天大15秋《概率论与数理统计》在线作业一分 (1)满分答案

合集下载

《概率论与数理统计》在线作业二 15秋解答

《概率论与数理统计》在线作业二 15秋解答

北交《概率论与数理统计》在线作业二一、单选题(共 30 道试题,共 75 分。

)1. 如果X与Y这两个随机变量是独立的,则相关系数为(). 0. 1. 2. 3正确答案:2. 设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然(). 不独立. 独立. 相关系数不为零. 相关系数为零正确答案:3. 在参数估计的方法中,矩法估计属于()方法. 点估计. 非参数性. 极大似然估计. 以上都不对正确答案:4. 下列哪个符号是表示不可能事件的. θ. δ. Ф. Ω正确答案:5. 设随机变量X~(n,p),已知X=0.5,X=0.45,则n,p的值是()。

. n=5,p=0.3. n=10,p=0.05. n=1,p=0.5. n=5,p=0.1正确答案:6. 假设事件和满足P(∣)=1,则. 、为对立事件. 、为互不相容事件. 是的子集. P()=P()正确答案:7. 进行n重伯努利试验,X为n次试验中成功的次数,若已知X=12.8,X=2.56 则n=(). 6. 8. 16. 24正确答案:8. 有两批零件,其合格率分别为0.9和0.8,在每批零件中随机抽取一件,则至少有一件是合格品的概率为. 0.89. 0.98. 0.86. 0.68正确答案:9. 点估计( )给出参数值的误差大小和范围. 能. 不能. 不一定. 以上都不对正确答案:10. 不可能事件的概率应该是. 1. 0.5. 2. 1正确答案:11. 设X,Y为两个随机变量,已知ov(X,Y)=0,则必有()。

. X与Y相互独立. (XY)=X*Y. (XY)=X*Y. 以上都不对正确答案:12. 一口袋装有6只球,其中4只白球、2只红球。

从袋中取球两次,每次随机地取一只。

采用不放回抽样的方式,取到的两只球中至少有一只是白球的概率(). 4/9. 1/15. 14/15. 5/9正确答案:13. 设,,是两两独立且不能同时发生的随机事件,且P()=P()=P()=x,则x的最大值为()。

《概率论与数理统计》考试题(含答案)

《概率论与数理统计》考试题(含答案)

《概率论与数理统计》考试题一、填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则a )、若B A ,互斥,则=)B -A (p 0.5 ;b )若B A ,独立,则=)B A (p 0.65 ;c )、若2.0)(=⋅B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。

(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 . 3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X E 8 .4、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。

5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 0.9987 ,成绩超过85分的学生占比}85{≥X P 为 0.0228 。

其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ. 6、设二维随机向量),(Y X 的分布律是有 则=a _0.1_,X的数学期望=)(X E ___0.4___,Y X 与的相关系数=xy ρ___-0.25______。

7、设161,...,X X 及81,...,Y Y 分别是总体)16,8(N 的容量为16,8的两个独立样本,Y X ,分别为样本均值,2221,S S 分别为样本方差。

则:~X N(8,1) ,~Y X - N(0,1.5) ,{}5.12>-Y X p = 0.0456 ,~161521S )15(2χ,~2221S S F(15,7) 。

概率论与数理统计答案

概率论与数理统计答案

概率论与数理统计答案
1. 概率论中,事件的概率是什么?
事件的概率是指该事件发生的可能性大小。

通常用0到1之间的数值表示,0表示不可能发生,1表示一定会发生。

2. 如何计算联合概率和条件概率?
联合概率指两个事件同时发生的概率,可以用乘法原理计算。

条件概率是指已知一个事件发生的前提下,另一个事件发生的概率,可以用条件概率公式P(A|B) = P(A∩B) / P(B)来计算。

3. 如何计算期望和方差?
期望是指随机变量取值的平均值,可以用加权平均数来计算。

方差是指随机变量的取值与其期望之差的平方的平均数,可以用期望和平方的期望之差来计算。

4. 什么是正态分布?
正态分布是一种常见的连续概率分布,也称为高斯分布。

其具有对称、单峰、钟形曲线的特点,通过平均数和标准差来描述。

5. 如何进行假设检验?
假设检验是一种基于样本数据推断总体参数的方法。

通常先提出一个假设(原假设或备择假设),根据样本数据计算出一个统计量,然后根据这个统计量的概率分布来判断原假设是否成立。

免费在线作业答案在线作业答案15秋福师《概率论》在线作业一满分答案

免费在线作业答案在线作业答案15秋福师《概率论》在线作业一满分答案

15秋福师《概率论》在线作业一满分答案一、单选题(共 50 道试题,共 100 分。

)1. 某单位有200台电话机,每台电话机大约有5%的时间要使用外线电话,若每台电话机是否使用外线是相互独立的,该单位需要安装()条外线,才能以90%以上的概率保证每台电话机需要使用外线时而不被占用。

