初二数学-一元一次不等式应用题
一元一次不等式15道应用题
一、综合题(共15题;共160分)1.(2015•凉山州)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案哪种租车方案费用最低,最低费用是多少》2.(2015•攀枝花)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件!(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.3.(2015•钦州)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.|(1)每个气排球和每个篮球的价格各是多少元(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低最低费用是多少元》4.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案&5.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要万元,购买2台电脑和1台电子白板需要万元.(1)求每台电脑、每台电子白板各多少万元(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低./"6.某超市销售甲、乙两种商品,五月份该超市第一次购进甲商品50件,乙商品30件,用去1400元,第二次购进甲商品40件,乙商品40件,用去1600元.(1)求两种商品进价分别是多少元.(2)由于商品受到市民欢迎,六月份决定再购进甲乙两种商品共80件,且进价不变,甲种商品售价15元,乙种商品售价40元,该超市为使甲、乙两种商品共80件的总利润(利润=售价﹣进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.^7.师生积极为地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,该厂生产的帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。
初二数学一元一次不等式试题答案及解析
初二数学一元一次不等式试题答案及解析1.用适当的符号表示a是非负数:_________.【答案】a≥0.【解析】由于非负数即大于等于0,所以a≥0.故答案是:a≥0.【考点】.由实际问题抽象出一元一次不等式2.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解3. 2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?【答案】(1)有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【解析】(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的粮食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)分别求出三种方案的燃油费用,比较即可得解.试题解析:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,∴,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【考点】1.一次函数的应用2.一元一次不等式组的应用.4.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.5.若(x+2)(x-3)>0,则x的取值范围是________.【答案】x>3,或x<-2.【解析】根据同号得正,异号得负列出不等式组即可求解.试题解析:由题意得:或解得:x>3,或x<-2.考点: 解一元一次不等式组.6.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.【答案】16000≤x≤18000.【解析】下个月的产量为x件,根据“劳动时间”和“预计下月市场对J牌产品需求量为16000件”可列不等式组求解.试题解析:设下个月的产量为x件,根据题意得,解得:16000≤x≤18000答:下个月的产量不少于16000件,不多于18000件.考点: 一元一次不等式组的应用.7.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()【答案】C【解析】根据第四象限内横坐标为正,纵坐标为负可得,解得再根据在数轴上表示不等式的解集时,小于向左,大于向右,含等号实心,不含等号空心,可得x的取值范围在数轴上可表示为C选项.【考点】解不等式组8.若>a对任意实数x恒成立,则a的取值范围是。
八年级数学上册一元一次不等式的应用专题列一元一次不等式解应用题
缘分让我在这里遇见你,遇上你是我的缘
1
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
2
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
3
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
4
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
5
2019年6月8日
16
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
17
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
18
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
19
11
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
12
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
13
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
14
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
15
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
缘分让我在这里月8日
缘分让我在这里遇见你,遇上你是我的缘
7
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
8
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
9
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
10
2019年6月8日
缘分让我在这里遇见你,遇上你是我的缘
一元一次不等式组应用题及答案复习过程
一元一次不等式组应用题及答案精品文档一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答一.分配问题:1.把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
10道一元一次不等式应用题和答案过程
