知识点-立体几何知识点常见结论汇总
立体几何复习知识点汇总(全)
立体几何知识点汇总(全)1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。
(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段)⑦ba,是夹在两平行平面间的线段,若a,的位置关系为相交或平行或异面.a=,则bb⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面内.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4). 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. ● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。
立体几何所有的定理大总结(绝对全)
⽴体⼏何所有的定理⼤总结(绝对全)(⼆)异⾯直线所成⾓1.定义:不同在任何⼀个平⾯内的两条直线或既不平⾏也不相交的两条直线叫异⾯直线。
2.画法:借助辅助平⾯。
1.定义:对于异⾯直线a 和b ,在空间任取⼀点P ,过P 分别作a 和b 的平⾏线1a 和1b ,我们把1a 和1b 所成的锐⾓或者叫做异⾯直线a 和b 所成的⾓。
2.范围:(0°,90°】(★空间两条直线所成⾓范围:【0°,90°】)(三)线⾯⾓1.定义:当直线l 与平⾯α相交且不垂直时,叫做直线l 与平⾯α斜交,直线l 叫做平⾯α的斜线。
设直线l 与平⾯α斜交与点M ,过l 上任意点A ,做平⾯α的垂线,垂⾜为O ,把点O 叫做点A 在平⾯α上的射影,直线OM 叫做直线l 在平⾯α上的射影。
1.定义:把直线l 与其在平⾯α上的射影所成的锐⾓叫做直线l 和平⾯α所成的⾓。
2.范围【0°,90°】(★斜线与平⾯所成⾓范围:【0°,90°】)(三)⼆⾯⾓1.定义:(1)半平⾯:平⾯内的⼀条直线把这个平⾯分成两个部分,其中每⼀个部分叫做半平⾯。
(3)⼆⾯⾓的棱:这⼀条直线叫做⼆⾯⾓的棱。
(4)⼆⾯⾓的⾯:这两个半平⾯叫做⼆⾯⾓的⾯。
(5)⼆⾯⾓的平⾯⾓:以⼆⾯⾓的棱上任意⼀点为端点,在两个⾯内分别作垂直于棱的两条射线,这两条射线所成的⾓叫做⼆⾯⾓的平⾯⾓。
(6)直⼆⾯⾓:平⾯⾓是直⾓的⼆⾯⾓叫做直⼆⾯⾓。
1.定义:从⼀条直线出发的两个半平⾯所组成的图形叫做⼆⾯⾓。
2.表⽰:如下图,可记作α-AB-β或P-AB-Q3.范围为【0°,180°】(五)六种距离1.点到点的距离:两点之间的线段PQ 的长。
2.点到线的距离:过P 点作1PP ⊥l ,交l 于1P ,线段1PP 的长。
3.点到⾯的距离:过P 点作1PP ⊥α,交α于1P ,线段1PP 的长。
高中数学—立体几何知识点总结(精华版)
立体几何知识点一.基本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)(规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°])斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。
直,那么这条直线垂直于这个平面。
如果两条直线同垂直于一个平面,那么这两条直线平行。
如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
行,那么这条直线和这个平面平行。
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
面,那么这两个平面平行。
如果两个平行平面同时和第三个平面相交,则交线平行。
8.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
立体几何知识点总结(全)
立体几何知识点总结(全)重合直线:完全重合,有无数个公共点。
三.点与平面的位置关系点与平面的位置关系有以下三种情况:点在平面上;点在平面外;点在平面内。
四.直线与平面的位置关系直线与平面的位置关系有以下三种情况:直线与平面相交,相交点为一点;直线在平面内;直线与平面平行,没有交点。
五.平面与平面的位置关系平面与平面的位置关系有以下三种情况:平面相交,相交线为一条直线;平面平行,没有交点;平面重合,完全重合。
1)定义:两个平面相交于一条直线,且这条直线与两个平面的法线垂直,则这两个平面垂直;2)判定定理:如果一个平面内的一条直线与另一个平面的法线垂直,则这两个平面垂直。
符号:a,b简记为:线面垂直,则面面垂直.符号:aba b4.平面与平面垂直的性质定理:如果两个平面垂直,则它们的交线垂直于这两个平面。
符号:a b。
a简记为:面面垂直,则线线垂直.符号:abb定义:当两个平面所成的二面角为直角时,这两个平面互相垂直。
判定定理:如果一个平面通过另一个平面的垂线,则这两个平面垂直。
可以简记为:线面面垂直,则面面垂直。
符号表示为l,推论是如果一个平面与另一个平面的垂线平行,则这两个平面垂直。
平面与平面垂直的性质定理:如果两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。
可以简记为面面垂直,则线面垂直。
证明线线平行的方法包括三角形中位线、平行四边形、线面平行的性质、平行线的传递性和面面平行的性质。
证明线线垂直的方法包括定义中的两条直线所成的角为90°,线面垂直的性质,利用勾股定理证明两相交直线垂直,以及利用等腰三角形三线合一证明两相交直线垂直。
立体几何知识点总结