A. 至少12条B. 至少13条C. 至少14条D. 至少15条正确答案:C2. 已知随机事件A 的概率为P(A)=0.5,随机事件B的概率P(B)=0.6,且P(B︱A)=0.8,则和事件A+B的概率P(A+B)=()概率论答案A. 0.7B. 0.2C. 0.5D. 0.6正确答案:A3. 现有一批种子,其中良种占1/6,今任取6000粒种子,则以0.99的概率推断,在这6000粒种子中良种所占的比例与1/6的差是()A. 0.0124B. 0.0458C. 0.0769D. 0.0971正确答案:A4. 袋中有4个白球,7个黑球,从中不放回地取球,每次取一个球.则第二次取出白球的概率为 ( )A. 4/10B. 3/10C. 3/11D. 4/11正确答案:D5. 有两批零件,其合格率分别为0.9和0.8,在每批零件中随机抽取一件,则至少有一件是合格品的概率为A. 0.89B. 0.98C. 0.86D. 0.68正确答案:B6. 设两个相互独立的事件A和B都不发生的概率为1/9,A发生B不发生的概率与B发生A 不发生的概率相等,则P(A)=A. 1/4B. 1/2C. 1/3D. 2/3正确答案:D7. 环境保护条例规定,在排放的工业废水中,某有害物质含量不得超过0.5‰ 现取5份水样,测定该有害物质含量,得如下数据:0.53‰, 0.542‰,0.510‰ ,0.495‰ ,0.515‰则抽样检验结果( )认为说明含量超过了规定A. 能B. 不能C. 不一定D. 以上都不对正确答案:A8. 一部10卷文集,将其按任意顺序排放在书架上,试求其恰好按先后顺序排放的概率( ).A. 2/10!B. 1/10!C. 4/10!D. 2/9!正确答案:A9. 从a,b,c,d,...,h等8个字母中任意选出三个不同的字母,则三个字母中不含a与b的概率()A. 14/56B. 15/56C. 9/14D. 5/14正确答案:D10. 点估计( )给出参数值的误差大小和范围A. 能B. 不能C. 不一定D. 以上都不对正确答案:B11. 设随机变量X和Y相互独立,X的概率分布为X=0时,P=1/3;X=1时,P=2/3。