一元一次不等式解应用题一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B 种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。
(1)试确定A种类型店面的数量?(2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?解:设A种类型店面为a间,B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:1、每亩地水面组建为500元,。
2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;问题:1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面,贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=366003900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A 型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆,由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .由于a是车的数量,应为正整数,所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。
一元一次不等式应用题专题
一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。
解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。
若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。
若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。
答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。
3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。
一元一次不等式的应用练习题5套(含答案)
一元一次不等式的应用练习题5套(含答案)(1)要点感知1.列不等式解应用题的一般步骤:(1)审题:弄清题意及题目中的__________;(2)设未知数,可__________设也可__________设;(3)列出__________;(4)解不等式,并验证解的__________;(5)写出__________.2.如图,a ,b 两种物体的质量的大小关系是__________.3.在开山工程爆破时,已知导火索燃烧速度为0.5 cm/s,人跑开的速度是4 m/s,为使放炮的人在爆破时能安全跑到100 m 以外的安全区,导火索的长度x(cm)应满足的不等式是( ) A.4×0.5x ≥100 B.4×0.5x ≤100 C.4×0.5x <100 D.4×0.5x >100练习题:1.一次环保知识竞赛中,一共有25道题,答对一题得5分,答错(或不答)一题扣2分.小明在这次竞赛中的得分超过了100分,则他至少要答对的题数是( )A.21道B.22道C.23道D.24道2.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )A.3支笔B.4支笔C.5支笔D.6支笔3.某品牌自行车进价为每辆800元,标价为每辆1 200元.店庆期间,商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%,则最多可打__________折.4.一只纸箱质量为1 kg,放入一些苹果(每个苹果质量为0.25 kg)后,纸箱和苹果的总质量不超过10 kg ,这只纸箱最多只能装多少个苹果?5.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员. (1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?6.为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1 220元,问购进A 、B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.7.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的记录,则他第7次射击不能少于( )A.6环B.7环C.8环D.9环8.有3人携带会议材料乘坐电梯,这3人的体重共210 kg.毎捆材料重20 kg.电梯最大负荷为1 050 kg,则该电梯在此3人乘坐的情况下最多能搭载__________捆材料.9.(2014·南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm,长与宽的比为3∶2,则该行李箱的长的最大值为__________cm.10.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对几道题?11.(2013·潍坊)为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的用电量分三个档次计费,具体规定见图.小明统计了自家2013年前5个月的实际用电量为1 300度,请帮助小明分析下面问题.(1)若小明家计划2013年全年的用电量不超过2 520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?挑战自我12.某体育用品商场采购员要到厂家批发购进篮球和排球共100个,付款总额不得超过11 815元.已知厂家两种球的批发价和商场两种球的零售价如下表,试解答下列问题:品名厂家批发价(元/个) 商场零售价(元/个)篮球130 160排球100 120(1)(2)若该商场把这100个球全部以零售价售出,为使商场获得的利润不低于2 580元,则采购员至少要购篮球多少个?该商场最多可盈利多少元?练习1参考答案:1.B2.C3.七4.设这只纸箱内装了x个苹果.根据题意,得0.25x+1≤10.解得x≤36.答:这只纸箱最多只能装36个苹果.5.(1)120×0.95=114(元),所以实际应支付114元.(2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1 120.所以当购买商品的价格超过1 120元时,采用方案一更合算.6.(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得80x+60(17-x)=1 220,解得x=10,∴17-x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗y棵,则购进B种树苗(17-y)棵,根据题意得17-y<y,解得y>81 2 .购进A、B两种树苗所需费用为80y+60(17-y)=20y+1 020,则费用最省需y取最小整数9,此时17-y=8,这时所需费用为20×9+1 020=1 200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1 200元.7.C 8.42 9.7810.