符合题意;D 、关于x 的一元二次方程ax 2+bx +c =-1根的情况,可以转化为抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的交点情况,根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),310-<-<,结合抛物线开口向上,且对称轴在y 轴的左侧可知抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的有两个不同的交点,该说法正确,故该选项不符合题意;故选:C .【点睛】本题考查二次函数的图像与性质,涉及到开口方向的判定、二次函数系数之间的关系、方程的根与函数图像交点的关系等知识点,根据题中条件得到抛物线草图是解决问题的关键.21.(2022·四川成都·统考中考真题)如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是()A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>【答案】D 【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即a<0,故该选项不符合题意;B 、根据图像开口向下,对称轴为1x =,当1x >,y 随x 的增大而减小;当1x <,y 随x 的增大而增大,故当11x -<<时,y 随x 的增大而增大;当1x >,y 随x 的增大而减小,故该选项不符合题意;C 、根据二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,可得对8A.4B.92∵P 与OB 、AB 均相切,∴△OBP 边OB 上的高为∵P (m ,-m +6);∴△AOP 边OA 上的高为-m +6,∵AOB AOP APB BOP S S S S =++ ,∴1168622⨯⨯=⨯⨯2y ax =过点P ,∴5a =.故选D .二、填空题①当31x -≤≤时,1y ≤;AOB 内存在唯一点P ,使得其中正确的结论是___________【答案】②③【分析】根据条件可求抛物线与∴12ABM AMF BMF S S S MF =+=⨯V V V 把()0,3B a -,()30A -,代入得:当=1x -是,2y a =-,∴(F -∵点B 是抛物线与y 轴的交点,∴当则'AOA ,'POP 为等边三角形,∴∵'AOA 为等边三角形,(A -当320,2B ⎛⎫- ⎪ ⎪⎝⎭时,∵'2A B 骣琪=琪琪桫当()0,3B -时,2'232A B 骣骣琪琪琪=+琪琪琪琪桫桫【答案】149/519【分析】根据已知得出直角坐标系,通过代入x =4代入抛物线解析式得出下降高度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴通过以上条件可设顶点式y =ax 2+2,把点A 点坐标(∴920a +=,∴29a =-,∴抛物线解析式为:当水面下降,水面宽为8米时,有把4x =代入解析式,得∴水面下降149米;故答案为:149;【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题【答案】8【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高设y=ax2+bx+2.5,将(2.5,0)代入解析式得出0)代入解析式得9a+3b+4=0,联立可求出时的解析式为y=ax2+bx+h,将(4,0)代入可求出【详解】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,【答案】17【分析】根据题意可知,当直线经过点(线只有一个交点时,(x-5)2+8=kx-3,可得出【详解】解:当直线经过点(1,12)时,当直线与抛物线只有一个交点时,(x-5)∴10+k=±12,解得k=2或k=-22(舍去),∴∴k的最大值与最小值的和为15+2=17.故答案为:【答案】1【分析】根据抛物线22y x x k =++与x 轴只有一个交点可知方程22x x k ++=0根的判别式△=0,解方程求出k 值即可得答案.【详解】∵抛物线22y x x k =++与x 轴只有一个交点,∴方程22x x k ++=0根的判别式△=0,即22-4k =0,解得:k =1,故答案为:1【点睛】本题考查二次函数与x 轴的交点问题,对于二次函数2y ax bx c =++(k≠0),当判别式△>0时,抛物线与x 轴有两个交点;当k=0时,抛物线与x 轴有一个交点;当x <0时,抛物线与x 轴没有交点;熟练掌握相关知识是解题关键.三、解答题支付专利费y 元,y (元)与每日产销x (件)满足关系式 2.800.01y x =+(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价-成本)⨯产销数量-专利费】【答案】(1)()()18300500w m x x =--<≤,()220.018800300w x x x =-+-<≤(2)()15003970w m =-+最大元,1420w =2最大(3)当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润,理由见解析【分析】(1)根据题木所给的利润计算公式求解即可;(2)根据(1)所求利用一次函数和二次函数的性质求解即可;(3)比较(2)中所求A 、B 两种产品的最大利润即可得到答案.【详解】(1)解:由题意得,()()18300500w m x x =--<≤,()()()2222012800.010.018800300w x x x x x =--+=-+-<≤(2)解:∵46m ≤≤,∴80m ->,∴1w 随x 增大而增大,∴当500x =时,1w 最大,最大为()()8500305003970m m -⨯-=-+元;()2220.018800.014001520w x x x =-+-=--+,∵0.010-<,∴当400x <时,2w 随x 增大而增大,∴当300x =时,2w 最大,最大为()20.0130040015201420-⨯-+=元;(3)解:当50039701420m -+>,即4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点【答案】(1)223y x x =-++(2)PBC 的最大面积为278,32P ⎛ ⎝(3)存在,()4,17或()4,17-或()2,143-+,(2,143--+【分析】(1)利用待定系数法代入求解即可;(2)利用待定系数法先确定直线BC 的解析式为3y x =-+作PD x ⊥轴于点D ,交BC 于点E ,得出23PE x x =-+,然后得出三角形面积的函数即可得出结果;(3)分两种情况进行分析:若BC 为菱形的边长,利用菱形的性质求解即可.【详解】(1)解:将点()()()1,0,3,,00,3A B C -代入解析式得:0930a b c a b c -+=⎧⎪12a b =-⎧⎪∴(),3E x x -+,∴2PE x =-+∴(1122PBCS PE OB ∆=⨯⨯=⨯-∴当32x =时,PBC 的最大面积为(3)存在,()2,2N 或(4,17∵()()3,0,0,3B C ,∵抛物线的解析式为设点()()1,,M t N x y ,,若BC 则22BC CM =,即(2181t =+∵31003x t y +=+⎧⎨+=+⎩,∴4,x y t ==-【答案】(1)21262y x x =-++(2)①【分析】(1)根据抛物线对称轴为待定系数法求得c ,即可解答;(设CD a =,则()0,6D a -,求得即可求出CD 的长;②过,E F1322S S S += ,2AD EF ∴+=设21,262F h h h ⎛⎫-++ ⎪⎝⎭,则AH ,EG AB FH AB ⊥⊥ ,EG ∴∥DI EG ⊥ ,90DIE ∴∠=︒,∴112333DI AB h ∴==+,即点D(1)求抛物线的表达式.(2)若直线值时,使得AN MN +有最大值,并求出最大值.一动点,将抛物线向左平移点M ,是否能与A 、P 、Q 【答案】(1)223y x x =-++(2)①当以AM 为对角线时,22Q P A M x x x x ++∴=,即-Q 在抛物线24y x =-+上AQ(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ 、PO ,其中于点E ,设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.【答案】(1)214y x x =-(2)()6,3N (3)1【分析】(1)待定系数法求解析式即可求解;(2),过点M 作2MD x ⊥=,垂足为D 根据已知条件得出:BD CD =:3:5BM MQ =,进而列出方程,解方程,即可求解;1⎛⎫⎛设21,4M m m m ⎛⎫- ⎪⎝⎭,则212,4D m m ⎛⎫- ⎪⎝⎭,∵MD QC ∥,∴:BD CD =:3:BM MQ =∵()2,2C -,∴()2210341524m m m m ⎛⎫-- ⎪⎝⎭=---,解得:∵其中点MQ 在抛物线对称轴的左侧.∴k b ⎧+⎪(1)求该运动员从跳出到着陆垂直下降了多少(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s【答案】(1)该运动员从跳出到着陆垂直下降了过点B 作BD y ⊥轴于点D .在Rt OBD △中,sin 37OD AB =⋅︒=答:该运动员从跳出到着陆垂直下降了(2)解:在Rt OBD △中,BD =【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.【详解】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.47.(2022·四川广元·统考中考真题)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?【答案】(1)科技类图书的单价为38元,文学类图书的单价为26元.(2)社区至少要准备2700元购书款.【分析】(1)设科技类图书的单价为x 元,文学类图书的单价为y 元,然后根据题意可列出方程组进行求解;(2)设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)及题意可分当3040m ≤<时,当4050m ≤≤时及当5060m <≤时,进而问题可分类求解即可.【详解】(1)解:设科技类图书的单价为x 元,文学类图书的单价为y 元,由题意得:2315445282x y x y +=⎧⎨+=⎩,解得:3826x y =⎧⎨=⎩;答:科技类图书的单价为38元,文学类图书的单价为26元.(2)解:设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)可得:①当3040m ≤<时,则有:()3826100122600w m m m =+-=+,∵12>0,∴当m =30时,w 有最小值,即为36026002960w =+=;②当4050m ≤≤时,则有:()()2384026100522600w m m m m m =-++-=-++,∵-1<0,对称轴为直线26m =,∴当4050m ≤≤时,w 随m 的增大而减小,∴当m =50时,w 有最小值,即为250525026002700w =-+⨯+=;③当5060m <≤时,此时科技类图书的单价为785028-=(元),则有()282610022600w m m m =+-=+,∵2>0,∴当m =51时,w 有最小值,即为10226002702w =+=;综上所述:社区至少要准备2700元的购书款.【点睛】本题主要考查二元一次方程组的应用、一次函数与二次函数的应用,解题的关键是找准等量关系,注意分类讨论.48.(2021·四川雅安·统考中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.【答案】(1)5150y x =-+;(2)当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点为t ,PAB 的面积为S ,求S 与t 的函数关系式;(3)在二次函数图象上是否存在点M 、N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点说明理由.【答案】(1)22y x x =-(2)2312S t t =-++(3)存在,(1,1)-N 或(3,3)【分析】(1)由二次函数的最小值为1-,点(1,)M m 是其对称轴上一点,得二次函数顶点为顶点式2(1)1y a x =--,将点(0,0)O 代入即可求出函数解析式;(2)连接OP ,根据AOB OAP OBP S S S S =+-△△△求出S 与t 的函数关系式;当0y =时,220x x -=,0x ∴=或 点P 在抛物线22y x x =-上,∴AOB OAP OBP S S S S ∴=+-△△△12=⨯(3)设()2,2N n n n -,当AB 为对角线时,由中点坐标公式得,当AM 为对角线时,由中点坐标公式得,当AN 为对角线时,由中点坐标公式得,综上:(1,1)-N 或(3,3)或(1,3)-.。
四川省南充市中考数学真题试题(含解析)
2020年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、填涂或多涂记0分.1.(3分)如果6a=1,那么a的值为()A.6 B.C.﹣6 D.﹣2.(3分)下列各式计算正确的是()A.x+x2=x3B.(x2)3=x5C.x6÷x2=x3D.x•x2=x33.(3分)如图是一个几何体的表面展开图,这个几何体是()A.B.C.D.4.(3分)在2020年南充市初中毕业升学体育与健康考试中,某校九年级(1)班体育委员对本班50名同学参加球类自选项目做了统计,制作出扇形统计图(如图),则该班选考乒乓球人数比羽毛球人数多()A.5人B.10人C.15人D.20人5.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC =5,则△ACE的周长为()A.8 B.11 C.16 D.176.(3分)关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为()A.9 B.8 C.5 D.47.(3分)如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A.6πB.3πC.2πD.2π8.(3分)关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为()A.﹣5<a<﹣3 B.﹣5≤a<﹣3 C.﹣5<a≤﹣3 D.﹣5≤a≤﹣3 9.(3分)如图,正方形MNCB在宽为2的矩形纸片一端,对折正方形MNCB得到折痕AE,再翻折纸片,使AB与AD重合,以下结论错误的是()A.AB2=10+2B.=C.BC2=CD•EH D.sin∠AHD=10.(3分)抛物线y=ax2+bx+c(a,b,c是常数),a>0,顶点坐标为(,m),给出下列结论:①若点(n,y1)与(﹣2n,y2)在该抛物线上,当n<时,则y1<y2;②关于x的一元二次方程ax2﹣bx+c﹣m+1=0无实数解,那么()A.①正确,②正确B.①正确,②错误C.①错误,②正确D.①错误,②错误二、填空题(本大题6个小题,每小是3分,共18分)请将答案填在答题十对应的横线上11.(3分)原价为a元的书包,现按8折出售,则售价为元.12.(3分)如图,以正方形ABCD的AB边向外作正六边形ABEFGH,连接DH,则∠ADH=度.13.(3分)计算:+=.14.(3分)下表是某养殖户的500只鸡出售时质量的统计数据.则500只鸡质量的中位数为.15.(3分)在平面直角坐标系xOy中,点A(3m,2n)在直线y=﹣x+1上,点B(m,n)在双曲线y=上,则k的取值范围为.16.(3分)如图,矩形硬纸片ABCD的顶点A在y轴的正半轴及原点上滑动,顶点B在x轴的正半轴及原点上滑动,点E为AB的中点,AB=24,BC=5.给出下列结论:①点A从点O出发,到点B运动至点O为止,点E经过的路径长为12π;②△OAB的面积最大值为144;③当OD最大时,点D的坐标为(,).其中正确的结论是.(填写序号)三、解答题(本大题共9个小题,共72分)解答应写出必要的文字说明,证明过程或演算步骤17.(6分)计算:(1﹣π)0+|﹣|﹣+()﹣1.18.(6分)如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.19.(6分)现有四张完全相同的不透明卡片,其正面分别写有数字﹣2,﹣1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率.(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.20.(8分)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣3=0有实数根.(1)求实数m的取值范围;(2)当m=2时,方程的根为x1,x2,求代数式(x12+2x1)(x22+4x2+2)的值.21.(8分)双曲线y=(k为常数,且k≠0)与直线y=﹣2x+b,交于A(﹣m,m﹣2),B(1,n)两点.(1)求k与b的值;(2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的面积.22.(8分)如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.(1)求证:BC是⊙O的切线;(2)若BC=5,BD=3,求点O到CD的距离.23.(10分)在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?24.(10分)如图,在正方形ABCD中,点E是AB边上一点,以DE为边作正方形DEFG,DF 与BC交于点M,延长EM交GF于点H,EF与CB交于点N,连接CG.(1)求证:CD⊥CG;(2)若tan∠MEN=,求的值;(3)已知正方形ABCD的边长为1,点E在运动过程中,EM的长能否为?请说明理由.25.(10分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB =OC.(1)求抛物线的解析式;(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.①求DE的最大值;②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.2020年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、填涂或多涂记0分.1.(3分)如果6a=1,那么a的值为()A.6 B.C.﹣6 D.﹣【分析】直接利用倒数的定义得出答案.【解答】解:∵6a=1,∴a=.故选:B.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.(3分)下列各式计算正确的是()A.x+x2=x3B.(x2)3=x5C.x6÷x2=x3D.x•x2=x3【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、x+x2,无法计算,故此选项错误;B、(x2)3=x6,故此选项错误;C、x6÷x2=x4,故此选项错误;D、x•x2=x3,故此选项正确;故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.(3分)如图是一个几何体的表面展开图,这个几何体是()A.B.C.D.【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【解答】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选:C.【点评】考查了几何体的展开图,解题时勿忘记三棱柱的特征.4.(3分)在2020年南充市初中毕业升学体育与健康考试中,某校九年级(1)班体育委员对本班50名同学参加球类自选项目做了统计,制作出扇形统计图(如图),则该班选考乒乓球人数比羽毛球人数多()A.5人B.10人C.15人D.20人【分析】先根据扇形统计图中的数据,求出选考乒乓球人数和羽毛球人数,即可得出结论.【解答】解:∵选考乒乓球人数为50×40%=20人,选考羽毛球人数为50×=10人,∴选考乒乓球人数比羽毛球人数多20﹣10=10人,故选:B.【点评】此题主要考查了扇形统计图的应用,求出选考乒乓球人数和羽毛球人数是解本题的关键.5.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC =5,则△ACE的周长为()【分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.6.(3分)关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为()A.9 B.8 C.5 D.4【分析】根据一元一次方程的概念和其解的概念解答即可.【解答】解:因为关于x的一元一次方程2x a﹣2+m=4的解为x=1,可得:a﹣2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C.【点评】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.7.(3分)如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()【分析】连接OB,根据平行四边形的性质得到AB=OC,推出△AOB是等边三角形,得到∠AOB=60°,根据扇形的面积公式即可得到结论.【解答】解:连接OB,∵四边形OABC是平行四边形,∴AB=OC,∴AB=OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∵OC∥AB,∴S△AOB=S△ABC,∴图中阴影部分的面积=S扇形AOB==6π,故选:A.【点评】本题考查的是扇形面积的计算,平行四边形的性质,掌握扇形的面积公式是解题的关键.8.(3分)关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为()A.﹣5<a<﹣3 B.﹣5≤a<﹣3 C.﹣5<a≤﹣3 D.﹣5≤a≤﹣3 【分析】首先解不等式求得不等式的解集,然后根据不等式只有两个正整数解即可得到一个关于a的不等式,求得a的值.【解答】解:解不等式2x+a≤1得:x≤,不等式有两个正整数解,一定是1和2,根据题意得:2≤<3,解得:﹣5<a≤﹣3.故选:C.【点评】本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.9.(3分)如图,正方形MNCB在宽为2的矩形纸片一端,对折正方形MNCB得到折痕AE,再翻折纸片,使AB与AD重合,以下结论错误的是()A.AB2=10+2B.=C.BC2=CD•EH D.sin∠AHD=【分析】首先证明四边形ABHD是菱形,利用勾股定理求出AB,AD,CD,EH,AH,一一判断即可解决问题.【解答】解:在Rt△AEB中,AB===,∵AB∥DH,BH∥AD,∴四边形ABHD是平行四边形,∵AB=AD,∴四边形ABHD是菱形,∴AD=AB=,∴CD=AD=AD=﹣1,∴=,故选项B正确,∵BC2=4,CD•EH=(﹣1)(+1)=4,∴BC2=CD•EH,故选项C正确,∵四边形ABHD是菱形,∴∠AHD=∠AHB,∴sin∠AHD=sin∠AHB===,故选项D正确,故选:A.【点评】本题考查翻折变换,矩形的性质,解直角三角形,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)抛物线y=ax2+bx+c(a,b,c是常数),a>0,顶点坐标为(,m),给出下列结论:①若点(n,y1)与(﹣2n,y2)在该抛物线上,当n<时,则y1<y2;②关于x的一元二次方程ax2﹣bx+c﹣m+1=0无实数解,那么()A.①正确,②正确B.①正确,②错误C.①错误,②正确D.①错误,②错误【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m,再把m代入一元二次方程ax2﹣bx+c﹣m+1=0的根的判别式中计算,判断其正负便可判断正误.【解答】解:①∵顶点坐标为(,m),n<,∴点(n,y1)关于抛物线的对称轴x=的对称点为(1﹣n,y1),∴点(1﹣n,y1)与(﹣2n,y2)在该抛物线上,∵(1﹣n)﹣(﹣2n)=n﹣<0,∴1﹣n<﹣2n,∵a>0,∴当x>时,y随x的增大而增大,∴y1<y2,故此小题结论正确;②把(,m)代入y=ax2+bx+c中,得m=a+b+c,∴一元二次方程ax2﹣bx+c﹣m+1=0中,△=b2﹣4ac+4am﹣4a=b2﹣4ac+4a(a+b+c)﹣4a=(a+b)2﹣4a<0,∴一元二次方程ax2﹣bx+c﹣m+1=0无实数解,故此小题正确;故选:A.【点评】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.二、填空题(本大题6个小题,每小是3分,共18分)请将答案填在答题十对应的横线上11.(3分)原价为a元的书包,现按8折出售,则售价为a元.【分析】列代数式注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.【解答】解:依题意可得,售价为=a,故答案为a.【点评】本题考查了列代数式,能根据题意列出代数式是解题的关键.12.(3分)如图,以正方形ABCD的AB边向外作正六边形ABEFGH,连接DH,则∠ADH=15 度.【分析】根据正方形的性质得到AB=AD,∠BAD=90°,在正六边形ABEFGH中,求得AB =AH,∠BAH=120°,于是得到AH=AD,∠HAD=360°﹣90°﹣120°=150°,根据等腰三角形的性质即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,在正六边形ABEFGH中,∵AB=AH,∠BAH=120°,∴AH=AD,∠HAD=360°﹣90°﹣120°=150°,∴∠ADH=∠AHD=(180°﹣150°)=15°,故答案为:15.【点评】本题考查了正多边形和圆,多边形的内角与外角,等腰三角形的判定和性质,正确的识别图形是解题的关键.13.(3分)计算:+=x+1 .【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==x+1.故答案为:x+1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(3分)下表是某养殖户的500只鸡出售时质量的统计数据.则500只鸡质量的中位数为 1.4kg.【分析】根据中位数的概念求解可得.【解答】解:500个数据的中位数是第250、251个数据的平均数,∵第250和251个数据分别为1.4、1.4,∴这组数据的中位数为=1.4(kg),故答案为:1.4kg.【点评】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.(3分)在平面直角坐标系xOy中,点A(3m,2n)在直线y=﹣x+1上,点B(m,n)在双曲线y=上,则k的取值范围为k≤且k≠0 .【分析】根据一次函数图象上点的特征求得n=,即可得到B(m,),根据反比例函数图象上点的特征得到k关于m的函数,根据二次函数的性质即可求得k的取值范围.【解答】解:∵点A(3m,2n)在直线y=﹣x+1上,∴2n=﹣3m+1,即n=,∴B(m,),∵点B在双曲线y=上,∴k=m•=﹣(m﹣)2+,∵﹣<0,∴k有最大值为,∴k的取值范围为k≤,∵k≠0,故答案为k≤且k≠0.