9.3 多项式乘多项式

合集下载

9.3多项式乘多项式

9.3多项式乘多项式

9.3多项式乘多项式【教学目标】1、知道利用乘法分配律可以将多项式乘多项式的运算转化为单项式乘多项式的运算。

2、会进行多项式乘多项式的运算。

3、经历探索多项式乘多项式运算法则的过程,发展有条理地思考及语言表达能力。

【学习重点】:多项式乘法法则【学习难点】:利用单项式与多项式相乘的法则推导本节法则.【学习过程】一、小组讨论,复习旧识请各小组同学讨论单项式乘单项式的方法以及单项式乘多项式的方法。

二、交流展示,自学质疑小组内讨论多项式乘多项式的方法,提出预习中不会的问题,进一步完成预习工作。

学会如何准确的表达自己的观点。

三、问题情境,互动探究情境1请你用下列若干个小长方形和正方形摆成一个新的长方形,通过不同的方法计算面积,探求相应的等式。

例如你能摆成下面的图形吗?你能得到怎样的等式?由图可以得到等式:说明:设计学生小组讨论、动手操作,使得人人动手,人人参与,不同层次的学生都得以调动,让学生感觉到真的在“做数学”,初步感受成功的喜悦。

情境2 算一算、想一想1、(x +4)(x +3)2、(x -3)(x -2)3、(x -5)(x +2)4、(x +p)(x +q)思考:观察上述式子,猜想如何计算))((d c b a ++?))((d c b a ++=结论:多项式与多项式相乘,先 ,再 。

四、精讲点拨,解疑答惑例1计算:(1))3)(4(++a a ;(2))3)(52(y x y x --。

例2计算:(1))2)(1(++n n n ; (2))168()4(2--+x x 。

五、反馈练习,迁移应用1. 计算(2a -3b )(2a +3b )的正确结果是 ( ) A .4a 2+9b 2 B .4a 2-9b 2 C .4a 2+12ab +9b 2 D .4a 2-12ab +9b 22. 若(x +a )(x +b )=x 2-kx +ab ,则k 的值为 ( )A.a +b B .-a -b C .a -bD .b -a 3. 计算(2x -3y )(4x 2+6xy +9y 2)的正确结果是 ( ) A .(2x -3y )2 B .(2x +3y )2 C .8x 3-27y 3D .8x 3+27y 3 4. (x 2-px +3)(x -q )的乘积中不含x 2项,则 ( ) A .p =q B .p =±q C .p =-qD .无法确定 5. 解方程:(1)(3x-2)(2x-3)=(6x+5)(x-1)-1(2)(x-2)(x+3) =(x+2)(x-5)6. 计算下列各式(1)(2x +3y )(3x -2y ) (2)(x +2)(x +3)-(x +6)(x -1)(3)(3x 2+2x +1)(2x 2+3x -1) (4)(3x +2y )(2x +3y )-(x -3y )(3x +4y )7.先化简,再求值: 2(2x -1)(2x +1)-5x (-x +3y )+4x (-4x 2-52y ),其中x =-1,y =2. 六、课堂小结,布置作业通过本课的研究与探索,你获得了哪些知识?。

苏科版数学七年级下册9.3《多项式乘多项式》练习

苏科版数学七年级下册9.3《多项式乘多项式》练习

《9.3多项式乘多项式》习题一.填空题:1.()()21x x -+= ;()()22x y x y -+= . =+-)3)(2(x x =+-)2)(2(y x y x ,=---)21)(21(p p (-3x -2)2=_______________2.若()()226x m x x x n ++=-+,则m = ;n = _ 。

3.若c bx ax x x ++=--2)25)(32(,则c b ++a =4.三个连续偶数,若中间一个为n ,则它们的积是 二.选择题5. 长方形一边长n m 23+,另一边比它长n m -,则这个长方形面积是 ( )(A )2221112n mn m ++ (B )222512n mn m ++6.下列计算正确的是 ( )A.()()22a b a b a b +-=+ B.()()22232323x y x y x y -+=- C.()()22313191ab ab a b -+=- D.()()2323249x x x --+=-三.判断题:7.(1)(a+b)(c+d)= ac+ad+bc ; ( ) (2)(a+b)(c+d)= ac+ad+ac+bd ; ( )(3)(a+b)(c+d)= ac+ad+bc+bd ;( ) (4)(a- b)(c-d)= ac+ ad+bc- ad( ) 四.解答题 8.计算(1) (2)(3))32)((2--+x x y x (4) ()()()y x x y y x -+--333229化简求值 (1))1(3)1(2)4(222-+--++m m m m m m m ,其中52=m (2)2()()()(2)a b a b a b a a b +-++-+,其中511,65-==b a 。

10.解方程:()()()21212322--+=-a a a11.若()()m x x nx x +-++3322的展开式中不含2x 和3x 项,求()n m -的值.12. 若()()b ax x x x x x ++-=-+-22316105恒成立,试求a 、b 的值.16阅读材料并回答问题:我们已经知道,完全平方式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:ab a b a b a 32))(2(2+=++2b +,就可以用图(1)或图(2)等图形的面积表示。

9.3 多项式乘多项式

9.3 多项式乘多项式

填空: 填空: xy2x2-xy-y2 (1)(2x+y)(x(1)(2x+y)(x-y)=__________. m2-4n2 (2)(m+2n)(m(2)(m+2n)(m-2n)=________. +10m4m2+10m-15 (3)(2m+5)(2m(3)(2m+5)(2m-3)=_____________. x2-1.6x+0.6 (4)(1-x)(0.6(4)(1-x)(0.6-x)=____________. x2+10xy+16y (5)(x+2y)(x+8y)=____________.2 计算: 计算: (x⑴(x-2y)(x2+2xy+4y2) +2a- 3)(2⑵ (5x3+2a-a2-3)(2-a+4a2)
多项式乘多项式
a c
b c
d a b
d
如果把它们看成四个小长方形, 如果把它们看成四个小长方形,那么它们 的面积可分别表示为_____ _____、_____、 _____、 ac bc 的面积可分别表示为_____、_____、_____、 ad _____. bd
c d a b
c d a b
如果把它看成一个大长方形, 如果把它看成一个大长方形,那么它的边 c+d a+b 长为_____、_____,面积可表示为_________. 长为_____、_____,面积可表示为_________. _____ 面积可表示为
(a+b)(c+d)
c d a b
如果把它们看成四个小长方形,那么它们 如果把它们看成四个小长方形, 的面积可分别表示为_____ _____、_____、 _____、 ac bc 的面积可分别表示为_____、_____、_____、 ad bd _____. 如果把它看成一个大长方形, 如果把它看成一个大长方形,那么它的面 ac+bc+ad+bd 积可表示为______________. 积可表示为______________.

数学:9.3《多项式乘多项式》课件(苏科版七年级下)

数学:9.3《多项式乘多项式》课件(苏科版七年级下)

苏科版七年级下册
1、计算
(1)(a b)(a 2b) (a 2b)(a b)
(2) 5x( x 2x 1) (2x 3)(x 5)
2
苏科版七年级下册
多项式与多项式相乘,先用一个多 项式的每一项乘另一个多项式的每一 项,再把所得的积相加.
返回
苏科版七年级下册
苏科版七年级下册
上面的运算过程也可以表示为:
(a b)(c d ) = ac+ ad + bc + bd
如何进行多项式乘多项式的运算?
多项式与多项式相乘,先用一个多 项式的每一项乘另一个多项式的每一 项,再把所得的积相加.
苏科版七年级下册
多项式与多项式相乘,先用一个多 项式的每一项乘另一个多项式的每一 项,再把所得的积相加.
2
1 、计算Байду номын сангаас
法则
苏科版七年级下册
2、计算图中变压器的L形硅钢片的面积 n
2n
m
m
3、一块边长分别为a cm、b cm的长方 形地砖,如果长、宽各裁去2 cm,剩余 部分的面积是多少?
苏科版七年级下册
思考题 1、解方程
4( x 2)(x 5) (2 x 3)(2 x 1) 5
dac ad bc bd
此时,这个大长 c 方形的面积可表 示为
a
b
苏科版七年级下册
由此得到
(a b)(c d ) = ac ad bc bd
一般的,对于任意的a、b、c、d,把 (a+b)看成一个整体,利用单项式乘 多项式法则可以得到
(a b)(c d ) = (a b)c + (a b)d = ac bc ad bd

9.3多项式乘多项式

9.3多项式乘多项式

由学生自己先做(或互 相讨论),然后回答,若 有答不全的,教师(或其 他学生)补充.
学生板演
例 2 计算 (1)n(n+1)(n+2) (2) ( x 4) (8 x 16)
2
结合例题讲解,提醒学生在解题时要注意:(1)解题书写和格式的规范性; (2)注意总结不同类型题目的解题方法、步骤和结果;(3)注意各项的符号, 并要注意做到不重复、不遗漏. 五、课堂练习 1. 计算: (1) ( x 1)( 2 x 3) (2) (3m 2n)(7m 6n) (3) (7 3x)(7 3x) (4) n(n 2)(2n 1)
2.判断题: (1)(a+b)(c+d)= ac+ad+bc;( ) (2)(a+b)(c+d)= ac+ad+ac+bd;( (3)(a+b)(c+d)= ac+ad+bc+bd;( (4)(a- b)(c-d)= ac+ ad+bc- ad.(
) ) )
六、小结 启发引导学生归纳本节所学的内容: 1.多项式的乘法法则 (a+ b)(c+d)= ac+ ad+bc+bd. 2. 解题(计算)步骤(略). 教学素材 A 组题: 1.把计算结果填入题后的括号内: (1)(x+y)(x-y)=( ); (2)(x-y)2=( ); (3)(a+b)(x+y)=( ); (4)(3x+y)(x-2y)=( ); (5)(x-1)(x2+x+1)=( ); (6)(3x+1)(x+2)=( ); (7)(4y-1)(y-1)=( );

【开学春季备课】苏科版七年级数学下册9.3多项式乘多项式【教案三】

【开学春季备课】苏科版七年级数学下册9.3多项式乘多项式【教案三】

9.3 多项式乘多项式一、教学目标1.理解和掌握单项式与多项式乘法法则及其推导过程.2.熟练运用法则进行单项式与多项式的乘法计算.3.通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的和谐美、简洁美.二、学法引导1.教学方法:讨论法、讲练结合法.2.学生学法:本节主要学习了多项式的乘法法则和一个特殊的二项式乘法公式,在学习时应注意分析和比较这一法则和公式的关系,事实上它们是一般与特殊的关系.当遇到多项式乘法时,首先要看它是不是(x+a)(x+b)的形式,若是则可以用公式直接写出结果,若不是再应用法则计算.三、重点、难点及解决办法(一)重点多项式乘法法则.(二)难点利用单项式与多项式相乘的法则推导本节法则.(三)解决办法在用面积法推导多项式与多项式乘法法则过程中,应让学生充分理解多项式乘法法则的几何意义,这样既便于学生理解记忆公式,又能让学生在解题过程中准确地使用.四、课时安排一课时.五、教具学具准备投影仪或电脑、自制胶片、长方形演示纸板.六、师生互动活动设计1.设计一组练习,以检查学生单项式乘以多项式的掌握情况.2.尝试从多角度理解多项式与多项式乘法:(1)把看成一单项式时,.(2)把看成一单项式时,.(3)利用面积法3.在理解上述过程的基础之上,引导学生归纳并指出多项式乘法的规律.4.通过举例,教师的示范,学生的尝试练习,不断巩固新学的知识.对于遇到的特殊二项式相乘可利用特殊的公式加以解决,并注意一般与特殊的关系.七、教学步骤(一)明确目标本节课将学习多项式与多项式相乘的乘法法则及其特殊形式的公式的应用.(二)整体感知多项式与多项式的相乘关键在于展开式中的四项是如何得到的,这里教师应注重引导学生细心观察、品味法则的规律性,实质就在于让一个多项式的每一项与另一个多项式的每一项遍乘既不能漏又不能重复.对特殊的多项式相乘可运用特殊的办法去处理(三)教学过程1.创设情境,复习导入(1)回忆单项式与多项式的乘法法则.(2)计算:①②③④学生活动:学生在练习本上完成,然后回答结果.【教法说明】多项式乘法是以单项式乘法和单项式与多项式相乘为基础的,通过复习引起学生回忆,为本节学习提供铺垫和思想基础.2.探索新知,讲授新课今天,我们在以前学习的基础上,学习多项式的乘法.多项式的乘法就是形如的计算.这里都表示单项式,因此表示多项式相乘,那么如何对进行计算呢?若把看成一个单项式,能否利用单项式与多项式相乘的法则计算呢?请同桌同学互相讨论,并试着进行计算.学生活动:同桌讨论,并试着计算(教师适当引导),学生回答结论.【教法说明】多项式乘法法则,是两次运用单项式与多项式相乘的法则得到的.这里的关键在于让学生理解,将看成一个单项式,然后运用单项式与多项式相乘的法则进行计算,让学生讨论并试着计算,目的是培养学生分析问题、解决问题的能力,鼓励学生积极探索知识、善于发现规律、主动参与学习.3.总结规律,揭示法则对于的计算过程可以表示为:教师引导学生用文字表述多项式乘法法则:多项式与多项式相乘,先用一个多项式的第一项乘另一个多项式的每一项,再把所得的积相加.如计算:看成公式中的;-1看成公式中的;看成公式中的;3看成公式中的.运用法则中的每一项分别去乘中的每一项,计算可得:.学生活动:在教师引导下细心观察、品味法则.【教法说明】借助算式图,指出的得出过程,实质就是用一个多项式的“每一项”乘另一个多项式的“每一项”,再把所得积相加的过程.可以达到两个目的:一是直观揭示法则,有利于学生理解;二是防止学生出现运用法则进行计算时“漏项”的错误,强调法则,加深理解,同时明确多项式是单项式的和,每一项都包括前面的符号.这个法则还可利用一个图形明显地表示出来.(1)这个长方形的面积用代数式表示为_____________.(2)Ⅰ的面积为________;Ⅱ的面积为________;Ⅲ的面积为________;Ⅳ的面积为_______.结论:即.学生活动:随着教师的演示,边思考,边回答问题.【教法说明】利用图形的直观性,使学生进一步理解、掌握这一法则,渗透数形结合的思想,培养学生观察、分析图形的能力.4.运用知识,尝试解题例1 计算:(1)(2)(3)解:(1)原式(2)原式(3)原式【教法说明】例1的目的是熟悉、理解法则.完成例1时,要求学生紧扣法则,按法则的文字叙发“一步步”解题,注意最后要合并同类项.让学生参与例题的解答,旨在强化学生的参与意识,使其主动思考.例2 计算:(1)(2)学生活动:在教师引导下,说出解题过程.解:(1)原式(2)原式【教法说明】例2的两个小题是后面要讲到的乘法公式,但目前仍按多项式乘法法则计算,无需说明它们是乘法公式,此题的目的在于为后面的学习做准备.5.强化训练,巩固知识(1)计算:①②③④⑤⑥(2)计算:①②③④⑤⑥⑦⑧学生活动:学生在练习本上完成.【教法说明】本组练习的目的是:①使学生进一步理解法则,熟练运用法则进行计算.②训练学生计算的准确性,培养计算能力.③对乘法公式先有一个模糊印象,为以后的学习打下基础.(四)总结、扩展这节课我们学习了多项式乘法法则,请同学们回答问题:1.叙述多项式乘法法则.2.谈谈这节课你的学习体会.学生活动:学生分别回答上述问题.【教法说明】通过让学生自己谈学习体会,既可以达到总结归纳本节知识的目的,形成完整印象,又可以提高学生的总结概括能力.八、布置作业参考答案1.(1)原式(3)原式(5)原式(7)原式2.(2)原式(3)原式3.(1)原式(3)原式(8)原式。