立体几何复习知识点总结传统几何证明方法知识要点一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法6、据定义:如果一条直线和一个平面没有公共点7、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行8、两面平行,则其中一个平面内的直线必平行于另一个平面9、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面10、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法90角1、定义:成2、直线和平面垂直,则该线与平面内任一直线垂直3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直七、判定面面垂直的方法1、 定义:两面成直二面角,则两面垂直2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面八、面面垂直的性质1、 二面角的平面角为︒902、 在一个平面内垂直于交线的直线必垂直于另一个平面3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面九、各种角的范围1、异面直线所成的角的取值范围是:︒≤<︒900θ (]︒︒90,02、直线与平面所成的角的取值范围是:︒≤≤︒900θ []︒︒90,03、斜线与平面所成的角的取值范围是:︒≤<︒900θ (]︒︒90,04、二面角的大小用它的平面角来度量;取值范围是:︒≤<︒1800θ (]︒︒180,0十、三角形的心1、 内心:内切圆的圆心,角平分线的交点2、 外心:外接圆的圆心,垂直平分线的交点3、 重心:中线的交点4、 垂心:高的交点十一、常用公式1、球的表面积公式:24R S π=.2、球的体积公式:334R V π=. 3、圆柱体积:h r V 2π=(r 为半径,h 为高)4、圆锥体积:h r V 231π=(r 为半径,h 为高) 5、锥体体积:Sh V 31=(S 为底面积,h 为高) 6、扇形面积公式R 是扇形半径,n 是弧所对圆心角度数,π是圆周率,L 是扇形对应的弧长。
(完整版)立体几何初步知识点(很详细的)
立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =++台 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π 4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
立体几何常考定理总结(八大定理)
lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点...:.在.平面内...找一条与....平面外...的.直线平行的线...... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行。
符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点...:.需要..借助一个....经过已知直线......的.平面..,.接着找交线。
...... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键..点:..在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。
............................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行。
符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点...:找..第三个平面.....与已知平面都相.......交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面。
符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面。
高中数学立体几何知识点总结
立体几何知识点总结1、 多面体(棱柱、棱锥)的结构特征(1)棱柱:①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
棱柱斜棱柱直棱柱正棱柱;四棱柱平行六面体直平行六面体长方体正四棱柱正方体。
②性质:Ⅰ、侧面都是平行四边形; Ⅱ、两底面是全等多边形;Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形;Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。
(2)棱锥:①定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做棱锥;正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质:Ⅰ、平行于底面的截面和底面相似,截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥性质:各侧面都是全等的等腰三角形;通过四个直角三角形POH Rt ∆,POB Rt ∆,PBH Rt ∆,BOH Rt ∆实现边,高,斜高间的换算棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面AB CD OHP2、旋转体(圆柱、圆锥、球)的结构特征(2)性质:① 任意截面是圆面(经过球心的平面,截得的圆叫大圆,不经过球心的平面截得的圆叫 小圆)② 球心和截面圆心的连线垂直于截面,并且22d R r -=,其中R 为球半径,r 为截面半径,d 为球心的到截面的距离。
3、柱体、锥体、球体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(C 底为底面周长,h 为高,h '为棱锥的斜高或圆锥的母线)直棱柱、圆柱的侧面积 S C h =⋅侧底;正棱锥、圆锥的侧面积12S C h '=⋅侧底 (3)柱体、锥体的体积公式V S h =⋅柱底, 13V S h =⋅锥底(4)球体的表面积和体积公式:34=3V R π球 ; 24S R π=球面(5)球面距离(注意识别经度和纬度)球面上,A B 两点的球面距离AB R α=⋅,其中α为劣弧AB 所对的球心角AOB ∠的弧度数.4、空间几何体的三视图空间中的点、直线、平面之间的关系(一)、立体几何网络图:(1)、平行于同一直线的两直线平行。