【点评】本题考查了一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,二次函数的性质,图象上点的坐标适合解析式是解题的关键.16.(3分)如图,矩形硬纸片ABCD的顶点A在y轴的正半轴及原点上滑动,顶点B在x轴的正半轴及原点上滑动,点E为AB的中点,AB=24,BC=5.给出下列结论:①点A从点O出发,到点B运动至点O为止,点E经过的路径长为12π;②△OAB的面积最大值为144;③当OD最大时,点D的坐标为(,).其中正确的结论是②③.(填写序号)【分析】①由条件可知AB=24,则AB的中点E的运动轨迹是圆弧,最后根据弧长公式即可计算出点E所经过的路径长;②当△OAB的面积最大时,因为AB=24,所以△OAB为等腰直角三角形,即OA=OB,可求出最大面积为144;③当O、E、D三点共线时,OD最大,过点D作DF⊥y轴于点F,可求出OD=25,证明△DFA∽△AOB和△DFO∽△BOA,可求出DF长,则D点坐标可求出.【解答】解:∵点E为AB的中点,AB=24,∴OE=,∴AB的中点E的运动轨迹是以点O为圆心,12为半径的一段圆弧,∵∠AOB=90°,∴点E经过的路径长为,故①错误;当△OAB的面积最大时,因为AB=24,所以△OAB为等腰直角三角形,即OA=OB,∵E为AB的中点,∴OE⊥AB,OE=,∴=144,故②正确;如图,当O、E、D三点共线时,OD最大,过点D作DF⊥y轴于点F,∵AD=BC=5,AE=,∴=13,∴OD=DE+OE=13+12=25,设DF=x,∴,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DFA=∠AOB,∴∠DAF=∠ABO,∴△DFA∽△AOB∴,∴,∴,∵E为AB的中点,∠AOB=90°,∴AE=OE,∴∠AOE=∠OAE,∴△DFO∽△BOA,∴,∴,解得x=,x=﹣舍去,∴,∴.故③正确.故答案为:②③.【点评】本题考查四边形综合题、直角形的性质、矩形的性质、相似三角形的判定和性质等知识.解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.三、解答题(本大题共9个小题,共72分)解答应写出必要的文字说明,证明过程或演算步骤17.(6分)计算:(1﹣π)0+|﹣|﹣+()﹣1.【分析】根据实数的混合计算解答即可.【解答】解:原式=1+.【点评】此题考查二次根式的混合计算,关键是根据实数的混合计算解答.18.(6分)如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.【分析】(1)根据线段中点的定义得到AO=BO,根据平行线的性质得到∠AOD=∠OBC,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质和平行线的性质即可得到结论.【解答】(1)证明:∵点O是线段AB的中点,∴AO=BO,∵OD∥BC,∴∠AOD=∠OBC,在△AOD与△OBC中,,∴△AOD≌△OBC(SAS);(2)解:∵△AOD≌△OBC,∴∠ADO=∠OCB=35°,∵OD∥BC,∴∠DOC=∠OCB=35°.【点评】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.19.(6分)现有四张完全相同的不透明卡片,其正面分别写有数字﹣2,﹣1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率.(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.【分析】(1)由概率公式即可得出结果;(2)直接利用树状图法列举出所有可能进而得出答案.【解答】解:(1)随机的取一张卡片,抽取的卡片上的数字为负数的概率为=;(2)画树状图如图所示:共有16个可能的结果,点A在直线y=2x上的结果有2个,∴点A在直线y=2x上的概率为=.【点评】此题主要考查了树状图法求概率、概率公式、一次函数图象上点的坐标特征,正确列举出所有可能是解题关键.20.(8分)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣3=0有实数根.(1)求实数m的取值范围;(2)当m=2时,方程的根为x1,x2,求代数式(x12+2x1)(x22+4x2+2)的值.【分析】(1)根据△≥0,解不等式即可;(2)将m=2代入原方程可得:x2+3x+1=0,计算两根和与两根积,化简所求式子,可得结论.【解答】解:(1)由题意△≥0,∴(2m﹣1)2﹣4(m2﹣3)≥0,∴m≤.(2)当m=2时,方程为x2+3x+1=0,∴x1+x2=﹣3,x1x2=1,∵方程的根为x1,x2,∴x12+3x1+1=0,x22+3x2+1=0,∴(x12+2x1)(x22+4x2+2)=(x12+2x1+x1﹣x1)(x22+3x2+x2+2)=(﹣1﹣x1)(﹣1+x2+2)=(﹣1﹣x1)(x2+1)=﹣x2﹣x1x2﹣1﹣x1=﹣x2﹣x1﹣2=3﹣2=1.【点评】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于﹣,两根之积等于”是解题的关键.21.(8分)双曲线y=(k为常数,且k≠0)与直线y=﹣2x+b,交于A(﹣m,m﹣2),B(1,n)两点.(1)求k与b的值;(2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的面积.【分析】(1)将A、B两点的坐标代入一次函数解析式可得b和n的值,则求出点B(1,﹣2),代入反比例函数解析式可求出k的值.(2)先求出点C、D两点的坐标,再求出E点坐标,则S△BOE=S△ODE+S△ODB=,可求出△BOE的面积.【解答】解:(1)∵点A(﹣m,m﹣2),B(1,n)在直线y=﹣2x+b上,∴,解得:,∴B(1,﹣2),代入反比例函数解析式,∴,∴k=﹣2.(2)∵直线AB的解析式为y=﹣2x﹣2,令x=0,解得y=﹣2,令y=0,解得x=﹣1,∴C(﹣1,0),D(0,﹣2),∵点E为CD的中点,∴E(),∴S△BOE=S△ODE+S△ODB===.【点评】本题考查了反比例函数与一次函数的交点问题,三角形的面积,熟练掌握待定系数法是解题的关键.22.(8分)如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.(1)求证:BC是⊙O的切线;(2)若BC=5,BD=3,求点O到CD的距离.【分析】(1)根据圆周角定理得到∠ADC=90°,得到∠A+∠ACD=90°,求得∠ACB=90°,于是得到结论;(2)过O作OH⊥CD于H,根据相似三角形的性质得到AB=,根据垂径定理得到CH =DH,根据三角形的中位线的性质即可得到结论.【解答】(1)证明:∵AC是⊙O的直径,∴∠ADC=90°,∴∠A+∠ACD=90°,∵∠BCD=∠A,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)解:过O作OH⊥CD于H,∵∠BDC=∠ACB=90°,∠B=∠B,∴△ACB∽△CDB,∴=,∴=,∴AB=,∴AD=,∵OH⊥CD,∴CH=DH,∵AO=OC,∴OH=AD=,∴点O到CD的距离是.【点评】本题考查了切线的判定和性质,圆周角定理,相似三角形的判定和性质,垂径定理,三角形的中位线的性质,正确的识别图形是解题的关键.23.(10分)在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?【分析】(1)钢笔、笔记本的单价分别为x、y元,根据题意列方程组即可得到结论;(2)设钢笔的单价为a元,购买数量为b元,支付钢笔和笔记本的总金额w元,①当30≤b≤50时,求得w=﹣0.1(b﹣35)2+722.5,于是得到700≤w≤722.5;②当50<b≤60时,求得w=8b+6(100﹣b)=2b+600,700<w≤720,于是得到当30≤b≤60时,w 的最小值为700元,于是得到结论.【解答】解:(1)钢笔、笔记本的单价分别为x、y元,根据题意得,,解得:,答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a元,购买数量为b元,支付钢笔和笔记本的总金额w元,①当30≤b≤50时,a=10﹣0.1(b﹣30)=﹣0.1b+13,w=b(﹣0.1b+13)+6(100﹣b)=﹣0.1b2+7b+600=﹣0.1(b﹣35)2+722.5,∵当b=30时,w=720,当b=50时,w=700,∴当30≤b≤50时,700≤w≤722.5;②当50<b≤60时,a=8,w=8b+6(100﹣b)=2b+600,700<w≤720,∴当30≤b≤60时,w的最小值为700元,∴这次奖励一等奖学生50人时,购买奖品总金额最少,最少为700元.【点评】本题考查了二次函数的应用,二元一次方程组的应用,正确的理解题意求出二次函数的解析式是解题的关键.24.(10分)如图,在正方形ABCD中,点E是AB边上一点,以DE为边作正方形DEFG,DF 与BC交于点M,延长EM交GF于点H,EF与CB交于点N,连接CG.(1)求证:CD⊥CG;(2)若tan∠MEN=,求的值;(3)已知正方形ABCD的边长为1,点E在运动过程中,EM的长能否为?请说明理由.【分析】(1)由正方形的性质得出∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,即∠ADE =∠CDG,由SAS证明△ADE≌△CDG得出∠A=∠DCG=90°,即可得出结论;(2)先证明△EFM≌△GFM得出EM=GM,∠MEF=∠MGF,在证明△EFH≌△GFN得出HF=NF,由三角函数得出GF=EF=3HF=3NF,得出GH=2HF,作NP∥GF交EM于P,则△PMN ∽△HMG,△PEN∽△HEF,得出=,==,PN=HF,即可得出结果;(3)假设EM=,先判断出点G在BC的延长线上,同(2)的方法得,EM=GM=,得出GM=,再判断出BM<,得出CM>,进而得出CM>GM,即可得出结论.【解答】(1)证明:∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;(2)解:∵四边形DEFG是正方形,∴EF=GF,∠EFM=∠GFM=45°,在△EFM和△GFM中,∴△EFM≌△GFM(SAS),∴EM=GM,∠MEF=∠MGF,在△EFH和△GFN中,,∴△EFH≌△GFN(ASA),∴HF=NF,∵tan∠MEN==,∴GF=EF=3HF=3NF,∴GH=2HF,作NP∥GF交EM于P,则△PMN∽△HMG,△PEN∽△HEF,∴=,==,∴PN=HF,∴====;(3)EM的长不可能为,理由:假设EM的长为,∵点E是AB边上一点,且∠EDG=∠ADC=90°,∴点G在BC的延长线上,同(2)的方法得,EM=GM=,∴GM=,在Rt△BEM中,EM是斜边,∴BM<,∵正方形ABCD的边长为1,∴BC=1,∴CM>,∴CM>GM,∴点G在正方形ABCD的边BC上,与“点G在BC的延长线上”相矛盾,∴假设错误,即:EM的长不可能为.【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,构造出相似三角形是解本题的关键,用反证法说明EM不可能为是解本题的难度.25.(10分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB =OC.(1)求抛物线的解析式;(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.①求DE的最大值;②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.【分析】(1)已知抛物线与x轴两交点坐标,可设交点式y=a(x+1)(x+3);由OC=OB =3得C(0,﹣3),代入交点式即求得a=﹣1.(2)由∠POB=∠ACB联想到构造相似三角形,因为求点P坐标一般会作x轴垂线PH得Rt△POH,故可过点A在BC边上作垂线AG,构造△ACG∽△POH.利用点A、B、C坐标求得AG、CG的长,由相似三角形对应边成比例推出.设点P横坐标为p,则OH与PH都能用p表示,但需按P横纵坐标的正负性进行分类讨论.得到用p表示OH与PH并代入OH=2PH计算即求得p的值,进而求点P坐标.(3)①用m表示M、N横纵坐标,把m当常数求直线MN的解析式.设D横坐标为d,把x=d代入直线MN解析式得点E纵坐标,D与E纵坐标相减即得到用m、d表示的DE的长,把m当常数,对未知数d进行配方,即得到当d=m+2时,DE取得最大值.②由矩形MDNF得MN=DF且MN与DF互相平分,所以E为MN中点,得到点D、E横坐标为m+2.由①得d=m+2时,DE=4,所以MN=8.用两点间距离公式用m表示MN的长,即列得方程求m的值.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0),点B(﹣3,0)∴设交点式y=a(x+1)(x+3)∵OC=OB=3,点C在y轴负半轴∴C(0,﹣3)把点C代入抛物线解析式得:3a=﹣3∴a=﹣1∴抛物线解析式为y=﹣(x+1)(x+3)=﹣x2﹣4x﹣3(2)如图1,过点A作AG⊥BC于点G,过点P作PH⊥x轴于点H∴∠AGB=∠AGC=∠PHO=90°∵∠ACB=∠POB∴△ACG∽△POH∴∴∵OB=OC=3,∠BOC=90°∴∠ABC=45°,BC==3∴△ABG是等腰直角三角形∴AG=BG=AB=∴CG=BC﹣BG=3﹣=2∴∴OH=2PH设P(p,﹣p2﹣4p﹣3)①当p<﹣3或﹣1<p<0时,点P在点B左侧或在AC之间,横纵坐标均为负数∴OH=﹣p,PH=﹣(﹣p2﹣4p﹣3)=p2+4p+3∴﹣p=2(p2+4p+3)解得:p1=,p2=∴P(,)或(,)②当﹣3<p<﹣1或p>0时,点P在AB之间或在点C右侧,横纵坐标异号∴p=2(p2+4p+3)解得:p1=﹣2,p2=﹣∴P(﹣2,1)或(﹣,)综上所述,点P的坐标为(,)、(,)、(﹣2,1)或(﹣,).(3)①如图2,∵x=m+4时,y=﹣(m+4)2﹣4(m+4)﹣3=﹣m2﹣12m﹣35∴M(m,﹣m2﹣4m﹣3),N(m+4,﹣m2﹣12m﹣35)设直线MN解析式为y=kx+n∴解得:∴直线MN:y=(﹣2m﹣8)x+m2+4m﹣3设D(d,﹣d2﹣4d﹣3)(m<d<m+4)∵DE∥y轴∴x E=x D=d,E(d,(﹣2m﹣8)d+m2+4m﹣3)∴DE=﹣d2﹣4d﹣3﹣[(﹣2m﹣8)d+m2+4m﹣3]=﹣d2+(2m+4)d﹣m2﹣4m=﹣[d﹣(m+2)]2+4∴当d=m+2时,DE的最大值为4.②如图3,∵D、F关于点E对称∴DE=EF∵四边形MDNF是矩形∴MN=DF,且MN与DF互相平分∴DE=MN,E为MN中点∴x D=x E==m+2由①得当d=m+2时,DE=4∴MN=2DE=8∴(m+4﹣m)2+[﹣m2﹣12m﹣35﹣(﹣m2﹣4m﹣3)]2=82解得:m1=﹣4﹣,m2=﹣4+∴m的值为﹣4﹣或﹣4+时,四边形MDNF为矩形.【点评】本题考查了求二次函数解析式,求二次函数最大值,等腰三角形的性质,相似三角形的判定和性质,一元二次方程的解法,二元一次方程组的解法,矩形的性质.第(3)题没有图要先根据题意画草图帮助思考,设计较多字母运算时抓住其中的常量和变量来分析和计算.。
【真题】南充市中考数学试卷含答案解析()
四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。
请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。
1.(3分)下列实数中,最小的数是()A.B.0 C.1 D.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形3.(3分)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是14.(3分)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a25.(3分)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.(3分)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.7.(3分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+28.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.9.(3分)已知=3,则代数式的值是()A.B.C.D.10.(3分)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B 作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。
2023年四川省南充市中考数学试卷(含答案)015522
2023年四川省南充市中考数学试卷试卷考试总分:141 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1. 下列各网格中的图形是用其图形中的一部分平移得到的是( ) A. B. C. D.2. 如图,在某时段有辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这辆车车速的众数(单位:)为 A.B.C.D.3. 在台风来临之前,有关部门用钢管加固树木(如图).固定点离地面的高度,钢管与地面所成角,那么钢管的长为( )5050km/h ()60504035A AC =m AB ∠ABC =αAB mA.B.C.D.4. (古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出钱,则多了钱;如果每人出钱,则少了钱.问有多少人,物品的价格是多少?设有人,则根据题意列出方程正确的是( )A.B.C.D.5. 如图,为了估计河的宽度,在河的对岸选定一个目标点,在近岸取点和,使点,,在一条直线上,且直线与河垂直,在过点且与垂直的直线上选择适当的点,与过点且与垂直的直线的交点为.如果,,,则河的宽度为 A.B.C.D.6. 若二次函数的图象过,,三点,则,,大小关系是( )A.B.C.D.7. 如图,等腰直角中, ,于点, 的平分线分别交,于,两点,为的中点,延长交 于点,连接.下列结论:① ;②;③ ;④.正确的有 A.①②B.①②③mcosαm ⋅sinαm ⋅cosαm sinα8374x 8x+3=7x−48x−3=7x+48x−3=7x−48x+3=7x+4P Q S P Q S PS S PS a T PT Q PS b R QS=60m ST=120m QR=80m PQ ()40m60m120m180my =−6x+c x 2A(−1,)y 1B(2,)y 2C(3+,)2–√y 3y 1y 2y 3>>y 1y 2y 3>>y 1y 3y 2>>y 2y 1y 3>>y 3y 1y 2△ABC ∠BAC =90∘AD ⊥BC D ∠ABC AC AD E F M EF AM BC N NE AE =AF AM ⊥EF DF =DN AD//NE ()C.①②④D.①②③④8. 下列计算正确的是( )A.B.C.D.9. 如图是二次函数,,是常数,且图象的一部分,它与轴的一个交点在点和之间,图像的对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10. 若分式的值为,则________.11. 小明在一次班会中参与知识抢答活动,现有语文题个,数学题个,综合题个,搅匀后从中随机抽取个题,他抽中综合题的概率是________.12. 如图,四边形内接于,为直径,点是中点.若=,=,则的长________.13. 某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强是气球体积的反比例函数,且当时,,当气球内的气压大于时,气球将爆炸,为确保气球不爆炸,气球的体积最小应为________.14. 方程组的解是________;直线与直线的交点是________. +=a 3a 3a 6=()a 23a 5×=a 2a 3a 6÷=a 12a 2a 10y =a +bx+c(a x 2b c a ≠0)x A (2,0)(3,0)x =1ab <02a +b =03a +c >0a +b ≥m(am+b)m −1<x <3y >0|x|−22−x0x =45111ABCD ⊙O AB C AB 26AD 10BC P(Pa)V()m 3V =1.5m 3P =16000Pa 40000Pa m 3{y =3x−1,y =x+3y =3x−1y =x+315. 如图,矩形纸片中,,.将纸片折叠,使点落在边的延长线上的点处,折痕为,点,分别在边和边上.连接,交于点,交于点.给出以下结论:①;②;③;④当点与点重合时,.其中正确的结论是_________(填写序号).三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16. 先化简,再求值:,其中.17. 如图所示,在▱中,对角线与相交于点,点,在对角线上,且,求证: 18. 在初三年级某班的一次体育模拟测试中,班长对全班同学的测试成绩进行了统计,并绘制了如下不完整的统计图表,请根据图表提供的信息元成以下问题:组别成绩人数图表中:________;组的圆心角为________度;组名同学中有男女,从中随机抽取两名同学参加市运会,请你用画树状图或列表法求:①被抽取的名同学恰好是男女的概率;②至少名男生被抽到的概率. 19. 已知关于的一元二次方程有实数根.求的取值范围;设方程的两个实数根分别为,若,求的值.20. 如图,直线=与双曲线交于,两点,与轴交于点,点的纵坐标为,点的坐标为.ABCD AB =3BC =5B AD G EF E F AD BC BG CD K FG CD H EF ⊥BG GE =GF DK =HK F C EF =10−−√a(a +2b)−+2a(a +1)2a =+1,b =−12–√2–√ABCD AC BD O M N AC AM =CN BM//DN.A90≤x ≤1004B80≤x ≤9015C70≤x ≤80m D 60≤x ≤7010(1)m=B (2)A 4222111x +(2k +1)x+=0x 2k 2(1)k (2),x 1x 22−−=1x 1x 2x 1x 2k y ax+b y =k x A B y C A 6B (−3,−2)求双曲线和直线的解析式;若点在轴上,且满足=,求点的坐标.21. 如图,是的直径,点是上一点,点是上一点,连接并延长至点,使,与交于点.求证:为的切线;若平分,求证:. 22. 某公司以元千克的价格收购一批农产品进行销售,为了得到日销售量(千克)与销售价格(元千克)之间的关系,经过市场调查获得部分数据如表:销售价格(元/千克)日销售量(千克)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定与之间的函数表达式;该公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?若该公司的日销售利润不低于元,应该如何确定销售价格?23. 问题:如图,点,分别在正方形的边、上,,试判断,,之间的数量关系.【发现证明】 小聪把绕点顺时针旋转至,可证三点共线,根据,易证,从而发现,请你利用图证明上述结论.【类比延伸】如图,四边形中,,,,点,分别在边,上,则当与满足________关系时,仍有.(不需证明).【探究应用】如图,在某公园的同一水平面上,四条通道围成四边形,已知米,,,,道路上分别有景点,且.米,现要在之间修一条笔直道路,求这条道路的长(结果取整数,参考数据:24. 如图,已知抛物线经过点.(1)(2)P x PC OA P AB ⊙O E ⊙O D AEˆAE C ∠CBE=∠BDE BD AE F (1)BC ⊙O (2)BD ∠ABE AD 2=DF ⋅DB 30/p x /x 3035404550p 6004503001500(1)p x (2)(3)2250(1)F E ABCD BC CD ∠EAF =45∘BF EF DE △ABE A 90∘△ADG F ,D ,G SAS △AFG ≅△AFE EF =BE+FD (1)(2)ABCD ∠BAD ≠90∘AB =AD ∠B+∠D =180∘E F BC CD ∠EAF BAD EF =BE+FD (3)ABCD AB =AD =80∠B =60∘∠ADC =120∘∠BAD =150∘BC ,CD E ,F AE ⊥AD DF =40(−1)3–√E ,F EF =1.41,=1.73)2–√3–√L :y =+bx+c x 2A(0,−5),B(5,0)求,的值;连结,交抛物线的对称轴于点.①求点的坐标,②将抛物线向左平移个单位得到抛物线.过点作轴,交抛物线于点.是抛物线上一点,横坐标为一,过点作轴,交抛物线于点,点在抛物线对称轴的右侧.若,求的值.(1)b c (2)AB L M M L m(m>0)L 1M MN//y L 1N P L 11P PE//x L E E L PE+MN =10m参考答案与试题解析2023年四川省南充市中考数学试卷试卷一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1.【答案】D【考点】平移的性质【解析】该题主要考查了图形的平移.【解答】.是利用图形的旋转得到的,故错误;.是利用图形的旋转和平移得到的,故错误;.是利用图形的旋转得到的,故错误;.是利用图形的平移得到的,故正确.故选.2.【答案】C【考点】众数条形统计图【解析】根据中位数的定义求解可得.【解答】解:由条形图知,车速的车辆有辆,为最多,所以众数为.故选.3.【答案】D【考点】解直角三角形的应用【解析】此题暂无解析【解答】A B C D D 40km/h 1540C解:∵固定点离地面的高度,钢管与地面所成角,∴,∴.故选.4.【答案】B【考点】由实际问题抽象出一元一次方程一元一次方程的应用——调配与配套问题解一元一次方程【解析】可设有个人,根据所花总钱数不变列出方程即可.【解答】解:设有人,根据题意,可列方程:,故选:.5.【答案】C【考点】相似三角形的应用【解析】先证明,利用相似比得到,然后根据比例的性质求.【解答】解:∵,,∴,∴,∴,即,∴.故选.6.【答案】B【考点】二次函数图象上点的坐标特征【解析】先根据抛物线的性质得到抛物线的对称轴,然后比较三个点离对称轴的远近.A AC =m AB ∠ABC =αsinα==AC AB m ABAB =m sinαD x x 8x−3=7x+4B △PQR ∽△PST =PQ PQ +6080120PQ RQ ⊥PS TS ⊥PS RQ//TS △PQR ∼△PST =PQ PS QR ST =PQ PQ +6080120PQ =120m C【解答】解:二次函数的解析式为,∴抛物线的对称轴为.∵,,,∴点离对称轴最远,点离对称轴最近.∵抛物线的开口向上,∴,故选.7.【答案】D【考点】角平分线的定义全等三角形的性质与判定平行线的判定三角形内角和定理【解析】根据等腰直角三角形的性质及角平分线的定义求得,继而可得,即可判断①;由为的中点且可判断②;作,证可判断③,证明(),推出,即可判断④.【解答】解:,,,,,∴,∴.平分,,,,,故①正确;为的中点,,故②正确;,,.在和中,,,故③正确;,,,,,,,,故④正确.故选.8.