《概率论与数理统计》第1阶段在线作业

《概率论与数理统计》第1阶段在线作业

《概率论与数理统计》第1阶段在线作业《概率论与数理统计》第1阶段在线作业在《概率论与数理统计》的第1阶段在线作业中,我学习了概率论和数理统计的基本概念和方法。

本阶段的学习内容主要涵盖了随机变量、概率分布、多维随机变量、正态分布以及抽样分布等知识点。

在学习随机变量的部分,我了解了随机变量的概念和分类。

随机变量是概率论的核心概念之一,它是一个取值不确定的变量。

根据随机变量的取值情况,可以将其分为离散随机变量和连续随机变量两类。

离散随机变量的取值为可数个,而连续随机变量的取值为某个区间内的任意实数值。

概率分布是描述随机变量取值的规律性的数学函数。

在学习概率分布时,我了解了离散随机变量的概率质量函数(PMF)和连续随机变量的概率密度函数(PDF)。

离散随机变量的PMF可以通过对每个取值的概率进行求和得到,而连续随机变量的PDF则需要进行积分运算。

多维随机变量是指两个或多个随机变量构成的向量。

在学习多维随机变量时,我认识了联合概率密度函数和联合概率质量函数的概念,并掌握了如何计算多维随机变量的边缘概率密度函数和边缘概率质量函数。

正态分布是概率论中最重要的分布之一。

在学习正态分布时,我了解了其数学特征和性质,并学会了如何进行正态分布的标准化处理。

正态分布在实际中具有广泛的应用,尤其在统计推断中扮演着重要的角色。

抽样分布是指从总体中抽取多个样本,计算样本统计量,并研究这些统计量的分布情况。

在学习抽样分布时,我了解了样本均值的抽样分布,以及中心极限定理的概念和推导过程。

中心极限定理表明,当样本容量足够大时,样本均值的分布趋近于正态分布。

通过完成在线作业,我对概率论与数理统计的基本概念和方法有了更深入的了解。

这些知识和技能对于进行数据分析和统计推断非常重要,也为今后在相关领域的学习和研究打下了坚实的基础。

我会继续努力学习,巩固这些知识,并运用它们解决实际问题。

概率论与数理统计01-第一章作业及答案

概率论与数理统计01-第一章作业及答案

习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ).(A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ).(A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销.(C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C = ,本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色;(2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色;(3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数;(4) 生产产品直到有10件正品为止, 记录生产产品的总件数.解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n += }.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件:(1) 仅有A 发生;(2) A , B , C 中至少有一个发生;(3) A , B , C 中恰有一个发生;(4) A , B , C 中最多有一个发生;(5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生.解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件:(1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)23A A ; (6)12A A .解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题(1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0.解 本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= ,故()()1P A P B +=. 于是()1.P B p =-3. 已知()0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .解 由公式()()()()P A B P A P B P AB =+- 知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB .解 由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为ABC AB ⊂,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0.由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P A B C ==-=.习题1-41. 选择题 在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品.(C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ⨯, 没有一等品的概率为023225C C C ⨯, 将两者加起即为0.7.答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C . 3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率;(3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有29C 种,两个球都是白球的取法有24C 种,一黑一白的取法有1154C C 种,由古典概率的公式知道 (1) 两球都是白球的概率是2924C C ; (2) 两球中一黑一白的概率是115429C C C ; (3) 至少有一个黑球的概率是12924C C -. 习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件.(C) AB B =. (D)()()P AB P B =.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P B A =, 则()0P AB =.(C) 若()()1P AB P AB +=, 则A , B 为对立事件.(D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}.解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813. 3. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则(0,1,2,3)i B i =表示“恰有i 发击中目标”. i B 为互斥的完备事件组. 于是没有击中目标概率为0()0.60.50.30.09P B =⨯⨯=,恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =⨯⨯+⨯⨯+⨯⨯=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =⨯⨯+⨯⨯+⨯⨯=,恰有三发击中目标概率为3()0.40.50.70.14P B =⨯⨯=.又已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到30()()(|)0.360.20.410.60.1410.458.i i i P A P B P A B ===⨯+⨯+⨯=∑4. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,i H 表示“取得球来至第i 个箱子”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A == 5. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查.(1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知, 123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.20.0384.=⨯+⨯+⨯=. (2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ⨯===, 222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ⨯===, 333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ⨯===. 习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件.解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立. (C) ()()()P AB P A P B =. (D) A 与B 一定互斥.解 因事件A 与B 独立, 故A B 与,A 与B 及A 与B 也相互独立. 因此本题应选(D).(3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A) (|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B 一定互斥. (D)()()()()()P A B P A P B P A P B =+- .解 因事件A 与B 独立, 故A B 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C = , 求()P A .解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+ . 由题设可知 A , B 和C 两两相互独立, ,ABC =∅ 1()()()2P A P B P C ==<, 因此有 2()()()[()],()()0,P A B P A C P B C P A P A B C P ====∅= 从而 29()3()3[()]16P A B C P A P A =-=, 于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =. 3. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率;(3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==⨯= (2) ()()0.70.20.30.80.38;P AB P AB +=⨯+⨯=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总 习 题 一1. 选择题:设,,A B C 是三个相互独立的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396⨯=⨯. (1) 抽得一件为正品,一件为次品的概率为95559519.10099198⨯+⨯=⨯ 3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件 产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设 A ={取到的产品是次品}, B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =∅(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004, 由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221⨯+⨯+⨯=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=⨯+⨯=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ⨯====. 5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02, 而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====. 由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

(完整版)概率论与数理统计习题集及答案

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

大学概率论与数理统计习题及参考答案

大学概率论与数理统计习题及参考答案

P A P AB1 AB2 P AB1 P AB2 P B1 P A B1 P B2 P A B2
2 1 0.97 0.98 有9个是新的。第一次比赛从中任取3个来用, 比赛后仍放回盒中,第二次比赛再从盒中任取3个,求第二次取出的球都是 新球的概率。 解: 设 Bi 表示事件“第一次取出了 i 个新球”i, =0,1,2,3.
从而P( A B) 1 P( AB) 1 0.012 0.988.
10
三、为防止意外, 在矿内同时设有两种报警系统A与B, 每种系统单独使用时, 其有
效的概率系统A为0.92,系统B为0.93, 在A失灵的条件下, B有效的概率为0.85, 求 (1)发生意外时, 这两个报警系统至少有一个有效的概率; (2) B失灵的条件下, A有效的概率.