七年级数学下册 第9章 整式乘法与因式分解 9.3 多项式乘多项式作业设计 (新版)苏科版-(新版)

七年级数学下册 第9章 整式乘法与因式分解 9.3 多项式乘多项式作业设计 (新版)苏科版-(新版)

9.3 多项式乘多项式一.选择题(共5小题)1.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1B.﹣2C.﹣1D.22.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4B.﹣2C.0D.43.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定4.如图,正方形卡片A类、B类和长方形卡片C类各若干X,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的X数分别为()A.2,3,7B.3,7,2C.2,5,3D.2,5,75.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1B.﹣3C.﹣2D.3二.填空题(共3小题)6.如图,正方形卡片A类,B类和长方形卡片C类若干X,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片X.7.有若干X如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片X,B类卡片X,C类卡片X.8.有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1X、2X、3X,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片X,3号卡片X.三.解答题(共10小题)9.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.10.已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.11.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=.②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=.③根据②求出:1+2+22+…+234+235的结果.12.你能化简(x﹣1)(x99+x98+…+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手.然后归纳出一些方法.(1)分别化简下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(x﹣1)(x99+x98+…+x+1)=.(2)请你利用上面的结论计算:299+298+…+2+1.13.计算:(1)(3x+2)(2x﹣1);(2)(2x﹣8y)(x﹣3y);(3)(2m﹣n)(3m﹣4n);(4)(2x2﹣1)(2x﹣3);(5)(2a﹣3)2;(6)(3x﹣2)(3x+2)﹣6(x2+x﹣1).14.已知多项式x2+ax+1与2x+b的乘积中含x2的项的系数为3,含x项的系数为2,求a+b 的值.15.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.16.先阅读后作答:根据几何图形的面积关系可以说明整式的乘法.例如:(2a+b)(a十b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:(2)(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.17.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b =2时的绿化面积.18.如图①,在边长为3a+2b的大正方形纸片中,剪掉边长2a+b的小正方形,得到图②,把图②阴影部分剪下,按照图③拼成一个长方形纸片.(1)求出拼成的长方形纸片的长和宽;(2)把这个拼成的长方形纸片的面积加上10a+6b后,就和另一个长方形的面积相等.已知另一长方形的长为5a+3b,求它的宽.参考答案与试题解析一.选择题(共5小题)1.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1B.﹣2C.﹣1D.2【分析】依据多项式乘以多项式的法则进行计算,然后对照各项的系数即可求出m,n的值,再相加即可求解.【解答】解:∵原式=x2+x﹣2=x2+mx+n,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选:C.【点评】本题考查了多项式的乘法,熟练掌握多项式乘以多项式的法则是解题的关键.2.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4B.﹣2C.0D.4【分析】先把等式右边整理,在根据对应相等得出a,b的值,代入即可.【解答】解:∵2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,∴2x3﹣ax2﹣5x+5=2x3+(a﹣2b)x2﹣(ab+1)x+b+3,∴﹣a=a﹣2b,ab+1=5,b+3=5,解得b=2,a=2,∴a+b=2+2=4.故选:D.【点评】本题考查了多项式乘以多项式,让第一个多项式的每一项乘以第二个多项式的每一项,再把所得的积相加.3.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定【分析】根据多项式乘多项式的运算法则进行计算,比较即可得到答案.【解答】解:M=(x﹣3)(x﹣7)=x2﹣10x+21,N=(x﹣2)(x﹣8)=x2﹣10x+16,M﹣N=(x2﹣10x+21)﹣(x2﹣10x+16)=5,则M>N.故选:B.【点评】本题考查的是多项式乘多项式,掌握多项式乘以多项式的法则是解题的关键.4.如图,正方形卡片A类、B类和长方形卡片C类各若干X,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的X数分别为()A.2,3,7B.3,7,2C.2,5,3D.2,5,7【分析】根据长方形的面积=长×宽,求出长为a+3b,宽为2a+b的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少X即可.【解答】解:长为a+3b,宽为2a+b的长方形的面积为:(a+3b)(2a+b)=2a2+7ab+3b2,∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,∴需要A类卡片2X,B类卡片3X,C类卡片7X.故选:A.【点评】此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.5.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1B.﹣3C.﹣2D.3【分析】把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m﹣n的值.【解答】解:(x﹣m)(x+n)=x2+nx﹣mx﹣mn=x2+(n﹣m)x﹣mn,∵(x﹣m)(x+n)=x2﹣3x﹣4,∴n﹣m=﹣3,则m﹣n=3,故选:D.【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.二.填空题(共3小题)6.如图,正方形卡片A类,B类和长方形卡片C类若干X,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片 3 X.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.【解答】解:(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3X.故答案为:3.【点评】本题考查了多项式乘多项式的运算,需要熟练掌握运算法则并灵活运用,利用各个面积之和等于总的面积也比较关键.7.有若干X如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片 2 X,B类卡片 1 X,C类卡片 3 X.【分析】首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.【解答】解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为b2,C图形面积为ab,则可知需要A类卡片2X,B类卡片1X,C类卡片3X.故答案为:2;1;3.【点评】此题考查的内容是整式的运算与几何的综合题,方法较新颖.注意对此类问题的深入理解.8.有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1X、2X、3X,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是a2+3ab+2b2=(a+b)(a+2b).(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片 3 X,3号卡片7 X.【分析】(1)画出相关草图,表示出拼合前后的面积即可;(2)得到所给矩形的面积,看有几个b2,几个ab即可.【解答】解:(1)如图所示:故答案为:a2+3ab+2b2=(a+b)(a+2b);(2)(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,需用2号卡片3X,3号卡片7X.故答案为:a2+3ab+2b2=(a+b)(a+2b);3;7.【点评】考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.三.解答题(共10小题)9.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.【分析】(1)形开式子,找出x项与x3令其系数等于0求解.(2)把p,q的值入求解.【解答】解:(1)(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴P﹣3=0,qp+1=0∴p=3,q=﹣,(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(﹣)]2++×(﹣)2=36﹣+=35.【点评】本题主要考查了多项式乘多项式,解题的关键是正确求出p,q的值10.已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.【分析】先把代数式按照多项式乘以多项式展开,因为化简后是一个四次多项式,所以x 的最高指数m+2=4;不含二次项,即二次项的系数为0,即可解答.【解答】解:(mx2+2mx﹣1)(x m+3nx+2)=mx m+2+3mnx3+2mx2+2mx m+1+6mnx2+4mx﹣x m﹣3nx﹣2,因为该多项式是四次多项式,所以m+2=4,解得:m=2,原式=2x4+(6n+4)x3+(3+12n)x2+(8﹣3n)x﹣2∵多项式不含二次项∴3+12n=0,解得:n=,所以一次项系数8﹣3n=8.75.【点评】本题考查了多项式乘以多项式,解决本题的关键是明确化简后是一个四次多项式,所以x的最高指数m+2=4;不含二次项,即二次项的系数为0,即可解答.11.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1 .②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1 .③根据②求出:1+2+22+…+234+235的结果.【分析】①观察已知各式,得到一般性规律,化简原式即可;②原式利用得出的规律化简即可得到结果;③原式变形后,利用得出的规律化简即可得到结果.【解答】解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②根据题意得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为:①x7﹣1;②x n+1﹣1;③236﹣1【点评】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.12.你能化简(x﹣1)(x99+x98+…+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手.然后归纳出一些方法.(1)分别化简下列各式:(x﹣1)(x+1)=x2﹣1 ;(x﹣1)(x2+x+1)=x3﹣1 ;(x﹣1)(x3+x2+x+1)=x4﹣1 ;…(x﹣1)(x99+x98+…+x+1)=x100﹣1 .(2)请你利用上面的结论计算:299+298+…+2+1.【分析】(1)归纳总结得到规律,写出结果即可;(2)原式变形后,利用得出的规律计算即可得到结果.【解答】解:(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(x﹣1)(x99+x98+…+x+1)=x100﹣1;(2)299+298+…+2+1=(2﹣1)×(299+298+…+2+1)=2100﹣1.故答案为:(1)x2﹣1;x3﹣1;x4﹣1;x100﹣113.计算:(1)(3x+2)(2x﹣1);(2)(2x﹣8y)(x﹣3y);(3)(2m﹣n)(3m﹣4n);(4)(2x2﹣1)(2x﹣3);(5)(2a﹣3)2;(6)(3x﹣2)(3x+2)﹣6(x2+x﹣1).【分析】根据多项式乘多项式的法则,用第一个多项式的每一项成第二个多项式的每一项,把所得的积相加,可得(1)﹣﹣(4)的答案,根据乘法公式,可得(5)、(6)的答案.【解答】解(1)原式=3x•2x﹣3x+2×2x﹣2=6x2+x﹣2;(2)原式=2x•x﹣2x•3y﹣8y•x+8y•3y=2x2﹣14xy+24y2;(3)原式=2m•3m﹣2m•4n﹣3m•n+n•4n=6m2﹣11mn+4n2;(4)原式=2x2•2x+2x2×(﹣3)﹣2x+3=4x3﹣6x2﹣2x+3;(5)原式=(2a)2﹣2•2a•3+32=4a2﹣12a+9;(6)原式=(3x)2﹣4﹣6x2﹣6x+6=3x2﹣6x+2.【点评】本题考查了多项式乘多项式,根据法则计算是解题关键.14.已知多项式x2+ax+1与2x+b的乘积中含x2的项的系数为3,含x项的系数为2,求a+b 的值.【分析】原式利用多项式乘以多项式法则计算,合并后根据题意求出a与b的值,即可求出a+b的值.【解答】解:根据题意得:(x2+ax+1)(2x+b)=2x3+(b+2a)x2+(ab+2)x+b,∵乘积中含x2的项的系数为3,含x项的系数为2,∴b+2a=3,ab+2=2,解得:a=,b=0;a=0,b=3,则a+b=或3.15.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.【分析】先按乙错误的说法得出的系数的数值求出a,b的值,再把a,b的值代入原式求出整式乘法的正确结果.【解答】解:∵甲得到的算式:(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2+11x﹣10对应的系数相等,2b﹣3a=11,ab=10,乙得到的算式:(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣9x+10对应的系数相等,2b+a=﹣9,ab=10,∴,解得:.∴正确的式子:(2x﹣5)(3x﹣2)=6x2﹣19x+10.【点评】此题考查了多项式乘多项式;解题的关键是根据多项式乘多项式的运算法则分别进行计算,是常考题型,解题时要细心.16.先阅读后作答:根据几何图形的面积关系可以说明整式的乘法.例如:(2a+b)(a十b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:(2)(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.【分析】(1)利用长方形的面积公式即可证明.(2)画一个长为x+p,宽为x+q的长方形即可.【解答】解:①(a+2b)(2a+b)=2a2+5ab+2b2;②画出的图形如下:(答案不唯一,只要画图正确即得分)【点评】本题主要考查了多项式乘多项式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.17.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b =2时的绿化面积.【分析】根据多项式乘多项式的法则求出阴影部分的面积,代入计算即可.【解答】解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.18.如图①,在边长为3a+2b的大正方形纸片中,剪掉边长2a+b的小正方形,得到图②,把图②阴影部分剪下,按照图③拼成一个长方形纸片.(1)求出拼成的长方形纸片的长和宽;(2)把这个拼成的长方形纸片的面积加上10a+6b后,就和另一个长方形的面积相等.已知另一长方形的长为5a+3b,求它的宽.【分析】(1)根据图①表示出拼成长方形的长与宽;(2)根据题意列出关系式,去括号合并即可得到结果.【解答】解:(1)长方形的长为:3a+2b+2a+b=5a+3b.长方形的宽为:(3a+2b)﹣(2a+b)=3a+2b﹣2a﹣b=a+b.(2)另一个长方形的宽:[(5a+3b)(a+b)+10a+6b]÷(5a+3b)=a+b+2.【点评】此题考查了整式的混合运算,弄清题意是解本题的关键.。