设要答对x道题.依题意,得10x+(-5)×(20-x)>100.解得x>131 3 .由x应为非负整数,得x≥14.答:他至少要答对14道题.11.(1)设平均每月用电量为x度.依题意,得7x+1 300≤2 520.解得x≤1742 7 .由x为整数,得x≤174.答:小明家平均每月用电量最多为174度.(2)1 300÷5×12=3 120(度),3 120-2 520=600(度),2 520×0.55+600×0.6=1 746(元).答:小明家2013年应交总电费1 746元.12.(1)设采购员最多可购进篮球x个,则排球是(100-x)个,依题意,得130x+100(100-x)≤11 815.解得x≤60.5.∵x是整数,∴x最大取60.答:该采购员最多可购进篮球60个.(2)设篮球x个,则排球是(100-x)个,则(160-130)x+(120-100)(100-x)≥2 580.解得x≥58. 又由第(1)问得x≤60.5,所以正整数x的取值为58,59,60. 即采购员至少要购篮球58个.∵篮球的利润大于排球的利润,因此这100个球中,当篮球最多时,商场可盈利最多,故篮球60个,排球40个,此时商场可盈利(160-130)×60+(120-100)×40=1 800+800=2 600(元),即该商场最多可盈利2 600元.(2)一.选择题(共5小题,满分25分,每小题5分)1.甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A.小于8km/h B.大于8km/h C.小于4km/h D.大于4km/h2.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x千米,出租车费为21.5元,那么x的最大值是()A.11 B.8 C.7 D.53.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块4.甲在集市上先买了3只羊,平均每只a元,稍后又买了2只,平均每只羊b元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是()A.a>b B.a=b C.a<b D.与a、b大小无关5.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x-100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元二.填空题(共6小题,满分30分,每小题5分)6.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价元商店老板才能出售.7.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.8.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在60分以上.9.x的与6的差不小于-4的相反数,那么x的最小整数解是.10.张华同学和父母一起到距离家200公里的景区旅游.出发前,汽车油箱内储油45升;当行驶120公里时,发现油箱剩余油量为33升;已知油箱中剩余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?答:(填:能或不能)11.设x1,x2,…,x7为自然数,且x1<x2<…<x6<x7,又x1+x2+…+x7=159,则x1+x2+x3的最大值是.三.解答题(共4小题,满分45分)12.(10分)植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?13.(11分)某校“棋乐无穷”社团前两次购买的两种材质的象棋采购如下表(近期两种材质象棋的售价一直不变);塑料象棋玻璃象棋总价(元)第一次(盒) 1 3 26第二次(盒) 3 2 29(1)若该社团计划再采购这两种材质的象棋各5盒,则需要多少元?(2)若该社团准备购买这两种材质的象棋共50盒,且要求塑料象棋的数量不多于玻璃象棋数量的3倍,请设计出最省钱的购买方案,并说明理由.14.(12分)在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?15.(12分)哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?2)参考答案一、选择题1.B解答:设甲的速度为xkm/h,则乙的速度为0.5xkm/h,由已知得:2×(x+0.5x)>24,解得:x>8.故选B.2.B解答:解:根据题意得:8+2.6(x−3)≤21.5,解得:x≤8.19,∵不足1千米按1千米计,∴x的最大值是8.故选B3.C解答:解:设这批手表有x块,550×60+(x−60)×500>55000解得,x>104∴这批电话手表至少有105块,故选C.4.A解答:解:根据题意得到5×<3a+2b,解得a>b故选A5.A解答:解:由关系式可知:0.3(2x−100)<1000,由2x−100,得出两件商品减100元,以及由0.3(2x−100)得出买两件打3折,故可以理解为:买两件等值的商品可减100元,再打3折,最后不到1000元.故选:A.二、填空题6.120解答:解:设这件商品的进价为x.根据题意得:(1+80%)•x=360,解得:x=200.盈利的最低价格为200×(1+20%)=240,则商店老板最多会降价360−240=120(元).故答案为:120.7. x>49解答:解:第一次的结果为:2x−10,没有输出,则2x−10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>498.12解答:解:设答对x道.故6x−2(15−x)>60解得:x>所以至少要答对12道题,成绩才能在60分以上.9.15解答:解:由题意x−6≥−(−4),解得x≥15,∴x的最小整数为15,故答案为15.10.能解答:解:由题意可得,张华同学和父母从家到景区然后返回家的耗油量为:400÷[120÷(45−33)]=40(L),∵45−40=5>3,故他们能在汽车报警前回到家,故答案为:能.11.61解答:解:∵x1,x2,…,x7为自然数,且x1<x2<x3<…<x6<x7,∴159=x1+x2+…+x7≥x1+(x1+1)+(x1+2)+…+(x1+6)=7x1+21,∴x1≤19,∴x1的最大值为19;又∵19+x2+x3+…+x7=159,∴140≥x2+(x2+1)+(x2+2)+…+(x2+5)=6x2+15,∴x2≤20,∴x2的最大值为20,当x1,x2都取最大值时,有120=x3+x4+…+x7≥x3+(x3+1)+(x3+4)=5x3+10,∴x3≤22,∴x3最大值为22.∴x1+x2+x3的最大值为19+20+22=61.三、综合题12. 解答:解:设B树苗的单价为x元,则A树苗的单价为y元,可得:,解得:,答:B树苗的单价为300元,A树苗的单价为200元;(2)设购买A种树苗a棵,则B种树苗为(30−a)棵,可得:200a+300(30−a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.13. 解答:解:(1)设一盒塑料象棋的售价是x元,一盒玻璃象棋的售价是y元,依题意得,,解得,,(5+7)×5=60(元),所以采购这两种材质的象棋各5盒需要60元;(2)设购进玻璃象棋m盒,总费用为w元,依题意得w=5×(50−m)+7m=2m+250.