【答案】y =−6x+c x 2x =3A(−1,)y 1B(2,)y 2C(3+,)2–√y 3A B >>y 1y 3y 2B ∠ABE =∠CBE =∠ABC =1222.5∘∠BFD =∠AEB =−=90∘22.5∘67.5∘M EF AE =AP FH ⊥AB △FBD ≅△NAD △EBA ≅△EBN SAS ∠BNE =∠BAM =90∘∵∠BAC =90∘AC =AB AD ⊥BC ∴∠ABC =∠C =45∘∠ADN =∠ADB =90∘∠BAD =∠CAD =45∘AD =BD =CD ∵BE ∠ABC ∴∠ABE =∠CBE =∠ABC =1222.5∘∴∠BFD =∠AEB =−=90∘22.5∘67.5∘∴∠AFE =∠BFD =∠AEB =67.5∘∴AF =AE ∵M EF ∴AM ⊥EF ∵AM ⊥EF ∴∠AMF =∠AME =90∘∴∠DAN =−==∠MBN 90∘67.5∘22.5∘△FBD △NAD ∠FBD =∠NAD,BD =AD,∠BDF =∠ADN,∴△FBD ≅△NAD(ASA)∴DF =DN ∵∠BAM =∠BNM =67.5∘∴BA =BN ∵∠EBA =∠EBN BE =BE ∴△EBA ≅△EBN (SAS)∴∠BNE =∠BAE =90∘∴∠ENC =∠ADC =90∘∴AD//EN DD【考点】同底数幂的除法幂的乘方与积的乘方同底数幂的乘法合并同类项【解析】解析:.应为,故本选项错误;.应为.故本选项错误;.应为.故本选项错误;.,正确.【解答】解:,,故错误;,,故错误;,,故错误;,,故正确.故选.9.【答案】A【考点】抛物线与x 轴的交点二次函数图象与系数的关系【解析】由抛物线的开口方向判断与的关系,由抛物线与轴的交点判断与的关系,然后根据对称轴判定与的关系以及;当时,;然后由图象确定当取何值时,.【解答】解:①∵对称轴在轴右侧,∴、异号,∴,故正确;②∵对称轴,∴,故正确;③∵,∴,∵当时,,∴,故错误;④根据图示知,当时,有最大值;当时,有,所以(为实数),故正确;⑤根据题图知,当时,不只是大于,故错误.综上,正确的是①②④.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10.【答案】A 2a 3B a 6C a 5D +=a 12a 2a 12A +=2a 3a 3a 3A B =()a 23a 6B C ×=a 2a 3a 5C D ÷=a 12a 2a 10D D a 0y c 0b 02a +b =0x =−1y =a −b +c x y >0y a b ab <0x =−=1b 2a2a +b =02a +b =0b =−2a x =−1y =a −b +c <0a −(−2a)+c =3a +c <0m=1m≠1a +bm+c ≤a +b +c m 2a +b ≥m(am+b)m −1<x <3y 0A【考点】分式的值为零的条件【解析】根据分式的分子分子为零,分母不为零,可得答案.【解答】解:∵分式的值为,∴,且,解得.故答案为:.11.【答案】【考点】概率公式【解析】由小明在一次班会中参与知识抢答活动,现有语文题个,数学题个,综合题个,直接利用概率公式求解即可求得答案.【解答】解:∵小明在一次班会中参与知识抢答活动,现有语文题个,数学题个,综合题个,∴他从中随机抽取个题,抽中综合题的概率是:.故答案为:.12.【答案】【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】此题暂无解析【解答】此题暂无解答13.【答案】−2|x|−22−x 0|x|−2=02−x ≠0x =−2−21120451145111=114+5+111120112040.6反比例函数的应用【解析】设函数解析式为,把代入求,再根据题意可得,解不等式可得.【解答】解:设函数解析式为,当时, ,,.气球内的气压大于时,气球将爆炸,∴,解得:.即气球的体积应不小于.故答案为:.14.【答案】,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.所以方程组的解为所以直线与直线的交点为.故答案为:.15.【答案】①②④【考点】翻折变换(折叠问题)矩形的性质全等三角形的性质与判定菱形的判定与性质P =k vy =1.5,p =16000k 24000P =k V ∵V =1.5m 3P =16000Pa ∴k =VP =24000∴P =24000V ∵40000Pa ≤4000024000V V ≥0.60.6m 30.6{x =2,y =5(2,5)2x−4=0x =2y =5{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)连接,设与交于点,由折叠的性质可得垂直平分,可判断①;由“”可证,可得,可判断②;通过证明四边形是菱形,可得,由锐角三角函数可求,可得,可判断④,由题意无法证明和的面积相等,即可求解.【解答】解:如图,连接,设与交于点,将纸片折叠,点落在边的延长线上的点处,∴垂直平分,∴,,, ,故①正确;,∴,又,∴,∴,∴,故②正确;∵平分,∴,由角平分线定理,,∴,故③错误;∵,∴四边形是菱形,∴,当点与点重合时,则,∴,,∴,故④正确.综上,①②④正确.故答案为:①②④.三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16.【答案】解:原式,当时,原式.【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式,当时,原式.17.【答案】BE EF BG O EF BG ASA △BOF ≅△GOE BF =EG =G F BEGF ∠BEF =∠GEF ∠AEB =30∘∠DEF =75∘△GDK △GKH BE EF BG O ∵B AD G EF BG EF ⊥BG BO =GO BE =EG BF =FG ∵AD//BC ∠EGO =∠FBO ∵∠EOG =∠BOF △BOF ≅△GOE(ASA)BF =EG BF =EG =GF BG ∠EGF DG ≠GH =DG GH DK KH DK ≠KH BE =EG =BF =FG BEGF ∠BFE =∠GEF F C BF =BC =BE =5AE ==4−5232−−−−−−√DE =1EF ==+3212−−−−−−√10−−√=+2ab −−2a −1+2a =2ab −1a 2a 2a =+1,b =−12–√2–√=2(+1)(−1)−1=2−1=12–√2–√=+2ab −−2a −1+2a =2ab −1a 2a 2a =+1,b =−12–√2–√=2(+1)(−1)−1=2−1=12–√2–√证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴【考点】平行四边形的性质全等三角形的性质与判定平行线的判定【解析】由平行四边形的性质得出,,再证出,由证明,得出对应角相等,再由内错角相等,两直线平行,即可得出结论.【解答】证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴18.【答案】,画出树状图如图所示,①被抽取的名同学恰好是男女的有种情况,∴被抽取的名同学恰好是男女的概率为;②至少名男生被抽到的有种情况,∴至少名男生被抽到的概率为.【考点】扇形统计图列表法与树状图法【解析】先求出总人数,进而求解即可;ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.OA =OC OB =OD OM =ON SAS △BOM ≅△DON ∠OBM =∠ODN ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.21108(2)2118211=812231101=101256(1)利用列举法求概率.【解答】解:由题意可得:全班人数为(人),∴;组的圆心角为.故答案为:;.画出树状图如图所示,①被抽取的名同学恰好是男女的有种情况,∴被抽取的名同学恰好是男女的概率为;②至少名男生被抽到的有种情况,∴至少名男生被抽到的概率为.19.【答案】解:由题意得,,;由题意得,分别为方程的两个实数根,,∴,,,,,由知,.【考点】根与系数的关系根的判别式【解析】此题暂无解析【解答】解:由题意得,,;由题意得,分别为方程的两个实数根,,∴,,(2)(1)10÷20%=50m=50−4−15−10=21B ×=1550360∘108∘21108(2)2118211=812231101=101256(1)Δ≥0∴Δ=−4ac b 2=(2k +1−4)2k 2=4k +1≥0∴k ≥−14(2)x 1x 2∴=,+=−(2k +1)x 1x 2k 2x 1x 22−−=2−(+)x 1x 2x 1x 2x 1x 2x 1x 2=2+(2k +1)k 2=2+2k +1=1k 2∴2k(k +1)=0∴=0k 1=−1k 2(1)k ≥−14∴k =0(1)Δ≥0∴Δ=−4acb 2=(2k +1−4)2k 2=4k +1≥0∴k ≥−14(2)x 1x 2∴=,+=−(2k +1)x 1x 2k 2x 1x 22−−=2−(+)x 1x 2x 1x 2x 1x 2x 1x 2=2+(2k +1)k 2=2+2k +1=1k 2,,,由知,.20.【答案】解:∵点在双曲线上,∴==,∴双曲线的解析式为.把=代入,得:=,∴的坐标为,∵直线=经过,两点,∴解得:∴直线的解析式为直线=;∵=,∴=时,=,∴点的坐标为.∵,又点在轴上,且满足=,∴点的坐标为或.【考点】反比例函数与一次函数的综合【解析】(1)由点的坐标求出=,得出双曲线的解析式为.求出的坐标为,由点和的坐标以及待定系数法即可求出直线的解析式为直线=;(2)先根据直线的解析式求出点坐标,再根据点在轴上,且满足=,即可求出点的坐标.【解答】解:∵点在双曲线上,∴==,∴双曲线的解析式为.把=代入,得:=,∴的坐标为,∵直线=经过,两点,∴解得:∴直线的解析式为直线=;∵=,∴=时,=,∴点的坐标为.∵,又点在轴上,且满足=,∴点的坐标为或.21.【答案】证明:∵是的直径,∴,∴.∵,,∴2k(k +1)=0∴=0k 1=−1k 2(1)k ≥−14∴k =0(1)B(−3,−2)y =k x k −3×(−2)6y =6x y 6y =6x x 1A (1,6)y ax+b A B { a +b =6,−3a +b =−2,{ a =2,b =4.y 2x+4(2)y 2x+4y 0x −2C (−2,0)OA ==+1262−−−−−−√37−−√P x PC OA P (−2−,0)37−−√(−2+,0)37−−√B k 6y =6x A (1,6)A B y 12x+4C P x PC OA P (1)B(−3,−2)y =k x k −3×(−2)6y =6x y 6y =6x x 1A (1,6)y ax+b A B { a +b =6,−3a +b =−2,{ a =2,b =4.y 2x+4(2)y 2x+4y 0x −2C (−2,0)OA ==+1262−−−−−−√37−−√P x PC OA P (−2−,0)37−−√(−2+,0)37−−√(1)AB ⊙O ∠AEB=90∘∠EAB+∠EBA =90∘∠CBE=∠BDE ∠BDE=∠EAB∴,∴,即,∴.∵是的直径,∴是的切线.∵平分,∴.∵,∴.∵,∴,∴,∴.【考点】圆周角定理切线的判定相似三角形的性质与判定【解析】(1)根据圆周角定理即可得出=,再由已知得出=,则,从而证得是的切线;(2)通过证得,得出相似三角形的对应边成比例即可证得结论.【解答】证明:∵是的直径,∴,∴.∵,,∴,∴,即,∴.∵是的直径,∴是的切线.∵平分,∴.∵,∴.∵,∴,∴,∴.22.【答案】解:假设与成一次函数关系,设函数关系式为,则解得:,,∴.检验:当,;当,;当,,符合一次函数解析式,∴所求的函数关系为.设日销售利润,即,∴当时,有最大值元,∠EAB=∠CBE ∠EBA+∠CBE =90∘∠ABC=90∘CB ⊥AB AB ⊙O BC ⊙O (2)BD ∠ABE ∠ABD=∠DBE ∠DAF=∠DBE ∠DAF=∠ABD ∠ADB=∠ADF △ADF ∽△BDA =AD BD DF AD AD 2=DF ⋅DB ∠EAB+∠EBA 90∘∠ABE+∠CBE 90∘CB ⊥AB BC ⊙O △ADF ∽△BDA (1)AB ⊙O ∠AEB=90∘∠EAB+∠EBA =90∘∠CBE=∠BDE ∠BDE=∠EAB ∠EAB=∠CBE ∠EBA+∠CBE =90∘∠ABC=90∘CB ⊥AB AB ⊙O BC ⊙O (2)BD ∠ABE ∠ABD=∠DBE ∠DAF=∠DBE ∠DAF=∠ABD ∠ADB=∠ADF △ADF ∽△BDA =AD BD DF AD AD 2=DF ⋅DB (1)y x y =kx+b {30k +b =600,40k +b =300,k =−30b =1500y =−30x+1500x =35y =450x =45y =150x =50y =0y =−30x+1500(2)w =y(x−30)=(−30x+1500)(x−30)w =−30+2400x−45000x 2x =−=4024002×(−30)w 3000故这批农产品的销售价格定为元,才能使日销售利润最大.令,解得或,所以销售价格应该不低于元且不高于元.【考点】待定系数法求一次函数解析式二次函数的应用一元二次方程的应用——利润问题【解析】此题暂无解析【解答】解:假设与成一次函数关系,设函数关系式为,则解得:,,∴.检验:当,;当,;当,,符合一次函数解析式,∴所求的函数关系为.设日销售利润,即,∴当时,有最大值元,故这批农产品的销售价格定为元,才能使日销售利润最大.令,解得或,所以销售价格应该不低于元且不高于元.23.【答案】解:如图∵,∴,,,又∵, 即 ∴在和中,∴,∴,又∵,∴,∴;【类比引申】【探究应用】如图,把绕点逆时针旋转至,链接,过作,垂足为.∵,.40(3)w =−30+2400x−45000=2250x 2x =35453545(1)y x y =kx+b {30k +b =600,40k +b =300,k =−30b =1500y =−30x+1500x =35y =450x =45y =150x =50y =0y =−30x+1500(2)w =y(x−30)=(−30x+1500)(x−30)w =−30+2400x−45000x 2x =−=4024002×(−30)w 300040(3)w =−30+2400x−45000=2250x 2x =35453545(1)△ADG ≅△ABE AG =AE ∠DAG =∠BAE DG =BE ∠EAF =45∘∠DAF +∠BAE =∠EAF =45∘∠GAF =∠FAE△GAF △FAE AG =AE ∠GAF =∠FAEAF =AF△AFG ≅△AFE(SAS)GF =EF DG =BE GF =BE+DFBE+DF =EF ∠BAD =2∠EAF(3)△ABE A 150∘△ADG AF A AH ⊥GD H ∠BAD =150∘∠DAE =90∘∴,又∵,∴是等边三角形,∴米.根据旋转的性质得到:,又∵,∴,即点在的延长线上,易得,,∴,,,又∵,.故.∴.又∵∴根据上述推论有:(米),即这条道路的长约为米,【考点】四边形综合题【解析】(1)根据全等三角形的判定定理证明,根据全等三角形的性质解答即可;(2)把绕点逆时针旋转至,可使与重合,证明即可;(3)把绕点逆时针旋转得到,连接,根据勾股定理得到,由(1)得,得到,代入已知数据计算即可.【解答】解:如图∵,∴,,,又∵, 即 ∴在和中,∴,∴,又∵,∴,∴;【类比引申】∠BAE =60∘∠B =60∘△ABE BE =AB =80∠ADG =∠B =60∘∠ADF =120∘∠GDF =180∘G CD △ADG ≅△ABE AG =AE ∠DAG =∠BAE DG =BE AH =80×=403–√23–√HF =HD+DF =40+40(−1)=403–√3–√∠HAF =45∘∠EAF =∠EAD−∠DAF =−=90∘15∘75∘∠BAD ==2×=2∠EAF 150∘75∘EF =BE+DF =80+40(−1)≈1093–√EF 109△GAF ≅△EAF △ABF A 90∘△ADG AB AD △AFE ≅△AGE △ABM A 90∘△ACG NG N =N +C G 2C 2G 2△ANM ≅△ANG NG =NM (1)△ADG ≅△ABE AG =AE ∠DAG =∠BAE DG =BE ∠EAF =45∘∠DAF +∠BAE =∠EAF =45∘∠GAF =∠FAE△GAF △FAE AG =AE ∠GAF =∠FAEAF =AF△AFG ≅△AFE(SAS)GF =EF DG =BE GF =BE+DFBE+DF =EF ∠BAD =2∠EAF【探究应用】如图,把绕点逆时针旋转至,链接,过作,垂足为.∵,.∴,又∵,∴是等边三角形,∴米.根据旋转的性质得到:,又∵,∴,即点在的延长线上,易得,,∴,,,又∵,.故.∴.又∵∴根据上述推论有:(米),即这条道路的长约为米,24.【答案】解:()∵抛物线经过点和点,∴解得:,∴,的值分别为,.(2)①设直线的解析式为,把, 的坐标分别代入表达式,得解得,∴直线的函数表达式为,由()得,抛物线的对称轴是直线,当时,,∴点的坐标是,②设抛物线的表达式为,轴,∴点的坐标是,∴点的横坐标为,∴点的坐标是 ,设交抛物线于另一点,∵抛物线的对称轴是直线, 轴,∴根据抛物线的对称性,点的坐标是,①如图,当点在点及下方,即时,, ,由平移的性质得, ,,,(3)△ABE A 150∘△ADG AF A AH ⊥GD H ∠BAD =150∘∠DAE =90∘∠BAE =60∘∠B =60∘△ABE BE =AB =80∠ADG =∠B =60∘∠ADF =120∘∠GDF =180∘G CD △ADG ≅△ABE AG =AE ∠DAG =∠BAE DG =BE AH =80×=403–√23–√HF =HD+DF =40+40(−1)=403–√3–√∠HAF =45∘∠EAF =∠EAD−∠DAF =−=90∘15∘75∘∠BAD ==2×=2∠EAF 150∘75∘EF =BE+DF =80+40(−1)≈1093–√EF 1091y =+bx+c x 2A(0,−5)B(5,0){,c =525+5b +c =0{b =4c =−5b c −4−5AB y =kx+n(k ≠0)A(0,−5)B(5,0){,n =−55k +n =0{k =1n =−5AB y =x−51L x =2x =2y =x−5=−3M (2,−3)L 1y =−9(x−2+m)2MN//y N (2,−9)m 2P −1P (−1,−6m)m 2PE L 1Q L 1x =2−m PE//x Q (5−2m,−6m)m 21N M 0<m≤6–√PQ =5−2m−(−1)=6−2m MN =−3−(−9)=6−m 2m 2QE =m PE =6−2m+m=6−m PE+MN =106−m+6−=102,解得,(舍去), ,②如图,当点在点及上方,点在点及右侧,即时,,,∵,∴,解得, (舍去), (舍去),③如图,当点在上方,点在点左侧,即时, ,,∵,∴,解得, (舍去), ,综合以上可得的值是或.【考点】二次函数综合题【解析】此题暂无解析【解答】解:()∵抛物线经过点和点,∴解得:,∴,的值分别为,.6−m+6−=10m 2=−2m 1=1m 22N M C P <m≤36–√PE =6−m MN =−6m 2PE+MN =106−m+−6=10m 2=m 11+41−−√2=m 21−41−−√23N M C P m>3PE =m MN =−6m 2PE+MN =10m+−6=10m 2=m 1−1−65−−√2=m 2−1+65−−√2m 1−1+65−−√21y =+bx+c x 2A(0,−5)B(5,0){,c =525+5b +c =0{b =4c =−5b c −4−5(2)①设直线的解析式为,把, 的坐标分别代入表达式,得解得,∴直线的函数表达式为,由()得,抛物线的对称轴是直线,当时,,∴点的坐标是,②设抛物线的表达式为,轴,∴点的坐标是,∴点的横坐标为,∴点的坐标是 ,设交抛物线于另一点,∵抛物线的对称轴是直线, 轴,∴根据抛物线的对称性,点的坐标是,①如图,当点在点及下方,即时,, ,由平移的性质得, ,,,,解得,(舍去), ,②如图,当点在点及上方,点在点及右侧,即时,,,∵,∴,解得, (舍去), (舍去),③如图,当点在上方,点在点左侧,即时, ,,∵,∴,解得, (舍去),,综合以上可得的值是或.AB y =kx+n(k ≠0)A(0,−5)B(5,0){,n =−55k +n =0{k =1n =−5AB y =x−51L x =2x =2y =x−5=−3M (2,−3)L 1y =−9(x−2+m)2MN//y N (2,−9)m 2P −1P (−1,−6m)m 2PE L 1Q L 1x =2−m PE//x Q (5−2m,−6m)m 21N M 0<m≤6–√PQ =5−2m−(−1)=6−2m MN =−3−(−9)=6−m 2m 2QE =m PE =6−2m+m=6−m PE+MN =106−m+6−=10m 2=−2m 1=1m 22N M C P <m≤36–√PE =6−m MN =−6m 2PE+MN =106−m+−6=10m 2=m 11+41−−√2=m 21−41−−√23N M C P m>3PE =m MN =−6m 2PE+MN =10m+−6=10m 2=m 1−1−65−−√2=m 2−1+65−−√2m 1−1+65−−√2。
四川省南充市2022年中考数学真题试题(含解析)2
四川省南充市 2022年中考数学真题试题一、选择题〔本大题共10个小题,每题 2022年四川省南充市,共30分)每题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。
请根据正确选项的代号填涂答题卡对应位置,填涂正确记 2022年四川省南充市,不涂、错涂或多涂记0分。
1.〔 2022年四川省南充市〕以下实数中,最小的数是〔〕A.B.0 C.1 D.【考点】2A:实数大小比拟.【分析】将各项数字按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣<0<1<,那么最小的数是﹣.应选:A.【点评】此题考查了实数大小比拟,正确排列出数字是解此题的关键.2.〔 2022年四川省南充市〕以下图形中,既是轴对称图形又是中心对称图形的是〔〕A.扇形 B.正五边形 C.菱形 D.平行四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、扇形,是轴对称图形,不是中心对称图形,故此选项错误;B、正五边形是轴对称图形,不是中心对称图形,故此选项错误;C、菱形既是轴对称图形又是中心对称图形,故此选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故此选项错误.应选:C.【点评】此题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两局部折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两局部重合.3.〔 2022年四川省南充市〕以下说法正确的选项是〔〕A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1[【考点】X3:概率的意义;V2:全面调查与抽样调查;X1:随机事件.【分析】利用概率的意义以及实际生活常识分析得出即可.【解答】解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;应选:A.【点评】此题主要考查了随机事件的定义和概率的意义,正确把握相关定义是解题关键.4.〔 2022年四川省南充市〕以下计算正确的选项是〔〕A.﹣a4b÷a2b=﹣a2b B.〔a﹣b〕2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a2【考点】4I:整式的混合运算.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答此题.【解答】解:﹣a4b÷a2b=﹣a2,应选项A错误,〔a﹣b〕2=a2﹣2ab+b2,应选项B错误,a2•a3=a5,应选项C错误,﹣3a2+2a2=﹣a2,应选项D正确,应选:D.【点评】此题考查整式的混合运算,解答此题的关键是明确整式混合运算的计算方法.5.〔 2022年四川省南充市〕如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,那么∠B的度数是〔〕A.58° B.60° C.64° D.68°【考点】M5:圆周角定理.【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.【解答】解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°﹣32°=58°,应选:A.【点评】此题考查了圆周角的性质与等腰三角形的性质.此题比拟简单,解题的关键是注意数形结合思想的应用.6.〔 2022年四川省南充市〕不等式x+1≥2x﹣1的解集在数轴上表示为〔〕A.B.C.D.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】根据不等式解集的表示方法,可得答案.【解答】解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,应选:B.【点评】此题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来〔>,≥向右画;<,≤向左画〕,注意在表示解集时“≥〞,“≤〞要用实心圆点表示;“<〞,“>〞要用空心圆点表示.7.〔 2022年四川省南充市〕直线y=2x向下平移2个单位长度得到的直线是〔〕A.y=2〔x+2〕B.y=2〔x﹣2〕C.y=2x﹣2 D.y=2x+2【考点】F9:一次函数图象与几何变换.【分析】据一次函数图象与几何变换得到直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.【解答】解:直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.应选:C.【点评】此题考查了一次函数图象与几何变换:一次函数y=kx〔k≠0〕的图象为直线,当直线平移时k不变,当向上平移m个单位,那么平移后直线的解析式为y=kx+m.8.〔 2022年四川省南充市〕如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,假设BC=2,那么EF的长度为〔〕A.B.1 C.D.【考点】KX:三角形中位线定理;KO:含30度角的直角三角形;KP:直角三角形斜边上的中线.【分析】根据直角三角形的性质得到CD=BD=AD,得到△CBD为等边三角形,根据三角形的中位线定理计算即可.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=BD=AD,∵∠ACB=90°,∠A=30°,∴∠B=60°,∴△CBD为等边三角形,∴CD=BC=2,∵E,F分别为AC,AD的中点,∴EF=CD=1,应选:B.【点评】此题考查的是三角形中位线定理、勾股定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.9.〔 2022年四川省南充市〕=3,那么代数式的值是〔〕A.B.C.D.【考点】6B:分式的加减法;64:分式的值.【分析】由=3得出=3,即x﹣y=﹣3xy,整体代入原式=,计算可得.【解答】解:∵=3,∴=3,∴x﹣y=﹣3xy,那么原式====,应选:D.【点评】此题主要考查分式的加减法,解题的关键是掌握分式加减运算法那么和整体代入思想的运用.10.〔 2022年四川省南充市〕如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.以下结论正确的选项是〔〕A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明BH=AH,推出EG=BG,推出CE=CB,再证明△ABC≌△CEH,Rt△HFE≌Rt△HFA,利用全等三角形的性质即可一一判断.【解答】解:连接EH.∵四边形ABCD是正方形,∴CD=AB═BC=AD=2,CD∥AB,∵BE⊥AP,CH⊥BE,∴CH∥PA,∴四边形CPAH是平行四边形,∴CP=AH,∵CP=PD=1,∴AH=PC=1,∴AH=BH,在Rt△ABE中,∵AH=HB,∴EH=HB,∵HC⊥BE,∴BG=EG,∴CB=CE=2,应选项A错误,∵CH=CH,CB=CE,HB=HE,∴△ABC≌△CEH,∴∠CBH=∠CEH=90°,∵HF=HF,HE=HA,∴Rt△HFE≌Rt△HFA,∴AF=EF,设EF=AF=x,在Rt△CDF中,有22+〔2﹣x〕2=〔2+x〕2,∴x=,∴EF=,故B错误,∵PA∥CH,∴∠CEP=∠ECH=∠BCH,∴cos∠CEP=cos∠BCH==,故C错误.∵HF=,EF=,FC=∴HF2=EF•FC,故D正确,应选:D.【点评】此题考查正方形的性质、全等三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题〔本大题共6个小题,每题 2022年四川省南充市,共1 2022年四川省南充市〕请将答案填在答题卡对应的横线上。