设事件A表示“报警系统A有效”,事件B表示“报警系统B有效”,由已知
P ( A) 0.92, P ( B) 0.93, P ( B A) 0.85,
则 P ( AB ) P ( A) P ( B A) 0.08 0.85 0.068 , 故 P( AB) P( B) P( AB) 0.93 0.068 0.862,
AB 6 ; A B 1 ,5 .
1
四、写出下面随机试验的样本空间: (1)袋中有5只球,其中3只白球2只黑球,从袋中 任意取一球,观察其颜色; (2) 从(1)的袋中不放回任意取两次球(每次取出一个)观察其颜色; (3) 从(1)的袋中不放回任意取3只球,记录取到的黑球个数; (4) 生产产品直到有10件正品为止,记录生产产品的总件数; 解 (1)设
i
表示抛掷一颗骰子,出现i点数,i=1,2,3,4,5,6. 则样本空间

概率论与数理统计作业与解答

概率论与数理统计作业与解答

概率论与数理统计作业及解答第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹•设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示• 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC;或工 ABACBC ;或工 ABC_(AB C ABC A BC ).(和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB)2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}.C 6 (C 2 )6 32C 8C 4(C 2)4 800.2238, P(B) 8 皆 0.5594,P(A) 8/143★ 4.设某批产品共50件.其中有5件次品•现从中任取3件•求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99⑴冷0.724.⑵虫产0.2526. C 50 1960C 503925. 从1〜9九个数字中•任取3个排成一个三位数•求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率•4(1) P {三位数为偶数} = P {尾数为偶数}=-,9⑵P {三位数为奇数} = P {尾数为奇数} = 5,9或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5.9 96. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}.1 12 C m C M m C mm(2M - m -1)M (M -1)6 —C 16143P(C)二 C 8CJC 2)300.2098.143C 16C 2 iC 2⑴ P(A)=# 詁;(2) P(B )X =C 10 12C 107. 袋中有红、黄、白色球各一个 每次从袋中任取一球.记下颜色后放回 共取球三次 求下列事件的概率:A={全红} B ={颜色全同} C ={颜色全不同} D ={颜色不全同} E ={无 黄色球} F ={无红色且无黄色球} G ={全红或全黄}.1 11A 3!2 8P (A)=3^2?P (B )=3P (A )=9, P(C^#=?=9, P(DH ^P(BH?28 1 1 2P(E)亏方P(F)亏审 P(G r 2P(A)盲☆某班n 个男生m 个女生(m^n 1)随机排成一列•计算任意两女生均不相邻的概率☆ •在[0 ■ 1]线段上任取两点将线段截成三段•计算三段可组成三角形的概率14第二次作业1.设 A B 为随机事件 P(A)=0.92 ■ P(B)=0.93 P(B|Z)=0.85 求 ⑴ P(A|B) (2) P (AU B) ■ (1) 0.85 =P(B| A) =P(A B )P (AB ),P (A B )=0.85 0.08=0.068,P(A) 1-0.92P(AB)二 P(A) -P(AB)二 P(A) - P(B) P(AB) = 0.92 -0.93 0.068 = 0.058,P(A| B): = P(AB) = 0.。