所以当m取最小值时w有最小值,因为50−m≤3m,解得m≥12.5,而m为正整数,所以当m=13时,w最小=2×13+250=276,此时50−13=37.所以最省钱的购买方案是购进塑料象棋37盒,玻璃象棋13盒.14. 解答:解:(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据题意得10(x+6)+15x=660,解得x=24.答:甲、乙两种门票每张各30元、24元;(2)设可购买y张甲种票,则购买(35−y)张乙种票,根据题意得30y+24(35−y)≤1000,解得y ≤26.答:最多可购买26张甲种票.15. 解答:解:(1)设甲种君子兰每株成本为x 元,乙种君子兰每株成本为y 元,依题意有,解得.故甲种君子兰每株成本为400元,乙种君子兰每株成本为300元.(2)设购进甲种君子兰a 株,则购进乙种君子兰(3a +10)株,依题意有400a +300(3a +10)≤30000, 解得a ≤.∵a 为整数 ∴a 最大为20.故最多购进甲种君子兰20株.(3)1.已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。
一元一次不等式(销售问题)应用题专题(附答案)
一元一次不等式(销售问题)应用题专题(销售问题)1、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?解:(1)设进价是x元, (一件商品)(1-10%)×(x+30)=x+18x=90第一次的售价x+30=90+30=120该商品的进价和第一次的售价分别是90元和120元(2)设剩余商品售价应不低于y元,(90+30)×m×65%+(90+18)×m×25%+y×m×(1-65%-25%)≥90×(1+25%) ×my≥75剩余商品的售价应不低于75元2.水果店进了某中水果1t,进价是7元/kg。
售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。
如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?解:方法一:设按原价的x折出售所以:1000×1/2×10+1000×1/2×10×x/10>=7×1000+20005000+500x>=90005x>=40x>=8所以至多打8折方法二:1.货款:7.00*1000=7000.00元2、已销售产生的利润:(10.00*500)-(7.00*500)=5000.00-3500.00=1500.00元3、剩余商品需要产生的利润:2000-1500.00=500.00元4、产生利润需要的单价:7.00+500/500=8元5、需要在10元基础上打折:8/10=0.8,也就是八折3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本?解:设这批苹果有 a千克,商家把售价至少定为每千克 x元a(1-6%)×x≥a×1.5解得:x≥1.60(哟等于)2、某电影院暑假向学生优惠开放,每张票2元。
一元一次不等式(组)应用题及练习(含答案)
一元一次不等式组的典型应用题例1.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。
初二数学一元一次不等式试题答案及解析
初二数学一元一次不等式试题答案及解析1.求不等式组的整数解。
【答案】-1,0.【解析】先分别解不等式,然后根据“口诀”确定不等式组的解,然后找出整数解即可.试题解析:解不等式5+2x≥3,得:x≥-1.解不等式,得:x<1所以不等式组的解为:-1≤x<1所以整数解为:-1,0.【考点】一元一次不等式组的解法;不等式整数解.2.不等式x>x-1的非负数解的个数是()A.1B.2C.3D.无数个【答案】B.【解析】移项得:x<1,解得:x<,则不等式x>x-1的非负整数解为1,0,共2个.故选B.【考点】一元一次不等式的整数解.3.下列不等式变形正确的是()A.B.C.D.【答案】D【解析】A、若c<0,则A错误;B、由不等式的基本性质1,可知错误;C、若a<0,则C错误;D、由不等式的基本性质3,可知D正确,故选D【考点】不等式的基本性质4.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解5.如果关于x的不等式组无解,那么m的取值范围是()A.m>1B.m≥1C.m<1D.m≤1【答案】D.【解析】∵关于x的不等式组无解∴3-m≥m+1解得:m≤1,故选D.【考点】解一元一次不等式组6.如果不等式(m-2)x>2-m的解集是x<-1, 则有()A.m>2B.m<2C.m=2D.m≠2【答案】B.【解析】∵(m-2)x>2-m的解集是x<-1,∴m-2<0,∴m<2.故选:B.【考点】不等式的性质.7.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?【答案】10.【解析】关系式为:4×第一层房间数<48;5×第一层房间数>48;3×第二层房间数<48;4×第二层房间数>48,把相关数值代入求整数解即可.试题解析:设第一层有客房x间,则第二层有(x+5)间,由题可得由①得:,解得:;由②得:,解得:7<x<11.∴原不等式组的解集为.∴整数x的值为x=10.答:一层有客房10间.【考点】一元一次不等式组的应用.8.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.9.已知关于x,y的方程组的解为非负数,求整数m的值.【答案】7,8,9,10.【解析】此题考查了解方程组与解不等式组,根据题意可以先求出方程组的解(解中含有字母m),然后根据x≥0,y≥0,组成关于m的不等式组,解不等式组即可求解.试题解析:解方程组可得.因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.考点: 1一元一次不等式组的整数解;2.解二元一次方程组.10.下列不等式一定成立的是()A.4a>3a B.3-x<4-x C.-a>-3a D.【答案】B.【解析】A、当a=0时,4a=3a,故选项错误;B、正确;C、当a=0时,-a=-3a,故选项错误;D、当a<0时,.故选B【考点】不等式的性质.11.下列不等式变形正确的是()A.由,得B.由,得-2a>-2bC.由,得D.由,得【答案】B【解析】A错误:当c=0时,ac>bc不成立。
初二数学列一元一次不等式解应用题试题答案及解析