2022年四川省南充市中考数学试卷(解析版)
2022年四川省南充市中考数学试卷(真题)一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1.(4分)(2022•南充)下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5| 2.(4分)(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°3.(4分)(2022•南充)下列计算结果正确的是()A.5a﹣3a=2 B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b94.(4分)(2022•南充)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94﹣x)=35 B.4x+2(35﹣x)=94C.2x+4(94﹣x)=35 D.2x+4(35﹣x)=945.(4分)(2022•南充)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E 6.(4分)(2022•南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差7.(4分)(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1 B.DC=3 C.AE=5 D.AC=98.(4分)(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为()A.70°B.65°C.50°D.45°9.(4分)(2022•南充)已知a>b>0,且a2+b2=3ab,则(+)2÷(﹣)的值是()A.B.﹣C.D.﹣10.(4分)(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n (m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)(2022•南充)比较大小:2﹣230.(选填>,=,<)12.(4分)(2022•南充)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是.13.(4分)(2022•南充)数学实践活动中,为了测量校园内被花坛隔开的A,B 两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是m.14.(4分)(2022•南充)若为整数,x为正整数,则x的值是.15.(4分)(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高m时,水柱落点距O点4m.16.(4分)(2022•南充)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重合),将△ADE沿直线DE折叠,点A落在点A处,连接A1B,将A1B绕点B1顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是.(填写序号)三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明,证明过程或演算步骤.17.(8分)(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x =﹣1.18.(8分)(2022•南充)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)△ADE≌△CDF.(2)ME=NF.19.(8分)(2022•南充)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:项目A B C D人数/人 5 15 a b(1)a=,b=.(2)扇形统计图中“B”项目所对应的扇形圆心角为度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.20.(10分)(2022•南充)已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.21.(10分)(2022•南充)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.(1)求直线AB与双曲线的解析式.(2)求△ABC的面积.22.(10分)(2022•南充)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.(1)求证:CD是⊙O的切线.(2)若CE=OA,sin∠BAC =,求tan∠CEO的值.23.(10分)(2022•南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)种类真丝衬衣真丝围巾进价(元/件)a80售价(元/件)300 100 (1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?24.(10分)(2022•南充)如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM上(不与点A重合),OP=AB.(1)判断△ABP的形状,并说明理由.(2)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.(3)点Q在边AD上,AB=5,AD=4,DQ=,当∠CPQ=90°时,求DM的长.25.(12分)(2022•南充)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).(1)求抛物线的解析式.(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.2022年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1.(4分)(2022•南充)下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5|【分析】根据相反数判断A,B,C选项;根据绝对值判断D选项.【解答】解:A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【点评】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.2.(4分)(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°【分析】利用旋转不变性,三角形内角和定理和平角的意义解答即可.【解答】解:∵∠B=30°,∠C=90°,∴∠CAB=180°﹣∠B﹣∠C=60°,∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,∴∠C′AB′=∠CAB=60°.∵点B′恰好落在CA的延长线上,∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°.故选:B.【点评】本题主要考查了图形旋转的性质,三角形的内角和定理,平角的意义,利用旋转不变性解答是解题的关键.3.(4分)(2022•南充)下列计算结果正确的是()A.5a﹣3a=2 B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b9【分析】根据合并同类项判断A选项;根据单项式除以单项式判断B选项;根据同底数幂的除法判断C选项;根据积的乘方判断D选项.【解答】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项不符合题意;故选:D.【点评】本题考查了合并同类项,单项式除以单项式,同底数幂的除法,幂的乘方与积的乘方,掌握(ab)n=a n b n是解题的关键.4.(4分)(2022•南充)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94﹣x)=35 B.4x+2(35﹣x)=94C.2x+4(94﹣x)=35 D.2x+4(35﹣x)=94【分析】由上有三十五头且鸡有x只,可得出兔有(35﹣x)只,利用足的数量=2×鸡的只数+4×兔的只数,即可得出关于x的一元一次方程,此题得解.【解答】解:∵上有三十五头,且鸡有x只,∴兔有(35﹣x)只.依题意得:2x+4(35﹣x)=94.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5.(4分)(2022•南充)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E【分析】根据正多边形定义可知,每一个内角相等,每一条边相等,再根据内角和公式求出每一个内角,根据以AB为边向内作正△ABF,得出∠FAB=∠ABF=∠F=60°,AF=AB=FB,从而选择正确选项.【解答】解:在正五边形ABCDE中内角和:180°×3=540°,∴∠C=∠D=∠E=∠EAB=∠ABC=540°÷5=108°,∴D不符合题意;∵以AB为边向内作正△ABF,∴∠FAB=∠ABF=∠F=60°,AF=AB=FB,∵AE=AB,∴AE=AF,∠EAF=∠FBC=48°,∴A、B不符合题意;∴∠F≠∠EAF,∴C符合题意;故选:C.【点评】此题主要考查正多边形的计算问题、等边三角形的性质,掌握正多边形定义及内角和公式、等边三角形的性质的综合应用是解题关键.6.(4分)(2022•南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差【分析】根据条形统计图中的数据,可以判断出平均数、众数、方差无法计算,可以计算出中位数,本题得以解决.【解答】解:由统计图可知,平均数无法计算,众数无法确定,方差无法计算,而中位数是(9+9)÷2=9,故选:B.【点评】本题考查条形统计图、平均数、中位数、众数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.7.(4分)(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1 B.DC=3 C.AE=5 D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC 的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、C正确;∴CE==4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDF+∠FDB=90°,∵∠CDF+∠DEC=90°,∴∠DEC=∠FDB,∵∠C=∠DFB,CD=FD,∴△ECD≌△DFB(AAS),∴CE=BF=4,故选项A错误;故选:A.【点评】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.(4分)(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为()A.70°B.65°C.50°D.45°【分析】先根据三角形的内角和定理可得∠B=25°,由垂径定理得:=,最后由圆周角定理可得结论.【解答】解:∵OF⊥BC,∴∠BFO=90°,∵∠BOF=65°,∴∠B=90°﹣65°=25°,∵弦CD⊥AB,AB为⊙O的直径,∴=,∴∠AOD=2∠B=50°.故选:C.【点评】本题考查垂径定理,圆周角定理,直角三角形的性质等知识,解题的关键是灵活运用所学知识,属于中考常考题型.9.(4分)(2022•南充)已知a>b>0,且a2+b2=3ab,则(+)2÷(﹣)的值是()A.B.﹣C.D.﹣【分析】利用分式的加减法法则,乘除法法则把分式进行化简,由a2+b2=3ab,得出(a+b)2=5ab,(a﹣b)2=ab,由a>b>0,得出a+b=,a﹣b=,代入计算,即可得出答案.【解答】解:(+)2÷(﹣)=÷=•=﹣,∵a2+b2=3ab,∴(a+b)2=5ab,(a﹣b)2=ab,∵a>b>0,∴a+b=,a﹣b=,∴﹣=﹣=﹣=﹣,故选:B.【点评】本题考查了分式的化简求值,掌握分式的加减法法则,分式的乘除法法则,把分式正确化简是解决问题的关键.10.(4分)(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n (m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2【分析】根据题意和题目中的抛物线,可以求得抛物线的对称轴,然后分类讨论即可得到m的取值范围.【解答】解:∵抛物线y=mx2﹣2m2x+n(m≠0),∴该抛物线的对称轴为直线x=﹣=m,∵当x1+x2>4且x1<x2时,都有y1<y2,∴当m>0时,0<2m≤4,解得0<m≤2;当m<0时,2m>4,此时m无解;由上可得,m的取值范围为0<m≤2,故选:A.【点评】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)(2022•南充)比较大小:2﹣2<30.(选填>,=,<)【分析】先分别计算2﹣2和30的值,再进行比较大小,即可得出答案.【解答】解:∵2﹣2=,30=1,∴2﹣2<30,故答案为:<.【点评】本题考查了负整数指数幂,零指数幂,掌握负整数指数幂的意义,零指数幂的意义是解决问题的关键.12.(4分)(2022•南充)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是.【分析】用物理变化的张数除以总张数即可.【解答】解:从中随机抽取一张卡片共有6种等可能结果,抽中生活现象是物理变化的有2种结果,所以从中随机抽取一张卡片,抽中生活现象是物理变化的概率为=,故答案为:.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.(4分)(2022•南充)数学实践活动中,为了测量校园内被花坛隔开的A,B 两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是20 m.【分析】利用三角形中位线定理解决问题即可.【解答】解:∵CD=AD,CE=EB,∴DE是△ABC的中位线,∴AB=2DE,∵DE=10m,∴AB=20m,故答案为:20.【点评】本题考查三角形中位线定理,解题的关键是掌握三角形中位线定理,属于中考常考题型.14.(4分)(2022•南充)若为整数,x为正整数,则x的值是4或7或8 .【分析】利用二次根式的性质求得x的取值范围,利用算术平方根的意义解答即可.【解答】解:∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵为整数,∴=0或1或2,当=0时,x=8,当=1时,x=7,当=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【点评】本题主要考查了算术平方根的意义,二次根式的性质,利用二次根式的性质求得x的取值范围是解题的关键.15.(4分)(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8 m时,水柱落点距O点4m.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,直接利用二次函数的平移性质是解题关键.16.(4分)(2022•南充)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重合),将△ADE沿直线DE折叠,点A落在点A处,连接A1B,将A1B绕点B1顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是①②③.(填写序号)【分析】①正确.根据SAS证明三角形全等即可;②正确.过点D作DT⊥CA1于点T,证明∠ADE+∠CDT=45°,∠CDT=∠BCA1即可;③正确.连接PA,AC.因为A,A1关于DE对称,推出PA=PA1,推出PA1+PC =PA+PC≥AC=,可得结论;④错误.过点A1作A1H⊥AB于点H,求出EB,A1H,可得结论.【解答】解:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵∠A1BA2=∠ABC=90°,∴∠ABA1=∠CBA2,∵BA1=BA2,∴△ABA1≌△CBA2(SAS),故①正确,过点D作DT⊥CA1于点T,∵CD=DA1,∴∠CDT=∠A1DT,∵∠ADE=∠A1DE,∠ADC=90°,∴∠ADE+∠CDT=45°,∵∠CDT+∠DCT=90°,∠DCT+∠BCA1=90°,∴∠CDT=∠BCA1,∴∠ADE+∠BCA1=45°,故②正确.连接PA,AC.∵A,A1关于DE对称,∴PA=PA1,∴PA1+PC=PA+PC≥AC=,∴PA1+PC的最小值为,故③正确,过点A1作A1H⊥AB于点H,∵∠ADE=30°,∴AE=A1E=AD•tan30°=,∴EB=AB﹣AE=1﹣,∵∠A1EB=60°,∴A1H=A1E•sin60°=×=,∴=×(1﹣)×=,故④错误.故答案为:①②③.【点评】本题考查正方形的性质,解直角三角形,翻折变换,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明,证明过程或演算步骤.17.(8分)(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x =﹣1.【分析】提取公因式x+2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x=﹣1时,原式=(﹣1)2﹣4=﹣2.【点评】本题考查整数的混合运算﹣化简求值,解题的关键是熟练灵活运用所学知识解决问题,属于中考常考题型.18.(8分)(2022•南充)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)△ADE≌△CDF.(2)ME=NF.【分析】(1)根据菱形的性质和全等三角形的判定SAS,可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质,可以得到DE=DF,DM=DN,从而可以得到ME=NF.【解答】证明:(1)∵四边形ABCD是菱形,∴DA=DC,∠DAE=∠DCF,AB=CB,∵BE=BF,∴AE=CF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS);(2)由(1)知△ADE≌△CDF,∴∠ADM=∠CDN,DE=DF,∵四边形ABCD是菱形,∴∠DAM=∠DCN,∴∠DMA=∠DNC,∴∠DMN=∠DNM,∴DM=DN,∴DE﹣DM=DF﹣DN,∴ME=NF.【点评】本题考查菱形的性质、全等三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)(2022•南充)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:项目A B C D人数/人 5 15 a b(1)a=20 ,b=10 .(2)扇形统计图中“B”项目所对应的扇形圆心角为108 度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.【分析】(1)由A项目人数及其所占百分比可得总人数,总人数乘以D项目人数所占比例求出b,再根据四个项目人数之和等于总人数得出a;(2)用360°乘以B项目人数所占比例即可;(3)七(1)班3人分别用A、B、C表示,七(2)班2人分别D、E表示,列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)被调查的总人数为5÷10%=50(人),∴b=50×20%=10(人),则a=50﹣(5+15+10)=20,故答案为:20,10;(2)扇形统计图中“B”项目所对应的扇形圆心角为360°×=108°,故答案为:108;(3)七(1)班3人分别用A、B、C表示,七(2)班2人分别D、E表示,根据题意列表如下:A B C D EA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)共有20种等可能的情况数,其中这两人来自不同班级的有12种,则这两人来自不同班级的概率是=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)(2022•南充)已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.【分析】(1)根据一元二次方程x2+3x+k﹣2=0有实数根,可知Δ≥0,即可求得k的取值范围;(2)根据根与系数的关系和(x1+1)(x2+1)=﹣1,可以求得k的值.【解答】解:(1)∵关于x的一元二次方程x2+3x+k﹣2=0有实数根,∴Δ=32﹣4×1×(k﹣2)≥0,解得k≤,即k的取值范围是k≤;(2)∵方程x2+3x+k﹣2=0的两个实数根分别为x1,x2,∴x1+x1=﹣3,x1x2=k﹣2,∵(x1+1)(x2+1)=﹣1,∴x1x2+(x1+x2)+1=﹣1,∴k﹣2+(﹣3)+1=﹣1,解得k=3,即k的值是3.【点评】本题考查根与系数的关系、根的判别式,解答本题的关键是明确一元二次方有根时Δ≥0,以及根与系数的关系.21.(10分)(2022•南充)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.(1)求直线AB与双曲线的解析式.(2)求△ABC的面积.【分析】(1)根据点A的坐标可以求得双曲线的解析式,然后即可求得点B 的坐标,再用待定系数法即可求得直线AB的解析式;(2)先求出直线BO的解析式,然后求出点C的坐标,再用割补法即可求得△ABC的面积.【解答】解:(1)设双曲线的解析式为y=,∵点A(1,6)在该双曲线上,∴6=,解得k=6,∴y=,∵B(m,﹣2)在双曲线y=上,∴﹣2=,解得m=﹣3,设直线AB的函数解析式为y=ax+b,,解得,即直线AB的解析式为y=2x+4;(2)作BG∥x轴,FG∥y轴,FG和BG交于点G,作BE∥y轴,FA∥x轴,BE 和FA交于点E,如右图所示,直线BO的解析式为y=ax,∵点B(﹣3,﹣2),∴﹣2=﹣3a,解得a=,∴直线BO的解析式为y=x,,解得或,∴点C的坐标为(3,2),∵点A(1,6),B(﹣3,﹣2),C(3,2),∴EB=8,BG=6,CG=4,CF=4,AF=2,AE=4,∴S△ABC=S矩形EBGF﹣S△AEB﹣S△BGC﹣S△AFC=8×6﹣﹣﹣=48﹣16﹣12﹣4=16.【点评】本题考查反比例函数与一次函数的交点问题、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.22.(10分)(2022•南充)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.(1)求证:CD是⊙O的切线.(2)若CE=OA,sin∠BAC=,求tan∠CEO的值.【分析】(1)连接OC,证明OC⊥CD即可;(2)过点O作OH⊥BC于点H.由sin∠BAC==,可以假设BC=4k,AB =5k,则AC=OC=CE=2.5k,用k表示出OH,EH,可得结论.【解答】(1)证明:连接OC,∵AB是直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠OCB=∠OBC,∵∠BCD=∠BAC,∴∠OCB+∠DCB=90°,∴OC⊥CD,∵OC为⊙O的半径,∴CD是⊙O的切线;(2)解:过点O作OH⊥BC于点H.∵sin∠BAC==,∴可以假设BC=4k,AB=5k,则AO=OC=CE=2.5k,∵OH⊥BC,∴CH=BH=2k,∵OA=OB,∴OH=AC=k,∴EH=CE﹣CH=2.5k﹣2k=0.5k,∴tan∠CEO ===3.【点评】本题考查切线的判定,解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.23.(10分)(2022•南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)种类真丝衬衣真丝围巾进价(元/件)a80售价(元/件)300 100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【分析】(1)利用总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出a的值;(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,根据真丝围巾进货件数不低于真丝衬衣件数的2倍,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,设两种商品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于x的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设每件真丝围巾降价y元,利用总利润=每件的销售利润×销售数量,结合要保证销售利润不低于原来最大利润的90%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,依题意得:300﹣x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x =300﹣100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,解得:y≤8.答:每件真丝围巾最多降价8元.【点评】本题考查了一元一次方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,找出w关于x的函数关系式;(3)根据各数量之间的关系,正确列出一元一次不等式.24.(10分)(2022•南充)如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM上(不与点A重合),OP=AB.(1)判断△ABP的形状,并说明理由.(2)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.(3)点Q在边AD上,AB=5,AD=4,DQ=,当∠CPQ=90°时,求DM的长.【分析】(1)由已知得:OP=OA=OB,根据等腰三角形的性质和三角形内角和定理可得结论;(2)如图1,延长AM,BC交于点Q,先证明△ADM≌△QCM(ASA),得AD=CQ =BC,根据直角三角形斜边中线的性质可得PC=BQ=BC,由等边对等角和等量代换,及角的和差关系可得结论;(3)分两种情况:作辅助线,构建相似三角形,设DM=x,QG=a,则CH=a+,BH=AG=4﹣﹣a=﹣a,①如图2,点M在CD上时,②如图3,当M在DC的延长线上时,根据同角的三角函数和三角形相似可解答.【解答】(1)解:△ABP是直角三角形,理由如下:∵点O是AB的中点,∴AO=OB=AB,∵OP=AB,∴OP=OA=OB,∴∠OBP=∠OPB,∠OAP=∠APO,。