东财《概率论与数理统计》在线作业一15秋100分答案

东财《概率论与数理统计》在线作业一15秋100分答案

东财《概率论与数理统计》在线作业一一、单选题(共17 道试题,共68 分。

)1. 下列试验不属于古典型随机试验的是()A. 试验E为掷一枚硬币B. 试验E为从一箱(装有50个灯泡)中抽取一个灯泡C. 试验E为某人连续射击两次D. 试验E为测试某一电器的使用寿命正确答案:D2. 试验E为某人连续射击两次试验,考察射击的过程及结果,如果事件A表示“射中一次”,则有利于A的基本事件数为()A. 3B. 1C. 2D. 4正确答案:C3. 现有一批种子,其中良种占1/6,今任取6000粒种子,则以0.99的概率推断,在这6000粒种子中良种所占的比例与1/6的差是()A. 0.0124B. 0.0458C. 0.0769D. 0.0971正确答案:A4. 有六箱产品,各箱产品的合格率分别为0.99,0.95,0.96,0.98,0.94,0.97,今从每箱中任取一件产品,求全部是合格品的概率是()A. 0.8068B. 0.5648C. 0.6471D. 0.8964正确答案:A5. 利用样本观察值对总体未知参数的估计称为( )A. 点估计B. 区间估计C. 参数估计D. 极大似然估计正确答案:C6. 设试验E为在一批灯泡中,任取一个,测试它的寿命。

则E的基本事件空间是( )A. {t|t>0}B. {t|t<0}C. {t|t=100}D. {t|t≧0}正确答案:D7. 某市有50%住户订日报,有65%住户订晚报,有85%住户至少订这两种报纸中的一种,。

概率论与数理统计的答案详解_北邮版_(第一章的)

概率论与数理统计的答案详解_北邮版_(第一章的)

概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.” B =“至少有一次出现正面.” C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2.设A ,B ,C 为三个事件,试用A ,B ,C(1) A 发生,B ,C 都不发生; (2) A 与B 发生,C (3) A ,B ,C 都发生; (4) A ,B ,C (5) A ,B ,C 都不发生; (6) A ,B ,C(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC=A B C (6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.指出下列等式命题是否成立,并说明理由:(1) A∪B=(AB)∪B;(2) A B=A∪B;A∩C=AB C;(3) B(4) (AB)( AB)= ∅;(5) 若A⊂B,则A=AB;(6) 若AB=∅,且C⊂A,则BC=∅;(7) 若A⊂B,则B⊃A;(8) 若B⊂A,则A∪B=A.【解】(1)不成立.特例:若Α∩B=φ,则ΑB∪B=B.所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.故不成立.(2)不成立.若事件Α发生,则A不发生,Α∪B发生,所以A B不发生,从而不成立.A,AB画文氏图如下:(3)不成立.B所以,若Α-B发生,则AB发生, A B不发生,故不成立.(4)成立.因为ΑB与AB为互斥事件.(5)成立.若事件Α发生,则事件B发生,所以ΑB发生.若事件ΑB发生,则事件Α发生,事件B发生.故成立.(6)成立.若事件C发生,则事件Α发生,所以事件B不发生,故BC=φ.⊂.(7)不成立.画文氏图,可知B A(8)成立.若事件Α发生,由()A AB ⊂,则事件Α∪B 发生.若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.若事件B 发生,由B A ⊂,则事件Α发生.4.设A ,B 为随机事件,且P (A )=0.7,P (A B )=0.3,求P (AB ). 【解】 P (AB )=1P (AB )=1[P (A )P (AB )]=1[0.70.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB(2) 在什么条件下P (AB【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0P(AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )P (AB )P (BC )P (AC )+P (ABC )=14+14+13112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8. (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1P (A 1)=1(17)59. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.【解】与次序无关,是组合问题.从50个产品中取3个,有350C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次品的取法为245C 15C种,所以所求概率为21455350C C P C =.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从NM 件次品中取nm 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n种,n 次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n m 次取得次品,每次都有N M 种取法,共有(N M )n m 种取法,故()C ()/m m n m nnP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9).【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列问题.用10个数去排4个位置,有410P 种排法,故所求概率为4410/10P P =.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == *16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076*17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=?19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|xy |>30.如图阴影部分所示.22301604P ==22.0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 题22图23.P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.则1(0.8)0.9n-≥即为 (0.8)0.1n ≤ 故n ≥1lg8=11.07,至少必须进行11次独立射击. 32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦()()()()P AB P B P AB P B =,即()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =,故A 与B 相互独立. 33.三人独立地破译一个密码,他们能破译的概率分别为151314,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)×0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)×0.6+0.4×0.5×0.7×1=0.458。

概率论与数理统计试题答案参考

概率论与数理统计试题答案参考

全国2022年10月高等教育自学考试(概率论与数理统计(经管类))答案课程代码:04183〔一〕单项选择题〔本大题共10小题,每题2分,共20分〕在每题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多项选择或未选均无分。