初二数学列一元一次不等式解应用题试题答案及解析1.小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少有280元.设x个月后小刚至少有280元,则可列计算月数的不等式为()A.30x+50>280B.30x﹣50≥280C.30x﹣50≤280D.30x+50≥280【答案】D【解析】此题的不等关系:已存的钱与每月节省的钱数之和至少为280元.至少即大于等于.解:根据题意,得50+30x≥280.故选D.2.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,所列不等式为()A.10+8x≥72B.2+10x≥72C.10+8x≤72D.2+10x≤72【答案】A【解析】设以后每天读x页,根据小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,可列出不等式即可.解:设以后每天读x页,2×5+(10﹣2)x≥72,整理得出10+8x≥72.故选:A.3. y与4的和的一半是负数,用不等式表示为()A.y+4>0B.y+4<0C.(y+4)<0D.(y+4)>0【答案】C【解析】理解:负数值小于0.解:由题意可得:(y+4)<0.故选C.4.在开山工程爆破时,已知导火索燃烧速度为0.5cm/s,人跑开的速度是4m/s,为了使放炮的人在爆破时能安全跑到100m以外的安全区,导火索的长度x(cm)应满足的不等式是()A.4×≥100B.4×≤100C.4×<100D.4×>100【答案】D【解析】为了安全,则人跑开的路程应大于100米.路程=速度×时间,其中时间即导火索燃烧的时间,是s.解:根据题意,得4×>100.故选D.5.小明身高1.5米,小明爸爸身高1.8米,小明走上一处每级高a米,共10级的平台说:“爸爸,现在两个你的身高都比不上我了!”由此可得关于a的不等式是()A.10a>1.8×2B.1.5+a+10>1.8×2C.10a+1.5>1.8×2D.1.8×2>10a+15【答案】C【解析】根据小明的身高+10级高台的高度>爸爸身高的2倍列式即可.解:根据题意,得10a+1.5>1.8×2.故选:C.6.“x与y的和大于1”用不等式表示为.【答案】x+y>1【解析】表示出两个数的和,用“>”连接即可.解:x与y的和可表示为:x+y,“x与y的和大于1”用不等式表示为:x+y>1,故答案为:x+y>1.7.去年夏汛期间,某条河流的最高水位高出警戒水位2.5米,最低水位低于警戒水位0.5米,则这期间的水位与警戒水位相比,高出的部分h(米)的范围是.【答案】﹣0.5米≤h≤2.5米【解析】由于某条河流的最高水位高出警戒水位2.5米,最低水位低于警戒水位0.5米,那么这期间的水位与警戒水位相比,高出的部分h的最大为2.5,最小为﹣0.5,由此即可求解.解:依题意得,﹣0.5米≤h≤2.5米.故答案为:﹣0.5米≤h≤2.5米.8.用不等式表示“a的3倍与8的差是一个非负数”应是.【答案】3a﹣8≥0【解析】差是一个非负数,即是最后算的差应大于或等于0.解:根据题意,得3a﹣8≥0.故答案为:3a﹣8≥0.9. x的3倍减去2的差不大于零,列出不等式是.【答案】3x﹣2≤0【解析】不大于0就是小于等于0,根据x的3倍减去2的差不大于零可列出不等式.解:根据题意得:3x﹣2≤0.故答案为:3x﹣2≤0.10.某学校为学生安排宿舍,现有住房若干间,若每间5人,则还有14人安排不下,若每间7人,则有一间不足7人.问学校至少有几间房可以安排学生住宿?可以安排住宿的学生有多少人?【答案】解:设学校有x间房可以安排y名学生住宿,∵若每间5人,则还有14人安排不下,∴y=5x+14.∵若每间7人,则有一间不足7人,∴0<y﹣7(x﹣1)<7.将y=5x+14代入上式得:0<5x+14﹣7x+7<7,解得:7<x<10.5,故学校至少有8间房可以安排学生住宿,可以安排住宿的学生有5×8+14=54(人).【解析】设学校有x间房可以安排y名学生住宿,根据题意得:,求解即可.11.某市自来水公司按如下标准收取水费:若每户每月用水不超过10m3,则每立方米收费1.5元;若每户每月用水超过10m3,则超过的部分每立方米收费2元.小亮家某月的水费不少于25元,那么他家这个月的用水量(xm3)至少是多少?请列出关于x的不等式.【答案】解:设小亮家每个月的用水量是xm3,根据题意,得1.5×10+2(x﹣10)≥25.【解析】不少于25元,意思是大于或等于25元,根据收费标准,知小亮家的用水一定超过了10m3.故本题的不等关系为:10m3的水费与超过部分的水费.12.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.【答案】解:设应打x折,根据题意,得750×﹣500≥500×5%.【解析】利润率不低于5%,即是利润应大于或等于利润率的5%.利润有两种表示方法:利润=售价﹣成本=成本×利润率.本题满足的关系为:售价﹣进价≥500×5%.13.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.【答案】解:设小明答对x道题,根据题意,得4x﹣(30﹣x)>80.【解析】理解:80分以上,意思是大于80分.本题的不等关系为:4×答对的题数﹣1×答错或不答的题数>80.14.用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表:C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求购买甲、乙两种原料的费用不超过1 800元,那么请你写出所需甲种原料的质量x(kg)应满足的另一个不等式.【答案】解:(1)若所需甲种原料的质量为xkg,则需乙种原料(200﹣x)kg.根据题意,得800x+200(200﹣x)≥52000;(2)由题意得,18x+14(200﹣x)≤1800.【解析】(1)根据甲种原料所需的质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有52000单位的维生素C”这一不等关系列不等式;(2)根据甲种原料和乙种原料每千克的费用分别为18和14,总费用不超过1800元,列出不等式.15.有5支排球劲旅A队、B队、C队、D队、E队,参加排球锦标赛,成绩如下:D队的名次比C队低,A队比B队高,但低于E队;E队比C低,B队比D队高,请问:这5支球队各是第几名.解决这类问题,一个非常方便的方法是利用数学符号帮忙,此处用“>”或“<”,将成绩可简单表示成不等式,很快就得出这5个队的名次,试一下吧?【答案】解:∵D队的名次比C队低,A队比B队高,但低于E 队;E队比C低,B队比D队高,∴D<C,B<A<E,E<C,D<B,∴D<B<A<E<C.【解析】分别利用各队之间的不等关系即可得出A队、B队、C队、D队、E队的名次大小关系.16.电脑公司销售一批计算机,第一个月以3500元/台的价格售出40台,第二个月起降价,以3000元/台的价格将这批计算机全部售出,销售总量超过30万元,则这批计算机最少有多少台?若设这批计算机有x台,则下列不等式表示正确的是()A.3500×40+3000(x﹣40)>30B.3500×40+3000(x﹣40)≥30C.3500×40+3000(x﹣40)>300000D.3500×40+3000(x﹣40)≥300000【答案】C【解析】根据题意设这批计算机有x台,第二个月还有(x﹣40)台,先表示出第一个月销售量,再表示出第二个月销售量,然后用第一个月销售量+第二个月销售量>30万元即可.解:∵第一个月以3500元/台的价格售出40台,∴第一个月销售量=3500×40=140000(元),设这批计算机有x台,第二个月还有(x﹣40)台,∴第二个月销售量=3000×(x﹣40),∵销售总量超过30万元,∴3500×40+3000×(x﹣40)>300000.故选:C.17. x的3倍与2的差不大于0,用不等式表示为()A.3x﹣2≤0B.3x﹣2≥0C.3x﹣2<0D.3x﹣2>0【答案】A【解析】不大于就是小于等于的意思,根据x的3倍与2的差不大于0,可列出不等式.解:根据题意得:3x﹣2≤0.故选A.18.用不等式表示a的一半与2的差大于﹣1,正确的是()A.B.﹣2>﹣1C.(a﹣2)≥﹣1D.a﹣2<﹣1【答案】B【解析】利用关键描述语是:差大于﹣1,表示出a的一半与2的差,即可得出答案.解:根据题意,得a﹣2>﹣1.故选:B.19.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,所列不等式为()A.10+8x≥72B.2+10x≥72C.10+8x≤72D.2+10x≤72【答案】A【解析】设以后每天读x页,根据小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,可列出不等式即可.解:设以后每天读x页,2×5+(10﹣2)x≥72,整理得出10+8x≥72.故选:A.20. a的3倍与3的和不大于1,用不等式表示正确的是()A.3a+3<1B.3a+3≤1C.3a﹣3≥1D.3a+3≥1【答案】B【解析】“不大于1”意思是小于或等于1.解:a的3倍与3的和不大于1,用不等式表示为3a+3≤1,故选B.。