立体几何常用结论及方法
1、垂直于同一条直线的两条直线。
2、平行于同一条直线的两条直线。
在空间内:1、垂直于同一条直线的两条直线。
2、垂直于同一条直线的两个平面。
3、平行于同一条直线的两条直线。
4、平行于同一条直线的两个平面。
5、垂直于同一个平面的两条直线。
6、垂直于同一个平面的两个平面。
7、平行于同一个平面的两条直线。
8、平行于同一个平面的两个平面。
结论二、在平面内:1、过直线外一点有条直线和已知直线平行。
2、过一点有且只有条直线和已知直线垂直。
在空间内:1、过直线外一点有条直线和已知直线平行。
2、过一点有条直线和已知直线垂直。
3、过直线外一点有个平面和已知直线平行。
4、过一点有个平面和已知直线垂直。
5、过平面外一点有个平面和已知平面平行。
6、过一点有个平面和已知平面垂直。
7、过平面外一点有条直线和已知平面平行。
8、过一点有条直线和已知平面垂直。
9、过一个平面的一条平行直线有个平面和已知平面平行。
10、过一个平面的一条垂线有个平面和已知平面垂直。
11、过一条直线有个平面和已知平面垂直。
(前提:线面不垂直)1、垂直于同一条直线的两条直线平行。
2、平行于同一条直线的两条直线平行。
在空间内:1、垂直于同一条直线的两条直线平行、相交、异面.2、垂直于同一条直线的两个平面平行。
3、平行于同一条直线的两条直线平行。
4、平行于同一条直线的两个平面平行、相交。
5、垂直于同一个平面的两条直线平行。
6、垂直于同一个平面的两个平面平行、相交。
7、平行于同一个平面的两条直线平行、相交、异面8、平行于同一个平面的两个平面平行。
结论二、在平面内:1、过直线外一点有且只有一条直线和已知直线平行。
2、过一点有且只有一条直线和已知直线垂直。
在空间内:1、过直线外一点有且只有一条直线和已知直线平行。
2、过一点有无数条直线和已知直线垂直。
3、过直线外一点有无数个平面和已知直线平行。
4、过一点有且只有一个平面和已知直线垂直。
5、过平面外一点有且只有一个平面和已知平面平行。
立体几何中的所有结论
第九章:直线、平面、简单几何体小结一、重要的概念和定理 1.公理和推论公理1.如果一条直线上的两个点在一个平面内,那么这条直线上的所有点都在 这个平面内。
作用:判断直线在平面内的依据。
公理2.如果两个平面有一个公共点,那么它们还有其它公共点,且这些公共点的集合是通过该公共点的一条直线。
作用:判断两个平面相交和共线的依据。
公理3.经过不在同一直线上的三个点,有且只 有一个平面。
推论1.经过一条直线和这条直线外一点,有且 作用:确定平面的依据。
只有一个平面。
推论2.经过两条相交直线,有且只有一个平面。
推论3.经过两条平行直线,有且只有一个平面。
公理4.同平行于一条直线的两条直线互相平行。
作用:判断平行的依据。
2.概念⑴直线与直线 ①异面直线:不在任何一个平面内的两条直线叫做异面直线。
②异面直线所成角:如果a 、b 是异面直线,经过空间任意一点0作a '∥a ,b '∥b ,那么把a '和b '所成的锐角(或直角)叫做异面直线a 和b 所成的角。
如果两条异面直线所成的角是直角,就称这两条异面直线互相垂直。
显然若设异面直线所成角为α,则0<α≤2π。
③异面直线间的距离:和异面直线都垂直相交的直线叫做两条异面直线的公垂线。
两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离。
⑵直线和平面①直线和平面平行:如果一条直线和一个平面没有公共点,那么就说这条直线和这个平面平行。
②直线和平面垂直:如果一条直线和一个平面内的任何一条直线都垂直,那么就说这条直线和这个平面垂直,这条直线叫做平面的垂线,平面叫做直线的垂面。
③射影:自一点P 向平面α引垂线,垂足P ' 叫做点P 在平面α内的正射影(简称射影)。
如果图形F 上的所有点在一平面内射影构成图形F ',则F '叫做图形F 在这个平面内的射影。
过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影。
立体几何中的重要结论
立体几何中的重要结论立体几何中的重要结论一、线在面内的判定1.一条直线上的两个点在一个平面内,这条直线在这个平面内.(公理1)2.一条直线和一个平面平行,过平面内一点与该直线平行的直线落在此平面内.3.一条直线和平面垂直,过垂足与该直线垂直的直线落在此平面内.4.平面与平面垂直,过其中一个平面内的一点与另一个平面垂直的直线必落在第一个平面内.5.过一点与已知直线垂直的所有直线必在过此点与已知直线垂直的平面内.6.过平面外一点与已知平面平行的所有直线必在过此点与已知平面平行的平面内.7.如果两个平面平行,过其中一个平面内的一点作与另一个平面平行的直线在第一个平面内.8.直线及直线外一点确定一个平面,则该点与直线上所有各点的连线在此平面内.9.两条相交直线确定一个平面,过其中一条直线上的一点(非交点)平行于另一直线的直线必在此平面内.二、忽视“线在面内”导致下列结论不成立1.过两异面直线外一点与两异面直线都平行的平面有且仅有一个.错:该平面有可能经过其中的一条直线,而使这样的平面不存在.2.如果一条直线和一个平面都垂直于同一个平面,则这条直线和已知平面平行.错:这条直线可能落在已知平面内.3.两条平行线中的一条平行于一个平面,则另一条也平行于这个平面.错:这条直线有可能落在这个面内.4.一条直线和平面的一条斜线垂直,则这条直线和斜线在平面内的射影垂直.错:如果已知直线不在平面内时不成立.5. 一条直线和斜线在平面内的射影垂直,则这条直线和斜线垂直.错:如果已知直线不在平面内时不成立.6.一条直线和平面内的一条直线平行,这条直线和这个平面平行.错:这条直线有可能落在这个面内.7.一条直线和两个平行平面中的一个平行,则必与另一个平行.错:这条直线有可能在另一个平面内.8.如果一条直线和另一条直线平行,则它和经过另一条直线的任何平面平行.错: 这条直线有可能落在这个面内.9.如果一条直线和一个平面同时垂直另一个平面,那么这条直线与已知平面平行.错: 这条直线有可能落在已知平面内.10.