9.3 多项式乘多项式 苏科版数学七年级下册练习试题(含答案)

9.3 多项式乘多项式 苏科版数学七年级下册练习试题(含答案)

9.3多项式乘多项式练习试题(限时60分钟满分120分)一、选择(本题共计6小题,每题5分,共计30分)1.计算(x−6)(x+1)的结果为()A.x2+5x−6B.x2−5x−6C.x2−5x+6D.x2+5x+62.若x+n与x+2的乘积中不含x的一次项,则n的值为()A.﹣2B.2C.0D.13.计算(x2﹣3x+n)(x2+mx+8)的结果中不含x2和x3的项,则m,n的值为()A.m=3,n=1 B.m=0,n=0C.m=﹣3,n=﹣9D.m=﹣3,n=84.使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0B.p=﹣3,q=﹣1C.p=3,q=1D.p=﹣3,q=15.若(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,则常数a、b的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣16.设A=(x﹣3)(x﹣7),B=(x﹣2)(x﹣8),则A、B的大小关系为()A.A>B B.A<B C.A=B D.无法确定二、填空(本题共计7小题,每空5分,共计35分)2mx+n)(x2−3x+2)的展开式不含有x2和x3的项,那么2mn=.7.已知(x+8.(x+1)(kx−2)的展开式中不含x的一次项,k的值是.9.要使(3x+k)(x+2)的运算结果中不含x的一次方的项,则k的值应为.10.若(2x+m)(x﹣1)的展开式中不含x的一次项,则m的值是.11.已知多项式(x-a)与(x2+2x-1)的乘积中不含x2项,则常数a的值是.12.已知(x+5)(x+n)=x2+mx﹣5,则m+n=.13.a+b=5,ab=2,则(a﹣2)(3b﹣6)=.三、解答(本题共计6小题,共55分)14.(7分)已知二次三项式ax2+bx+1与2x2−3x+1的积不含x3项,也不含x项,求系数a、b的值.15.(8分)若(x2+nx)(x2-3x+m)的乘积中不含x2和x3项,求m和n的值.16.(10分)将多项式(x﹣2)(x2+ax﹣b)展开后不含x2项和x项.试求:2a2﹣b的值.17.(10分)如图,正方形卡片A类、B类和长方形卡片C类各有若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,求需要A、B、C类卡片各多少张?并请用这些卡片拼出符合条件的长方形(画出示意图,并标明卡片类型即可)18.(10分)如图①,在边长为3a+2b的大正方形纸片中,剪掉边长2a+b的小正方形,得到图②,把图②阴影部分剪下,按照图③拼成一个长方形纸片.(1)求出拼成的长方形纸片的长和宽;(2)把这个拼成的长方形纸片的面积加上10a+6b 后,就和另一个长方形的面积相等.已知另一长方形的长为5a+3b ,求它的宽.19.(10分)将4个数a 、b 、c 、d 排成2行2列,两边各加一条竖直线记成 |a b cd | ,定义 |a b c d | =ad ﹣bc ,上述记号就叫做2阶行列式.若 |6x +56x −16x −16x −5| =﹣20,求x 的值.答案部分1.B2.A3.A4.C5.A6.A7.428.29.﹣610.211.212.313.-1214.根据题意列得:(ax 2+bx+1)(2x 2-3x+1)=2ax 4+(2b -3a )x 3+(a+2-3b )x 2+(b -3)x+1, ∵不含x 3的项,也不含x 的项,∴2b -3a=0,b -3=0,解得a=2,b=3.15.解: (x 2+nx)(x 2−3x +m)= x 4−3x 3+mx 2+nx 3−3nx 2+mnx= x 4−(3−n)x 3+(m −3n)x 2+mnx ;∵乘积中不含x 2和x 3项,∴{−(3−n)=0m −3n =0, 解得: {m =9n =3; ∴m =9 , n =316.解:原式=x 3+ax 2﹣bx ﹣2x 2﹣2ax+2b=x 3+(a ﹣2)x 2﹣(2a+b )x+2b令a ﹣2=0,﹣(2a+b )=0,∴a=2,b=﹣4∴2a 2﹣b=2×22+4=1217.解:(a+2b ) (a+b )=a 2+3ab+2b 2(3分),分别需要A 、B 、C 类卡片各1张、3张和2张.18.解:(1)长方形的长为:3a+2b+2a+b=5a+3b .长方形的宽为:(3a+2b )﹣(2a+b )=3a+2b ﹣2a ﹣b=a+b .(2)另一个长方形的宽:[(5a+3b )(a+b )+10a+6b]÷(5a+3b )=a+b+2.19.解: |6x +56x −16x −16x −5| =﹣20, (6x ﹣5)2﹣(6x ﹣1)2=﹣20(6x ﹣5+6x ﹣1)(6x ﹣5﹣6x+1)=﹣20(12x ﹣6)×(﹣4)=﹣20﹣48x+24=﹣20﹣48x=﹣44x= 1112。