一元一次不等式组应用题及答案
一元一次不等式组应用题及答案一元一次不等式应用题解决实际问题的步骤:1.审题,找出不等关系;2.设未知数;3.列出不等式;4.求出不等式的解集;5.找出符合题意的值;6.作答。
一.分配问题:1.一定数量的花生要分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?2.一定数量的书要分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?5.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
1)如果有x间宿舍,那么可以列出关于x的不等式组:4x ≤ n - 196y。
n2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.XXX家到学校2.1千米,现在需要在18分钟内走完这段路。
已知XXX步行速度为90米/分,跑步速度为210米/分,问XXX至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2.用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
初二数学一元一次不等式试题答案及解析
初二数学一元一次不等式试题答案及解析1.用适当的符号表示a是非负数:_________.【答案】a≥0.【解析】由于非负数即大于等于0,所以a≥0.故答案是:a≥0.【考点】.由实际问题抽象出一元一次不等式2.不等式组的解集是_________.【答案】﹣1<x<.【解析】,∵解不等式①得:x>﹣1,解不等式②得:x<,∴不等式组的解集是﹣1<x<.故答案是﹣1<x<.【考点】解一元一次不等式组.3.使代数式的值不小于代数式的值,则应为()A.>17B.≥17C.<17D.≥27【答案】B.【解析】≥3(x-9)+6≥2(x+1)-6,x≥17.故选B.【考点】解一元一次不等式.4.已知关于x,y的方程组的解满足x>y,求p的取值范围.【答案】p>-6.【解析】把p看作一个常数,利用加减消元法求出x、y,然后列出不等式求解即可.试题解析:,①×3得,9x+6y=3p+3③,②×2得,8x+6y=2p-2④,③-④得,x=p+5,把x=p+5代入①得,3(p+5)+2y=p+1,解得y=-p-7,∵x>y,∴p+5>-p-7,解得p>-6.【考点】1.解二元一次方程组;2.解一元一次不等式.5.由不等式ax>b可以推出x<,那么a的取值范围是____________【答案】a<0.【解析】∵ax>b两边同时除以a得到x<,∴不等号的方向改变了,∴根据不等式的基本性质,可得:a<0.【考点】不等式的性质.6.当时,多项式的值小于0,那么k的值为[ ].A.B.C.D.【答案】B.【解析】时,x2-kx-1=,所以<0,解得k<.故选B.考点: 1.解一元一次不等式;2.代数式求值.7.如果b>a>0,那么 [ ].A.B.C.D.【答案】C.【解析】∵b>a>0∴A.,错误;B.,错误;C.,正确;D.,错误.故选C.考点: 不等式的性质.8.若(x+2)(x-3)>0,则x的取值范围是________.【答案】x>3,或x<-2.【解析】根据同号得正,异号得负列出不等式组即可求解.试题解析:由题意得:或解得:x>3,或x<-2.考点: 解一元一次不等式组.9.解下列不等式(组):(1);(2)【答案】(1)x≤4;(2)x>2.【解析】(1)根据“去分母、去括号、移项、合并同类项、系数化为1”的法则进行求解即可. (2)先分别求出各不等式的解集,再求其公共解集即可.试题解析(1)去分母得:3(3x-2)≥5(2x+1)-15去括号得:9x-6≥10x+5-15移项得:9x-10x≥6+5-15合并同类项得:-x≥-4系数化为1得:x≤4;(2)解不等式1得:x>2;解不等式2x>1所以不等式组的解集为:x>2.考点: 解一元一次不等式(组).10.有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班共有多少位学生?【答案】28.【解析】设该班有x个学生,根据题意有0<x-x-x-x<6,解这个不等式,再考虑实际情况作答.试题解析:设该班有x个学生.根据题意有:0<x-x-x-x<6,解得:0<x<56,又∵x是整数,且是2、4、7、的公倍数,∴x=28,答:这个班有28个学生.考点: 1.一元一次不等式的应用;2.一元一次不等式组的整数解.11.若不等式(a-3)x>a-3的解集是x<1,则a的取值范围是()A.B.C.D.【答案】C.【解析】根据题意得:a-3<0,解得:a<3.故选C.考点: 不等式的解集.12.代数式+2x的值不大于8-的值,那么x的正整数解是.【答案】1、2、3【解析】由题意得,解得,所以x的正整数解是1、2、3.【考点】解一元一次不等式13.一群驴友自助登山,登山前组织者给每人都发了矿泉水:若每人发2瓶,则剩余5瓶,若每人发4瓶,则其中有一人有矿泉水但不足4瓶.请求出驴友人数和矿泉水瓶数.【答案】驴友人数可能是3人、矿泉水11瓶,或驴友4人矿泉水13瓶【解析】设驴友为x人,则矿泉水有(2x+5)瓶,根据“若每人发4瓶,则其中有一人有矿泉水但不足4瓶”可知:0<2×驴友人数+5-4×(驴友人数-1)<4,根据这个关系可列不等式组求解.试题解析:设驴友为x人,矿泉水瓶数为y,根据题意得:0<2x+5-4(x-1)<4(或1≤2x+5-4(x-1)≤3)解得:<x<(或3≤x≤4),∵x是整数,∴x=3或4,当x=3时,y=2x+5=11;当x=4时,y=2x+5=13.∴驴友人数可能是3人、矿泉水11瓶,或驴友4人矿泉水13瓶.【考点】一元一次不等式组的应用14.小芳和爸爸、妈妈三人玩跷跷板,三人的体重一共为150千克,爸爸坐在跷跷板的一端;体重只有妈妈一半的小芳和妈妈一同坐在跷跷板的另一端.这时,爸爸的那一端仍然着地.请你猜一猜小芳的体重应小于()A.24千克B.50千克C.25千克D.49千克【答案】C.【解析】本题可设小明的体重为x,则小明妈妈的体重为2x,爸爸的体重为150-3x,根据图形可知爸爸的体重大于小明和妈妈的体重和,由此可列出不等式x+2x<150-3x,化简解出x的取值范围即可.设小明的体重为x,则小明妈妈的体重为2x,爸爸的体重为150-3x.则有x+2x<150-3x即6x<150所以x<25因此小明的体重应小于25千克.故选C.考点: 一元一次不等式的应用.15.老师给初二(10)班同学分练习本,如果每人分到4本,那么还剩24本;如果每人分到5本,那么只有一个同学分到但不足5本。
八年级上册数学-一元一次不等式应用题集锦.