2022年四川南充中考数学真题及答案
2022年四川南充中考数学真题及答案一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1.(4分)下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5|【分析】根据相反数判断A,B,C选项;根据绝对值判断D选项.【解答】解:A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【点评】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.2.(4分)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°【分析】利用旋转不变性,三角形内角和定理和平角的意义解答即可.【解答】解:∵∠B=30°,∠C=90°,∴∠CAB=180°﹣∠B﹣∠C=60°,∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,∴∠C′AB′=∠CAB=60°.∵点B′恰好落在CA的延长线上,∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°.故选:B.【点评】本题主要考查了图形旋转的性质,三角形的内角和定理,平角的意义,利用旋转不变性解答是解题的关键.3.(4分)下列计算结果正确的是()A.5a﹣3a=2 B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b9【分析】根据合并同类项判断A选项;根据单项式除以单项式判断B选项;根据同底数幂的除法判断D选项;根据积的乘方判断D选项.【解答】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项不符合题意;故选:D.【点评】本题考查了合并同类项,单项式除以单项式,同底数幂的除法,幂的乘方与积的乘方,掌握(ab)n=a n b n是解题的关键.4.(4分)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94﹣x)=35 B.4x+2(35﹣x)=94C.2x+4(94﹣x)=35 D.2x+4(35﹣x)=94【分析】由上有三十五头且鸡有x只,可得出兔有(35﹣x)只,利用足的数量=2×鸡的只数+4×兔的只数,即可得出关于x的一元一次方程,此题得解.【解答】解:∵上有三十五头,且鸡有x只,∴兔有(35﹣x)只.依题意得:2x+4(35﹣x)=94.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5.(4分)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E【分析】根据正多边形定义可知,每一个内角相等,每一条边相等,再根据内角和公式求出每一个内角,根据以AB为边向内作正△ABF,得出∠FAB=∠ABF=∠F=60°,AF=AB=FB,从而选择正确选项.【解答】解:在正五边形ABCDE中内角和:180°×3=540°,∴∠C=∠D=∠E=∠EAB=∠ABC=540°÷5=108°,∴D不符合题意;∵以AB为边向内作正△ABF,∴∠FAB=∠ABF=∠F=60°,AF=AB=FB,∵AE=AB,∴AE=AF,∠EAF=∠FBC=48°,∴A、B不符合题意;∴∠F≠∠EAF,∴C符合题意;故选:C.【点评】此题主要考查正多边形的计算问题、等边三角形的性质,掌握正多边形定义及内角和公式、等边三角形的性质的综合应用是解题关键.6.(4分)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差【分析】根据条形统计图中的数据,可以判断出平均数、众数、方差无法计算,可以计算出中位数,本题得以解决.【解答】解:由统计图可知,平均数无法计算,众数无法确定,方差无法计算,而中位数是(9+9)÷2=9,故选:B.【点评】本题考查条形统计图、平均数、中位数、众数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.7.(4分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1 B.DC=3 C.AE=5 D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、C正确;∴CE==4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDF+∠FDB=90°,∵∠CDF+∠DEC=90°,∴∠DEC=∠FDB,∵∠C=∠DFB,CD=FD,∴△ECD≌△DFB(AAS),∴CE=BF=4,故选项A错误;故选:A.【点评】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.(4分)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为()A.70°B.65°C.50°D.45°【分析】先根据三角形的内角和定理可得∠B=25°,由垂径定理得:=,最后由圆周角定理可得结论.【解答】解:∵OF⊥BC,∴∠BFO=90°,∵∠BOF=65°,∴∠B=90°﹣65°=25°,∵弦CD⊥AB,AB为⊙O的直径,∴=,∴∠AOD=2∠B=50°.故选:C.【点评】本题考查垂径定理,圆周角定理,直角三角形的性质等知识,解题的关键是灵活运用所学知识,属于中考常考题型.9.(4分)已知a>b>0,且a2+b2=3ab,则(+)2÷(﹣)的值是()A.B.﹣C.D.﹣【分析】利用分式的加减法法则,乘除法法则把分式进行化简,由a2+b2=3ab,得出(a+b)2=5ab,(a﹣b)2=ab,由a>b>0,得出a+b=,a﹣b=,代入计算,即可得出答案.【解答】解:(+)2÷(﹣)=÷=•=﹣,∵a2+b2=3ab,∴(a+b)2=5ab,(a﹣b)2=ab,∵a>b>0,∴a+b=,a﹣b=,∴﹣=﹣=﹣=﹣,故选:B.【点评】本题考查了分式的化简求值,掌握分式的加减法法则,分式的乘除法法则,把分式正确化简是解决问题的关键.10.(4分)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2【分析】根据题意和题目中的抛物线,可以求得抛物线的对称轴,然后分类讨论即可得到m 的取值范围.【解答】解:∵抛物线y=mx2﹣2m2x+n(m≠0),∴该抛物线的对称轴为直线x=﹣=m,∵当x1+x2>4且x1<x2时,都有y1<y2,∴当m>0时,0<2m≤4,解得0<m≤2;当m<0时,2m>4,此时m无解;由上可得,m的取值范围为0<m≤2,故选:A.【点评】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)比较大小:2﹣2<30.(选填>,=,<)【分析】先分别计算2﹣2和30的值,再进行比较大小,即可得出答案.【解答】解:∵2﹣2=,30=1,∴2﹣2<30,故答案为:<.【点评】本题考查了负整数指数幂,零指数幂,掌握负整数指数幂的意义,零指数幂的意义是解决问题的关键.12.(4分)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是.【分析】用物理变化的张数除以总张数即可.【解答】解:从中随机抽取一张卡片共有6种等可能结果,抽中生活现象是物理变化的有2种结果,所以从中随机抽取一张卡片,抽中生活现象是物理变化的概率为=,故答案为:.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.(4分)数学实践活动中,为了测量校园内被花坛隔开的A,B两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是20 m.【分析】利用三角形中位线定理解决问题即可.【解答】解:∵CD=AD,CE=EB,∴DE是△ABC的中位线,∴AB=2DE,∵DE=10m,∴AB=20m,故答案为:20.【点评】本题考查三角形中位线定理,解题的关键是掌握三角形中位线定理,属于中考常考题型.14.(4分)若为整数,x为正整数,则x的值是4或7或8 .【分析】利用二次根式的性质求得x的取值范围,利用算术平方根的意义解答即可.【解答】解:∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵为整数,∴=0或1或2,当=0时,x=8,当=1时,x=7,当=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【点评】本题主要考查了算术平方根的意义,二次根式的性质,利用二次根式的性质求得x 的取值范围是解题的关键.15.(4分)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8 m时,水柱落点距O点4m.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m 时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y =ax2+bx+3;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h 时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+3;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,直接利用二次函数的平移性质是解题关键.16.(4分)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重合),将△ADE沿直线DE折叠,点A落在点A1处,连接A1B,将A1B绕点B顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是①②③.(填写序号)【分析】①正确.根据SAS证明三角形全等即可;②正确.过点D作DT⊥CA1于点T,证明∠ADE+∠CDT=45°,∠CDT=∠BCA1即可;③正确.连接PA,AC.因为A,A1关于DE对称,推出PA=PA1,推出PA1+PC=PA+PC≥AC=,可得结论;④错误.过点A1作A1H⊥AB于点H,求出EB,A1H,可得结论.【解答】解:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵∠A1BA2=∠ABC=90°,∴∠ABA1=∠CBA2,∵BA1=BA2,∴△ABA1≌△CBA2(SAS),故①正确,过点D作DT⊥CA1于点T,∵CD=DA1,∴∠CDT=∠A1DT,∵∠ADE=∠A1DE,∠ADC=90°,∴∠ADE+∠CDT=45°,∵∠CDT+∠DCT=90°,∠DCT+∠BCA1=90°,∴∠CDT=∠BCA1,∴∠ADE+∠BCA1=45°,故②正确.连接PA,AC.∵A,A1关于DE对称,∴PA=PA1,∴PA1+PC=PA+PC≥AC=,∴PA1+PC的最小值为,故③正确,过点A1作A1H⊥AB于点H,∵∠ADE=30°,∴AE=A1E=AD•tan30°=,∴EB=AB﹣AE=1﹣,∵∠A1EB=60°,∴A1H=A1E•sin60°=×=,∴=×(1﹣)×=,故④错误.故答案为:①②③.【点评】本题考查正方形的性质,解直角三角形,翻折变换,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明,证明过程或演算步骤.17.(8分)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x=﹣1.【分析】提取公因式x+2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x=﹣1时,原式=(﹣1)2﹣4=﹣2.【点评】本题考查整数的混合运算﹣化简求值,解题的关键是熟练灵活运用所学知识解决问题,属于中考常考题型.18.(8分)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)△ADE≌△CDF.(2)ME=NF.【分析】(1)根据菱形的性质和全等三角形的判定SAS,可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质,可以得到DE=DF,DM=DN,从而可以得到ME=NF.【解答】证明:(1)∵四边形ABCD是菱形,∴DA=DC,∠DAE=∠DCF,AB=CB,∵BE=BF,∴AE=CF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS);(2)由(1)知△ADE≌△CDF,∴∠ADM=∠CDN,DE=DF,∵四边形ABCD是菱形,∴∠DAM=∠DCN,∴∠DMA=∠DNC,∴∠DMN=∠DNM,∴DM=DN,∴DE﹣DM=DF﹣DN,∴ME=NF.【点评】本题考查菱形的性质、全等三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:项目A B C D人数/人 5 15 a b(1)a=20 ,b=10 .(2)扇形统计图中“B”项目所对应的扇形圆心角为108 度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.【分析】(1)由A项目人数及其所占百分比可得总人数,总人数乘以D项目人数所占比例求出b,再根据四个项目人数之和等于总人数得出a;(2)用360°乘以B项目人数所占比例即可;(3)七(1)班3人分别用A、B、C表示,七(2)班2人分别D、E表示,列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)被调查的总人数为5÷10%=50(人),∴b=50×20%=10(人),则a=50﹣(5+15+10)=20,故答案为:20、10;(2)扇形统计图中“B”项目所对应的扇形圆心角为360°×=108°,故答案为:108;(3)七(1)班3人分别用A、B、C表示,七(2)班2人分别D、E表示,根据题意画图如下:共有25种等可能的情况数,其中这两人来自不同班级的有12种,则这两人来自不同班级的概率是.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.【分析】(1)根据一元二次方程x2+3x+k﹣2=0有实数根,可知Δ≥0,即可求得k的取值范围;(2)根据根与系数的关系和(x1+1)(x2+1)=﹣1,可以求得k的值.【解答】解:(1)∵关于x的一元二次方程x2+3x+k﹣2=0有实数根,∴Δ=32﹣4×1×(k﹣2)≥0,解得k≤,即k的取值范围是k≤;(2)∵方程x2+3x+k﹣2=0的两个实数根分别为x1,x2,∴x1+x1=﹣3,x1x2=k﹣2,∵(x1+1)(x2+1)=﹣1,∴x1x2+(x1+x2)+1=﹣1,∴k﹣2+(﹣3)+1=﹣1,解得k=3,即k的值是3.【点评】本题考查根与系数的关系、根的判别式,解答本题的关键是明确一元二次方有根时Δ≥0,以及根与系数的关系.21.(10分)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.(1)求直线AB与双曲线的解析式.(2)求△ABC的面积.【分析】(1)根据点A的坐标可以求得双曲线的解析式,然后即可求得点B的坐标,再用待定系数法即可求得直线AB的解析式;(2)先求出直线BO的解析式,然后求出点C的坐标,再用割补法即可求得△ABC的面积.【解答】解:(1)设双曲线的解析式为y=,∵点A(1,6)在该双曲线上,∴6=,解得k=6,∴y=,∵B(m,﹣2)在双曲线y=上,∴﹣2=,解得m=﹣3,设直线AB的函数解析式为y=ax+b,,解得,即直线AB的解析式为y=2x+4;(2)作BG∥x轴,FG∥y轴,FG和BG交于点G,作BE∥y轴,FA∥x轴,BE和FA交于点E,如右图所示,直线BO的解析式为y=ax,∵点B(﹣3,﹣2),∴﹣2=﹣3a,解得a=,∴直线BO的解析式为y=x,,解得或,∴点C的坐标为(3,2),∵点A(1,6),B(﹣3,﹣2),C(3,2),∴EB=8,BG=6,CG=4,CF=4,AF=2,AE=4,∴S△ABC=S矩形EBGF﹣S△AEB﹣S△BGC﹣S△AFC=8×6﹣﹣﹣=48﹣16﹣12﹣4=16.【点评】本题考查反比例函数与一次函数的交点问题、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.22.(10分)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.(1)求证:CD是⊙O的切线.(2)若CE=OA,sin∠BAC=,求tan∠CEO的值.【分析】(1)连接OC,证明OC⊥CD即可;(2)过点O作OH⊥BC于点H.由sin∠BAC==,可以假设BC=4k,AB=5k,则AC=OC=CE=3k,用k表示出OH,EH,可得结论.【解答】(1)证明:连接OC,∵AB是直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠OCB=∠OBC,∵∠BCD=∠BAC,∴∠OCB+∠DCB=90°,∴OC⊥CD,∵OC为⊙O的半径,∴CD是⊙O的切线;(2)解:过点O作OH⊥BC于点H.∵sin∠BAC==,∴可以假设BC=4k,AB=5k,则AC=OC=CE=3k,∵OH⊥BC,∴CH=BH=2k,∵OA=OB,∴OH=AC=k,∴EH=CE﹣CH=3k﹣2k=k,∴tan∠CEO===.【点评】本题考查切线的判定,解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.23.(10分)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)种类真丝衬衣真丝围巾进价(元/件)a80售价(元/件)300 100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【分析】(1)利用总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出a 的值;(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,根据真丝围巾进货件数不低于真丝衬衣件数的2倍,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,设两种商品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于x的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设每件真丝围巾降价y元,利用总利润=每件的销售利润×销售数量,结合要保证销售利润不低于原来最大利润的90%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,依题意得:300﹣x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x=300﹣100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,解得:y≤8.答:每件真丝围巾最多降价8元.【点评】本题考查了一元一次方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,找出w关于x的函数关系式;(3)根据各数量之间的关系,正确列出一元一次不等式.24.(10分)如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM 上(不与点A重合),OP=AB.(1)判断△ABP的形状,并说明理由.(2)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.(3)点Q在边AD上,AB=5,AD=4,DQ=,当∠CPQ=90°时,求DM的长.【分析】(1)由已知得:OP=OA=OB,根据等腰三角形的性质和三角形内角和定理可得结论;(2)如图1,延长AM,BC交于点Q,先证明△ADM≌△QCM(ASA),得AD=CQ=BC,根据直角三角形斜边中线的性质可得PC=BQ=BC,由等边对等角和等量代换,及角的和差关系可得结论;(3)分两种情况:作辅助线,构建相似三角形,设DM=x,QG=a,则CH=a+,BH=AG=4﹣﹣a=﹣a,①如图2,点M在CD上时,②如图3,当M在DC的延长线上时,根据同角的三角函数和三角形相似可解答.【解答】(1)解:△ABP是直角三角形,理由如下:∵点O是AB的中点,∴AO=OB=AB,∵OP=AB,∴OP=OA=OB,∴∠OBP=∠OPB,∠OAP=∠APO,∵∠OAP+∠APO+∠OBP+∠BPO=180°,∴∠APO+∠BPO=90°,∴∠APB=90°,∴△ABP是直角三角形;(2)证明:如图1,延长AM,BC交于点Q,∵M是CD的中点,∴DM=CM,∵∠D=∠MCQ=90°,∠AMD=∠QMC,∴△ADM≌△QCM(ASA),∴AD=CQ=BC,∵∠BPQ=90°,∴PC=BQ=BC,∴∠CPB=∠CBP,∵∠OPB=∠OBP,∴∠OBC=∠OPC=90°,∴∠OPN=∠OPA+∠APN=90°,∵∠OAP+∠PAN=90°,∠OAP=∠OPA,∴∠APN=∠PAN,∴PN=AN;(3)解:分两种情况:①如图2,点M在CD上时,过点P作GH∥CD,交AD于G,交BC于H, 设DM=x,QG=a,则CH=a+,BH=AG=4﹣﹣a=﹣a,∵PG∥DM,∴△AGP∽△ADM,∴=,即,∴PG=x﹣ax,∵∠CPQ=90°,∴∠CPH+∠QPG=90°,∵∠CPH+∠PCH=90°,∴∠QPG=∠PCH,∴tan∠QPG=tan∠PCH,即=,∴PH•PG=QG•CH,同理得:∠APG=∠PBH,∴tan∠APG=tan∠PBH,即=,∴PG•PH=AG•BH=AG2,∴AG2=QG•CH,即(﹣a)2=a(+a),∴a=,∵PG•PH=AG2,∴(x﹣x)•(5﹣x+x)=(﹣)2, 解得:x1=12(舍),x2=,∴DM=;②如图3,当M在DC的延长线上时,同理得:DM=12,综上,DM的长是或12.【点评】本题主要考查了四边形综合题,涉及相似三角形的性质,动点问题,三角函数,三角形全等的性质和判定,直角三角形斜边中线的性质等知识,解题的关键是正确的画出图形,分情况讨论,难度较大.25.(12分)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).(1)求抛物线的解析式.(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M 的坐标.【分析】(1)将A、B两点坐标代入抛物线的解析式,从而求得b,c,进而得出抛物线的解析式;(2)在BC的下方存在一个点P,在BC的上方时两个,其中过BC下方的点P的直线l与BC平行的直线与抛物线相切,根据直线l的解析式与抛物线解析式可以得出一个一元二次方程,该一元二次方程的根的判别式为0,从而求得b的值,进而得出在BC的上方的直线解析式,与抛物线联立成方程组,进一步求得结果;(3)作MG⊥x轴于G,作NH⊥x轴于H,作MK⊥DF,交DF的延长线于K,设D点的横坐标为a,根据△BHN∽△BFD得出DF=2NH,根据△OMG∽△ONH得出MG=2NH,OG=2OH=a+4,从而KF=MG=DF,根据tan∠DEB=2tan∠DBE可表示出EF,根据△DEF∽△DMK可得出a的值,进一步求得结果.【解答】解:(1)由题意得,,∴,∴y=﹣;(2)如图1,作直线l∥BC且与抛物线相切于点P1,直线l交y轴于E,作直线m∥BC且直线m到BC的距离等于直线l到BC的距离,∵BC的解析式为y=x﹣4,∴设直线l的解析式为:y=x+b,由=x+b得,x2﹣4x﹣3(b+4)=0,∵Δ=0,∴﹣3(b+4)=4,∴b=﹣,∴x2﹣4x+4=0,y=x﹣,∴x=2,y=﹣,∴P1(2,﹣),∵E(0,﹣),C(0,﹣4),∴F(0,﹣4×2﹣(﹣)),即(0,﹣),∴直线m的解析式为:y=x﹣,∴,∴,,∴P2(2﹣2,﹣2﹣),P3(2+2,2﹣),综上所述:点P(2,﹣)或(2﹣2,﹣2﹣)或(2+2,2﹣);(3)如图2,作MG⊥x轴于G,作NH⊥x轴于H,作MK⊥DF,交DF的延长线于K,设D点的横坐标为a,∵BN=DN,∴BD=2BN,N点的横坐标为:,∴OH=,∵MH∥DF,∴△BHN∽△BFD,∴,∴DF=2NH,同理可得:△OMG∽△ONH,∴=,∴MG=2NH,OG=2OH=a+4,∴KF=MG=DF,∵tan∠DEB=2tan∠DBE∴=2•,∴EF=,∵BF=4﹣a,∴EF=,∵EF∥MK,∴△DEF∽△DMK,∴=,∴,∴a=0,∴OG=a+4=4,∴G(﹣4,0),当x=﹣4时,y=﹣﹣4=,∴M(﹣4,).【点评】本题考查了求二次函数的解析式,求一次函数的解析式,一次函数和二次函数图象的交点与方程组之间的关系,相似三角形的判定和性质等知识,解决问题的关键是利用相似三角形寻找线段间的数量关系.。
四川省南充市2022年中考数学试卷含答案解析