1.设随机事件A与B互不相容,且P〔A〕>0,P〔B〕>0,则〔〕A.P〔B|A〕=0B.P〔A|B〕>0C.P〔A|B〕=P〔A〕D.P〔AB〕=P〔A〕P〔B〕答疑编号918070101](正确答案)分析:此题考察事件互不相容、相互独立及条件概率。

解析:A:,因为A与B互不相容,,P〔AB〕=0,正确;显然,B,C不正确;D:A与B相互独立。

应选择A。

提示:① 注意区别两个概念:事件互不相容与事件相互独立;② 条件概率的计算公式:P〔A〕>0时,。

2.设随机变量X~N〔1,4〕,F〔x〕为X的分布函数,Φ〔x〕为标准正态分布函数,则F〔3〕=〔〕A.Φ〔0.5〕B.Φ〔0.75〕C.Φ〔1〕D.Φ〔3〕答疑编号918070102](正确答案)分析:此题考察正态分布的标准化。

解析:,应选择C。

提示:正态分布的标准化是非常重要的方法,必须熟练掌握。

3.设随机变量X的概率密度为f〔x〕=则P(0≤X≤)=〔〕答疑编号918070103](正确答案)分析:此题考察由一维随机变量概率密度求事件概率的方法。

解析:,应选择A。

提示:概率题目经常用到“积分的区间可加性〞计算积分的方法。

4.设随机变量X的概率密度为f〔x〕=则常数c=〔〕A.-3B.-1C.-D.1答疑编号918070104](正确答案)分析:此题考察概率密度的性质。

解析:1=,所以c=-1,应选择B。

提示:概率密度的性质:1.f〔x〕≥0;4.在f〔x〕的连续点x,有F’〔X〕=f〔x〕;5.5.设以下函数的定义域均为〔-∞,+∞〕,则其中可作为概率密度的是〔〕A.f〔x〕=-e-xB. f〔x〕=e-xC. f〔x〕=D.f〔x〕=答疑编号918070105](正确答案)分析:此题考察概率密度的判定方法。

《概率论与数理统计》第1阶段在线作业

《概率论与数理统计》第1阶段在线作业

《概率论与数理统计》第1阶段在线作业《概率论与数理统计》第1阶段在线作业在《概率论与数理统计》课程的第1阶段,我们学习了概率论的基本概念、概率分布和数理统计的基本原理。

以下是本阶段的在线作业内容的概述。

1. 概率论基本概念:在该部分,我们学习了概率、随机试验、样本空间和随机事件等基本概念。

在线作业中,我们需要理解并回答一些与这些概念相关的问题,例如:- 概率的定义是什么?- 什么是随机试验和样本空间?- 什么是随机事件?如何表示和计算随机事件的概率?2. 概率分布:在这一部分,我们学习了概率分布的不同类型,包括离散型概率分布和连续型概率分布。

在在线作业中,我们需要习题来了解并应用这些概念,例如:- 什么是离散型概率分布?它如何表示和计算?- 什么是连续型概率分布?它如何表示和计算?- 如何计算随机变量的期望值和方差?3. 数理统计基本原理:在这一部分,我们学习了参数估计、假设检验和置信区间等数理统计的基本原理。

在在线作业中,我们需要回答一些与参数估计和假设检验相关的问题,例如:- 什么是参数估计?什么是点估计和区间估计?- 什么是假设检验?什么是原假设和备择假设?- 如何计算置信区间和显著性水平?此外,在本阶段的在线作业中,还有实践题,要求我们运用所学的概念和方法,进行实际问题的解答。