多项式乘多项式基本题30道填空题附详细答案解析

多项式乘多项式基本题30道填空题附详细答案解析

9.3 多项式乘多项式基础题汇编(2)一.填空题(共30小题)1.(2014•润州区校级模拟)计算:(a+2)(2a﹣3)= .2.(2014秋•花垣县期末)计算:(2x﹣1)2= ;(2x﹣2)(3x+2)= .3.(2014秋•花垣县期末)计算:(x﹣2)(x+3)= ;(﹣2x﹣3)(﹣2x+3)= .4.(2014春•富宁县校级期末)已知(x+a)(x+b)=x2+5x+ab,则a+b= .5.(2014秋•蓟县期末)若(x+2)(x﹣m)=x2﹣3x﹣n,则m= ,n= .6.(2013秋•东城区期末)计算:(m+2)(m﹣2)﹣(m﹣1)(m+5)= .7.(2013秋•孟津县期末)要使(x2+ax+1)(3x2+3x+1)的展开式中不含x3项,则a= .8.(2014春•北仑区校级期中)已知m+n=2,mn=﹣2,则(1+m)(1+n)的值为.9.(2014春•东营区校级期中)已知:(x+3)(x+p)=x2+mx+36,则p= ,m= .10.(2014春•贺兰县校级期中)若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为.11.(2014春•雁塔区校级期中)如图:有足够的长方形和正方形卡片,如果拼成的长方形(不重叠无缝隙)的长和宽分别是2a+b和a+b,若应选取1号卡片x张、2号卡片y张、3号卡片z张,则x+y+z= .12.(2014秋•宜宾校级期中)如果(x+m)与(x+)的乘积中不含关于x的一次项,则m= .13.(2014秋•如皋市校级期中)若多项式x2+ax+b是(x+1)与(x﹣2)乘积的结果,则a+b的值为.14.(2014春•崇州市校级期中)若(x2+kx+5)(x3+2x+3)的展开式中不含x2的项,则k 的值为.15.(2014春•阜宁县期中)(x2+mx﹣1)与(x﹣2)的积中不含x2项,则m的值是.16.(2014秋•启东市校级月考)已知(x﹣4)(x+9)=x2+mx+n,则m+n= .17.(2014秋•常州校级月考)①用甲图所示的大小正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张.②现有长为a+3b,宽为a+b的长方形(如乙图),你能用上属三类卡片拼出这个长方形吗?试试看!18.(2013春•桐乡市期末)观察下列各式的计算结果与相乘的两个多项式之间的关系:(x+1)(x2﹣x+1)=x3+1;(x+2)(x2﹣2x+4)=x3+8;(x+3)(x2﹣3x+9)=x3+27.请根据以上规律填空:(x+y)(x2﹣xy+y2)= .19.(2012秋•越秀区校级期末)若(x﹣2)(x+m)=x2+nx﹣6,则m=n= .20.(2013秋•万州区校级期中)(x+a)与5(x+2)的乘积中不含x的一次项,则a= .21.(2013秋•东安县校级期中)在(ax2+bx﹣3)(x2﹣x+8)的结果中不含x3和x项,则a= ,b= .22.(2013秋•川汇区校级月考)若(x2﹣mx+1)(x+2)的积中x的二次项系数为零,则m 的值为.23.(2013春•西湖区校级月考)若(x+m)(x﹣3)=x2+nx﹣15,则m= ,n= .24.(2012•润州区校级模拟)计算:﹣3x2y3•x2y2= ,(x+1)(x﹣3)= .25.(2012•思明区校级模拟)已知a﹣b=2,(a﹣1)(b+2)<ab,则a的取值范围是.26.(2012秋•南陵县期末)若(x+2)(x﹣2)=x2﹣mx﹣n,则m= ,n= .27.(2012春•姜堰市期末)若干张如图所示的A类,B类正方形卡片和C类长方形卡片,如果要拼成一个长为(2a+b)宽为(a+b)的大长方形,则需要C类卡片张.28.(2012春•金阊区校级期中)计算的结果不含关于字母x的一次项,那么m等于.29.(2012秋•简阳市校级期中)若多项式x2+ax﹣b=(x﹣2)(x+1),则a b= .30.(2012春•江阴市校级期中)计算:(﹣p)2•(﹣p)3= ;= ;2xy•()=﹣6x2yz;(5﹣a)(6+a)= .9.3 多项式乘多项式基础题汇编(2)参考答案与试题解析一.填空题(共30小题)1.(2014•润州区校级模拟)计算:(a+2)(2a﹣3)= 2a2+a﹣6 .考点:多项式乘多项式.分析:根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.解答:解:(a+2)(2a﹣3)=2a2﹣3a+4a﹣6=2a2+a﹣6.故答案为:2a2+a﹣6.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.2.(2014秋•花垣县期末)计算:(2x﹣1)2= 4x2﹣4x+1 ;(2x﹣2)(3x+2)= 6x2﹣2x﹣4 .考点:多项式乘多项式;完全平方公式.分析:根据根据完全平方公式和多项式乘多项式的法则分别进行计算即可求出答案.解答:解:(2x﹣1)2=4x2﹣4x+1;(2x﹣2)(3x+2)=6x2+4x﹣6x﹣4=6x2﹣2x﹣4;故答案为:4x2﹣4x+1,6x2﹣2x﹣4.点评:本题主要考查了多项式乘多项式和完全平方公式,熟记公式结构和多项式乘多项式的法则是解题的关键.3.(2014秋•花垣县期末)计算:(x﹣2)(x+3)= x2+x﹣6 ;(﹣2x﹣3)(﹣2x+3)= 4x2﹣9 .考点:多项式乘多项式;平方差公式.分析:(x﹣2)(x+3)根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可;(﹣2x﹣3)(﹣2x+3)根据平方差公式计算即可.解答:解:(x﹣2)(x+3)=x2+3x﹣2x﹣6=x2+x﹣6;(﹣2x﹣3)(﹣2x+3)=(2x+3)(2x﹣3)=4x2﹣9.故答案为:x2+x﹣6;4x2﹣9.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.同时考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.即(a+b)(a﹣b)=a2﹣b2.4.(2014春•富宁县校级期末)已知(x+a)(x+b)=x2+5x+ab,则a+b= 5 .考点:多项式乘多项式.专题:计算题.分析:将等式的左边展开,由对应相等得答案.解答:解:∵(x+a)(x+b)=x2+5x+ab,∴x2+(a+b)x+ab=x2+5x+ab,∴a+b=5,故答案为5.点评:本题考查了多项式乘以多项式,是基础知识要熟练掌握.5.(2014秋•蓟县期末)若(x+2)(x﹣m)=x2﹣3x﹣n,则m= 5 ,n= 10 .考点:多项式乘多项式.分析:根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.解答:解:∵(x+2)(x﹣m)=x2﹣mx+2x﹣2m=x2+(﹣m+2)x﹣2m=x2﹣3x﹣n,∴﹣m+2=﹣3,n=2m,∴m=5,n=10;故答案为:5,10.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.6.(2013秋•东城区期末)计算:(m+2)(m﹣2)﹣(m﹣1)(m+5)= 1﹣4m .考点:多项式乘多项式;平方差公式.分析:先运用平方差公式和多项式乘多项式的法则进行计算,再合并同类项.解答:解:(m+2)(m﹣2)﹣(m﹣1)(m+5)=m2﹣4﹣m2﹣4m+5=1﹣4m.故答案为:1﹣4m.点评:本题主要考查了平方差公式和多项式乘多项式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.7.(2013秋•孟津县期末)要使(x2+ax+1)(3x2+3x+1)的展开式中不含x3项,则a= ﹣1 .考点:多项式乘多项式.分析:先展开式子,找出所有x3项的系数,令其为0,即可求a的值.解答:解:∵(x2+ax+1)(3x2+3x+1)=4x4+3x3+x2+3ax3+3ax2+ax+3x2+3x+1,=4x4+(3a+3)x3+(1+3a+3)x2+(a+3)x+1,又∵展开式中不含x3项∴3a+3=0,解得:a=﹣1.故答案为:﹣1.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0,注意各项符号的处理.8.(2014春•北仑区校级期中)已知m+n=2,mn=﹣2,则(1+m)(1+n)的值为 1 .考点:多项式乘多项式.分析:根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,再代入计算即可.解答:解:∵m+n=2,mn=﹣2,∴(1+m)(1+n)=1+n+m+mn=1+2﹣2=1;故答案为:1.点评:本题主要考查多项式乘以多项式,掌握多项式乘以多项式的法则是本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.9.(2014春•东营区校级期中)已知:(x+3)(x+p)=x2+mx+36,则p= 12 ,m= 15 .考点:多项式乘多项式.分析:利用多项式乘以多项式法则,直接去括号,进而让各项系数相等求出即可.解答:解:∵(x+3)(x+p)=x2+mx+36,∴x2+(p+3)x+3p=x2+mx+36,∴3p=36,p+3=m,解得:p=12,m=15,故答案为:12,15.点评:此题主要考查了多项式乘以多项式,正确计算得出对应系数相等是解题关键.10.(2014春•贺兰县校级期中)若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为1、6 .考点:多项式乘多项式.分析:先根据多项式乘以多项式的法则计算(y+3)(y﹣2),再根据多项式相等的条件即可求出m、n的值.解答:解:∵(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴y2+my+n=y2+y﹣6,∴m=1,n=﹣6.故答案为:1、6.点评:本题主要考查多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn.注意不要漏项,漏字母,有同类项的合并同类项.11.(2014春•雁塔区校级期中)如图:有足够的长方形和正方形卡片,如果拼成的长方形(不重叠无缝隙)的长和宽分别是2a+b和a+b,若应选取1号卡片x张、2号卡片y张、3号卡片z张,则x+y+z= 6 .考点:多项式乘多项式.分析:根据多项式乘多项式的法则得出需要用的卡片数,再把它们相加即可得出答案.解答:解:∵(2a+b)(a+b)=2a2+3ab+b2,∴需要用1号卡2张,2号卡1张,3号卡3张,∴x+y+z=2+1+3=6;故答案为:6.点评:此题考查了多项式乘以多项式,掌握多项式乘多项式的法则是本题的关键,多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn.12.(2014秋•宜宾校级期中)如果(x+m)与(x+)的乘积中不含关于x的一次项,则m= ﹣.考点:多项式乘多项式.专题:计算题.分析:原式利用多项式乘多项式法则计算,根据乘积中不含x的一次项,求出m的值即可.解答:解:原式=x2+(m+)x+m,由结果不含x的一次项,得到m+=0,解得:m=﹣,故答案为:﹣点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.13.(2014秋•如皋市校级期中)若多项式x2+ax+b是(x+1)与(x﹣2)乘积的结果,则a+b的值为﹣3 .考点:多项式乘多项式.分析:直接利用多项式乘以多项式运算法则求出a,b的值,进而得出答案.解答:解:∵x2+ax+b=(x+1)(x﹣2),∴x2+ax+b=x2﹣x﹣2,∴a=﹣1,b=﹣2,∴a+b=﹣3.故答案为:﹣3.点评:此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.14.(2014春•崇州市校级期中)若(x2+kx+5)(x3+2x+3)的展开式中不含x2的项,则k 的值为﹣1.5 .考点:多项式乘多项式.分析:先展开式子,找出所有x2项的系数,令其为0,即可求k的值.解答:解:∵(x2+kx+5)(x3+2x+3)=x5+2x3+3x2+kx4+2kx2+3kx+5x3+10x+15,=x5+kx4+7x3+(3+2k)x2+(3k+10)x+15,又∵展开式中不含x2项,∴3+2k=0,解得:k=﹣1.5.故答案为:﹣1.5.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0,注意各项符号的处理.15.(2014春•阜宁县期中)(x2+mx﹣1)与(x﹣2)的积中不含x2项,则m的值是 2 .考点:多项式乘多项式.分析:先根据多项式乘多项式的运算法则(a+b)(m+n)=am+an+bm+bn,先展开,再根据题意,二次项的系数等于0列式求解即可.解答:解:(x2+mx﹣1)(x﹣2)=x3+(﹣2+m)x2+(﹣1﹣2m)x+2,∵不含x2项,∴﹣2+m=0,解得m=2.故答案为:2.点评:本题主要考查单项式与多项式的乘法,掌握运算法则和不含某一项就让这一项的系数等于0是解题的关键.16.(2014秋•启东市校级月考)已知(x﹣4)(x+9)=x2+mx+n,则m+n= ﹣31 .考点:多项式乘多项式.专题:计算题.分析:已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m与n的值,即可求出m+n的值.解答:解:∵(x﹣4)(x+9)=x2+5x﹣36=x2+mx+n,∴m=5,n=﹣36,则m+n=5﹣36=﹣31.故答案为:﹣31.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.17.(2014秋•常州校级月考)①用甲图所示的大小正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片 2 张,B类卡片 3 张,C类卡片 1 张.②现有长为a+3b,宽为a+b的长方形(如乙图),你能用上属三类卡片拼出这个长方形吗?试试看!考点:多项式乘多项式.专题:计算题.分析:①利用多项式乘以多项式法则计算(2a+b)(a+b),得到结果,即可做出判断;②利用多项式乘以多项式法则计算(a+3b)(a+b),得到结果,即可做出判断.解答:解:①长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为ab,C图形面积为b2,则可知需要A类卡片2张,B类卡片3张,C类卡片1张.故本题答案为:2;3;1;②∵现有长为a+3b,宽为a+b的长方形,∴(a+3b)(a+b)=a2+4ab+3b2,∵A图形面积为a2,B图形面积为ab,C图形面积为b2,∴可知需要A类卡片1张,B类卡片4张,C类卡片3张;(2a+b)(a+b)=2a2+3ab+b2,则拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片2张,B类卡片3张,C类卡片1张.点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.18.(2013春•桐乡市期末)观察下列各式的计算结果与相乘的两个多项式之间的关系:(x+1)(x2﹣x+1)=x3+1;(x+2)(x2﹣2x+4)=x3+8;(x+3)(x2﹣3x+9)=x3+27.请根据以上规律填空:(x+y)(x2﹣xy+y2)= x3+y3.考点:多项式乘多项式.专题:规律型.分析:根据所给的多项式乘多项式的运算法则以及得出的规律,即可得出(x+y)(x2﹣xy+y2)=x3+y3.解答:解:∵(x+1)(x2﹣x+1)=x3+1;(x+2)(x2﹣2x+4)=x3+8;(x+3)(x2﹣3x+9)=x3+27,∴(x+y)(x2﹣xy+y2)=x3+y3;故答案为:x3+y3;点评:此题考查了多项式乘多项式,掌握多项式乘多项式的法则和得出的规律是本题的关键,注意不要漏项,漏字母,有同类项的合并同类项.19.(2012秋•越秀区校级期末)若(x﹣2)(x+m)=x2+nx﹣6,则m= 3 n= 1 .考点:多项式乘多项式.分析:先把原式进行变形为x2+(m﹣2)x﹣2m,再根据原式等于x2+nx﹣6,求出m的值,从而求出n的值.解答:解:∵(x﹣2)(x+m)=x2+mx﹣2x﹣2m=x2+(m﹣2)x﹣2m又∵(x﹣2)(x+m)=x2+nx﹣6,∴x2+(m﹣2)x﹣2m=x2+nx﹣6,∴m﹣2=n,2m=6,解得:m=3,n=1.故答案为:3,1.点评:此题考查了多项式乘多项式,根据项式乘多项式的运算法则先把原式进行变形是解题的关键,注意不要漏项,漏字母.20.(2013秋•万州区校级期中)(x+a)与5(x+2)的乘积中不含x的一次项,则a= ﹣2 .考点:多项式乘多项式.分析:把式子展开,找到所有x项的系数,令其和为0,求解即可.解答:解:∵5(x+a)(x+2)=5(x2+ax+2x+2a)=5x2+5(a+2)x+5a,又∵乘积中不含x一次项,∴a+2=0,解得a=﹣2.故答案为:﹣2.点评:本题主要考查了多项式乘多项式,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.21.(2013秋•东安县校级期中)在(ax2+bx﹣3)(x2﹣x+8)的结果中不含x3和x项,则a= ﹣,b= ﹣.考点:多项式乘多项式.分析:首先利用多项式乘法法则计算出(ax2+bx﹣3)(x2﹣x+8),再根据积不含x3和x项,可得含x3的项和含x的项的系数等于零,即可求出a与b的值.解答:解:(ax2+bx﹣3)(x2﹣x+8)=ax4﹣ax3+8ax2+bx3﹣bx2+8bx﹣3x2+x﹣24=ax4+(﹣a+b)x3+(8a﹣b﹣3)x2+(8b+)x﹣24,∵积不含x3的项,也不含x的项,∴﹣a+b=0,8b+=0,解得:b=﹣,a=﹣,故答案为:﹣,﹣.点评:此题主要考查了多项式乘以多项式,关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.22.(2013秋•川汇区校级月考)若(x2﹣mx+1)(x+2)的积中x的二次项系数为零,则m 的值为 2 .考点:多项式乘多项式.专题:计算题.分析:原式利用多项式乘以多项式法则计算,根据结果中x的二次项系数为零,求出m的值即可.解答:解:原式=x3+(2﹣m)x2﹣(2m﹣1)x+2,由结果中x的二次项系数为0,得到2﹣m=0,解得:m=2,故答案为:2点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.23.(2013春•西湖区校级月考)若(x+m)(x﹣3)=x2+nx﹣15,则m= 5 ,n= 2 .考点:多项式乘多项式.分析:首先把(x+m)(x﹣3)利用多项式的乘法公式展开,然后根据多项式相等的条件:对应项的系数相同即可得到关于m、n的方程,从而求解.解答:解:(x+m)(x﹣3)=x2+(m﹣3)x﹣3m,则,解得:.故答案是:5,2.点评:本题考查了多项式的乘法法则以及多项式相等的条件,理解多项式的乘法法则是关键.24.(2012•润州区校级模拟)计算:﹣3x2y3•x2y2= ﹣3x4y5,(x+1)(x﹣3)= x2﹣2x﹣3 .考点:多项式乘多项式;单项式乘单项式.分析:分别利用单项式乘以单项式、多项式乘以多项式的运算法则进行计算即可.解答:解:﹣3x2y3•x2y2=﹣3x2+2y3+2=﹣3x4y5(x+1)(x﹣3)=x2﹣3x+x﹣3=x2﹣2x﹣3 故答案为:﹣3x4y5,x2﹣2x﹣3点评:本题考查了整式的有关运算,单项式乘以单项式时,系数和系数相乘作为结果的系数,相同字母和相同字母按同底数幂的乘法计算即可.25.(2012•思明区校级模拟)已知a﹣b=2,(a﹣1)(b+2)<ab,则a的取值范围是a <0 .考点:多项式乘多项式;解一元一次不等式.分析:先将条件变形为b=a﹣2,然后代入不等式,最后解一个关于a的不等式就可以得出结论.解答:解:∵a﹣b=2,∴b=a﹣2,∴(a﹣1)(a﹣2+2)<a(a﹣2),∴a2﹣a<a2﹣2a,∴a<0.故答案为:a<0点评:本题考查了单项式乘以多项式的运用,一元一次不等式的解法的运用,在解答过程中对不等式的性质3要正确理解.26.(2012秋•南陵县期末)若(x+2)(x﹣2)=x2﹣mx﹣n,则m= 0 ,n= 4 .考点:多项式乘多项式.分析:首先利用平方差公式计算(x+2)(x﹣2),然后根据对应项的系数相同即可求得m、n 的值.解答:解:(x+2)(x﹣2)=x2﹣4=x2﹣mx﹣n,则m=0,n=4.故答案是:0,4.点评:本题考查了平方差公式,理解多项式相等的条件是关键.27.(2012春•姜堰市期末)若干张如图所示的A类,B类正方形卡片和C类长方形卡片,如果要拼成一个长为(2a+b)宽为(a+b)的大长方形,则需要C类卡片 3 张.考点:多项式乘多项式.专题:计算题.分析:根据长乘以宽表示出大长方形的面积,即可确定出C类卡片的张数.解答:解:根据题意得:(2a+b)(a+b)=2a2+3ab+b2,∵一张C类卡片面积为ab,∴需要C类卡片3张.故答案为:3.点评:此题考查了多项式乘多项式,弄清题意是解本题的关键.28.(2012春•金阊区校级期中)计算的结果不含关于字母x的一次项,那么m等于.考点:多项式乘多项式.专题:计算题.分析:根据乘法公式:(x+a)(x+b)=x2+(a+b)x+ab得到(x+m)(x+)=x2+(m+)x+m,然后根据题意得到m+=0,解方程即可得到m的值.解答:解:(x+m)(x+)=x2+(m+)x+m,∵的结果不含关于字母x的一次项,∴m+=0,∴m=﹣.故答案为﹣.点评:本题考查了多项式乘多项式:把一个多项式的每一项与另一多项式相乘,即多项式乘多项式转化为单项式乘多项式,再进行单项式乘多项式,然后进行合并同类项;记住乘法公式:(x+a)(x+b)=x2+(a+b)x+ab.29.(2012秋•简阳市校级期中)若多项式x2+ax﹣b=(x﹣2)(x+1),则a b= 1 .考点:多项式乘多项式.分析:先根据多项式乘以多项式的法则计算(x﹣2)(x+1),再比较等式两边,得出x的一次项系数为a,常数项为﹣b,然后将a,b的值代入计算即可.解答:解:∵(x﹣2)(x+1)=x2﹣x﹣2,∴x2+ax﹣b=x2﹣x﹣2.比较两边系数,得a=﹣1,b=2,∴a b=(﹣1)2=1.故答案为1.点评:本题考查了多项式乘以多项式的法则,用到的知识点为:(x+a)(x+b)=x2+(a+b)x+ab.30.(2012春•江阴市校级期中)计算:(﹣p)2•(﹣p)3= ﹣p5;= ﹣a6b3;2xy•(﹣3xz )=﹣6x2yz;(5﹣a)(6+a)= ﹣a2﹣a+30 .考点:多项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式.分析:根据同底数幂的乘法、积的乘方和幂的乘方、单项式除以单项式法则、多项式乘以多项式法则求出每个式子的值即可.解答:解:(﹣p)2•(﹣p)3=(﹣p)5=﹣p5,(﹣a2b)3=(﹣)3•(a2)3b3=﹣a6b3,∵﹣6x2yz÷2xy=﹣3xz,∴2xy•(﹣3xz)=﹣6x2yz,(5﹣a)(6+a)=30+5a﹣6a﹣a2=30﹣a﹣a2=﹣a2﹣a+30,故答案为:﹣p5,﹣a6b3,﹣3xz,﹣a2﹣a+30.点评:本题考查了同底数幂的乘法、积的乘方和幂的乘方、单项式除以单项式法则、多项式乘以多项式法则的应用.。