四川省南充市2022年中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)(共10题;共40分) 1.(4分)下列计算结果为5的是()A.-(+5)B.+(-5)C.-(-5)D.-|-5|2.(4分)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB'C',点B’恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC'为()A.90°B.60°C.45°D.30°3.(4分)下列计算结果正确的是()A.5a-3a=2B.6a÷2a= 3aC.a6÷a3=a2D.(2a2b3)3=8a6b94.(4分)《孙子算经》中有“鸡兔同笼"问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94-x)=35B.4x+2(35-x)=94C.2x+4(94-x)=35D.2x+4(35-x)=945.(4分)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是()A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E6.(4分)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差7.(4分)如图,在Rt△ABC中,CC=90,∠BAC的平分线交BC于点D,DE∥AB,交AC 于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=98.(4分)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点点F,∠BOF=65°,则∠AOD为()A.70°B.65°C.50°D.45°9.(4分)已知a>b>0,且a2+b2=3ab,则(1a+1b)2÷(1a2−1b2)的值是()A.√5B.−√5C.√55D.−√5510.(4分)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2-2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2B.-2≤m<0C.m>2D.m<-2二、填空题(本大题共6个小题,每小题4分,共24分)(共6题;共24分) 11.(4分)比较大小:2-230.(选填>,=,<)12.(4分)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是13.(4分)数学实践活动中,为了测量校园内被花坛隔开的A,B两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是m.14.(4分)若√8−x为整数,x为正整数,则x的值是15.(4分)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点0在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距0点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高m时,水柱落点距O点4m.16.(4分)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重给),将△ADE 沿直线DE折叠,点A落在点A1处,连接AB,将,A1B绕点B顺时针旋转90°得到A2B,连接A1A,A1C,A2C给出下列四个结论;①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为√2;④当∠ADE = 30°时,△A1BE的,其中正确的结论是.(填写序号)面积为起3−√36三、解答题(本大题共9个小题,共86分)(共9题;共86分)17.(8分)先化简,再求值:(x+2)(3x-2)-2x(x+2),其中x= √3-1.18.(8分)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)(4分)△ADE≌△CDF.(2)(4分)ME=NF.19.(8分)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:(1)(4分)a=,b=(2)(2分)扇形统计图中“B”项目所对应的扇形圆心角为度.(3)(2分)在月末的展示活动中,“C"项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率、20.(10分)已知关于x的一元二次方程x2+3x+k-2=0有实数根.(1)(5分)求实数k的取值范围.(2)(5分)设方程的两个实数根分别为x1,x2,者(x1+1)(x2+1)=-1,求k的值.21.(10分)如图,直线AB与双曲线交于A(1,6),B(m,-2)两点,直线BO与双曲线在第一象限交于点C,连接AC;(1)(5分)求直线AB与双曲线的解析式.(2)(5分)求△ABC的面积22.(10分)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.(1)(5分)求证:CD是⊙O的切线.,求tan∠CEO的值(2)(5分)若CE=OA,sin∠BAC= 4523.(10分)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15 000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)(1)(3分)求真丝衬衣进价a的值.(2)(3.5分)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)(3.5分)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?24.(10分)如图,在矩形ABCD中,点0是AB的中点,点M是射线DC上动点,点P在AB.线段AM上(不与点A重合),OP= 12(1)(3分)判断△ABP的形状,并说明理由.(2)(3.5分)当点M为边DC中点时,连接CP并延长交AD于点N.求证:PN=AN.,当∠CPQ=90°时,求DM的(3)(3.5分)点Q在边AD上,AB=5,AD=4,DQ= 85长.25.(12分)抛物线y= 13x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,-4).(1)(4分)求抛物线的解析式.(2)(4分)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.(3)(4分)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=20N,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标。
(中考精品)四川省南充市中考数学真题(解析版)
南充市二○二二年初中学业水平考试数学试卷(满分150分,时间120分钟)注意事项:1.答题前将姓名、座位号、身份证号、准考证号填在答题卡指定位置.2.所有解答内容均需涂、写在答题卡上.3.选择题须用2B 铅笔将答题卡相应题号对应选项涂黑,若需改动,须擦净另涂.4.填空题、解答题在答题卡对应题号位置用0.5毫米黑色字迹笔书写.一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1. 下列计算结果为5的是( )A. (5)-+B. (5)+-C. (5)--D. |5|--【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A 、-(+5)=-5,不符合题意;B 、+(-5)=-5,不符合题意;C 、-(-5)=5,符合题意;D 、55--=-,不符合题意;故选:C .【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键. 2. 如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A. 90︒B. 60︒C. 45︒D. 30°【答案】B【解析】 【分析】根据直角三角形两锐角互余,求出BAC ∠的度数,由旋转可知BAC B AC ''∠=∠,在根据平角的定义求出BAC '∠的度数即可.详解】∵3090∠=︒∠=︒,B C ,∴90903060BAC B ∠=︒-∠=︒-︒=︒,∵由旋转可知60B A BAC C ''∠=︒∠=,∴618060860100C B A BA BA C C '''=︒-∠=︒-︒-︒=︒∠∠-,故答案选:B .【点睛】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键.3. 下列计算结果正确的是( )A. 532a a -=B. 623a a a ÷=C. 632a a a ÷=D. ()3236928a b a b =【答案】D【解析】【分析】根据单项式的减法、除法及同底数幂的除法、积的乘方运算依次计算判断即可.【详解】解:A 、5a -3a =2a ,选项错误;B 、6a ÷2a =3,选项错误;C 、633a a a ÷=,选项错误;D 、()3236928a b a b =,选项正确;故选:D .【点睛】题目主要考查单项式的减法、除法及同底数幂的除法、积的乘方运算,熟练掌握各个运算法则是解题关键.4. 《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x 只,可列方程为( )A. 42(94)35x x +-=B. 42(35)94x x +-=C. 24(94)35x x +-=D. 24(35)94x x +-=【答案】D【解析】【分析】设鸡有x 只,则兔子有(35-x )只,根据足共有94列出方程即可. 【【详解】解:设鸡有x 只,则兔子有(35-x )只,根据题意可得:2x +4(35-x )=94,故选:D .【点睛】题目主要考查一元一次方程的应用,理解题意列出方程是解题关键. 5. 如图,在正五边形ABCDE 中,以AB 为边向内作正ABF ,则下列结论错误的是( )A. AE AF =B. EAF CBF ∠=∠C. F EAF ∠=∠D. C E ∠=∠【答案】C【解析】【分析】利用正多边形各边长度相等,各角度数相等,即可逐项判断.【详解】解:∵多边形ABCDE 是正五边形,∴该多边形内角和为:5218540(0)-⨯︒=︒,AB AE =,∴108C E EAB ABC ∠=∠=∠=∠==︒,故D 选项正确; ∵ABF 是正三角形,∴60FAB FBA F ∠=∠=∠=︒,AB AF FB ==,∴1086048EAF EAB FAB ∠=∠-∠=︒-︒=︒,1086048CBF ABC FBA ∠=∠-∠=︒-︒=︒,∴EAF CBF ∠=∠,故B 选项正确;∵AB AE =,AB AF FB ==,∴AE AF =,故A 选项正确;∵60F ∠=︒,48EAF ∠=︒,∴F EAF ∠≠∠,故C 选项错误,故选:C .【点睛】本题考查正多边形的性质以及多边形内角和公式,熟练掌握正多边形“各边长度相等,各角度数相等”是解题的关键.6. 为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是( )A. 平均数B. 中位数C. 众数D. 方差【答案】B【解析】【分析】根据题意可得,计算平均数、众数及方差需要全部数据,从统计图可得:前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26位的平均数,据此即可得出结果.【详解】解:根据题意可得,计算平均数、方差需要全部数据,故A 、D 不符合题意; ∵50-5-11-16=18>16,C 不符合题意;从统计图可得:前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26位的平均数,∴已知的数据中中位数确定,且不受后面数据的影响,故选:B .【点睛】题目主要考查条形统计图与中位数、平均数、众数及方差的关系,理解题意,掌握中位数、平均数、众数及方差的计算方法是解题关键.7. 如图,在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DE //AB ,交AC 于点E ,DF AB ⊥于点F ,5,3DE DF ==,则下列结论错误的是( )A. 1BF =B. 3DC =C. 5AE =D.9AC =【答案】A【解析】【分析】根据角平分线的性质得到CD =DF =3,故B 正确;根据平行线的性质及角平分线得到AE =DE =5,故C 正确;由此判断D 正确;再证明△BDF ≌△DEC ,求出BF =CD =3,故A 错误.【详解】解:在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DF AB ⊥, ∴CD =DF =3,故B 正确;∵DE =5,∴CE =4,∵DE //AB ,∴∠ADE =∠DAF ,∵∠CAD =∠BAD ,∴∠CAD =∠ADE ,∴AE =DE =5,故C 正确;∴AC =AE +CE =9,故D 正确;∵∠B =∠CDE ,∠BFD =∠C =90°,CD =DF ,∴△BDF ≌△DEC ,∴BF =CD =3,故A 错误;故选:A .三角形的判定及性质,熟记各知识点并综合应用是解题的关键.8. 如图,AB 为O 的直径,弦CD AB ⊥于点E ,OF BC ⊥于点F ,65BOF ∠=︒,则AOD ∠为( )A. 70︒B. 65︒C. 50︒D. 45︒【答案】C【解析】【分析】根据邻补角得出∠AOF =180°-65°=115°,利用四边形内角和得出∠DCB =65°,结合圆周角定理及邻补角进行求解即可.【详解】解:∵∠BOF =65°,∴∠AOF =180°-65°=115°,∵CD ⊥AB ,OF ⊥BC ,∴∠DCB =360°-90°-90°-115°=65°,∴∠DOB =2×65°=130°,∴∠AOD =180°-130°=50°,故选:C .【点睛】题目主要考查邻补角的计算及圆周角定理,四边形内角和等,理解题意,综合运用这些知识点是解题关键.9. 已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )B. D. 【答案】B【解析】【分析】先将分式进件化简为a b b a+-,然后利用完全平方公式得出a b -=,a b +=,代入计算即可得出结果. 【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭ 22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭ ()()()22222a b a b a b b a b a +=⨯+- a b b a+=-, ∵223a b ab +=,∴222a ab b ab -+=,∴()2a b ab -=,∵a>b>0,∴a b -=,∵223a b ab +=,∴2225a ab b ab ++=,∴()25a b ab +=,∵a>b>0,∴a b +=, ∴原式=,故选:B .【点睛】题目主要考查完全公式计算,分式化简等,熟练掌握运算法则是解题关键. 10. 已知点()()1122,,,M x y N x y 在抛物线222(0)y mx m x n m =-+≠上,当124x x +>且12x x <时,都有12y y <,则m 的取值范围为( )A. 02m <≤B. 20m -≤<C. 2m >D. 2m <-【答案】A【解析】 【分析】根据题意可得,抛物线的对称轴为222m x m m-=-=,然后分四种情况进行讨论分析,最后进行综合即可得出结果. 【详解】解:根据题意可得,抛物线的对称轴为222m x m m-=-=, ①当0<m <12x x <时,12y y <恒成立;②当120x x m <<<时,12y y <恒不成立;③当120x m x <<<时,使12124x x y y +><,恒成立,∴m 122x x +<, ∴m 2≤,02m <≤,④当120x m x <<<时,12y y <恒不成立;综上可得:02m <≤,故选:A .【点睛】题目主要考查二次函数的基本性质,理解题意,熟练掌握二次函数的基本性质是的解题的关键.二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11. 比较大小:22-_______________03.(选填>,=,<)【答案】<【解析】 【分析】先计算2124-=,031=,然后比较大小即可. 【详解】解:2124-=,031=, ∵114<, ∴2023-<,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.12. 老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是_______________.【答案】13【解析】【分析】根据简单的概率公式求解即可.【详解】解:卡片中有2张是物理变化,一共有6张卡片,∴是物理变化的概率为:2163=, 故答案为:13. 【点睛】题目主要考查简单的概率公式计算,理解题意是解题关键.13. 数学实践活动中,为了测量校园内被花坛隔开的A ,B 两点的距离,同学们在AB 外选择一点C ,测得,AC BC 两边中点的距离DE 为10m (如图),则A ,B 两点的距离是_______________m .【答案】20【解析】【分析】根据题意得出DE 为∆ABC 的中位线,然后利用其性质求解即可.【详解】解:∵点D 、E 为AC ,BC 的中点,∴DE 为∆ABC 的中位线,∵DE =10,∴AB =2DE =20,故答案为:20.【点睛】题目主要考查三角形中位线的判定和性质,熟练掌握三角形中位线的性质是解题关键.14. 为整数,x 为正整数,则x 的值是_______________.【答案】4或8##8或4【解析】【分析】根据根号下的数大于等于0和x 为正整数,可得x 可以取1、2、3、4、5、6、7、8为整数即可得的值.【详解】解:∵80x -≥∴8x ≤∵x 为正整数∴x 可以为1、2、3、4、5、6、7、8为整数∴x 为4或8故答案为:4或8.【点睛】本题考查了利用二次根式的性质化简、解一元一次不等式等知识点,掌握二次根式的性质是解答本题的关键.15. 如图,水池中心点O 处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O 在同一水平面.安装师傅调试发现,喷头高2.5m 时,水柱落点距O 点2.5m ;喷头高4m 时,水柱落点距O 点3m .那么喷头高_______________m 时,水柱落点距O 点4m .【答案】5.5【解析】【分析】设原抛物线的解析式为()2y a x h b =-+, 当向上移动1.5米到4米高度时,抛物线解析式为:()2 1.5y a x h b =-++,将两个交点分别代入求解确定原解析式,设向上平移k 个单位后, 21749416y a x k ⎛⎫=--+ ⎪⎝⎭,将点(4,0)代入求解,然后结合题意即可得出结果.【详解】解:设原抛物线的解析式为()2y a x h b =-+,根据题意可得,与x 轴交于点(2.5,0)代入得: ()20 2.5a h b =-+①,当向上移动1.5米到4米高度时, 抛物线解析式为:()2 1.5y a x h b =-++,与x 轴交于点(4,0),代入得 ()204 1.5a h b =-++②, 联立①②求解可得: 23112413(42h a b a a ⎧=+⎪⎪⎨⎪=-+⎪⎩, ∴将其代入②解得1a =, ∴原抛物线的解析式为2231113(2442y x a a a ⎛⎫=---+ ⎪⎝⎭, 设向上平移k 个单位后, ∴2231113()2442y x a k a a ⎛⎫=---++ ⎪⎝⎭与x 轴交点为(4,0),代入得:223111304()2442a k a a ⎛⎫=---++ ⎪⎝⎭解得:k =3,∴原抛物线向上移动3个单位, 即喷头高3+2.5=5.5米, 故答案为:5.5.【点睛】题目主要考查二次函数的应用,理解题意,设出二次函数的解析式,然后利用待定系数法求解是解题关键.16. 如图,正方形ABCD 边长为1,点E 在边AB 上(不与A ,B 重合),将ADE 沿直线DE 折叠,点A 落在点1A 处,连接1A B ,将1A B 绕点B 顺时针旋转90︒得到2A B ,连接112,,A A AC A C .给出下列四个结论:①12ABA CBA ≌△△;②145ADE ACB ∠+∠=︒;③点P 是直线DE 上动点,则1CP A P +;④当30ADE ∠=︒时,1A BE.其中正确的结论是_______________.(填写序号)【答案】①②③ 【解析】【分析】根据全等三角形判定即可判断①;过D 作DM ⊥CA 1于M ,利用等腰三角形性质及折叠性质得∠ADE +∠CDM ,再等量代换即可判断②;连接AP 、PC 、AC ,由对称性知,PA 1=PA ,知P 、A 、C 共线时取最小值,最小值为AC 长度,勾股定理求解即可判断③;过点A 1作A 1H ⊥AB 于H ,借助特殊角的三角函数值求出BE ,A 1H 的长度,代入三角形面积公式求解即可判断④.【详解】解:∵四边形ABCD 为正方形, ∴AB =BC ,∠ABC =90°,由旋转知,∠A 1BA 2=90°,A 1B =A 2B , ∴∠ABA 1=∠CBA 2, ∴△ABA 1≌△CBA 2, 故①正确;过D作DM⊥CA1于M,如图所示,由折叠知AD=A1D=CD,∠ADE=∠A1DE,∴DM平分∠CDA1,∴∠ADE+∠CDM=45°,又∠BCA1+∠DCM=∠CDM+∠DCM=90°,∴∠BCA1=∠CDM,∴∠ADE+∠BCA1=45°,故②正确;连接AP、PC、AC,由对称性知,PA1=PA,即PA1+PC=PA+PC,当P、A、C共线时取最小值,最小值为AC,故③正确;过点A1作A1H⊥AB于H,如图所示,∵∠ADE=30°,∴AE=tan30°·AD DE∴BE=AB-AE由折叠知∠DEA =∠DEA 1=60°,AE =A 1E , ∴∠A 1EH =60°,∴A 1H =A 1E ·sin60°=12=,∴△A 1BE 的面积=11122⎛⨯-⨯= ⎝, 故④错误,故答案为:①②③.【点睛】本题考查了正方形性质、等腰三角形性质、全等三角形的判定、折叠性质及解直角三角形等知识点,综合性较强.三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明,证明过程或演算步骤.17. 先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.【答案】24x -;- 【解析】【分析】利用多项式乘以多项式及单项式乘以多项式运算法则进行化简,然后代入求值即可.【详解】解:原式=22326424x x x x x -+--- =24x -;当x 1时,原式=)214--=3+1-4=-【点睛】题目主要考查整式的乘法及加减化简求值及二次根式混合运算,熟练掌握运算法则是解题关键.18. 如图,在菱形ABCD 中,点E ,F 分别在边,AB BC 上,BE BF =,,DE DF 分别与AC 交于点M ,N .求证:(1)ADE CDF V V ≌. (2)ME NF =. 【答案】(1)见解析 (2)见解析【解析】【分析】(1)先利用菱形的性质和已知条件证明AE CF =,即可利用SAS 证明ADE CDF V V ≌;(2)连接BD 交AC 于点O ,先利用ASA 证明MDO NDO ≌V V ,推出DM DN =,再由(1)中结论推出DE DF =,即可证明ME NF =. 【小问1详解】证明:由菱形的性质可知,DAE DCF ∠=∠,AB BC CD DA ===, ∵ BE BF =,∴AB BE BC BF -=-,即AE CF =, 在ADE 和CDF 中,AD DC DAE DCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴(SAS)ADE CDF ≌V V . 【小问2详解】证明:如图,连接BD 交AC 于点O ,由菱形的性质可知AC BD ⊥,ADO CDO ∠=∠, ∴90DOM DON ∠=∠=︒, 由(1)知ADE CDF V V ≌,∴ADE CDF ∠=∠,DE DF =, ∴ADO ADE CDO CDF ∠-∠=∠-∠, ∴MDO NDO ∠=∠, 在MDO 和NDO V 中,MDO NDO DO DODOM DON ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴(ASA)MDO NDO ≌V V . ∴DM DN =,∴DE DM DF DN -=-, ∴ME NF =.【点睛】本题考查菱形的性质、全等三角形的判定与性质,熟练掌握菱形的性质是解题的关键.19. 为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A .阅读数学名著;B .讲述数学故事;C .制作数学模型;D .挑战数学游戏要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题: 项目A BC D人数/人 5 15 ab(1)=a _______________,b =_______________.(2)扇形统计图中“B ”项目所对应的扇形圆心角为_______________度.(3)在月末的展示活动中,“C ”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率. 【答案】(1)20;10 (2)108(3)35【解析】【分析】(1)根据A项目人数为5,占比为10%,得出总人数,然后根据D项目占比得出D项目人数,利用总人数减去各项目人数即可得出C项目人数;(2)利用B项目占比然后乘以360度即可得出结果;(3)设七(1)班有3人获得一等奖分别为F、G、H;七(2)班有2人获得一等奖分别为M、N;利用列表法得出所有可能的结果,然后找出满足条件的结果即可得出概率.【小问1详解】解:A项目人数为5,占比为10%,∴总人数为:5÷10%=50;D项目人数为:b=50×20%=10人,C项目人数为:a=50-10-5-15=20人,故答案为:20;10;【小问2详解】解:15360108 50⨯︒=︒,故答案为:108;【小问3详解】解:设七(1)班有3人获得一等奖分别为F、G、H;七(2)班有2人获得一等奖分别为M、N;列表如下:F G H M NF FG FH FM FNG GF GH GM GNH HF HG HM HNM MF MG MH MNN NF NG NH NM共有20中等可能的结果,其中满足条件的有12中结果,123205P==,2名同学来自不同班级的概率为3 5.【点睛】题目主要考查统计表及扇形统计图,利用树状图或列表法求概率等,理解题意,综合运用这些知识点是解题关键.20. 已知关于x 的一元二次方程2320x x k ++-=有实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 【答案】(1)k 174≤; (2)k =3 【解析】【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值. 【小问1详解】解:∵一元二次方程2320x x k ++-=有实数根. ∴∆≥0,即32-4(k -2)≥0, 解得k 174≤【小问2详解】∵方程的两个实数根分别为12,x x , ∴12123,2x x x x k -+==-, ∵()()12111x x ++=-, ∴121211x x x x +++=-, ∴2311k --+=-, 解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.21. 如图,直线AB 与双曲线交于(1,6),(,2)A B m -两点,直线BO 与双曲线在第一象限交于点C ,连接AC .(1)求直线AB 与双曲线的解析式. (2)求ABC 的面积.【答案】(1)直线AB 的解析式为y =2x +4;双曲线解析式为6y x=; (2)16 【解析】【分析】(1)根据点A 的坐标求出双曲线的解析式,求出点B 的坐标,再利用待定系数法求出直线AB 的解析式; (2)求出直线OB 的解析式为y =23x ,得到点C 的坐标,过点B 作BE ∥x 轴,交AC 的延长线于E ,求出直线AC 的解析式,进而得到点E 的坐标,根据ABC 的面积=S △ABE -S △BCE 求出答案. 【小问1详解】解:设双曲线解析式为ky x=,将点A (1,6)代入, 得166k =⨯=, ∴双曲线解析式为6y x=, ∵双曲线过点B (m ,-2), ∴-2m =6, 解得m =-3, ∴B (-3,-2),设直线AB 的解析式为y =nx +b , 得632n b n b +=⎧⎨-+=-⎩,解得24n b =⎧⎨=⎩,∴直线AB 的解析式为y =2x +4; 【小问2详解】的设直线OB 的解析式为y =ax , 得-3a =-2,解得a =23, ∴直线OB 的解析式为y =23x , 当263x x=时,解得x =3或x =-3(舍去), ∴y =2, ∴C (3,2),过点B 作BE ∥x 轴,交AC 的延长线于E , ∵直线AC 的解析式为y =-2x +8, ∴当y =-2时,得-2x +8=-2,解得x =5, ∴E (5,-2),BE =8, ∴ABC 的面积=S △ABE -S △BCE =11888422⨯⨯-⨯⨯ =16.