如果一条直线和一个平面同时垂直另一条直线,那么这条直线与已知平面平行.错: 这条直线有可能落在已知平面内.三、与异面直线有关的一组命题1.过两条异面直线中的一条有且仅有一个平面与另一条直线平行.2. 过两异面直线外一点与两异面直线都平行的平面至多有一个.3. 过两异面直线外一点与两异面直线都相交的直线至多有一条.4.与两异面直线都平行的平面平行.5.第一个平面内的一条直线平行于第二个平面, 第二个平面内的一条直线平行于第一个平面,如果这两条直线异面,则这两个平面平行.6.与两异面直线都平行且距离相等的平面有且仅有一个.(即异面直线公垂线段的中垂面)7.与两异直线都垂直的直线与公垂线平行.8.两直线异面垂直,过其中一条与另一条直线垂直的平面有且仅有一个.9.直线和平面平行,则它们的距离等于该直线与平面内与之异面的直线间的距离.10.两个平面平行,则它们的距离等于分别位于这两个平行平面内的两异面直线间的距离.四、正方体中的十个基本模型1.存在两两异面的三条直线.(如图中DD'、''CB、AB)2.过空间一点作与两异面直线都平行的平面不一定能作.(如图1过点O作与''CB、AB都平行的平面不存在)3. 过空间一点作与两异面直线都相交的直线不一定能作.(如图1过点O作与''CB、AB都相交的直线不存在).4. 存在四个面均为直角三角形的四面体.(如图1中四面体ABDD')5.一个二面角的两个面分别与另一个二面角的两个面垂直,这两个二面角无任何关系.(如图3中二面角CADA--'与二面角MCCD--'')6.与两异面直线都垂直的直线必与公垂线平行.(如图1中'DD与AB、''CB都垂直,它与公垂线'BB平行)7.一条直线与两个相交平面都平行,则该直线必与交线平行.(如图1中直线'BB与平面DA'和图3图2图1NA'CCA'CA B BA A B平面D C '都平行,则'BB 与'DD 平行).8.两个相交平面都与第三个平面垂直,则交线必与第三个平面垂直.( 如图1中平面D A '和平面D C '都垂直于平面AC ,则'DD 与平面AC 垂直).9. 三个内角为直角的四边形不一定为矩形.(如图2空间四边形''D ABB )10.过两条互相垂直的异面直线中的一条,有且只有一个平面与另一条直线垂直.(如图2中AB 、''C B 异面垂直,则过AB 只能作平面''A ABB 与直线''C B 垂直)五、直线与平面平行的性质1.直线和平面平行,则该直线与平面内的所有直线平行或异面.2.直线和平面平行,过这条直线的平面和这个平面相交,那么这条直线和交线平行.3.直线和平面平行,过平面内一点与该直线平行的直线必在此平面内.4.分别位于两相交平面内的两条直线都与交线平行.5.一条直线与两个相交平面都平行,那么这条直线与它们的交线平行.6.直线和平面平行,夹在直线和平面间的平行线段相等.六、平面与平面平行的判定1.如果一个平面内的两相交直线分别与另一个平面平行,那么这两个平面平行.2.一个平面内的两条相交直线分别与另一个平面内的两条相交直线平行,这两个平面平行.3.平行于同一平面的两个平面平行.4.垂直于同一直线同两个平面平行.5.如果两个平面与两条异面直线都平行,那么这两个平面平行.6. 第一个平面内的一条直线平行于第二个平面, 第二个平面内的一条直线平行于第一个平面,如果这两条直线异面,则这两个平面平行.7.平面的同侧有不共线的三点到平面的距离相等,则这三点确定的平面与已知平面平行.七、平面与平面平行的性质1.分别位于两个平行平面内的两条直线平行或异面.2.如果两个平面平行,那么第一个平面内的所有直线平行于第二个平面.3.如果一个平面与两个平行平面都相交,那么它们的交线平行.4.夹在两个平行平面间的平行线段相等.5.一条直线和两个平行平面所成的角相等.6.一平面与两个平行平面所成的角相等.7.夹在三个平行平面间的平行线段对应成比例.8.一条直线与两个平行平面中的一个相交,则必与另一个相交. 9. 平行于同一平面的两个平面平行.八、平面与平面垂直的判定1. 两个平面所成的二面角为直二面角,则这两个平面互相垂直.2.一个平面经过了另一个平面的一条垂线,则这两个平面互相垂直.3.α⊥a ,β⊥b ,且b a ⊥,则βα⊥.4.一个平面与两个平行平面中的一个垂直,则必与另一个垂直.九、其它结论与方法1.无论线面关系如何,在一个平面内都有无数条直线与已知直线垂直.2.共顶点的多个面角的和必小于360度.正四棱锥的各个侧面必为锐角三角形.正六棱锥的各个侧面不可能为正三角形. 3.无论四棱锥的底面形状如何,分别位于四条侧棱上的四点可以为平行四边形. 4.正n 棱锥侧棱与底面所成的角为θ,侧面与底面所成的角为?,则rR=?θtan tan . 5.求直线上的动点到两个定点的距离之和的最小值用展平(两点之间距离最短). 求平面上的动点到两个定点的距离之和的最小值用对称(点关于面的对称). 6.侧面上的点的轨迹与侧面和底面所成的角有关; 底面上的点的轨迹可用空间直角坐标系求轨迹.十、三棱锥的顶点在底面上的射影1.三侧棱相等,则顶点在底面上的射影为底面三角形的外心.2.三侧面与底面所成的角相等,则顶点在底面上的射影为底面三角形的内心.3.顶点到底面三角形的三边的距离相等,则顶点在底面上的射影为底面三角形的内心.4.三侧棱与底面所成的角相等,则顶点在底面上的射影为底面三角形的外心.5.垂心四面体中, 顶点在底面上的射影为底面三角形的垂心. 特例:①直角四面体中,顶点在底面上的射影为底面三角形的垂心.②正三棱锥中, 顶点在底面上的射影为底面三角形的垂心.。
立体几何和解析几何知识点
1、线线平行的判断:
2、线线垂直的判断:
3、线面平行判定定理:
线面平行性质定理:
4、线面垂直的判定定理:
线面垂直性质定理:
5、面面平行的判定:
面面平行的性质:
6、面面垂直的判定定理:
面面垂直性质定理:
7、(1)异面直线所成的角:
范围:
(2)线面所成的角:
范围:
(3)二面角:
范围:
8、立体几何中的向量方法
1、椭圆:
(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大值和最小值,且最大距离为,最小距离为。
(2)过焦点弦的所有弦长中,垂直于长轴的弦是最短的弦,而且它的长为.把这个弦叫椭圆的通经.