一元一次不等式应用题集锦1、把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?2、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投入4kg蟹苗和20kg虾苗;③每千克蟹苗的价格为75元,其饲养费用为525元,当年可获1 400元收益;④每千克虾苗的价格为15元,其饲养费用为85元,当年可获160元收益.(1)若租用水面n 亩,则年租金共需_________元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3)李大爷现有资金25 000元,他准备再向银行贷不超过25 000元的款,•用于蟹虾混合养殖,已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,•并向银行贷款多少元,可使年利润超过35 000元?3、某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,最后一人得到的课外读物不足3本.设该校买了m本课外读物,有x名学生获奖,请解答下列问题: (1)用含x的代数式表示m; (2)求出该校的获奖人数及所买课外读物的本数.4、 (2017荆门市)有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则应该如何安排人员?5、 (2017陕西)出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程大约是多少?6、 (2002重庆市)韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A队有出租车() A.11辆 B.10辆 C.9辆 D.8辆8、 (2017安徽)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?9、某种植物适宜生长在温度为18℃~22℃的山区,已知山区海拔每升高100m,气温下降0.6℃,现测出山脚下的平均气温为22℃,问该植物种在山上的哪一部分为宜(设山脚下的平均海拔高度为0m).10、把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?11、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
八年级上册数学-一元一次不等式应用题集锦
八年级上册数学-一元一次不等式应用题集锦.1、一元一次不等式应用题集锦1.1、混合糖果问题甲种糖果每千克价格为20元,乙种糖果每千克价格为18元。
现在要将8千克甲种糖果和若干千克乙种糖果混合,使得总价不超过400元,且糖果总量不少于15千克。
问:混合的乙种糖果最多是多少?最少是多少?1.2、安排宿舍问题某中学为八年级寄宿学生安排宿舍。
每间宿舍可以住4人或8人。
如果每间住4人,则会有20人无法安排宿舍;如果每间住8人,则会有一间宿舍不满也不空。
问:这个中学有多少间宿舍?可以安排多少名学生住宿?1.3、水产养殖问题一块水面每亩年租金为500元,每亩水面可以混合投入4千克蟹苗和20千克虾苗。
蟹苗每千克价格为75元,饲养费用为525元,当年可获得1,400元收益;虾苗每千克价格为15元,饲养费用为85元,当年可获得160元收益。
问:1)租用n亩水面的年租金共需多少元?2)每亩水面混合养殖蟹虾的年利润是多少?(利润=收益-成本)3)XXX现有资金25,000元,他准备向银行贷款不超过25,000元,用于蟹虾混合养殖。
已知银行贷款的年利率为8%。
问:XXX应该租多少亩水面,向银行贷款多少元,才能使年利润超过35,000元?1.4、课外读物问题某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。
如果每人送3本,则还有8本余下;如果每人送5本,最后一人得到的课外读物不足3本。
设该校买了m本课外读物,有x名学生获奖。
问:1)用含x的代数式表示m;2)该校获奖人数和所买课外读物的本数分别是多少?1.5、蔬菜种植问题有10名菜农,每人可以种3亩甲种蔬菜或2亩乙种蔬菜。
已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元。
现在要使总收入不低于15.6万元,应该如何安排人员?1.6、出租车费用问题某出租车起价为10元,行驶路程在5公里以内需付10元车费。
超过5公里后,每增加1公里加价1.2元(不足1公里按1公里计算)。
八年级上册数学-一元一次不等式应用题及答案
八年级上册数学-一元一次不等式应用题及答案一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
1、某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分。
(1)小明考了68分,那么小明答对了多少道题?(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?2、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不式表示)?(2)若规定该城市每天用于处理垃圾的费用不超过7370元,则甲厂每天处理垃圾至少需多少时间?5、某汽车租凭公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元。
(1)符合公司要求的购买方案有几种?请说明理由(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应该选择以上哪种购买方案?6、(2012•益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.7、荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2 500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.答案:1、设小明答对x题5x-3(20-x)=68x=162 设小亮答对y题70≤5y-3(20-y)≤9016.25≤y≤18.75所以y=17或182、6*(x-1)<4x+19<6x(2) 9.5<x<12.5x=10 59人x=11 63人x=12 67人3、解:设导火线的长度为x厘米,可列不等式:400÷5<x÷1.2,解得x>96厘米4、解:(1)设甲、乙两厂同时处理,每天需x小时.得:(55+45)x=700,(3分)解得:x=7(小时)(2分)答:甲、乙两厂同时处理,每天需7小时.(2)设甲厂需要y小时.由题知:甲厂处理每吨垃圾费用为55055=10元,乙厂处理每吨垃圾费用为49545=11元.则有550y+11(700-55y)≤7370,解得:y≥6.答:甲厂每天处理垃圾至少需要6小时.5、1)设轿车要购买x辆,那么面包车要购买(10-x)辆,由题意,得7x+4(10-x)≤55,解得x≤5. 又因为x≥3,则x=3、4或5. 所以购车方案有三种:方案一:轿车3辆,面包车7辆;方案二:轿车4辆,面包车6辆;方案三:轿车5辆,面包车5辆. (2)方案一的日租金为:3×200+7×110=1370(元);方案二的日租金为:4×200+6×110=1460(元);方案三的日租金为:5×200+5×110=1550(元). 所以为保证日租金不低于1500元,应选择方案三6、(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得:80x+60(17-x )=1220,解得:x=10,∴17-x=7,答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得:17-x<x,解得:x>812,购进A、B两种树苗所需费用为80x+60(17-x)=20x+1020,则费用最省需x取最小整数9,此时17-x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B 种树苗87、解:(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z辆,租用乙型汽车(6﹣z)辆.由题意得解得2≦z≦4由题意知,z为整数∴z=2或z=3或z=4∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.方案一的费用是800×2+850×4=5000(元);方案二的费用是800×3+850×3=4950(元);方案三的费用是800×4+850×2=4900(元)5000>4950>4900所以最低运费是4900元答:共有三种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.。