苏科版七年级数学下册9.3 多项式乘多项式 同步练习(包含答案解析)

苏科版七年级数学下册9.3 多项式乘多项式 同步练习(包含答案解析)

9.3多项式乘多项式一、选择题1.计算的结果为( )A. B. C. D.2.若,则( )A. B.C. D.3.若,则的值是( )A. B. C. D. 14.已知,,那么的值为( )A. B. C. 0 D. 55.设,,则A、B的大小关系为( )A. B. C. D. 无法确定6.下列各式中,计算正确的是( )A. B.C. D.7.若与的乘积中不含x的一次项,则n的值为( )A. B. 2 C. 0 D. 18.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为,宽为的大长方形,则需要A类、B类和C类卡片的张数分别为( )A. 2,3,7B. 3,7,2C. 2,5,3D. 2,5,79.如图,边长为的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为( )A. B. C. D.10.若a,b,k均为整数,则满足等式的所有k值有( )个.A. 2B. 3C. 6D. 8二、填空题11.计算:_________________.12.若矩形的面积为,长为,则宽为______.13.已知,则c的值为_____________.14.把化成的形式后为__________.15.已知多项式恰等于两个多项式和的积,则______.16.已知,则代数式的值为______ .17.小青和小红分别计算同一道整式乘法题:,小青由于抄错了一个多项式中a的符号,得到的结果为,小红由于抄错了第二个多项式中的x的系数,得到的结果为,则这道题的正确结果是______.18.若,那么________.三、计算题19.计算:四、解答题20.欢欢与乐乐两人共同计算,欢欢抄错为,得到的结果为;乐乐抄错为,得到的结果为.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.21.某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是米的正方形雕像.(1)请用含a,b的代数式表示绿化面积S;(2)当,时,求绿化面积.22.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证恒等式成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式______;(2)试将等式______补充完整,并用上述拼图的方法说明它的正确性.答案和解析1.【答案】B【解析】【分析】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.了多项式乘多项式,熟练掌握运算法则是解本题的关键.原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式,故选:B.2.【答案】D【解析】解:,而,,,,,.故选D.首先根据多项式的乘法法则展开,然后利用根据对应项的系数相等列式求解即可.此题主要考查了多项式的乘法法则,利用多项式的乘法法则展开多项式,再利用对应项的系数相等就可以解决问题.3.【答案】A【解析】解:,,解得:,,.故选:A.直接利用多项式乘以多项式运算法则计算得出m,n,再代入计算可得答案.此题主要考查了多项式乘以多项式运算,正确掌握运算法则是解题关键.4.【答案】C【解析】【分析】此题考查了整式的混合运算化简求值,涉及的知识有:多项式乘多项式,去括号合并,以及合并同类项法则,熟练掌握法则是解本题的关键.所求式子利用多项式乘多项式法则计算,整理后将与xy的值代入计算即可求出值.【解答】解:当、时,,故选C.5.【答案】A【解析】解:,,,;故选:A.根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案.本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.6.【答案】B【解析】【分析】本题考查了单项式与多项式相乘的法则、平方差公式、完全平方公式、多项式乘以多项式法则;熟记公式和法则是解决问题的关键.根据单项式与多项式相乘的法则得出选项A不正确;根据平方差公式得出选项B正确;根据完全平方公式得出选项C不正确;根据多项式乘以多项式法则得出选项D不正确;即可得出结论.【解答】解:,选项A不正确;B.,选项B正确;C.,选项C不正确;D.,选项D不正确;故选B.7.【答案】A【解析】解:,又与的乘积中不含x的一次项,,;故选:A.根据多项式乘以多项式的法则,可表示为,再根据与的乘积中不含x的一次项,得出,求出n的值即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.8.【答案】A【解析】解:长为,宽为的长方形的面积为:,类卡片的面积为,B类卡片的面积为,C类卡片的面积为ab,需要A类卡片2张,B类卡片3张,C类卡片7张.故选:A.根据长方形的面积长宽,求出长为,宽为的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少张即可.此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.9.【答案】B【解析】【分析】此题主要考查了多项式乘法,正确利用图形面积关系是解题关键.首先求出大正方形面积,进而利用图形总面积不变得出等式求出答案.【解答】解:,拼成的长方形一边长为m,.故另一边长为:.故选:B.10.【答案】C【解析】解:,,,,,b,k均为整数,,,;,,;,,;故k的值共有6个,故选:C.先把等式左边展开,由对应相等得出,;再由a,b,k均为整数,求出k的值即可.本题考查了多项式乘以多项式,是基础知识要熟练掌握.11.【答案】【解析】【分析】此题主要考查多项式乘多项式直接利用平方差公式计算解答即可.【解答】解:,故答案为.12.【答案】a【解析】解:矩形的宽,故答案为:a.根据多项式除以多项式的运算法则计算即可.本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.13.【答案】【解析】【分析】本题考查了多项式乘多项式,已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出c的值即可【解答】解:已知等式整理得:,则,故答案为.14.【答案】【解析】【分析】本题考查了二次函数的三种形式:一般式:b,c是常数,,该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是;顶点式:h,k是常数,,其中为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为,熟练掌握二次函数的一般式是解题的关键,根据二次函数的一般式形式把整理即可.【解答】解:,把化成的形式后为.故答案为.15.【答案】【解析】解:,由题意知,,则,所以,故答案为:.先计算出,根据得出n、a的值,代入计算可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则.16.【答案】【解析】【分析】此题主要考查了多项式乘以多项式以及代数式求值,正确利用整体思想代入是解题关键.直接利用已知得出,再利用多项式乘法去括号进而求出答案.【解答】解:,,.故答案为.17.【答案】【解析】解:根据题意可知小青由于抄错了一个多项式中a的符号,得到的结果为,那么,可得,小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知,即,可得,解关于的方程组,可得,,.故答案为:.根据小青由于抄错了一个多项式中a的符号,得到的结果为,可知,根据等于号的性质可得;再根据小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得,解关于的方程组即可求a、b的值,进而可求一次项系数.本题考查了多项式乘以多项式的法则、解方程组,解题的关键是理解题目表达的意思.18.【答案】1【解析】【分析】本题考查了多项式的乘法,完全平方公式等有关知识,先用完全平方公式计算出,再确定,、、、的值,得结论.【解答】解:,,,,,.故答案为1.19.【答案】解:原式;原式【解析】原式利用多项式乘以多项式法则计算,去括号合并即可得到结果;原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以多项式法则计算即可得到结果.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.20.【答案】解:根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为,那么,可得乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知即,可得,解关于的方程组,可得,;正确的式子:【解析】根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为,可知,于是;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得到,解关于的方程组即可求出a、b的值;把a、b的值代入原式求出整式乘法的正确结果.本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.21.【答案】解:根据题意得:长方形地块的面积,正方形雕像的面积为:,则绿化面积,即用含a,b的代数式表示绿化面积,把,代入,得,即绿化面积为87平方米.【解析】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.根据绿化面积长方形地块的面积正方形雕像的面积,列式计算即可,把,带入所求结果,计算后可得到答案.22.【答案】;;如图所示:恒等式是.故答案为:.【解析】【分析】本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.根据图形是一个长方形求出长和宽,相乘即可;正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.【解答】解:观察图乙得知:长方形的长为:,宽为,面积为:;故答案为:.见答案.。

七下9.3多项式乘以多项式拓展训练题(有答案)

七下9.3多项式乘以多项式拓展训练题(有答案)

七下9.3多项式乘以多项式拓展训练题姓名:___________班级:___________考号:___________一、选择题1. 若(x −3)(x +5)=x 2+bx +c ,则b −c 的值为( )A. −17B. 17C. 13D. −132. 若关于x 的代数式(x 2+px +q)(x −2)展开后不含x 的一次项,则p 与q 的关系是( )A. p =2qB. q =2pC. p +2q =0D. q +2p =03. 若关于x 的多项式x 2−px −6含有因式x −3,则实数p 的值为( )A. −5B. 5C. −1D. 14. 已知m −n =2,mn =−1,则(1+2m)(1−2n)的值( )A. −7B. 1C. 7D. 95. 如图,有正方形A 类、B 类和长方形C 类卡片各若干张,如果要拼一个宽为( a +2b)、长为(2a +b)的大长方形,则需要C 类卡片( )A. 6张B. 5张C. 4张D. 3张6. 下列计算错误的有( ) ①(2x +y)2=4x 2+y 2;②(−3b −a)(a −3b)=a 2−9b 2;③2×2−2=12; ④(−1)0=−1; ⑤(x −12)2=x 2−2x +14;⑥(−a 2)m =(−a m )2. A. 2个 B. 3个 C. 4个 D. 5个7. 如图,长方形内的阴影部分是由四个半圆围成的图形,则阴影部分的面积是( )A. 12π(2ab −b 2)B. 14π(2ab −b 2)C. 14π(b 2−a 2)D. 18π(b 2−a 2) 8. 如果4个不同的正整数m 、n 、p 、q 满足(7−m)(7−n)(7−p)(7−q)=4,那么,m +n +p +q 等于( )A. 10B. 2lC. 24D. 28二、填空题9. 已知a +b =2,ab =−7,则(a −2)(b −2)= ______ .10. 若(2x −3)(5−x)=ax 2+bx +c ,则a +b +c =________.11. 图中的四边形均为矩形根据图形,写出一个正确的等式:______ .12. 若(1+x)(2x 2+ax +1)的计算结果中,x 2项的系数为−2,则a 的值为________。