2. 弦长公式:。
高中立体几何知识点总结
高中立体几何知识点总结高中立体几何知识点总结一、基本概念1. 立体图形:具有长度、宽度、高度三个方向的图形。
2. 空间:指有长度、宽度、高度三个方向的范围。
3. 空间几何体:由面与面之间的关系形成的几何体。
4. 立体几何体:在三维空间内有一定形状的几何体。
5. 交角:指两个面之间的夹角。
6. 平面角:指两个不同面的交线之间的夹角。
7. 侧面:多面体的略为平行于底面的面。
8. 正视角:指从正方向看角度。
9. 支干线:连接多边形顶点及其相邻点构成的线段。
10. 垂线(高线):从顶点引垂直于底面的线段。
11. 轴线:对称图形中的对称轴线。
12. 垂线高度定理:三角形内任意一点到三角形三边所引垂线的长度乘积等于该点到三边的距离乘积。
二、立体几何体的相关知识1. 立方体:六个相等的正方形构成的多面体,具有对称性。
2. 正方体:六面均为正方形的立体几何体。
3. 矩形:四边形的内角为直角的平行四边形。
4. 梯形:在同一平面上,两边平行的四边形。
5. 圆锥:底面为圆形,侧面为一条斜面向尖端(顶点)推出去的几何体。
6. 圆柱:底面为圆形,侧面为两个平行圆面及连接它们的矩形面构成的几何体。
7. 球体:由三维空间内的所有离一个固定点的距离小于等于一个固定值的点构成的点集。
三、平面几何图形在立体几何的应用1. 投影:三维物体在平面上的投影。
2. 平面几何图形的面积、周长:将平面几何图形投射到立体几何体上进行计算。
3. 平面几何图形的旋转:平面几何图形在平面上进行旋转。
四、平行四边形的相关知识1. 平行四边形的定义:有两组的对边平行的四边形。
2. 平行四边形的性质:① 对角线互相平分;② 对角线互相垂直;③对角线长相等。
3. 平行四边形的面积计算公式:S=底×高或S=对角线之积的一半。
五、多面体的相关知识1. 多面体的定义:有多个面的立体几何体。
2. 多面体的性质:①多面体的各面之间是通过一些棱连接的。
② 一个多面体的棱数、点数和面数之间有一个简单的关系:棱数加面数等于点数加2。
高中数学——立体几何全知识点与结论梳理
向量差
a-b=(a1-b1,a2-b2,a3-b3)
数量积
a·b=a1b1+a2b2+a3b3
共线 a∥b⇒a1=λb1,a2=λb2,a3=λb3(λ∈R,b≠0)
垂直 夹角公
式
a⊥b⇔a1b1+a2b2+a3b3=0 cos〈a,b〉= a1b1+a2b2+a3b3
a21+a22+a23 b21+b22+b23
2.空间几何体的表面积与体积公式
名称 几何体
表面积
柱体(棱柱和 S 表面积=S 侧+2S
圆柱)
底
锥体(棱锥和 S 表面积=S 侧+S 底
圆锥)
体积 V=Sh V=31Sh
关 注 高 中 数 学 ( gaozhong shu-xue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 小 数 老 师 贴 心 答 疑 解 惑 。
立体几何全知识点与结论梳理
第一节 空间几何体的结构特征、三视图和直观图
[基础知识]
1.简单几何体 1多面体的结构特征
名称
棱柱
棱锥
棱台
图形
底面 侧棱 侧面形状
互相平行且相等
多边形
互相平行且相似
相交于一点,但不
互相平行且相等
延长线交于一点
一定相等
平行四边形
三角形
梯形
①特殊的四棱柱
底面为 平行 侧棱垂直 直平行 底面为 四棱柱 平―行―四――边→形 六面体 ―于―底――面→ 六面体 ―矩―形→
圆锥
侧面展开
图
侧面积公 式
S 圆柱侧=2πrl
S 圆锥侧=πrl
圆台 S 圆台侧=π(r+r′)l
①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和. ②圆台、圆柱、圆锥的转化 当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥, 由此可得:
立体几何知识点总结
立体几何知识点总结立体几何知识点总结立体几何是研究空间形体的一个分支学科,它主要关注物体的形状、大小、位置以及各个部分之间的关系。
在数学中,立体几何经常与代数、几何学以及物理学等学科相结合。
本文将对立体几何的一些基本概念、性质和定理进行总结和概述。
1. 点、线、面和体在立体几何中,基本要素有点、线、面和体。
点是最基本的单位,没有长度、面积或体积,只有位置;线是由无数个点组成的,有长度但没有宽度;面是由无数个线组成的,有面积但没有厚度;体是由无数个面组成的,有体积。
2. 立体几何中的基本名词在立体几何中,有一些基本名词需要了解,如顶点、边、面和多面体等。
顶点是两条边或两个面的交点,边是连接两个顶点的线段,面是由三条或以上的线连成的封闭空间,而多面体是由若干个面组成的立体。
3. 多面体的特点多面体有一些特点,如:多面体的各个面都是平面;多面体的两个面之间的交线是边;多面体的每一个顶点周围都有若干个面相交;多面体的两个面之间的交角是面对面所对的角的两倍。
4. 立体的投影当一个立体在某个平面上投影时,我们可以观察到不同的形状。
立体的投影可以是正交投影或透视投影。
正交投影是指物体与平面之间的投影是垂直的,而透视投影是指物体与平面之间的投影不垂直。
5. 立体的表面积和体积表面积是指立体的所有面的表面积之和,而体积是指立体所占据的空间大小。
计算表面积和体积的方法因不同的立体而异。
例如,计算正方体的表面积是将六个面的面积相加,而计算正方体的体积是将边长的立方相乘。
6. 立体的相似与全等当两个立体的所有对应的边长比相等,并且对应的角度也相等时,我们称这两个立体相似。
而当两个立体的所有对应的边长和角度都相等时,我们称这两个立体全等。
7. 空间角的性质和计算空间角是指两个面所对的角,它有一些特性需要了解。
例如,空间角叠加定理指的是如果两个空间角的两个边分别相等并且在同一平面内,那么这两个空间角之和等于它们在同一平面内的共面角的对角。
高中立体几何知识点
高中立体几何知识点一、立体图形的基础概念1. 立体图形的定义:立体图形是指占据三维空间的图形,包括多面体和旋转体。
2. 多面体:由四个或更多的平面多边形围成的立体图形,如立方体、棱锥、棱柱等。