这些实践题通常与现实生活或其他学科领域相关,例如:- 从抛硬币的实例中,探究概率分布和概率计算。

- 通过实际数据进行参数估计和假设检验。

- 通过案例研究,解析对于某个事件发生的概率和风险估计。

总结起来,本阶段的在线作业内容包括概率论的基本概念、概率分布和数理统计的基本原理。

通过回答相关问题和解决实践题,我们可以加深对这些概念和方法的理解,并将其应用到实际问题中。

通过这些作业,我们可以更好地掌握概率论与数理统计的基础知识,为后续学习打下坚实的基础。

概率论和数理统计带答案

概率论和数理统计带答案

概率论和数理统计带答案单选题(共40 分))C)(1、在假设检验问题中,犯第一类错误的概率α的意义是(A、在H0不成立的条件下,经检验H0被拒绝的概率B、在H0不成立的条件下,经检验H0被接受的概率C、在H0成立的条件下,经检验H0被拒绝的概率D、在H0成立的条件下,经检验H0被接受的概率)C则有(且P(A)≤P(A|B),2、设,AB是两个事件,A、P(A)=P(A|B)B、P(B)>0C、P(A|B)≥P(B)D、设,AB是两个事件3、某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年纪各有)(A,那么九年级同学获得前两名的概率是()一名同学进入决赛,九年级有两名同学进入决赛A、1/、1/、1/、1/3.4、设,,ABC是三个相互独立的事件,且0<p(c)<1,则在下列给定的四对事件中不相互独立的是< b="\</p" bdsfid="70"></p(c)<1,则在下列给定的四对事件中不相互独立的是<>style=ont-size: 9pt; margin: 0px; padding: 0px;>(B)A、AUB与cB、AC与CC、A-B与CD、AB与C5、设随机事件A与B相互独立,P(A)=,P(B)=则P(A-B)=(D)A、1/、1/、1/、1/12.6、将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为(A)A、4/、4/、5/、6/7.7、设事件,AB满足ABBB,则下列结论中肯定正确的是()(D)A、AB互不相容B、AB相容C、互不相容D、P(A-B)=P(A)8、已知P(B)=,P(AUB)=,且A与B相互独立,则P(A)=(D)A、、、、9、若事件A和事件B相互独立, P(A)==,P(B)=,P(AB)=,则则(A)A、3/、4/、5/、6/7.10、,设X表示掷两颗骰子所得的点数,则EX =(D)A、2B、3C、4D、7多选题(共20 分)1、甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击中敌机的概率为.求敌机被击中的概率为(D)A、、、、2、设X1,X2,Xn为来自正态总体N((,,)的一个样本,若进行假设检验,当___ __(C)A、未知,检验验2==2B、未知,检验验2==3C、未知,检验验2==2D、未知,检验验2==33、甲、乙、丙3人同时各自独立地对同一目标进行射击,3人击中目标的概率分别为,,。

概率论与数理统计参考答案

概率论与数理统计参考答案

概率论与数理统计参考答案概率论与数理统计参考答案概率论与数理统计是一门应用广泛的数学学科,它研究的是随机现象的规律性和不确定性。

在现代科学和工程技术中,概率论与数理统计的应用十分广泛,涉及到统计数据的分析、风险评估、市场预测等方面。

本文将以一些常见的问题为例,简要介绍概率论与数理统计的一些基本概念和方法,并给出相应的参考答案。

1. 掷骰子问题假设有一个均匀的六面骰子,每个面上的数字从1到6。

现在连续投掷这个骰子10次,每次都记录下投掷的结果。

问:a) 投掷10次后,出现6的次数是多少?b) 投掷10次后,出现奇数的次数是多少?解答:a) 掷骰子的每次结果都是相互独立的,且每个面出现的概率相等。

所以,每次投掷出现6的概率是1/6。

由于每次投掷都是相互独立的,所以投掷10次后,出现6的次数服从二项分布。

根据二项分布的概率计算公式,可以得到投掷10次后,出现6的次数为:P(X=0) = C(10, 0) * (1/6)^0 * (5/6)^10 ≈ 0.1615P(X=1) = C(10, 1) * (1/6)^1 * (5/6)^9 ≈ 0.3230P(X=2) = C(10, 2) * (1/6)^2 * (5/6)^8 ≈ 0.2907P(X=3) = C(10, 3) * (1/6)^3 * (5/6)^7 ≈ 0.1550P(X=4) = C(10, 4) * (1/6)^4 * (5/6)^6 ≈ 0.0595P(X=5) = C(10, 5) * (1/6)^5 * (5/6)^5 ≈ 0.0156P(X=6) = C(10, 6) * (1/6)^6 * (5/6)^4 ≈ 0.0026P(X=7) = C(10, 7) * (1/6)^7 * (5/6)^3 ≈ 0.0003P(X=8) = C(10, 8) * (1/6)^8 * (5/6)^2 ≈ 0.00002P(X=9) = C(10, 9) * (1/6)^9 * (5/6)^1 ≈ 0.000001P(X=10) = C(10, 10) * (1/6)^10 * (5/6)^0 ≈ 0.0000001b) 类似地,投掷10次后,出现奇数的次数也可以用二项分布来计算。