七年级数学下册 第9章 9.3 多项式乘多项式同步练习(含解析)(新版)苏科版-(新版)苏科版初中七

七年级数学下册 第9章 9.3 多项式乘多项式同步练习(含解析)(新版)苏科版-(新版)苏科版初中七

第9章多项式乘多项式一、单选题(共5题;共10分)1、(x﹣1)(2x+3)的计算结果是()A、2x2+x﹣3B、2x2﹣x﹣3C、2x2﹣x+3D、x2﹣2x﹣32、若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A、﹣13B、13C、2D、﹣153、李老师做了个长方形教具,其中一边长为2a+b,另一边长为a﹣b,则该长方形的面积为()A、6a+bB、2a2﹣ab﹣b2C、3aD、10a﹣b4、已知则的值为()A、2B、-2C、0D、35、如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A、﹣3B、3C、0D、1二、填空题(共9题;共10分)6、如果要使(x+1)(x2﹣2ax+a2)的乘积中不含x2项,则a=________.7、计算:(a﹣2)(a+3)﹣a•a=________.8、若(x+2)(x﹣n)=x2+mx+8,则mn=________.9、a+b=5,ab=2,则(a﹣2)(3b﹣6)=________.10、已知x+y=5,xy=2,则(x+2)(y+2)=________.11、若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a=________.12、计算:(x﹣1)(x+3)=________.13、如果(x+1)(x+m)的积中不含x的一次项,则m的值为________.14、我国南宋时期杰出的数学家杨辉是钱塘人,下面的图表是他在《详解九章算术》中记载的“杨辉三角”.此图揭示了(为非负整数)的展开式的项数及各项系数的有关规律.(1)请仔细观察,填出(a+b)4的展开式中所缺的系数.(a+b)4=a4+4a3b+________a2b2+4ab2+b4(2)此规律还可以解决实际问题:假如今天是星期三,再过7天还是星期三,那么再过天是星期________.三、计算题(共7题;共55分)15、解方程:(2x+5)(x﹣1)=2(x+4)(x﹣3)16、计算:(1)(2x﹣7y)(3x+4y﹣1);(2)(x﹣y)(x2+xy+y2).17、计算:①(x+2)(x﹣4)②(x+2)(x﹣2)18、计算:(1)(a2+3)(a﹣2)﹣a(a2﹣2a﹣2);(2)(2m+n)(2m﹣n)+(m+n)2﹣2(2m2﹣mn).19、已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3和x2项.(1)求m、n的值;(2)求(m+n)(m2﹣mn+n2)的值.20、计算题:(1)(a﹣2b﹣3c)2;(2)(x+2y﹣z)(x﹣2y﹣z)﹣(x+y﹣z)2.21、已知(x+my)(x+ny)=x2+2xy﹣8y2,求m2n+mn2的值.四、解答题(共1题;共10分)22、对于任意有理数,我们规定符号= ,例如:== .(1)求的值;(2)求的值,其中=0.答案解析部分一、单选题=2x2﹣2x+3x﹣3,=2x2+x﹣3.故选:A.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.2、【答案】A 【考点】多项式乘多项式【解析】【解答】解:∵(x﹣3)(x+5) =x2+5x ﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.【分析】先计算(x﹣3)(x+5),然后将各个项的系数依次对应相等,求出a、b的值,再代入计算即可.3、【答案】B 【考点】多项式乘多项式【解析】【解答】解:根据题意得:(2a+b)(a﹣b)=2a2﹣2ab+ab﹣b2=2a2﹣ab﹣b2.故选B.【分析】两边长相乘,利用多项式乘以多项式法则计算,合并即可得到长方形面积.4、【答案】B 【考点】多项式乘多项式【解析】【解答】 ( 2 −m ) ( 2 −n )=4-2(m+n)+mn=4-2×2-2=-2.故选B.【分析】计算 ( 2 − m ) ( 2 − n ),再将m + n = 2 , m n = − 2 代入求值.5、【答案】A 【考点】多项式乘多项式【解析】【解答】(x+m)(x+3)=x2+(3+m)x+3m,因为乘积不含x项,则3+m=0,则m=-3.故选A.【分析】求出它们的乘积,使含x项的系数为0,即可求出m的值.二、填空题6、【答案】【考点】多项式乘多项式【解析】【解答】解:原式=x3﹣2ax2+a2x+x2﹣2ax+a2=x3+(1﹣2a)x2+a2x+a2,∵乘积中不含x2项,∴1﹣2a=0,解得:a= ,故答案为:.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.7、【答案】a﹣6 【考点】同底数幂的乘法,多项式乘多项式【解析】【解答】解:(a﹣2)(a+3)﹣a•a =a2+3a﹣2a﹣6﹣a2=a﹣6.故答案为:a﹣6.【分析】根据多项式乘以多项式,即可解答.8、【答案】-24 【考点】多项式乘多项式【解析】【解答】解:∵(x+2)(x﹣n)=x2+mx+8,∴x2﹣nx+2x﹣2n=x2+mx+8,x2+(2﹣n)x﹣2n=x2+mx+8则,解得:故mn=﹣24.故答案为:﹣24.【分析】直接利用多项式乘以多项式运算法则去括号,进而得出关于m,n的等式,即可求出答案.∴(a﹣2)(3b﹣6)=3ab﹣6a﹣6b+12=3ab﹣6(a+b)+12=3×2﹣6×5+12=﹣12.故答案为:﹣12.【分析】直接利用多项式乘以多项式运算法则去括号,进而将已知代入求出答案.10、【答案】16 【考点】多项式乘多项式【解析】【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.【分析】将原式展开可得xy+2(x+y)+4,代入求值即可.11、【答案】﹣【考点】多项式乘多项式【解析】【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣【分析】根据题意列出算式,计算后根据结果不含二次项确定出a的值即可.12、【答案】x2+2x﹣3 【考点】多项式乘多项式【解析】【解答】解:(x﹣1)(x+3)=x2+3x﹣x﹣3=x2+2x﹣3.故答案为:x2+2x﹣3.【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.13、【答案】-1 【考点】多项式乘多项式【解析】【解答】解:原式=x2+(1+m)x+m,由于式子中不含x的一次项,则x的一次项系数为零,则:1+m=0解得:m=-1【分析】先将括号去掉,然后将含x的项进行合并.14、【答案】(1)6(2)四【考点】多项式乘多项式【解析】【解答】(1)(a+b)4的系数在第5层,第3个系数刚好是上面相邻两个数的和是3+3=6;故答案为6.(2)∵814=(7+1)14=714+14×713+91×712+…+14×7+1,∴814除以7的余数为1,∴假如今天是星期三,那么再过814天是星期四,故答案为:四.【分析】(1)根据杨辉三角,下一行的系数是上一行相邻两系数的和,然后写出各项的系数即可;(2)运用前面的规律,将814化为(7+1)14.三、计算题15、【答案】解:∵(2x+5)(x﹣1)=2(x+4)(x﹣3),∴2x2+3x﹣5=2x2+2x﹣24,移项合并,得x=﹣19.【考点】多项式乘多项式【解析】【分析】根据多项式乘多项式的法则计算后,可得到一元一次方程,解方程即可求得.16、【答案】(1)解:原式=6x2+8xy﹣2x﹣21xy﹣28y2+7y =6x2﹣2x﹣13xy﹣28y2+7y(2)解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3【考点】多项式乘多项式【解析】【分析】(1)原式利用多项式乘多项式法则计算,合并即可得到结果;(2)原式利用多项式乘多项式法则计算,合并即可得到结果.17、【答案】解:①(x+2)(x﹣4)=x2﹣2x﹣8;②(x+2)(x﹣2)=x2﹣4.故答案为:①x2﹣2x﹣8;②x2﹣4 【考点】多项式乘多项式【解析】【分析】①原式利用多项式乘以多项式法则计算,合并即可得到结果;②原式利用平方差公式化简即可得到结果.18、【答案】(1)解:原式=a3﹣2a2+3a﹣6﹣a3+2a2+2a =5a﹣6(2)解:原式=4m2﹣n2+m2+2mn+n2﹣4m2+2mn =m2+4mn 【考点】多项式乘多项式【解析】【分析】(1)原式第一项利用多项式乘多项式法则计算,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.19、【答案】(1)解:原式=x5﹣3x4+(m+1)x3+(n﹣3m)x2+(m﹣3n)x+n,由展开式不含x3和x2项,得到m+1=0,n﹣3m=0,解得:m=﹣1,n=﹣3;(2)解:当m=﹣1,n=﹣3时,原式=m3﹣m2n+mn2+m2n﹣mn2+n3=m3+n3=﹣1﹣27=﹣28.【考点】多项式乘多项式【解析】【分析】(1)原式利用多项式乘以多项式法则计算,根据结果中不含x3和x2项,求出m与n的值即可;(2)原式利用多项式乘以多项式法则计算,将m与n的值代入计算即可求出值.20、【答案】(1)解:原式=(a﹣2b)2﹣2×(a﹣2b)×3c+9c2=a2+4b2﹣4ab﹣6ac+12bc+9c2=a2+4b2+9c2﹣4ab﹣6ac+12bc(2)解:原式=[(x﹣z)+2y][(x﹣z)﹣2y]﹣[(x﹣z)+y]2=(x﹣z)2﹣4y2﹣(x﹣z)2﹣2(x﹣z)y﹣y2=﹣5y2﹣2xy+2yz 【考点】多项式乘多项式,完全平方公式【解析】【分析】(1)将a﹣2b看做一个整体=[(a﹣2b)﹣3c]2,运用完全平方差公式,逐步展开去括号计算.(2)首先将(x+2y﹣z)(x﹣2y﹣z)看做[(x﹣z)+2y][(x﹣z)﹣2y]运用平方差公式,再运用完全平方式,对(x+y﹣z)2看做[(x﹣z)+y]2运用完全平方式,两式相减利用有理式的混合运算.21、【答案】解:∵(x+my)(x+ny)=x2+2xy﹣8y2,∴x2+nxy+mxy+mny2=x2+(m+n)xy+mny2=x2+2xy﹣8y2,∴m+n=2,mn=﹣8,∴m2n+mn2=mn(m+n)=﹣8×2=﹣16 【考点】多项式乘多项式【解析】【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn计算,再把m2n+mn2因式分解,即可得出答案.四、解答题22、【答案】(1)解:( - 2 , 3 )⊗( 4 , 5 )=(-2)×5-3×4=-10-12=-22.(2)解:(3 a+ 1 ,a- 2 )⊗( a+ 2 , a- 3 ) =(3a+1)(a-3)-(a-2)(a+2)=3a2-8a-3-a2+4=2a2-8a+1,因为a2- 4 a+ 1 =0,所以a2-4a=-1,则原式=2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1. 【考点】多项式乘多项式【解析】【分析】(1)根据题中的新定义,得( - 2 , 3 )⊗( 4 , 5 )=(-2)×5-3×4;(2)根据新定义化简(3 a+ 1 , a- 2 )⊗( a+ 2 , a- 3 ),根据a2 - 4 a+ 1 =0,得a2-4a=-1,。

9.3 多项式乘以多项式 苏科版七年级数学下册精讲精练基础篇(含答案)

9.3 多项式乘以多项式 苏科版七年级数学下册精讲精练基础篇(含答案)