3. 旋转体:由一个平面图形绕着某条直线旋转而形成的立体图形,如圆柱、圆锥、球体等。
二、多面体1. 棱柱:- 棱柱是由两个平行且相等的多边形和若干个平行四边形组成的多面体。
- 棱柱的顶点数等于底面边数的两倍。
- 棱柱的棱数等于底边数的三倍减去四(对于凸多边形)。
2. 棱锥:- 棱锥是由一个多边形底面和若干个三角形侧面组成的多面体。
- 棱锥的顶点数等于底面边数加一。
- 棱锥的高是顶点到底面的距离。
3. 立方体:- 立方体是一种特殊的长方体,其所有边长相等。
- 立方体有六个面,十二条棱,八个顶点。
- 立方体的对角线关系满足空间直角三角形的定理。
三、旋转体1. 圆柱:- 圆柱是由一个圆绕着一条直线旋转而形成的立体图形。
- 圆柱的侧面展开是一个矩形。
- 圆柱的体积公式为 \( V = \pi r^2 h \),其中 \( r \) 是半径,\( h \) 是高。
2. 圆锥:- 圆锥是由一个圆绕着其直径所在的直线旋转而形成的立体图形。
- 圆锥的侧面展开是一个扇形。
- 圆锥的体积公式为 \( V = \frac{1}{3} \pi r^2 h \)。
3. 球体:- 球体是由所有与固定点(球心)距离相等的点组成的立体图形。
- 球体的表面积公式为 \( A = 4\pi r^2 \)。
- 球体的体积公式为 \( V = \frac{4}{3} \pi r^3 \)。
四、空间几何的定理1. 中位线定理:在棱柱或棱锥中,中位线平行于底面且等于底面周长的一半。
2. 体积公式:对于任何多面体,体积可以通过底面积乘以高来计算。
3. 欧拉公式:在任何凸多面体中,顶点数 \( V \)、棱数 \( E \) 和面数 \( F \) 满足 \( V - E + F = 2 \)。
立体几何知识点小结
一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA=++②(了解)长方体的一条对角线1AC与过顶点A的三条棱所成的角分别是αβγ,,,那么222cos cos cos1αβγ++=,222sin sin sin2αβγ++=;③(了解)长方体的一条对角线1AC与过顶点A的相邻三个面所成的角分别是αβγ,,,则222c o s c o s c o s2αβγ++=,222sin sin sin1αβγ++=.1.5侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V(其中c为底面周长,h为棱柱的高)2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边A B侧面母线旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式: S圆柱侧=2rh π;S圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高)3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点-立体几何知识点常见结论汇总————————————————————————————————作者:————————————————————————————————日期:2OABCD EF垂立体几何高考知识点和解题思想汇总补充:三角形内心、外心、重心、垂心知识四心的概念介绍:(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
若P 为ABC ∆所在平面外一点, O 是点P 在 ABC ∆内的射影,则:①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ∆的外心; ②若P 到ABC ∆的三边的距离相等, 则O 为△ABC 的内心;③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ∆的垂心. 常见空间几何体定义:1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,这两个面为底面,其他面为侧面。
棱柱具有下列性质:1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等; 2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。
3)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。
棱柱的分类:斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱。
直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。
直棱柱的各个侧面都是矩形;正棱柱:底面是正多边形的直棱柱叫做正棱柱。
正棱柱的各个侧面都是全等的矩形。
平行六面体:底面是平行四边形的棱柱。
直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。
长方体:底面是矩形的直棱柱叫做长方体2 .棱锥:有一个面是多边形 ,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高. (2) 底边长和侧棱长都相等的三棱锥叫做正四面体.ABCO外I K HEFD ABCM内ABCDEFG 重(3) 依次连结不共面的四点构成的四边形叫做空间四边形. 常见几何题表面积、体积公式 1.旋转体的表面积(1) 圆柱的表面积S =22r π+2rl π ( 其中r 为底面半径,l 为母线长) . (2) 圆锥的表面积S =2r π+rl π(其中r 为底面半径,l 为母线长) . (4) 球的表面积公式S =24R π ( 其中R 为球半径) . 2.几何体的体积公式(1)柱体的体积公式V =Sh(其中S 为底面面积,h 为高). (2)锥体的体积公式V =13Sh(其中S 为底面面积,h 为高).(3)球的体积公式V =43π3R (其中R 为球半径).三棱锥外接球问题:一、正四面体:如图1,正四面体ABCD 的边长为a ,高为h ,其外接球与内切球球心重合,且有关系:63r R h a +==,有外接圆球半径为:64a ,内切圆的球半径为:612a ,比例为3:1。