概率论与数理统计天津大学作业答案

概率论与数理统计天津大学作业答案

概率论与数理统计复习题填空题1. 设随机变量1X的分布律为P{X k} A(—)k,k 1,2,3,4,则A ____________________2答案:16152. 设总体X服从均匀分布U( 1,), 为未知参数。

X1l X2^(,X n为来自总体X的一个简单随机样本,X为样本均值,则的矩估计量为________________ 0答案:3. 设X服从参数为1的指数分布e(1), 丫服从二项分布B(10,0.5),则血oD(X)答案:2.54. 设A,B,C为三个随机事件,则“ A,B,C中只有两个发生”可表示为答案:ABC ABC ABC5. 某袋中有7个红球、3个白球,甲乙二人依次从袋中取一球,每人取后不放回,则乙取到红球的概率为______________ 0答案:0.76. 设A,B,C为三个随机事件,则“ A,B,C中只有一个发生”可表示为__________ o 答案:ABC ABC ABC7. 某袋中有9个红球、3个白球,甲乙二人依次从袋中取一球,每人取后不放回,则乙取到白球的概率为_____________ 0答案:0.25选择题1、一批产品中有正品也有次品,从中随机抽取三件,设A, B, C分别表示抽出的第一件、第二件、第三件是正品,下列事件不能描述“正品不多于两件” 的是(C ) o(A) ABC (B)ABC ABC ABC ABC ABC ABC ABC(C ) ABC (D ) ABC2、设总体X 〜N(3,16) , X 1,X 2^|,X 16为来自总体X 的一个样本,X 为样本均 值,则(A )(A) X 3~ N(0,1)(B) 4(X 3)~ N(0,1)X 3 (C) ----------- N(o,1)(D)X 3〜N (o,1)4163、在假设检验中,H o 表示原假设,H 1表示对立假设,则犯第一类错误的情况 为(C )4、设X 1,X 2,X 3,X 4是来自均值为 的总体的样本,其中未知,则下列估计量中不是 的无偏估计的是(B )。

(完整版)概率论与数理统计课后习题答案

(完整版)概率论与数理统计课后习题答案

·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天大15秋《概率论与数理统计》在线作业一分答案《概率论与数理统计》在线作业一
1. 题面见图片
A. A
B. B
C. C
D. D
正确答案:D 满分:5 分


分得分:5 得分:5 得分:5 得分:5
2. 题面见图片
A. A
B. B
C. C
D. D
正确答案:A 满分:5
3. 题面见图片
A. A
B. B
C. C
D. D
正确答案:A 满分:5
4. 题面见图片
A. A
B. B
C. C
D. D
正确答案:D 满分:5 5.
题面见图片
A. A
B. B
C. C
D. D
正确答案:D 满分:5 分
分得分:5 得分:5
6. 题面见图片
A. A
B. B
C. C
D. D
正确答案:C 满分:5
7. 题面见图片
A. A
B. B
C. C
D. D
正确答案:A 满分:5 分得分:5
8. 题面见图片
A. A
B. B
C. C
D. D
正确答案:A 满分:5 分



分得分:5 得分:5 得分:5 得分:5 得分:5
9. 题面见图片
A. A
B. B
C. C
D. D
正确答案:A 满分:5
10. 题面见图片
A. A
B. B
C. C
D. D
正确答案:B 满分:5
11. 题面见图片
A. A
B. B
C. C
D. D
正确答案:D 满分:5
12. 题面见图片
A. A
B. B
C. C
D. D
正确答案:B 满分:5
13. 题面见图片
A. A
B. B
C.
C
D. D
正确答案:C 满分:5 分
分得分:5 得分:5
14. 题面见图片
A. A
B. B
C. C
D. D
正确答案:B 满分:5
15. 题面见图片
A. A
B. B
C. C
D. D
正确答案:B 满分:5 分得分:5
16. 题面见图片
A. A
B. B
C. C
D. D
正确答案:A 满分:5 分



分得分:5 得分:5 得分:5 得分:5 得分:5
17. 题面见图片
A. A
B. B
C. C
D. D
正确答案:C 满分:5
18. 题面见图片
A. A
B. B
C. C
D. D
正确答案:C 满分:5
19. 题面见图片
A. A
B. B
C. C
D. D
正确答案:B 满分:5
20. 题面见图片
A. A
B. B
C. C
D. D
正确答案:C 满分:5 F3E1F74B329AA9C9。

相关文档
最新文档