【点睛】此题考查了一次函数与反比例函数的综合知识,正确掌握待定系数法求函数的解析式,求图象交点坐标,求图形的面积,正确掌握一次函数与反比例函数的知识是解题的关键.22. 如图,AB 为O 的直径,点C 是O 上一点,点D 是O 外一点,BCD BAC ∠=∠,连接OD 交BC 于点E .(1)求证:CD 是O 的切线.(2)若4,sin 5CE OA BAC =∠=,求tan CEO ∠的值. 【答案】(1)见解析;(2)3 【解析】【分析】(1)连接OC ,根据圆周角定理得到∠ACB =90°,根据OA =OC 推出∠BCD =∠ACO ,即可得到∠BCD +∠OCB =90°,由此得到结论;(2)过点O 作OF ⊥BC 于F ,设BC =4x ,则AB =5x ,OA =CE =2.5x ,BE =1.5x ,勾股定理求出AC ,根据OF ∥AC ,得到1BF OBCF OA==,证得OF 为△ABC 的中位线,求出OF 及EF ,即可求出tan CEO ∠的值. 【小问1详解】 证明:连接OC ,∵AB 为O 的直径, ∴∠ACB =90°, ∴∠ACO +∠OCB =90°, ∵OA =OC , ∴∠A =∠ACO ,∵BCD BAC ∠=∠, ∴∠BCD =∠ACO , ∴∠BCD +∠OCB =90°, ∴OC ⊥CD ,∴CD 是O 切线. 【小问2详解】解:过点O 作OF ⊥BC 于F , ∵4,sin 5CE OA BAC =∠=, ∴设BC =4x ,则AB =5x ,OA =CE =2.5x , ∴BE =BC -CE =1.5x , ∵∠C =90°,的∴AC 3x =,∵OA =OB ,OF ∥AC , ∴1BF OB CF OA==, ∴CF =BF =2x ,EF =CE -CF =0.5x ,∴OF 为△ABC 的中位线,∴OF =1 1.52AC x =, ∴tan CEO ∠=1.530.5OF x EF x ==.【点睛】此题考查了圆周角定理,证明直线是圆的切线,锐角三角函数,三角形中位线的判定与性质,平行线分线段成比例,正确引出辅助线是解题的关键.23. 南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)(1)求真丝衬衣进价a 的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【答案】(1)a =260;(2)真丝衬衣件数进货100件,真丝围巾进货200件,最大利润为8000元;(3)每件最多降价28元.【解析】【分析】(1)根据题意列出一元一次方程求解即可;(2)设真丝衬衣件数进货x件,则真丝围巾进货(300-x)件,根据题意列出不等式得出x≤100;设总利润为y,由题意得出函数关系式,然后利用一次函数的性质求解即可得出;(3)设降价z元,根据题意列出不等式求解即可.小问1详解】解:根据表格数据可得:50a+25×80=15000,解得:a=260;【小问2详解】解:设真丝衬衣件数进货x件,则真丝围巾进货(300-x)件,根据题意可得:300-x≥2x,解得:x≤100;设总利润为y,根据题意可得y=(300-260)x+(100-80)(300-x)=20x+6000,∵20>0,∴y随x的增大而增大,当x=100时,y最大为:20×100+6000=8000元,此时方案为:真丝衬衣件数进货100件,真丝围巾进货200件,最大利润为8000元;【小问3详解】设降价z元,根据题意可得100×(100-80)+100×(300-260)+100×(300-260-z)≥8000×90%,解得:z≤28,∴每件最多降价28元.【点睛】题目主要考查一元一次方程及不等式的应用,一次函数的应用,理解题意,列出相应方程不等式是解题关键.24. 如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM上(不与点A重合),12OP AB.【(1)判断ABP △的形状,并说明理由.(2)当点M 为边DC 中点时,连接CP 并延长交AD 于点N .求证:PN AN =.(3)点Q 在边AD 上,85,4,5AB AD DQ ===,当90CPQ ∠=︒时,求DM 的长. 【答案】(1)ABP △为直角三角形,理由见解析(2)见解析(3)43或12 【解析】【分析】(1)由点O 是AB 的中点,12OP AB =可知OP OA OB ==,由等边对等角可以推出90APB APO BPO ∠=∠+∠=︒; (2)延长AM ,BC 交于点E ,先证EC BC =,结合(1)的结论得出PC 是直角BPE 斜边的中线,推出12PC BE CE ==,进而得到34∠=∠,再通过等量代换推出21∠=∠,即可证明PN AN =;(3)过点P 作AB 的平行线,交AD 于点F ,交BC 于点G ,得到两个K 型,证明BPG FAP ∆∆ ,CPG PQF ∆∆ ,利用相似三角形对应边成比例列等式求出QF ,FP ,再通过AFP ADM ∆∆ 即可求出DM .【小问1详解】解:ABP △为直角三角形,理由如下:∵点O 是AB 的中点,12OP AB =∴OP OA OB ==,∴APO PAO ∠=∠,BPO PBO ∠=∠,∵ 180APO PAO BPO PBO ∠+∠+∠+∠=︒, ∴1180=902APO BPO ∠+∠=⨯︒︒, ∴90APB ∠=︒,∴ABP △为直角三角形;【小问2详解】证明:如图,延长AM ,BC 交于点E ,由矩形的性质知://AD BE ,90ADM ECM ∠=∠=︒,∴14∠=∠,∵ 点M 为边DC 中点,∴DM CM =,在ADM △和ECM 中,14ADM ECM DM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ADM ECM ≅△△,∴EC AD =,∵BC AD =,∴EC BC =,即C 点为BE 的中点,由(1)知90APB ∠=︒,∴90BPE ∠=︒,即BPE 为直角三角形, ∴12PC BE CE ==, ∴34∠=∠,又∵23∠∠=,14∠=∠,∴21∠=∠,∴PN AN =;【小问3详解】解:如图,过点P 作AB 的平行线,交AD 于点F ,交BC 于点G ,由已知条件85,4,5AB AD DQ ===,设QF a =,FP x =, 则8124455GB AF DQ QF a a ==--=--=-,5PG x =-,85CG a =+. ∵AB AD ⊥,AB BC ⊥,//FG AB ,∴FG AD ⊥,FG BC ⊥,∴90AFP PGB ∠=∠=︒,∴90FAP FPA ∠+∠=︒,∵90APB ∠=︒,∴90BPG FPA ∠+∠=︒,∴BPG FAP ∠=∠,∴BPG FAP ∆∆ , ∴GB PG FP AF =,即1255125a x x a --=-, ∴212(5)()5x x a -=-. 同理,∵ 90QFP ∠=︒,∴90FQP FPQ ∠+∠=︒,∵90CPQ ∠=︒,∴90CPG FPQ ∠+∠=︒,∴CPG FQP ∠=∠,∴CPG PQF ∆∆ , ∴CG PG FP QF =,即855a x x a+-=,∴8(5)()5x x a a -=+. ∴2128()()55a a a -=+, 解得910a =, ∴12352AF a =-=, 将910a =代入8(5)()5x x a a -=+得989(5)(10510x x -=⨯+, 整理得242090x x -+=, 解得12x =或92x =. ∵FAP DAM ∠=∠,AFP ADM ∠=∠,∴AFP ADM ∆∆ , ∴FP AF DM AD =,即324x DM =, ∴83DM x =, ∴当12x =时,814323DM =⨯=, 当92x =时,891232DM =⨯=,此时点M 在DC 的延长线上, 综上,DM 的长为43或12. 【点睛】本题考查矩形的性质,直角三角形斜边中线的性质,相似三角形的判定与性质等,第3问有一定难度,解题关键是作辅助线构造K 字模型.25. 抛物线213y x bx c =++与x 轴分别交于点,(4,0)A B ,与y 轴交于点(0,4)C -.(1)求抛物线的解析式.(2)如图1,BCPQ Y 顶点P 在抛物线上,如果BCPQ Y 面积为某值时,符合条件的点P 有且只有三个,求点P 的坐标.(3)如图2,点M 在第二象限的抛物线上,点N 在MO 延长线上,2OM ON =,连接BN 并延长到点D ,使ND NB =.MD 交x 轴于点E ,DEB ∠与DBE ∠均为锐角,tan 2tan DEB DBE ∠=∠,求点M 的坐标.【答案】(1)211433=--y x x(2)(2,103-),(2+,23-)或(2-23--) (3)(-4,83) 【解析】【分析】(1)根据待定系数法求解析式即可;(2)先根据题意判断出三角形BCP 面积为平行四边形BCPQ 面积的一半,得出当P 在直线BC 下方的抛物线上时,面积取最大值时满足题意,求出最大面积后得到直线BC 下方的P 点坐标,再根据△BCP 的面积求出BC 上方P 点坐标即可;(3)过点N 作NH ⊥x 轴,过D 作DP ⊥x 轴,过M 作MQ ⊥x 轴,根据平行线性质求出MQ =PD ,证明△MEQ ≌△DEP ,得PQ =2PE ,设OP =x ,用x 表示出PB ,PE 的长度,再根据tan 2tan DEB DBE ∠=∠得出PB =2PE ,代入求出x 值,进而求得Q 点坐标及M 点坐标.【小问1详解】 解:∵抛物线213y x bx c =++与x 轴分别交于点(4,0)B ,与y 轴交于点(0,4)C -,∴1164034b c c ⎧⨯++=⎪⎨⎪=-⎩, 解得:134b c ⎧=-⎪⎨⎪=-⎩, 即抛物线解析式为211433=--y x x . 【小问2详解】解:由题意知,三角形BCP 面积为平行四边形BCPQ 面积的一半,设直线BC 下方抛物线上有一点P ,过P 作平行于BC 的直线l ,作直线l 关于BC 对称的直线MN ,由图知,直线MN 与抛物线必有两个交点,根据平行线间距离处处相等知,当三角形BCP 面积取最大值时即直线l 与抛物线只有一个交点时,符合题意的P 点只有三个,由B (4,0),C (0,-4)知直线BC 解析式为:y =x -4,过P 作PH ⊥x 轴于H ,交BC 于E ,则S △BCP =S △PCE +S △PBE =12OB PE ⨯⨯ =2PE , 设P (m ,211433m m --),则E (m ,m -4), ∴S △BCP =21124433m m m ⎡⎤⎛⎫---- ⎪⎢⎥⎝⎭⎣⎦=()222383m --+, ∴当m =2时,△BCP 面积取最大值,最大值为83, 此时,直线BC 下方抛物线上的P 点坐标为(2,103-), 同理,设直线BC 上方抛物线上P 点横坐标为n ,则:()2118244333n n n ⎡⎤----=⎢⎥⎣⎦,解得:n =2+或n =2-即P (2+,23-)或(2-23-),综上所述,满足题意的P 点坐标为(2,103-),(2+,23-)或(2-23--). 【小问3详解】解:过点N 作NH ⊥x 轴,过D 作DP ⊥x 轴,过M 作MQ ⊥x 轴,垂足分别为H 、P 、Q ,如图所示,则NH ∥PD ∥MQ , ∴12OH OM HN OQ ON QM ===,12BH HN BN BP PD BD ===, ∴PD =2HN ,QM =2HN ,即PD =QM ,∵∠MEQ =∠PED ,∴△MEQ ≌△DEP ,∴QE =PE ,设OP =x ,则BP =4-x ,PH =BH =42x -, ∴OH =OP +PH =x +42x -=42x +,OQ =2OH =4+x ,PQ =4+2x ,PE =2+x , ∵tan 2tan DEB DBE ∠=∠, ∴2PD PD PE PB=⨯, 即PB =2PE ,∴4-x =2(2+x ),解得:x =0,即P 点为坐标原点,D 在y 轴上,∴OQ =4,即Q (-4,0),∴M (-4, 83). 【点睛】本题考查了待定系数法求二次函数解析式、二次函数与三角形面积最值问题、平行线分线段成比例性质、全等三角形证明等知识点,解题关键是利用平行线分线段成比例定理找出各线段间的关系。
2023年四川省南充市中考数学试卷(含答案)023557
2023年四川省南充市中考数学试卷试卷考试总分:141 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1.如图所示,由图案(1)平移得到的图案是( ) A. B.C.D.2. 如图,在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车车速的众数(单位:km/h )为( )A.60B.50C.40D.353. 如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC =α,∠ADC =β,则竹竿AB 与AD 的长度之比为( )(1)()5050km/h ()60504035AB AD CE ∠ABC =α∠ADC =βAB AD ()A.tanαtanβB.sinβsinαC.sinαsinβD.cosβcosα 4. 某商店销售进价为1000元的某种商品,为促销,按标价的八折销售,此时商品的利润率仍为20%,此种商品的标价是多少元?(设标价为x )四位同学所列方程为( )A.x −10001000=20%B. 810x =1000×20%C.810x −1000=20%D.810x =1000(1+20%) 5. 小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为( )A.45米B.40米C.90米D.80米6. 对于二次函数y =x 2+mx +1,当0<x ≤2时的函数值总是非负数,则实数m 的取值范围为( )A.m ≥−2B.−4≤m ≤−2C.m ≥−4D.m ≥−4或m ≥−27. 如图,直线l 上有三个正方形A ,B ,C .若正方形A ,C 的面积分别为4和3,则正方形B 的面积为( )A.6B.23C.7D.120tanαtanβsinβsinαsinαsinβcosβcosα100020%x=20%x−10001000x =1000×20%810x−1000=20%810x =1000(1+20%)8101.5260( )45409080y =+mx+1x 20<x ≤2m m≥−2−4≤m≤−2m≥−4m≥−4m≥−2l A B C A C 43B 62371208. 下列计算正确的是( )A.3a 2+a 2=4a 4B.a 2⋅a 3=a 6C.2a 2+3a 3=5a 5D.(a 2)3=a 6 9. 已知二次函数y =ax 2−2ax −1(a 是常数),下列结论正确的是( )A.当a =−1时,函数图象经过点(−1,1)B.当a =−1时,函数图象与x 轴没有交点C.当a <2时,函数图象的顶点始终在x 轴下方D.当a >0时,则x ≥1时,y 随x 的增大而增大二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10. 若分式|x|−22−x 的值为0,则x =________.11. 某服装店元旦促销,如图是该商店抽奖所用的一个转盘,这个转盘被分成的每等份所对的圆心角为22.5∘.转动转盘,若指针落在空白区域,顾客所购商品打8折;若指针落在阴影区域,顾客所购商品在打8折的基础上,还可获得消费满500减50的代金券,则小李在该店消费并能获得代金券的概率为________.12. 如图,四边形ABCD 内接于⊙O ,AB 为直径,点C 是中点.若AB =26,AD =10,则BC 的长________.13. 小刚同学家里要用1500W 的空调,已知家里保险丝通过的最大电流是10A ,额定电压为220V ,那么他家最多还可以有________只50W 的灯泡与空调同时使用.14. 方程组{y =3x −1,y =x +3的解是________;直线y =3x −1与直线y =x +3的交点是________.15. 如图,在△ABC 中,AC =BC =2,AB =1,将它沿AB 翻折得到△ABD ,则四边形ADBC 的形状是________形;点P 、E 、F 分别为线段AB 、AD 、DB 的任意点,则PE +PF 的最小值是________.1203+=4a 2a 2a 4⋅=a 2a 3a 62+3=5a 2a 3a 5=()a 23a 6y =a −2ax−1(a x 2)()a =−1(−1,1)a =−1xa <2xa >0x ≥1y x |x|−22−x0x =22.5∘8850050ABCD ⊙O AB C AB 26AD 10BC 1500W 10A 220V 50W {y =3x−1,y =x+3y =3x−1y =x+3△ABC AC =BC =2AB =1AB △ABD ADBC P E F AB AD DB PE+PF三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16. 先化简,再求值:a(a +2b)−(a +1)2+2a ,其中a =√2+1,b =√2−1.17. 如图所示,在▱ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 在对角线AC 上,且AM =CN ,求证:BM//DN. 18. 在初三年级某班的一次体育模拟测试中,班长对全班同学的测试成绩进行了统计,并绘制了如下不完整的统计图表,请根据图表提供的信息元成以下问题:组别成绩人数A90≤x ≤1004B 80≤x ≤9015C 70≤x ≤80m D 60≤x ≤7010(1)图表中:m =________;B 组的圆心角为________度;(2)A 组4名同学中有2男2女,从中随机抽取两名同学参加市运会,请你用画树状图或列表法求:①被抽取的2名同学恰好是1男1女的概率;②至少1名男生被抽到的概率. 19. 已知关于x 的一元二次方程x 2+(4m+1)x +2m−1=0.(1)求证:无论m 为任何实数,方程总有两个不相等的实数根;(2)若方程两根为x 1,x 2且满足x 1x 2=−2x 1−2x 2,求m 的值. 20. 如图,直线y =k 1x +b 与双曲线y =k 2x 相交于A(2,3),B(m,−2)两点.(1)求直线和双曲线的解析式;(2)点C 是x 轴正半轴上一点,连接AO 、AC ,AO =AC ,求△AOC 的周长.P E F AB AD DB PE+PFa(a +2b)−+2a (a +1)2a =+1,b =−12–√2–√ABCD AC BD O M N AC AM =CN BM//DN.A90≤x ≤1004B80≤x ≤9015C70≤x ≤80m D 60≤x ≤7010(1)m=B(2)A 4222111x +(4m+1)x+2m−1=0x 2(1)m(2),x 1x 2=−2−2x 1x 2x 1x2m y x+b k 1y =k 2x A(2,3)B(m,−2)C x AO AC AO AC △AOC21. 如图,在△ABC 中, AB =AC ,BC 为⊙O 的直径,D 为⊙O 任意一点,连接AD 交BC 于点F ,EA ⊥AD 交DB 的延长线于E ,连接CD .(1)求证:△ABE ≅△ACD ;(2)填空:①当∠CAD 的度数为________时,四边形ABDC 是正方形;②若四边形ABDC 的面积为8,则AD 的长为________. 22. 某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响某特色农产品品牌.小亮调查了一家某特产店A ,B 两种礼盒一个月的销售情况,A 种礼盒进价72元/盒,售价120元/盒,B 种礼盒进价40元/盒,售价80元/盒,这两种礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种礼盒各多少盒?(2)小亮调査发现,A 种礼盒售价每降3元可多卖1盒.若B 种礼盒的售价和销量不变,当A 种礼盒降价多少元/盒时,这两种礼盒平均每天的总利润最大,最大是多少元? 23. 在Rt △ABC 中,AB =AC ,D 为直线BC 上一动点(不与点B 、C 重合),连接AD ,以AD 为直角边作Rt △ADE ,且AD =AE ,连接EC .(1)如图1,当点D 在边BC 延长线上时,易证BD =CE ,且BD ⊥CE ;此时BD 2,CD 2,AD 2三者之间的数量关系为:________;(2)如图2,当点D 在边BC 上(点D 不与点B ,C 重合)时,(1)中BD 2,CD 2,AD 2三者之间数量关系是否仍成立,请给予证明:若不成立,请说明理由.(3)类比构造:如图3,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45∘,若BD =13,CD =5,直接写出边AD 的长________. 24.如图,抛物线y =ax 2−3ax −10a(a <0)交x 轴于点A 、B (A 左B 右),交y 轴于点C ,且OB =OC.(1)求抛物线的解析式;△ABC AB =AC BC ⊙O D ⊙O AD BC F EA ⊥AD DB E CD(1)△ABE ≅△ACD(2)∠CAD ABDC ABDC 8AD 2019A B A 72120B 408028001280(1)(2)A 31B A Rt △ABC AB AC D BC B C AD AD Rt △ADE AD AE EC1D BC BD CE BD ⊥CE BD 2CD 2AD 22D BC D B C BD 2CD 2AD 23ABCD ∠ABC ∠ACB ∠ADC 45∘BD 13CD5ADy =a −3ax−x 210a(a <0)x A B A B y C OB =OC.(1)(2)点P 为第一象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点的横坐标为m ,线段PD 的长为d ,求d 与m 的函数关系式;(3)在(2)的条件下,E 为BP 延长线上一点,且∠PEC =45∘,连接OE ,若△BOE 的面积等于20,求点P 的坐标.(2)P P y BC D P m PD d d m(3)(2)E BP ∠PEC =45∘OE △BOE 20P参考答案与试题解析2023年四川省南充市中考数学试卷试卷一、选择题(本题共计 9 小题,每题 4 分,共计36分)1.【答案】B【考点】平移的性质【解析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【解答】解:通过平移得到的图案必须与题中已知图案完全相同,角度也必须相同,观察图形可知B可以通过题中已知图案平移得到.故选B.2.【答案】C【考点】众数条形统计图【解析】根据中位数的定义求解可得.【解答】解:由条形图知,车速40km/h的车辆有15辆,为最多,所以众数为40.故选C.3.【答案】B【考点】解直角三角形的应用【解析】在两个直角三角形中,分别求出AB、AD即可解决问题.【解答】解:在Rt△ABC中,AB=ACsinα,在Rt△ACD中,AD=ACsinβ,∴AB:AD =ACsinα:ACsinβ=sinβsinα.故选B.4.【答案】D【考点】由实际问题抽象出一元一次方程【解析】设标价为x ,根据题意列出方程解答即可.【解答】解:设标价为x ,可得:810x =1000(1+20%),故选D.5.【答案】A【考点】相似三角形的应用【解析】在相同时刻,物高与影长组成的直角三角形相似,利用对应边成比例可得所求的高度.【解答】解:∵在相同时刻,物高与影长组成的直角三角形相似,∴1.5:2=教学大楼的高度:60,解得教学大楼的高度为45米.故选A.6.【答案】A【考点】二次函数图象上点的坐标特征【解析】分三种情况进行讨论:对称轴分别为x <0、0≤x <2、x ≥2时,得出当0<x ≤2时所对应的函数值,判断正误.【解答】解:二次函数的对称轴为:x =−b2a =−m2,顶点y =4ac −b 24a =1−m 24,分三种情况:①因为当x =0时y =1,当对称轴在y 轴左侧,即−m2<0时,m >0,满足当0<x ≤2时的函数值总是非负数;②当0≤−m2<2时,即−4<m ≤0时,若满足当0<x ≤2时的函数值总是非负数,则1−m 24≥0,即−2≤m ≤2,∴当−2≤m ≤0时,0<x ≤2时的函数值总是非负数,③当对称轴−m2≥2,即m ≤−4时,若满足当0<x ≤2时的函数值总是非负数,则有x =2时,y ≥0,即4+2m+1≥0,即m ≥−52,此种情况m 无解.综上,m 的取值范围为:m ≥−2.故选A.7.【答案】C【考点】勾股定理全等三角形的性质与判定【解析】运用正方形边长相等,再根据同角的余角相等可得∠EDF =∠HFG ,然后证明△DEF ≅△FGH ,再结合全等三角形的性质和勾股定理来求解即可.【解答】解:如图,∵A ,B ,C 都是正方形,∴DF =FH ,∠DFH =90∘.∵∠DFE +∠HFG =∠EDF +∠DFE =90∘,∴∠EDF =∠HFG ,在△DEF 和△FGH 中,{∠EDF =∠HFG,∠DEF =∠HGF,DF =HF,∴△DEF ≅△FGH(AAS),∴DE =FG ,EF =HG ,在Rt △DEF 中,由勾股定理得:DF 2=DE 2+EF 2=DE 2+HG 2,即S B =S A +S C =4+3=7.故选C.8.【答案】D【考点】幂的乘方与积的乘方同底数幂的乘法合并同类项【解析】根据同底数幂的乘法与幂的乘方与幂的乘方的运算法则以及合并同类项法则计算即可.【解答】解:A ,3a 2+a 2=4a 2,故A 错误;B ,a 2⋅a 3=a 2+3=a 5,故B 错误;C ,不是同类项不能合并,故C 错误;D ,应为(a 2)3=a 6,故D 正确.故选D .9.【答案】D【考点】抛物线与x 轴的交点二次函数图象与系数的关系【解析】A 、将a =1代入原函数解析式,令x =−1求出y 值,由此得出A 选项不符合题意;B 、将a =2代入原函数解析式,令y =0,根据根的判别式△=8>0,可得出当a =−2时,函数图象与x 轴有两个不同的交点,即B 选项不符合题意;C 、利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a 的取值范围,由此可得出C 选项不符合题意;D 、利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D 选项符合题意.此题得解.【解答】解:A 、当a =−1时,函数解析式为y =−x 2+2x −1,当x =−1时,y =−1−2−1=−4,∴当a =−1时,函数图象经过点(−1,−4),∴A 选项不符合题意;B 、当a =−1时,函数解析式为y =−x 2+2x −1,Δ=22−4×(−1)×(−1)=0,∴当a =−1时,函数图象与x 轴有1个交点,∴B 选项不符合题意;C 、∵y =ax 2−2ax −1=a(x −1)2−1−a ,∴二次函数图象的顶点坐标为(1,−1−a),当−1−a <0时,有a >−1,∴C 选项不符合题意;D 、∵y =ax 2−2ax −1=a(x −1)2−1−a ,∴二次函数图象的对称轴为x =1.若a >0,则当x ≥1时,y 随x 的增大而增大,∴D 选项符合题意.故选D.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10.【答案】−2【考点】分式的值为零的条件【解析】根据分式的分子分子为零,分母不为零,可得答案.【解答】解:∵分式|x|−22−x的值为0,∴|x|−2=0,且2−x≠0,解得x=−2.故答案为:−2.11.【答案】316【考点】概率公式【解析】由题可得,该转盘被等分成了16份,其中阴影部分有3份,故顾客在该店消费并能获得代金券的概率为316.