答案:C二、出现“墙角”结构利用补形知识,联系长方体。
【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径R 2为体对角线长l 即2222c b a R ++=【例题】:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为3,61,,若该四面体的四个顶点在一个球面上,求这个球的表面积。
解:因为:长方体外接球的直径为长方体的体对角线长,所以:四面体外接球的直径为AE 的长A CDBE即:22224AD AC AB R ++= ,1663142222=++=R 所以2=R ,球的表面积为ππ1642==R S二、出现两个垂直关系,利用直角三角形结论。
【原理】:直角三角形斜边中线等于斜边一半。
球心为直角三角形斜边中点。
【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC ,求球O 的体积。
解:BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC , 因为22210517=+ 所以知222PC PA AC += 所以 PC PA ⊥ 所以可得图形为: 在ABC Rt ∆中斜边为AC 在PAC Rt ∆中斜边为AC 取斜边的中点O ,在ABC Rt ∆中OC OB OA == 在PAC Rt ∆中OC OB OP ==所以在几何体中OA OC OB OP ===,即O 为该四面体的外接球的球心521==AC R 所以该外接球的体积为3500343ππ==R VOABCP【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。
立体几何总结:1、多边形内角和:(n-2)*1802、30°直角三角形,边比例1:2:根33、30°30°120°三角形边比例1:1:根34、45°直角三角形边比例1:1:根25、多面体的体积为V ,表面积为S ,则有内切球的半径为3V r S=第一节 平面、空间直线(3)、求异面直线所成角的方法:遵循“先作角,再求角”的原则,用平移转化法放到三角形中去求,用好正、余弦定理.常用的平移方法有:①直接平移法;②中位线平移法(涉及中点时常用);③补形法.第二节 空间直线与平面核心知识点2、线面平行的判定和性质(2)线面平行的判定(用来证明直线与平面平行的方法): ①(判定定理)如果平面α外一直线a 与平面内一直线b 平行,则直线a 与平面α平行, 下面的这些定理或推论也是证明线面平行的常用方法:②如果平面外的两条平行直线,a b 中有一条和平面α平行,则另一条也和平面α平行 ③如果两个平面平行,则其中一个平面内的任何一条直线都平行于另外一个平面 ④如果直线a 垂直于平面α,平面α外的直线b 与直线a 垂直,则直线b 平行于平面α ⑤若平面α和α外的一直线a 都垂直于同一个平面β,则直线a 平行于平面α(3)线面平行的性质定理:(如图9-2-2)如果直线l 与平面α平行,过直线l 的平面β与面α相交,则交aαaAαaα图β线与直线l 平行3、线面垂直的判定和性质:(1)定义:如果一条直线与平面内的任何一条直线都垂直,则这条直线和这个平面垂直。
(2)线面垂直的判定(证明直线与平面垂直的方法)①(判定定理1)如果一条直线和一个平面内的两条相交直线都垂直,则这条直线与这个平面垂直。
②(判定定理2)如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
③(面面平行的性质定理)如果一条直线垂直于两个平行平面中的一个,则这条直线垂直于另一个平面。
④(面面垂直的性质定理)如果两个平面垂直,则在其中一个平面内垂直于交线的直线垂直于另一个平面。
⑤如果两个相交平面都垂直于第三个平面,则交线也垂直于第三个平面(3)线面垂直的性质定理:如果两条直线同垂直于一个平面,则这两条直线平行 4、线面角(1)如果平面α外的直线l 与平面α不平行也不垂直,则称直线l 为平面α的斜线,设O l =αI ,在l 上任取一点P (P 不与斜足O 重合),过P 作面α的垂线,垂足为'P ,则垂足'P 与斜足O 的连线'OP 叫做斜线l 在平面α上的射影,l 与其射影'OP 的夹角θ叫做l 与面α所成的角。
规定:当α//l 或α⊂l 时,ο0=θ,α⊥l 时ο90=θ,于是线面角的范围是]90,0[οο.5、三垂线定理:一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直6、三垂线逆定理:一直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在这个平面内的射影垂直7、方法总结:下面的几个结论是找垂足的有力工具:(1)若P 为ABC ∆所在平面外一点, O 是点P 在 ABC ∆内的射影,则: ①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ∆的外心; ②若P 到ABC ∆的三边的距离相等, 则O 为△ABC 的内心;③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ∆的垂心.(2)面面垂直的性质定理:如果两个平面垂直,则在一个平面内垂直于交线的直线垂直于另一个平面。