专题9.8 多项式乘以多项式(基础篇)(专项练习)一、单选题1.若,则()A.,B.,C.,D.,2.下列运算正确的是()A.B.C.D.3.若,则的值为().A.8B.C.4D.4.若与的乘积中不含的一次项,则实数的值为()A.1B.C.0D.25.若,,则的值是()A.B.1C.5D.6.小羽制作了如图所示的卡片类,类,类各张,其中,两类卡片都是正方形,类卡片是长方形,现要拼一个长为,宽为的大长方形,那么所准备的类卡片的张数()A.够用,剩余4张B.够用,剩余5张C.不够用,还缺4张D.不够用,还缺5张7.三个连续偶数,中间一个为n,这三个连续偶数之积为()A.B.C.D.8.若不管a取何值,多项式与都相等,则m、n的值分别为()A.﹣1,﹣1B.﹣1,1C.1,﹣1D.1,19.从前,一位地主把一块长为a米,宽为b米(a>b>100) 的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10 米,宽减少10 米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积将()A.变小了B.变大了C.没有变化D.可能变大也可能变小10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算法》一书中,用如图的三角形解释二项和的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”设的展开式中各项系数的和为,若,则的值为()A.B.C.D.二、填空题11.已知,,则的值为______.12.已知的展开式中不含x的二次项,则____________.13.已知ab=a+b+2020,则(a﹣1)(b﹣1)的值为____.14.若p、q、r均为整数,且,则r的值为___________.15.定义为二阶行列式,规定它的运算法则为,那么,___________.16.在数学课上,小明计算时,已正确得出结果,但课后不小心将第二个括号中的常数染黑了,若结果中不含有一次项,则被染黑的常数为__________.17.如图(图中长度单位:,阴影部分的面积是___________.18.观察以下等式:,,……根据你所发现规律,计算:__________.三、解答题19.计算(1) ;(2) .20.计算:(1);(2).21.先化简,再求值:,其中.22.已知的结果中不含关于字母的一次项.先化简,再求:的值.23.某学校准备在一块长为米,宽为米的长方形空地上修建一块长为米,宽为米的长方形草坪,四周铺设地砖(阴影部分).(1) 求铺设地砖的面积;(用含a、b的式子表示,结果化为最简)(2) 若,求铺设地砖的面积.24.探究应用:(1)计算:(x﹣1)(x2+x+1)=;(2x﹣y)(4x2+2xy+y2)=.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含字母a、b的等式表示该公式为:.(3)下列各式能用第(2)题的公式计算的是.A.(m+2)(m2+2m+4)B.(m﹣2n)(m2+2mn+2n2)C.(3﹣n)(9+3n+n2)D.(m﹣n)(m2+2mn+n2)(4)设A=109﹣1,利用上述规律,说明A能被37整除.参考答案1.C【分析】将左边的式子利用多项式乘多项式展开,根据多项式的每一项对应相等进行求解即可.解:,∴,解得:,当时,,符合题意;故选C.【点拨】本题考查多项式乘多项式的恒等问题.熟练掌握多项式乘多项式的运算法则,根据多项式的每一项对应相等进行计算是解题的关键.2.C【分析】根据整式的乘方,乘法法则进行计算,逐一判断即可解答.解:A.,故A不符合题意;B.,故B不符合题意;C.,故C符合题意;D.,故D不符合题意;故选:C.【点拨】本题考查了整式的混合运算,准确熟练地进行计算是解题的关键.3.D【分析】根据多项式乘以多项式运算法则可得,据此解答即可.解:∵,∴,故选:D.【点拨】本题考查了多项式乘以多项式,熟练掌握多项式乘以多项式运算法则是解本题的关键.4.A【分析】根据多项式乘以多项式的法则,可表示为,计算即可.解:根据题意得:,∵与的乘积中不含的一次项,∴,∴,故选:A.【点拨】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.5.D【分析】根据多项式乘多项式进行化简,然后再代值求解即可.解:,∵,,∴原式=;故选D.【点拨】本题主要考查多项式乘多项式的化简求值,熟练掌握多项式乘多项式是解题的关键.6.C【分析】根据大长方形的面积公式求出拼成大长方形的面积,再对比卡片的面积,即可求解.解:大长方形的面积为,类卡片的面积是,∴需要类卡片的张数是,∴不够用,还缺4张,故选:.【点拨】本题主要考查多项式与多项式的乘法与图形的面积,掌握多项式乘以多项式的计算方法是解题的关键.7.A【分析】首先表示出另外两个偶数,分别为n+2,n-2,然后计算出三个连续偶数之积即可.解:三个连续偶数,中间一个为n,另外两个为n+2,n-2,三个连续偶数之积为:故选A.【点拨】本题考查了整式的乘法运算,准确表示出三个连续偶数是本题的关键.8.A【分析】化简后合并同类项,利用相等的概念列式计算即可.解:多项式与都相等,所以,得,,得.或者,得.故选:A.【点拨】本题主要考查多项式乘多项式以及多项式相等的概念,能够化简多项式的乘积并通过相等的概念求解是解题关键.9.A【分析】原面积可列式为,第二年按照庄园主的想法则面积变为,又,通过计算可知租地面积变小了.解:由题意可知:原面积为(平方米),第二年按照庄园主的想法则面积变为平方米,∵,∴,∴面积变小了,故选:A.【点拨】本题考查了多项式乘多项式,关键在于学生认真读题结合所学知识完成计算.10.B【分析】由的展开式中各项系数的和为求出,可知,设,两边都乘2得,由②-①得,由,利用幂的乘方变形后代入即可.解:∵的展开式中各项系数的和为,,,设,∴,∴②-①得,∵,∴.故选择:B.【点拨】本题考查杨辉三角两项和的乘方展开规律,数列求和,幂的乘方法则,同底数幂的乘法法则,掌握杨辉三角两项和的乘方展开规律,数列求和的方法,幂的乘方法则,同底数幂的乘法法则,关键是利用倍乘算式再相减方法化简数列的和.11.【分析】先根据多项式乘以多项式计算,再把,代入,即可求解.解:∵,,∴原式.故答案为:【点拨】本题主要考查了多项式乘以多项式,熟练掌握多项式乘以多项式法则是解题的关键.12.1【分析】根据多项式乘以多项式的计算法则得到,再根据计算结果不含二次项及二次项系数为零进行求解即可.解:,∵的展开式中不含x的二次项,∴,∴,故答案为;1.【点拨】本题主要考查了多项式乘多项式中的无关型问题,熟知多项式乘以多项式的计算法则是解题的关键.13.【分析】将代数式根据多项式乘以多项式化简,再将已知式子代入求解即可.解:又ab=a+b+2020,原式故答案为:【点拨】本题考查了多项式乘以多项式,代数式求值,整体代入是解题的关键.14.2或或14或-14【分析】将展开,根据结果得到,,再结合p,q的范围求出具体值,代入计算可得r值.解:,则,,p、q、r均为整数,,或,,,或,,或,故答案为:2或或14或-14.【点拨】本题考查了多项式乘法,解题的关键是根据要求求出具体的p,q值.15.##【分析】根据,列式计算即可求解.解:.故答案为:.【点拨】本题考查整式的混合运算,解答本题的关键是明确题目中的新规定,会用新规定解答问题.16.2【分析】设被染黑的常数为a,利用乘法公式展开,根据一次项系数为0即可求出a的值.解:设被染黑的常数为a,则,∵结果中不含有一次项,∴,∴,故答案为:2.【点拨】本题考查多项式乘以多项式,解题的关键是掌握多项式乘以多项式的运算法则,本题也可以通过平方差公式快速求解.17.【分析】阴影部分的面积可看作是最大的长方形的面积空白部分长方形的面积,据此求解即可.解:由题意得:.故答案为:.【点拨】本题主要考查列代数式,解答的关键是理解清楚题意找到等量关系.18.【分析】根据题中规律每一个式子的结果等于两项的差,被减数的指数比第二个因式中第一项大1,减数都为1,利用规律来解答.解:根据,,,…的规律,得出:,,.故答案是:.【点拨】本题主要考查了平方差公式、及数字类的规律题,解题的关键是认真阅读,总结规律,并利用规律解决问题.19.(1) (2)【分析】(1)根据多项式乘以单项式的法则即可求解;(2)根据多项式乘以多项式的法则即可求解.解:(1)(2)【点拨】本题考查单项式乘以多项式,多项式乘以多项式,解题的关键是熟练运用法则,准确计算.20.(1);(2)【分析】(1)连续两次应用平方差公式计算即可;(2)先用平方差,再用完全平分公式展开计算即可;解:(1)原式.(2),,,,.【点拨】本题主要考查了整式乘法的公式运用,准确计算是解题的关键.21.,-7.【分析】根据整式乘法先化简整式,再代入求值即可.解:原式===,∵,∴,把代入上式,原式=2×4-15=-7.【点拨】本题是对整式化简求值的考查,熟练掌握整式乘法公式和多项式乘多项式是解决本题的关键.22.9【分析】根据多项式乘多项式的法则计算展开(x+a)(x-2),让关于x的一次项的系数为0,即可求得a的值,然后即可求出答案.解:∵(x+a)(x-2)=x2-2x+ax-2a=x2+(a-2)x-2a不含关于x的一次项,∴a−2=0,即a=2,∴(a+1)2+(2-a)(2+a)=a2+2a+1+4-a2=2a+5=2×2+5=9故答案为:9.【点拨】本题考查了多项式乘以多项式,根据不含关于字母x的一次项,推出一次项系数为0,求出a的值是解题关键.23.(1) 平方米(2) 铺设地砖的面积为225平方米.【分析】(1)利用多项式乘多项式法则化简,去括号合并得到最简结果;(2)将a与b的值代入计算即可求出值.(1)解:由题可知,铺设地砖的面积为:(平方米);(2)解:∵,∴原式(平方米).答:铺设地砖的面积为225平方米.【点拨】此题考查了多项式乘多项式-化简求值,弄清题意列出相应的式子是解本题的关键.24.(1)x3﹣1,8x3﹣y3;(2)a3﹣b3;(3)C;(4)见分析【分析】(1)用多项式乘以多项式的法则计算即可;(2)观察第(1)问的计算,找出规律,用字母表示即可;(3)判断各选项是否符合公式的特点;(4)公式的逆用,求得A中有37的因数即可.解:(1)(x-1)(x2+x+1)=x3+x2+x-x2-x-1=x3-1;(2x-y)(4x2+2xy+y2)=8x3+4x2y+2xy2-4x2y-2xy2-y3=8x3-y3;故答案为:x3-1;8x3-y3;(2)从第(1)问发现的规律是:(a-b)(a2+ab+b2)=a3-b3,故答案为:(a-b)(a2+ab+b2)=a3-b3;(3)A.第一个多项式不是减法,不符合题意;B.最后一项应该是4n2,不符合题意;C.符合题意;D.第二个多项式的第二项应该为mn,不符合题意.故选:C.(4)A=109-1=(103)3-1=(103-1)(106+103+12)=999×1001001=3×3×3×37×1001001,∴A能被37整除.【点晴】本题考查了多项式乘以多项式的法则,考查学生的计算能力,能对公式进行逆用是解题的关键.。

多项式乘多项式说课稿

多项式乘多项式说课稿

多项式乘多项式说课稿一、说教材本文“多项式乘多项式”在数学课程中扮演着重要的角色,它是代数学中的基础内容,也是学生接触代数运算的入门知识。

本节内容不仅是后续学习如多项式除法、因式分解等高级代数运算的基础,而且在解决实际问题时具有广泛的应用。

通过本节内容的学习,学生能够掌握代数表达式中乘法的基本法则,培养他们的逻辑思维能力和解决复杂问题的能力。

本文主要内容包括:1. 多项式乘法的定义与性质。

2. 多项式乘法法则的推导与应用。

3. 举例说明如何将多项式乘法应用于解决实际问题。

在教材体系中,本节内容承前启后,既是对单项式乘法的延伸,也为将来学习多项式除法打下基础。

它强化了学生对代数表达式的理解和操作能力,对于提高学生的数学素养具有重要意义。

二、说教学目标学习本课,学生应达到以下教学目标:1. 知识目标:- 理解并掌握多项式乘多项式的定义和法则。

- 能够熟练地运用多项式乘法法则进行计算。

- 了解多项式乘法在实际问题中的应用。

2. 能力目标:- 提高逻辑思维能力和解题技巧。

- 培养学生的运算速度和准确性。

- 增强学生将理论知识应用于实际问题的能力。

3. 情感目标:- 激发学生对数学学习的兴趣和热情。

- 培养学生面对困难时坚持不懈的良好学习态度。

三、说教学重难点本节课的重点是多项式乘法法则的推导和应用,而难点则在于如何让学生理解并灵活运用这些法则来解决复杂的代数问题。

1. 教学重点:- 多项式乘多项式的定义和法则。

- 不同类型多项式相乘的解题方法。

2. 教学难点:- 理解并记忆多项式乘法法则。

- 将多项式乘法应用于具体问题的策略选择。

在教学过程中,需要特别关注学生的理解程度,通过反复练习和实例讲解,帮助学生克服这些难点,确保他们对知识点的熟练掌握。

四、说教法在教学“多项式乘多项式”这一节时,我计划采用以下几种教学方法,旨在提高教学效果,并突出与其他教学方法的差异。

1. 启发法:- 通过引入实际生活中的问题,激发学生的好奇心和探究欲望,从而引出多项式乘多项式的概念。

2019版苏科版七年级数学下册 9.3 多项式乘多项式 同步练习(II)卷

2019版苏科版七年级数学下册 9.3 多项式乘多项式 同步练习(II)卷

2019版苏科版七年级下册 9.3 多项式乘多项式同步练习(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 已知m+n=2,mn=-2,则(1-m)(1-n)的值为()A.B.1C.D.52 . 边长分别为、且的大小两个正方形如图所示摆放在一起,其中有一部分重叠,则阴影部分与阴影部分的面积差是()A.B.C.D.3 . 现定义运算“△”,对于任意有理数a,b,都有a△b=a2-ab+b.例如:3△5=32-3×5+5=-1,由此可知(x-1)△(2+x)等于()A.2x-5B.2x-3C.-2x+5D.-2x+34 . 若(-2x+a)(x-1)的展开式中不含x的一次项,则a的值是()A.-2B.2C.-1D.任意数5 . 用代数式表示”x的2倍与Y的差的平方”,正确的是()A.(2x-y)2B.2(x-y)2C.2x-y2D.(x-2y)26 . 要使多项式6x+2y﹣3+2ky+4k不含y的项,则k的值是()A.0B.1C.﹣1D.27 . 如(x+a)与(x+3)的乘积中不含x的一次项,则a的值为()A.3B.﹣3C.1D.﹣18 . 已知,则的值分别是()A.B.C.D.二、填空题9 . 计算:__________.10 . 长、宽分别为、的长方形,它的周长为16,面积为10,则的值为____.11 . 计算:b(2a+5b)+a(3a-2b)= .12 . 若(x+p)与(x+5)的乘积中不含x的一次项,则p=_____.13 . 如图,一个长方形被分成四块:两个小长方形,面积分别为S1,S2,两个小正方形,面积分别为S3,S4,若 2S1-S2 的值与AB 的长度无关,则S3 与S4 之间的关系是______.14 . 任何实数a,可用表示不超过a的最大整数,如,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似地,①对81只需进行次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是.15 . 计算(x﹣1)(2x+3)的结果是_____.16 . 现有A、B、C三种型号地砖,其规格如图所示,用这三种地砖铺设一个长为x+y,宽为3x+2y的长方形地面,则需要A种地砖___________块.17 . 如图,某居民小区有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,计划将阴影部分进行绿化,中间将修建一个雕塑,底座是边长为(a+b)米的正方形.绿化的面积是多少平方米_____.18 . (2x-1)(-3x+2)=___________.三、解答题19 . 小明同学在学习多项式乘以多项式时发现:( x+6)(2x+3)(5x﹣4)的结果是一个多项式,并且最高次项为:x•2x•5x=5x3,常数项为:6×3×(﹣4)=﹣72,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×3×(﹣4)+2×(﹣4)×6+5×6×3=36,即一次项为36x.认真领会小明同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为.(2)(x+6)(2x+3)(5x﹣4)所得多项式的二次项系数为.(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所所得多项式的一次项系数为0,则a=.(4)若(x+1)2018=a0x2018+a1x2017+a2x2016+a3x2015…+a2017x++a2018,则a2017=.20 . 对于任何实数,我们规定符号的意义是:=ad-bc.(1)按照这个规定计算的值;(2)按照这个规定计算:当x2-3x+1=0时,的值.21 . 如图,在长方形中,,,,请用关于的多项式表示图中阴影部分的面积.22 . 求下列各式中的值。