【解答】解:由题意,得转盘一共有360∘÷22.5∘=16个格子,且阴影部分一共有3个格子,又获得代金券的概率=阴影个数总数,则顾客在该店消费并能获得代金券的概率为316.故答案为:316.12.【答案】4【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】此题暂无解析【解答】此题暂无解答13.【答案】24【考点】反比例函数的应用【解析】根据物理学知识I=PU,即可求解.【解答】通过空调的电流为I=PU=1500220=7511,设:需要x个50W的灯泡,则:(10−7511)=50220x,解得:x=14,故:答案为14.14.【答案】{x=2,y=5,(2,5)【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得2x−4=0,解得x=2,带入原方程得y=5.所以方程组的解为{x=2,y=5,所以直线y=3x−1与直线y=x+3的交点为(2,5).故答案为:{x=2,y=5;(2,5).15.【答案】√154菱,【考点】轴对称——最短路线问题翻折变换(折叠问题)菱形的判定与性质【解析】此题暂无解析【解答】解:∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四边形ADBC是菱形,故答案为菱;如图作出F 关于AB 的对称点M ,再过M 作ME ⊥AD ,交AB 于点P ,此时PE +PF 最小,此时PE +PF =ME ,过点A 作AN ⊥BC ,∵AD//BC ,∴ME =AN ,作CH ⊥AB ,∵AC =BC ,∴AH =12,由勾股定理可得,CH =√152,∵12×AB ×CH =12×BC ×AN ,可得,AN =√154,∴ME =AN =√154,∴PE +PF 最小为√154,故答案为:√154.三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16.【答案】解:原式=a 2+2ab −a 2−2a −1+2a =2ab −1,当a =√2+1,b =√2−1时,原式=2(√2+1)(√2−1)−1=2−1=1.【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式=a 2+2ab −a 2−2a −1+2a =2ab −1,当a =√2+1,b =√2−1时,原式=2(√2+1)(√2−1)−1=2−1=1.17.【答案】证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵AM =CN ,∴OA −AM =OC −CN ,即OM =ON ,∴在△BOM 和△DON 中,{OB=OD,∠BOM=∠DON,OM=ON,∴△BOM≅△DON(SAS),∴∠OBM=∠ODN,∴BM//DN.【考点】平行四边形的性质全等三角形的性质与判定平行线的判定【解析】由平行四边形的性质得出OA=OC,OB=OD,再证出OM=ON,由SAS证明△BOM≅△DON,得出对应角相等∠OBM=∠ODN,再由内错角相等,两直线平行,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM=CN,∴OA−AM=OC−CN,即OM=ON,∴在△BOM和△DON中,{OB=OD,∠BOM=∠DON,OM=ON,∴△BOM≅△DON(SAS),∴∠OBM=∠ODN,∴BM//DN.18.【答案】21,108(2)画出树状图如图所示,①被抽取的2名同学恰好是1男1女的有8种情况,∴被抽取的2名同学恰好是1男1女的概率为812=23;②至少1名男生被抽到的有10种情况,∴至少1名男生被抽到的概率为1012=56.【考点】扇形统计图列表法与树状图法【解析】(1)先求出总人数,进而求解即可;(2)利用列举法求概率.【解答】解:(1)由题意可得:全班人数为10÷20%=50(人),∴m=50−4−15−10=21;B组的圆心角为1550×360∘=108∘.故答案为:21;108.(2)画出树状图如图所示,①被抽取的2名同学恰好是1男1女的有8种情况,∴被抽取的2名同学恰好是1男1女的概率为812=23;②至少1名男生被抽到的有10种情况,∴至少1名男生被抽到的概率为1012=56.19.【答案】(1)证明:Δ=(4m+1)2−4(2m−1)=16m2+8m+1−8m+4=16m2+5.2≥0,∵16m∴Δ>0,∴无论m为任何实数,方程总有两个不相等的实数根.(2)解:根据题意得:x1+x2=−(4m+1),x1x2=2m−1.∵x1x2=−2x1−2x2,∴2m−1=−2x1−2x2=−2(x1+x2)=−2×[−(4m+1)]=8m+2,即2m−1=8m+2,解得:m=−12.【考点】根与系数的关系根的判别式【解析】本题考查了根的判别式,解题关键是掌握当Δ>0时,一元二次方程有两个不相等的实数根,要求学生具备一定的理解能力和计算能力.本题考查了根与系数的关系,解题关键是掌握x1+x2=−b,x1x2=c,要求学生具备一定的理解能力和计算能力.【解答】(1)证明:Δ=(4m+1)2−4(2m−1)=16m2+8m+1−8m+4=16m2+5.2≥0,∵16m∴Δ>0,∴无论m为任何实数,方程总有两个不相等的实数根.(2)解:根据题意得:x1+x2=−(4m+1),x1x2=2m−1.∵x1x2=−2x1−2x2,∴2m−1=−2x1−2x2=−2(x1+x2)=−2×[−(4m+1)]=8m+2,即2m−1=8m+2,解得:m=−12.20.【答案】把A(2,3)代入y=k2x,得k2=2×3=6,∴双曲线的解析式为y=6x,∵B(m,−2)在双曲线上,∴−2=6m,解得,m=−3,∴B(−3,−2).把A(2,3)、B(−3,−2)代入y=k1x+b,{2k1+b=3−3k1+b=−2 ,解得{k1=1b=1 ,得∴直线的解析式为:y=x+1.如图,过点A作AE⊥OC于点E,∵AO=AC,∴OE=EC,∴OC=2OE=4,∵AE=3,√OE2+AE2=√22+32=√13,∴AO=AC=∴△AOC的周长为4+2√13.【考点】反比例函数与一次函数的综合【解析】(1)先把A(2,3)代入y=k2x,求出双曲线的解析式,再利用A,B的坐标求出直线的解析式;(2)过点A作AE⊥OC于点E,根据等腰三角形的性质得出OC=2OE=4,再利用勾股定理求√OE2+AE2=√13,进而得到△AOC的周长.出AO=AC=【解答】把A(2,3)代入y=k2x,得k2=2×3=6,∴双曲线的解析式为y=6x,∵B(m,−2)在双曲线上,∴−2=6m,解得,m=−3,∴B(−3,−2).把A(2,3)、B(−3,−2)代入y=k1x+b,{2k1+b=3−3k1+b=−2 ,解得{k1=1b=1 ,得∴直线的解析式为:y=x+1.如图,过点A作AE⊥OC于点E,∵AO=AC,∴OE=EC,∴OC=2OE=4,∵AE=3,√OE2+AE2=√22+32=√13,∴AO=AC=∴△AOC的周长为4+2√13.21.【答案】(1)证明:∵EA⊥AD,∴∠EAD=90∘.∵BC为⊙O的直径,∴∠BAC=90∘=∠EAD,∴∠EAB+∠BAD=∠BAD+∠DAC,∴∠EAB=∠DAC.∵A,B,D,C四点共圆,∴∠ABD+∠ACD=180∘.∵∠ABD+∠ABE=180∘,∴∠ABE=∠ACD.∵AB=AC,∴△ABE≅△ACD.45∘,4【考点】圆内接四边形的性质全等三角形的性质与判定圆周角定理三角形的面积正方形的性质全等三角形的性质【解析】根据圆周角定理和圆内接四边形的性质可得出∠ABE=∠ACD,∠EAB=∠DAC,然后再根据全等三角形的判定来解答即可.①根据正方形的性质来解答即可;②根据全等三角形的性质和得出S△AEB=S四边形ABDC,再根据等腰直角三角形的性质及三角形面积的公式来解答即可.【解答】(1)证明:∵EA⊥AD,∴∠EAD=90∘.∵BC为⊙O的直径,∴∠BAC=90∘=∠EAD,∴∠EAB+∠BAD=∠BAD+∠DAC,∴∠EAB=∠DAC.∵A,B,D,C四点共圆,∴∠ABD +∠ACD =180∘.∵∠ABD +∠ABE =180∘,∴∠ABE =∠ACD.∵AB =AC ,∴△ABE ≅△ACD.(2)①解:∵四边形ABDC 为正方形,∴∠ACD =90∘,AC =CD ,∴在直角△ACD 中,∠CAD =∠CDA =45∘;②由(1)得△ABE ≅△ACD ,∴S △AED =S 四边形ABDC ,AE =AD.∵EA ⊥AD ,∴△AED 是等腰直角三角形,∴S △AED =12AE ⋅AD =12AD 2=8,∴AD =4.故答案为:45∘;4.22.【答案】解:(1)根据题意,可设平均每天销售A 礼盒x 盒,B 种礼盒为y 盒,则有{(120−72)x +(80−40)y =1280,120x +80y =2800, 解得{x =10,y =20,故该店平均每天销售A 礼盒10盒,B 种礼盒为20盒.(2)设A 种礼盒降价m 元/盒,利润为W 元,依题意总利润W =(120−m−72)(10+m3)+(80−40)×20,化简得W =−13m 2+6m+1280=−13(m−9)2+1307,∵a =−13<0,∴当m =9时,取得最大值为1307,故当A 种礼盒降价9元/盒时,这两种礼盒平均每天的总利润最大,最大是1307元.【考点】二元一次方程组的应用——销售问题二次函数的应用【解析】(1)根据题意,可设平均每天销售A 礼盒x 盒,B 种礼盒为y 盒,列二元一次方程组即可解题(2)根据题意,可设A 种礼盒降价m 元/盒,则A 种礼盒的销售量为:(10+m3)盒,再列出关系式即可.【解答】解:(1)根据题意,可设平均每天销售A 礼盒x 盒,B 种礼盒为y 盒,则有{(120−72)x +(80−40)y =1280,120x +80y =2800, 解得{x =10,y =20,故该店平均每天销售A 礼盒10盒,B 种礼盒为20盒.(2)设A 种礼盒降价m 元/盒,利润为W 元,依题意总利润W =(120−m−72)(10+m3)+(80−40)×20,化简得W =−13m 2+6m+1280=−13(m−9)2+1307,∵a =−13<0,∴当m =9时,取得最大值为1307,故当A 种礼盒降价9元/盒时,这两种礼盒平均每天的总利润最大,最大是1307元.23.【答案】BD 2+CD 2=2AD 2证明:∵Rt △ABC 中,AB =AC ,∴∠B =∠ACB =45∘,由(1)得,△BAD ≅△CAE ,∴BD =CE ,∠ACE =∠B =45∘,∴∠DCE =∠ACB +∠ACE =90∘,∴CE 2+CD 2=ED 7,∴BD 2+CD 2=ED 6,在Rt △ADE 中,AD 2+AE 2=ED 8,∵AD =AE ,∴ED 2=2AD 2∴BD 2+CD 2=4AD 2;6【考点】四边形综合题【解析】(1)根据等腰直角三角形的性质和全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质可得∠ACE =∠B ,得到∠DCE =90∘,根据勾股定理计算即可;(3)拓展延伸作AE ⊥AD ,使AE =AD ,连接CE ,DE ,证明△BAD ≅△CAE ,得到BD =CE =13,根据勾股定理计算即可.【解答】∵∠BAC =∠DAE =90∘,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△ABD ≅△ACE(SAS),∴BD =CE ,∠ACE =∠B =45∘,∴∠BCE =∠ACB +∠ACE =90∘,∴∠ECD =90∘,∵DE 2=2AD 8=CD 2+CE 2=CD 4+BD 2,∴BD 2+CD 6=2AD 2;故答案为:BD 3+CD 2=2AD 4;证明:∵Rt △ABC 中,AB =AC ,∴∠B =∠ACB =45∘,由(1)得,△BAD ≅△CAE ,∴BD =CE ,∠ACE =∠B =45∘,∴∠DCE =∠ACB +∠ACE =90∘,∴CE 2+CD 2=ED 7,∴BD 2+CD 2=ED 6,在Rt △ADE 中,AD 2+AE 2=ED 8,∵AD =AE ,∴ED 2=2AD 2∴BD 2+CD 2=4AD 2;作AE ⊥AD ,使AE =AD ,DE则△ADE 是等腰直角三角形,∴∠ADE =45∘,∵∠ABC =∠ACB =45∘,∴AB =AC ,∠BAC =90∘,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE ,在△BAD 与△CAE 中,,∴△BAD ≅△CAE(SAS),∴BD =CE =13,∵∠ADC =45∘,∠EDA =45∘,∴∠EDC =90∘,∴DE ===12,∵∠DAE =90∘,∴AD =AE =DE =,故答案为:6.24.【答案】解:(1)令y =0,则ax 2−3ax −10a =0,∴x 2−3x −10=0.解得x =−2或x =5.∵A 在B 左侧,∴A(−2,0),B(5,0),∴OB =5.∵OB =OC ,∴OC =5.∴C(0,5).把C(0,5)代入解析式,易求a =−12,∴抛物线的解析式为y =−12x 2+32x +5.(2)∵C(0,5),B(5,0)易求直线BC 的解析式为y =−x +5,∵P 在抛物线上,∴P (m,−12m 2+32m+5).∵PD//y 轴,∴x P =x D .∴D(m,−m+5),∴ d =PD =−12m 2+33m+5−(−m+5)=−12m 2+52m .(3)作∠BCD =90∘,CD 交x 轴于点D ,作∠ECF =90∘,CF 交BP 于点F ,连接DF ,易证CD =CB,CE =CF .∵∠DCB +∠BCF =∠ECF +∠BCF ,∴∠DCF =∠ECB ,∴ △CFD ≅△CEB.∴DF =BE.∴ ∠CDF =∠CBE.∴∠DFB =∠DCB =90∘.过点O 作OH ⊥BP ,垂足为点H ,则OH//DF ,∴OHDF =OBBD =12.∴DF =2OH.设OH =a ,则DF =BE =2a.∵S △BOE =20,易求a =2√5,在Rt △BOH 中,由勾股定理可求BH =√5,∴tan ∠PBO =2.过点P 作PM ⊥OB ,垂足为点M ,则tan ∠PBM =PMBM =−12(m−5)(m+2)5−m =2,解得m =2.∴P(2,6).【考点】二次函数综合题【解析】此题暂无解析【解答】解:(1)令y =0,则ax 2−3ax −10a =0,∴x 2−3x −10=0.解得x =−2或x =5.∵A 在B 左侧,∴A(−2,0),B(5,0),∴OB =5.∵OB =OC ,∴OC =5.∴C(0,5).把C(0,5)代入解析式,易求a =−12,∴抛物线的解析式为y =−12x 2+32x +5.(2)∵C(0,5),B(5,0)易求直线BC 的解析式为y =−x +5,∵P 在抛物线上,∴P (m,−12m 2+32m+5).∵PD//y 轴,∴x P =x D .∴D(m,−m+5),∴ d =PD =−12m 2+33m+5−(−m+5)=−12m 2+52m .(3)作∠BCD =90∘,CD 交x 轴于点D ,作∠ECF =90∘,CF 交BP 于点F ,连接DF ,易证CD =CB,CE =CF .∵∠DCB +∠BCF =∠ECF +∠BCF ,∴∠DCF =∠ECB ,∴ △CFD ≅△CEB.∴DF =BE.∴ ∠CDF =∠CBE.∴∠DFB =∠DCB =90∘.过点O 作OH ⊥BP ,垂足为点H ,则OH//DF ,∴OHDF =OBBD =12.∴DF =2OH.设OH =a ,则DF =BE =2a.∵S △BOE =20,易求a =2√5,在Rt △BOH 中,由勾股定理可求BH =√5,∴tan ∠PBO =2.过点P 作PM ⊥OB ,垂足为点M ,则tan ∠PBM =PMBM =−12(m−5)(m+2)5−m =2,解得m =2.∴P(2,6).。
南充中考数学试题及答案
南充中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax + bx + cD. y = ax^2 + bx + c + d答案:A2. 以下哪个数是无理数?A. 0.33333...B. √4C. πD. 1/3答案:C3. 一个等腰三角形的底边长为6cm,高为4cm,那么它的周长是多少?A. 16cmB. 18cmC. 20cmD. 22cm答案:C4. 已知一个数列的前三项分别为3, 6, 9,那么这个数列的通项公式是什么?A. an = 3nB. an = 2n + 1C. an = 3n - 1D. an = 2n答案:A5. 一个圆的半径为5cm,那么它的面积是多少?A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B6. 一个长方体的长、宽、高分别为3cm、4cm、5cm,那么它的体积是多少?A. 60 cm³B. 45 cm³C. 30 cm³D. 24 cm³答案:A7. 以下哪个选项是不等式的基本性质?A. 如果a > b,b > c,那么a > cB. 如果a > b,那么a + c > b + cC. 如果a > b,那么ac > bc(c > 0)D. 以上都是答案:D8. 一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长是多少?A. 5cmB. 6cmC. 7cmD. 8cm答案:A9. 以下哪个选项是函数y = f(x) = x^2 + 2x + 1的零点?A. -1B. 0C. 1D. 2答案:A10. 一个等差数列的首项为1,公差为2,那么它的第10项是多少?A. 19B. 20C. 21D. 22答案:A二、填空题(每题3分,共15分)11. 一个二次函数的顶点坐标为(-1, 4),且经过点(0, 3),那么它的解析式为:y = _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷(解析版)(满分100分,时间90分钟)一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记3分,不填、填错或填出的代号超过一个记0分.1.计算2-(-3)的结果是().(A)5 (B)1 (C)-1 (D)-5考点:有理数的计算专题:计算题。
分析:本题需先做有理数的减法把括号去掉,即可得出正确答案.解答:解:2-(-3)=2+3,=5.故选A.点评:本题主要考查了有理数的加减法,在解题时去括号要变号,是解题的关键.2.下列计算正确的是()(A)x3+ x3=x6(B)m2·m3=m6(C)3-2=3 (D)14×7=72考点:整式的加减、整式的基本性质、实数的运算。
专题:计算题。
分析:本题需先对每一项分别进行解答,得出正确的结果,最后选出本题的答案即可.解答:解:A、∵x3+ x3=2x3,故本答案错误;(B)m2·m3=m5本答案错误(C)3-2再不能合并了7 ×7=72答案正确(D)14×7=2点评:本题主要考查学生整式的加减、整式的基本性质、实数的运算等基本的运算能力。
3.下列几何体中,俯视图相同的是().考点:三视图的基本知识专题:几何题。
分析:① 俯视图是一个没圆心的圆 ②③俯视图是一个带圆心的圆 ④俯视图是两个不带圆心的同心圆解答:① 俯视图是一个没圆心的圆 ②③俯视图是一个带圆心的圆 ④俯视图是两个不带圆心的同心圆 答案选C点评:主要考查学生对三视图基础知识的理解和掌握4.下列函数中是正比例函数的是 ( )( A )y =-8x (B )y =x 8-( C )y =5x 2+6 (D )y = -0.5x -1 考点:正比例函数、反比例函数、一次比例函数 二次比例函数专题:常规题型。
分析:本题主要考查正比例函数、反比例函数、一次比例函数和二次比例函数的定义的理解解答:( A )y=-8x 是正比例函数(B )y=x 8- 是反比例函数( C )y=5x2+6 是二次比例函数(D )y= -0.5x-1 是一次比例函数所以答案选A点评:本题属于基础题,考查了学生对几种函数概念掌握的能力.一些学生往往对几种概念掌握不清楚,而误选其它选项.5.方程x (x-2)+x-2=0的解是( )(A )2 (B )-2,1 (C )-1 (D )2,-1考点:解一元二次方程-的解法因式分解法。
专题:计算题。
分析:先利用提公因式因式分解,再化为两个一元一次方程,解方程即可.解答:解:x (x ﹣2)+(x-2)=0,∴(x-2)(x+1)=0,∴x -2=0,或x+1=0,∴x1=2,x2=-1.故选D .点评:本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.6.矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图像表示大致为( )考点:反比例函数的应用;反比例函数的图象。
专题:数形结合。
分析:根据矩形的面积等于长乘以宽的关系,在面积不变的条件下,得y=x 9,则y 是x 的反比例函数,且x >0.解答:解:∵y=x 9(x >0),∴y 是x 的反比例函数,故选C .点评:本题是一道反比例函数的实际应用题,注:在路程不变的条件下,v 是t 的反比例函数.7.在一次学生田径运动会上。
参加男子跳高的15名运动员的成绩如下表所示: 成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80这些运动员跳高成绩的中位数和众数是(A )1.65,1.70 (B )1.70,1.70 (C )1.70,1.65(D )3,4考点:中位数和众数。
专题:常规题型。
分析:根据中位数和众数的意义和定义,中位数是一组数据排在最中间的数据,众数是一组数据中出现次数最多的数据,.解答:解:成绩为1.70米的排在最中间1.65米的有4个为最多故选C .8.在函数y=2121--x x 中,自变量的取值范围是 A. x ≠ 21 B.x ≤21 C.x ﹤21 D.x ≥21 考点:函数自变量的取值范围分析:此立函数自变量的取值范围是1-2x ≥0 和x-21≠0 同时成解答: 1-2x ≥0且x-21≠0 解得:x ﹤21点评:此题考查了学生对函数自变量的取值范围待掌握:为整式时取一切实数,是分数时分母不能为零,是二次根式时被开方数为非负数9.一个圆锥的侧面积是底面积的2倍。
则圆锥侧面展开图的扇形的圆心角是( )A .1200 B.1800 C.2400 D.300考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.解答:解:设母线长为R ,底面半径为r ,∴底面周长=2πr ,底面面积=πr2,侧面面积=πrR ,∵侧面积是底面积的2倍,∴R=2r,设圆心角为n,有 nπR 180 =2πr=πR,∴n=180°.故答案为:180°选B点评:本题考查了圆锥的计算,解题的关键是正确的利用了扇形面积公式,弧长公式,圆的周长公式求解.10.如图,平面直角坐标系中,⊙O半径长为1.点⊙P(a,0),⊙P的半径长为2,把⊙P向左平移,当⊙P与⊙O相切时,a的值为(A)3 (B)1 (C)1,3 (D)±1,±3考点:两圆的位置关系分析:⊙P与⊙O相切时,有内切和外切两种情况解答:∵⊙O 的圆心在原点,当⊙P与⊙O外切时,圆心距为1+2=3,当⊙P与⊙O第内切时,圆心距为2-1=1,当⊙P与⊙O第一次外切和内切时,⊙P圆心在x轴的正半轴上∴⊙P(3,0)或(1,0),∴a=3或1,当⊙P与⊙O第二次外切和内切时,⊙P圆心在x 轴的负半轴上∴⊙P(-3,0)或(-1,0),a =-3或-1所以答案选D点评:此题考了两圆的位置关系,两圆的位置关系有五种:外离,外切,内切,相交,内含从相切角度看有外切,内切两种,学生很容易只看一种情况出错,二、填空题(本大题共4个小题,每小题3分,共12分)请将答案直接填写在题中横线上.11.不等式x+2>6的解集为考点:不等式的解法分析:此题就是将左边的2移在不等式的右边,直接合并可解。
解答:x+2>6移项:x>6-2合并:x>4点评:此题就是考了不等式当中的移项:移项要变号12.分解因式x2-4x-12=考点:二次三项式的因式分解分析:∵-6+2=4(-6)×2=-12 ∴x2-4x-12=(x-6)(x+2)解答:x2-4x-12=(x-6)(x+2)点评:此题考查的是二次三项式的因式分解,一个二次三项式x2+px+q ,有两个因数m 、n ,且m+n=p,mn=q,那么x2+px+q=(x+m )(x+n )。
13.如图,把一个圆形转盘按1﹕2﹕3﹕4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为 考点:几何概率. 分析:首先确定在图中B 区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向B 区域的概率.解答:∵一个圆形转盘按1:2:3:4的比例分成A 、B 、C 、D 四个扇形区域,∴圆被等分成10份,其中B 区域占2份,∴落在B 区域的概率=2 /10 =1 /5 .故答案为:1/ 5 .点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率;此题将概率的求解设置于几何图象或游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.14. 如图,四边形ABCD 中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD 的面积是24cm 2.则AC 长是 cm.考点:等腰直角三角形和三角形的旋转分析:将⊿ADC 旋转至⊿ABE 处,将四边形ABCD 变成为一个等腰直角三角形求解。
解答:将⊿ADC 旋转至⊿ABE 处,则⊿AEC 的面积和四边形ABCD 的面积一样多为24cm2,,这时三角形⊿AEC 为等腰直角三角形,作边EC 上的高AF 则AF=21EC=FC,∴ S ⊿AEC= 21AF ·EC=AF2=24 ∴AF2=24 AC2=2AF2=48 AC=43点评:此题是如何将⊿ADC 旋转至⊿ABE 处,将四 边形ABCD 变成为一个等腰直角三角形来解,主要考查学生旋转方面的知识。
有一定的难度。
三、(本大题共3个小题,每小题6分,共18分)15.计算:1+a a +112--a a 考点:分式的约分和加减专题:计算题。
分析:先将112--a a 的分母分解因式,再分子分母约分后和1+a a进行同分母加减 解答:原式=1+a a +)1)(1(1-+-a a a =1+a a +11+a=11++a a=1.点评:此题主要考查学生分式计算的能力,解题的关键是注意对分式的分子、分母因式分解16.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次取的小球的标号相同(2)两次取的小球的标号的和等于4考点:列表法与树状图法。
专题:计算题。
分析:(1)先列表展示所有可能的结果数为16,再找出两次取的小球的标号相同的结果数,然后根据概率的概念计算即可;(2)从表中找出两次取的小球的标号的和等于4的结果数,然后根据概率的概念计算即可;解答:画出树状图为:由图可知共有16种等可能的结果,其中两次取得小球队标号相同有4种(记为A ),标号的和等于4的有 3种(记为B )∴P (A )=164=41……(4分)P (B )=163…(6分)点评:本题考查了怎样用列表法与树状图法求概率,先利用图表或树形图展示所有可能的结果数,然后计算出两个事件的概率。
17.如图,等腰梯形ABCD 中,AD ∥BC ,点E 是AD 延长线上的一点,且CE=CD ,求证:∠B=∠E考点:等腰梯形的性质;等腰三角形的性质。
专题:证明题。
分析:先根据等腰梯形的性质获得∠B=∠ BCD ,再利用等腰三角形的性质得到∠EDC=∠E 。
解答:∵ABCD 是等腰梯形,AD ∥BC∴∠B=∠BCD, ∠BCD =∠EDC∴∠B=∠EDC∴CE=CD ∴∠EDC=∠E ∴∠B=∠E点评:本题考查等腰梯形的性质:等腰梯形的两个底角相等。