中小学数学_一元一次不等式应用题 答案解析100道【经典数学资料系列】
一元一次不等式(组)应用题练习及答案1.修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保持环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得低于区域总面积的20%,若搬迁农民建房每户占地150m2,则绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户加入建房,若仍以每户占地150m2计算,则这时绿色环境面积只占总面积的15%,为了符合规划要求,又需要退出部分农户。
(1)最初需搬迁的农户有多少户?政府规划的建房区域总面积是多少?(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需要退出农户几户?2.某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。
经过预算,本次购买机器所耗资金不能超过34万元。
甲乙价格(万元/台)7 5每台日产量(个)100 60(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?3.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若使总收入不低于15.6万,则最多只能安排多少人种甲种蔬菜?4.小杰到学校食堂买饭,看到A、B两窗口前面排队的人一样多(设为a人,a>8),就站到A窗口队伍的后面. 过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.(1)此时,若小杰继续在A窗口排队,则他到达窗口所花的时间是多少(用含a的代数式表示)?(2)此时,若小杰迅速从A窗口队伍转移到B窗口队伍后面重新排队,且到达B窗口所花的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围(不考虑其他因素).AB5.小明在上午8:20分步行出发去春游,10:20小刚在同一地骑自行车出发,已知小明每小时走4千米,小刚要在11点前追上小明,小刚的速度应至少是多少?6.某厂原定计划年产某种机器1000台,现在改进了技术,准备力争提前超额完成,但开始的三个月内,由于工人不熟悉新技术,只生产100台机器,问以后每个月至少要生产多少台?7.学校图书馆有15万册图书需要搬迁,原准备每天在一个班级的劳动课上,安排一个小组同学帮助搬运图书,两天共搬了1.8万册。
10道一元一次不等式应用题和答案过程
一元一次不等式解应用题1.某水产品市场管理部门规划建造面积为2400平方米的大棚.大棚设A 种类型和B种类型的店面共80间.每间A种类型的店面的平均面积为28平方米.月租费为400元.每间B种类型的店面的平均面积为20平方米..月租费为360元.全部店面的建造面积不低于大棚总面积的85%。
(1) 试确定A种类型店面的数量?(2)该大棚管理部门通过了解.A种类型店面的出租率为75%.B种类型店面的出租率为90%.为使店面的月租费最高.应建造A种类型的店面多少间?. . . 资料. .解:设A种类型店面为a间.B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55 A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显.a≥55.所以当a=55时.可以获得最大月租费为25920-24x55=24600元. . . 资料. .二、水产养殖户大爷准备进行大闸蟹与河虾的混合养殖.他了解到情况:每亩地水面组建为500元;每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;每公斤蟹苗的价格为75元.其饲养费用为525元.当年可获1400元收益;每公斤虾苗的价格为15元.其饲养费用为85元.当年可获160元收益;问题:1、水产养殖的成本包括水面年租金.苗种费用和饲养费用.求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、大爷现有资金25000元.他准备再向银行贷款不超过25000元.用于蟹虾混合养殖.已知银行贷款的年利率为10%.试问大爷应租多少亩水面.并向银行贷款多少元.可使年利润达到36600元?. . . 资料. .解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面.贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=36600. . . 资料. .3900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司.要将300吨物资运往某地.现有A、B两种型号的车可供调用.已知A型车每辆可装20吨.B型车每辆可装15吨.在每辆车不超载的条件下.把300吨物资装运完.问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆.由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .. . . 资料. .由于a是车的数量.应为正整数.所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨.全部由甲.乙两个垃圾厂处理.已知甲厂每小时处理垃圾55吨.需费用550元;乙厂每小时处理垃圾45吨.需费用495元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学
一元一次不等式应用题
1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?
2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?
3.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。
4.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?
5.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?
6.某工程队计划在10天内修路6km,施工前2天修完1.2km后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少千米?。