第三节 空间平面与平面核心知识点:1、面面平行的判定和性质 (1)面面平行的判定:①(判定定理)如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(线面平行⇒面面平行)②垂直于同一直线的两平面平行;(线面垂直⇒面面平行)③(面面平行的传递性)如果两个平面同时平行于第三个平面,那么这两个平面平行; (2)面面平行的性质①若两个平面平行,则其中一个平面内的任意一条直线都平行于另一个平面;(面面平行⇒线面平行) ②若两个平行平面同时与第三个平面相交,则两交线平行;(面面平行⇒线线平行) ③若一条直线垂直于两平行平面中的一个,则该直线也和另一个平面垂直; ④夹在两平行平面间的平行线段相等;⑤经过平面外一点有且仅有一个平面与已知平面平行.2、两个平行平面间的距离:如果直线l 与两平行平面都垂直,垂足分别为B A ,,则称线段AB 的长为两平行平面间的距离.3、二面角的定义及表示方法:(1)定义:平面内的一条直线把这个平面分成两部分,其中的每一部分都叫做半平面,从一条直线发出的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面; (2)表示方法:棱为AB (或l ),面为βα,的二面角记为βα--AB (或βα--l ). 4、二面角的平面角在二面角的棱上任取一点,过该点分别在两个半平面内作垂直于棱的两条射线,两射线所成的角叫做二面角的平面角.(范围:]180,0[οο). 5、面垂直的判定和性质 (1)面面垂直的判定:①(定义法)两个平面相交,如果它们所成的二面角是直二面角,则称这两个平面垂直(即求证二面角的平面角是直角)②(判定定理)如果平面α经过了平面β的一条垂线,则βα⊥;(线面垂直⇒面面垂直) (2)面面垂直的性质:①如果两个平面垂直,则在一个平面内垂直于交线的直线垂直于另一个平面; (面面垂直⇒线面垂直)②若两平面垂直,则经过第一个平面内一点且垂直于第二个平面的直线在第一个平面内.方法总结(1)熟记面面平行和垂直的判定和性质的相关定理,能快速明确题目解体思路,比如,要证面面平行,则只需去其中一个平面内找到两相交的直线与另一平面都平行即可;又如,证面面垂直,则只需在其中一个平面内去找到一条直线与另一平面垂直即可,解题过程中应注意转化的思想; (2)有关面面平行和垂直的相关的定理之间的转化关系,要结合上节的知识;(3)与面面距离相关的问题:二面角的平面角的作法及求法将在第四、五节中系统地讲解.第四节 空间角核心知识点:高考中立体几何题的计算常涉及“求角”、“求距离”、“求面积或体积”三类问题,其中“求角”问题几乎年年涉及,求角问题包括异面直线所成的角,线面角及二面角的平面角. 三种空间角的概念及范围(1)异面直线所成的角:过空间任一点分别引两异面直线的平行线,则此两相交直线所成的锐角(或直角)叫做两异面直线所成的角.异面直线所成角的范围 .(2)直线与平面所成的角:①当α//l 或α⊂l 时,l 与α所成的角为ο0;②当α⊥l 时, l 与α所成的角为ο90;③当l 与α斜交时,l 与α所成的角是指l 与l 在面α上的射影'l 所成的锐角.线面角的范围: .(3)二面角的平面角须具有以下三个特点:①顶点在棱上;②角的两边分别在两个半平面内;③角的两边与棱都垂直.二面角的范围: . 方法总结:1、求异面直线所成角的方法:主要通过平移转化法来作出异面直线所成的角,然后利用三角形的边角关系(正、余弦定理)求角的大小,要注意角的范围.2、求线面角的一般过程是:(1)在斜线上找到一个合适的点P ,过P 作面α的垂线(注意垂足'P 的确定),垂足'P 和斜足A 的连线即为斜线PA 在平面α上的射影,则'PAP ∠即为所求;(2)将'PAP ∠放到'PAP ∆或其它包含此角的三角形中去求.说明:在解题过程中,我们会发现求角问题难在作角,其中又难在过平面外一点,作平面的垂线后,垂足位置的确定.复习过程中应注意对常用的找垂足的方法进行归纳总结. 上面的(2)及下面的几个结论是找垂足的有力工具: (1)若P 为ABC ∆所在平面 外一点, O 是点P 在 内的射影,则:①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ∆的外心; ②若P 到ABC ∆的三边的距离相等, 则O 为ABC ∆△ABC 的内心;③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ∆的垂心.(2)面面垂直的性质定理:如果两个平面垂直,则在一个平面内垂直于交线的直线垂直于另一个平面;第五节 空间距离核心知识点点线距、点面距、线面距、面面距、两异面直线之间的距离是高考中常见求距离的问题. 常见的空间距离的求法: (1)求点到直线的距离利用三垂线定理找到垂线段,垂线段就是所求; (2)点到平面的距离的求解方法一般有两种:①直接求解法:从该点向平面引垂线,确定垂足位置,这里要用到两个平面垂直的性质定理,求出点和垂足之间的距离即可.②“体积代换法”:把点到平面的距离转化为以该点为顶点,平面内的一个三角形为底面的三棱锥的高,再通过变换(从方便求高的角度)三棱锥顶点用等体积法,求点到平面的距离.这种方法比较常用,应掌握. (3)直线到它的平行平面的距离通常转化为直线上一个特殊点到平面的距离,要找到直线和它的平行平面的公垂面,直线和公垂面的垂足就是这个特殊点,从这点向公垂面和已知平面的交线引垂线段,该垂线段就是直线到它的平行平面的距离,还可以用等体积法求特殊点到平面的距离. (4)两个平行平面的距离求解时,在一个面内任取一点,作它到另一平面的垂线段,垂线段的长就是所求.实质上也是点到平面的距离.因此,点面距离的求解方法,对求解面到面的距离仍然适用. (5)两条异面直线间的距离要注意定义中“都垂直且相交”的理解.两条异面直线的距离是分别连结两条异面直线上两点的线段中最段的一条.求解方法主要是定义法:找出两异面直线的公垂线段,求出其长度. (6)两点之间的球面距离求法分三步:①计算两点之间的线段长;②计算两点对球心的张角θ即球心角(须用弧度表示); ③用弧长公式l R θ=⋅球计算大圆上两点之间的劣弧长即两点之间的劣球面距离. 方法总结:求空间距离的一般规律 (1)距离的求法有两种:①直接法——第一步,作图.即先作出表示所求距离的线段;第二步:证明.即证明第一步中所作线段就是所要求的距离;第三步:计算.解三角形求出这条线段. ②转移法——转化为其他易求的距离进而求解.(2)高考对于立体几何中“作图—证明—计算”的互相渗透,互相结合有明确的要求,所以用直接法求空间距离的三个步骤缺一不可,而且要表述准确、清晰、简明,稍有不当,就有可能丢分.。