新苏科版七年级数学下册《9章 整式乘法与因式分解 9.3 多项式乘多项式》公开课教案_25

新苏科版七年级数学下册《9章 整式乘法与因式分解  9.3 多项式乘多项式》公开课教案_25

9.3多项式乘多项式1.通过同一图形面积的不同算法的比较,理解多项式乘法法则的几何背景.2.在理解多项式与多项式乘法法则的基础上,通过典例分析,学会根据这一法则进行计算.3.在掌握多项式乘法法则的基础上,通过实例理解“不含”问题的本质,学会解决这一类问题.例1 如图9-3-1,有正方形卡片A类、B类和长方形卡片C类各若干张,如果用这三类卡片拼一个长为2a+b、宽为a+2b的大长方形,通过计算说明三类卡片各需多少张.图9-3-1目标二根据多项式乘法法则计算例2 教材例1变式计算下列各题:(1)(-3x-2y)(4x+2y);(2)(2x-3y-1)(-2x-3y+5);(3)(3x-2)(x+3)(2x-1).[全品导学号:98584067]【归纳总结】多项式乘多项式的“三点注意”:(1)相乘时,按一定的顺序进行,必须做到不重不漏;(2)多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数等于原多项式的项数的积;(3)相乘后,若有同类项应合并.目标三单项式与多项式中的“不含”问题例3 [教材补充例题]若(x2+ax+b)(x2-5x+7)的展开式中不含有x3与x2的项,求a,b 的值.[全品导学号:98584068]知识点多项式乘多项式法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.用式子可表示为=ac+ad+bc+bd.[注意] (1)要用一个多项式中的每一项分别乘另一个多项式的每一项,勿遗漏;(2)注意多项式乘法运算过程中的符号问题.多项式中的每一项都包括它前面的符号,应带着符号相乘;(3)若展开后的多项式中有同类项,则要合并同类项,使结果最简,并且最终结果一般都按照某个字母的降幂(或升幂)排列.计算:(2a-b)(a+3b).解:(2a-b)(a+3b)=2a2+6ab-ab+3b2=2a2+5ab+3b2.上面的计算正确吗?如果不正确,请说明理由,并给出正确的解题过程.课堂反馈(十八)9.3多项式乘多项式(建议用时:10分钟)1.若(x+3)(x+4)=x2+px+q,则p,q的值是()A.p=1,q=-12 B.p=-1,q=12C.p=7,q=12 D.p=7,q=-122.计算(2x-1)(5x+2)的结果是()A.10x2-2 B.10x2-5x-2C.10x2+4x-2 D.10x2-x-23.计算:(2x+1)(x-3)=________.4.有若干张如图18-1所示的正方形和长方形卡片,如果要拼一个长为2a+b,宽为a +b的长方形,那么需要A类卡片________张,B类卡片________张,C类卡片________张.图18-15.计算:(1)(2x-7y)(3x+4y-1);(2)(x-y)(x2+xy+y2).课时作业(十八)[9.3多项式乘多项式]一、选择题1.2017·武汉计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2C.x2+3x+3 D.x2+2x+22.下列算式的计算结果等于x2-5x-6的是()A.(x-6)(x+1) B.(x+6)(x-1)C.(x-2)(x+3) D.(x+2)(x-3)3.已知a+b=m,ab=-4,化简(a-2)(b-2)的结果是()A.6 B.2m-8 C.2m D.-2m4.若(x+t)(x-6)的积中不含有x的一次项,则t的值为()A.0 B.6C.-6 D.-6或0二、填空题5.计算:(3x-1)(2x+1)=________.6.在(x+1)(2x2+ax+1)的运算结果中,x2的系数是-1,那么a的值是________.7.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为________.三、解答题8.计算:(1)(a-1)(a2+a+1);(2)(2x+5)(2x-5)-(x+1)(x-4);(3)(3x-2)(2x+3)(x-2).9.[教材习题9.3第3题变式]先化简,再求值:6x2-(2x-1)(3x-2)+(x+2)(x-2),其中x=2.10.[教材习题9.3第4题变式]一块长方形草坪的长是2x m,宽比长少4 m.如果将这块草坪的长和宽都增加3 m,那么面积会增加多少?求出当x=3时,面积增加的值.数形结合我们知道多项式的乘法可以利用图形的面积进行解释,如:(2a+b)(a+b)=2a2+3ab+b2就可以用图K-18-1①②等图形的面积表示.(1)请你写出图③所表示的一个等式:________;(2)试画出一个几何图形,使它的面积能表示为(a+3b)(a+b)=a2+4ab+3b2;(3)请仿照上述方法另写一个只含有a,b的等式,并画出与之对应的图形.图K-18-1详解详析【目标突破】例1解:∵(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5ab+2b2,∴需要A类卡片2张,B类卡片2张,C类卡片5张.例2解:(1)原式=-3x·4x-3x·2y-2y·4x-2y·2y=-12x2-6xy-8xy-4y2=-12x2-14xy-4y2.(2)原式=-4x2-6xy+10x+6xy+9y2-15y+2x+3y-5=-4x2+(-6xy+6xy)+(10x+2x)+9y2+(3y-15y)-5=-4x2+12x+9y2-12y-5.(3)原式=(3x2+9x-2x-6)(2x-1)=(3x2+7x-6)(2x-1)=6x3+14x2-12x-3x2-7x+6=6x3+11x2-19x+6.例3[解析] 缺某项指展开式中合并同类项后该项的系数为0,列出一个方程即可求得字母的值.解:在(x2+ax+b)(x2-5x+7)的展开式中,x2项有7x2,-5ax2,bx2,x3项有-5x3,ax3.因为不含x2与x3的项,故有-5+a=0,7-5a+b=0,解得a=5,b=18.备选目标有关多项式乘多项式的规律探索型问题例分别计算出下列各题的结果:①(x+2)(x+3)=________;②(x-2)(x-3)=________;③(x-2)(x+3)=________;④(x+2)(x-3)=________.(1)仔细分析比较所得的结果,你能发现什么规律?并把你的发现用文字叙述出来.文字叙述:________________________________________________________________________;规律:(x+a)(x+b)=________.(2)运用你发现的规律计算下列各题:①(x+2y)(x-4y);②(a-2)(a+2)(a2+4).[解析] 利用多项式乘多项式的法则进行计算,总结归纳出规律.解:①x2+5x+6②x2-5x+6③x2+x-6④x2-x-6(1)文字叙述:两个一次项系数为1的一次二项式相乘时,其积是一个二次三项式,其中二次项系数为1,一次项系数是两个常数的和,常数项是两个常数的积;规律:(x+a)(x+b)=x2+(a+b)x+ab.(2)①(x+2y)(x-4y)=x2-2xy-8y2.②(a-2)(a+2)(a2+4)=a4-16.[归纳总结] 利用多项式乘多项式的法则进行计算,利用从特殊到一般的思路,总结归纳出规律,再加以应用.【总结反思】[反思] 不正确.在确定积中的每一项时,符号出错,-b乘3b时,积应该是-3b2,而不是3b2.正确解答:(2a-b)(a+3b)=2a2+6ab-ab-3b2=2a2+5ab-3b2.课堂反馈(十八)1.C 2.D 3.2x2-5x-34.213[解析] 长为2a+b,宽为a+b的长方形的面积为(2a+b)(a+b)=2a2+3ab +b2,A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,则可知需要A类卡片2张,B类卡片1张,C类卡片3张.5.解:(1)原式=6x2+8xy-2x-21xy-28y2+7y=6x2-2x-13xy-28y2+7y.(2)原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3.【课时作业】[课堂达标]1.[解析] B原式=x2+2x+x+2=x2+3x+2,故选B.2.[解析] A A.(x-6)(x+1)=x2-5x-6;B.(x+6)(x-1)=x2+5x-6;C.(x-2)(x+3)=x2+x-6;D.(x+2)(x-3)=x2-x-6.故选A.3.[解析] D∵a+b=m,ab=-4,∴(a-2)(b-2)=ab+4-2(a+b)=-4+4-2m=-2m .故选D.4.[全品导学号:98584264][解析] B∵(x+t)(x-6)=x2+(t-6)x-6t,又∵不含有x的一次项,∴t-6=0,∴t=6.故选B.5.6x2+x-16.[答案] -3[解析] (x+1)(2x2+ax+1)=2x3+ax2+x+2x2+ax+1=2x3+(a+2)x2+(1+a)x+1,∵运算结果中x2的系数是-1,∴a+2=-1,解得a=-3.7.[全品导学号:98584265][答案] 0[解析] (x-1)(x+2)=x2-x+2x-2=x2+x-2=ax2+bx+c,则a=1,b=1,c=-2,故原式=4-2-2=0.8.解:(1)原式=a·a2+a·a+a×1-a2-a-1=a3-1.(2)原式=4x2-25-x2+3x+4=3x2+3x-21.(3)原式=(6x2+9x-4x-6)(x-2)=(6x2+5x-6)(x-2)=6x3+5x2-6x-12x2-10x+12=6x3-7x2-16x+12.9.解:原式=6x2-(6x2-4x-3x+2)+(x2-2x+2x-4)=6x2-6x2+4x+3x-2+x2-2x +2x-4=x2+7x-6.当x=2时,原式=22+7×2-6=12.10.[全品导学号:98584266][解析] 该题取材于现实生活,体现了数学来源于生活,又服务于生活的特点,只要根据题意列出式子并化简即可.解:面积会增加(2x+3)(2x-4+3)-2x(2x-4)=(2x+3)(2x-1)-(4x2-8x)=4x2-2x+6x-3-4x2+8x=(12x-3)m2.当x=3时,面积增加12×3-3=33(m2).[素养提升][全品导学号:98584267]解:(1)(a+2b)(2a+b)=2a2+5ab+2b2(2)画法不唯一,如图所示:(3)答案不唯一,例如:(a+b)(a+2b)=a2+3ab+2b2可以用下图表示:。

七年级数学下册 9.3多项式乘多项式教案2 苏科版

七年级数学下册 9.3多项式乘多项式教案2 苏科版

课题:9.3多项式乘多项式多项式乘多项式--( 教案)备课时间: 主备人:多项式乘多项式教学目标:1.知道利用乘法分配律可以将多项式乘多项式的运算转化为单项式乘多项式的运算.2.会进行多项式乘多项式的运算(其中多项式仅指一次式).3.经历探索多项式乘多项式运算法则的过程,发展有条理地思考及语言表达能力.教学重点:多项式乘多项式的运算法则教学难点:法则的探索及运用教学方法:启发,引导式教学教学用具:投影仪,三角板课型:新授课教学过程:一.情境创设课前要求学生准备边长分别为d和,和a和,的长方和,cbadcb形,课堂上学生动手拼大长方形,计算所拼图形的面积,并交流做法.二.探索活动参照课本,图9—4,思考问题.问题一:如何表示这个大长方形的面积?发现:)bcada+++=++d)(c)()(bc(dac+=b++)d)((ba++ac+=adbdbc问题二:观察上述式子,如何计算)a++?b)((dc问题三:如何进行多项式乘多项式的运算?结论:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.三.例题教学例1计算:(1))3)(4(++a a ;(2))3)(52(y x y x --.例2计算:(1))2)(1(++n n n ; (2))168()4(2--+x x .注意:应用法则时,应提醒学生不要漏项;应用多项式乘法法则计算后,所得的积相加减时,应合并同类项. 例3如图,长方形的长为)(b a +,宽为)(b a -,圆的半径为a ,求阴影部分的面积.四.巩固练习课本,练一练第1、2、3题.五.小结:(1)多项式乘多项式的运算法则;(2)多项式乘多项式是如何转化为单项式的.六.作业:课本,第1、2、4题 七.板书设计: 多项式乘多项式引题 例1 例3法则 例2。

9.3多项式乘多项式3

9.3多项式乘多项式3

学生板演 1.P62 练一练:1、2、3。 2.计算: 2 2 (2)(2a-b) (1) (x+4) ; 3.已知梯形的上底为 a,下底为 2a+b,高为 a-2b,求梯形的面积。 六.课堂小结 启发引导学生归纳本节所学的内容. 七.布置作业 P63 习题 9.3:1、2、3、4、5、6 的双数题
第 9 章 从面积到乘法公式 教学内容 9.3 多项式乘多项式
课时 分配
本章需 13 课时 本节课为第 3 课时
教学目标
1.知道利用乘法分配律可以将多项式乘以多项式的运算转化为单项式乘多项 式的运算。 2.会进行多项式的乘多项式的运算。 3.经历探索多项式乘多项式运算法则的过程,发展有条理的思考及语言的表 达能力。 会进行多项式乘多项式的运算。 正确应用法则,做到不漏项。 讲练结合、探索交流 教 师 活 动 课型 新授课 教具 投影仪
由学生自己先做(或 互相讨论),然后回 答,若有答不全的, 教师(或其他学生)补 充.
( x + a )( x + b) = x 2 + ax + bx + Байду номын сангаасb = x 2 + (a + b) x + ab
例 2 计算 (1)(2x-5y)(3x-y); (2) n(n+1)(n+2). 结合例题讲解,提醒学生在解题时要注意:(1)解题书写和格式 的规范性; (2)注意总结不同类型题目的解题方法、 步骤和结果; (3) 注意各项的符号,并要注意做到不重复、不遗漏. 五.应用与拓展




重 难
点 点
教学方法
学 生 活 动 学生回答
一、创设情境: 创设情境 计算右图的面积, 并把你的算 法与同学交流。 (a+b)(c+d)=ac+ad+bc+bd.

多项式乘多项式(解析版)

多项式乘多项式(解析版)

9.3多项式乘多项式题型一:多项式乘以多项式计算【例题1】(2021·广西)计算:()()36x x -+. 【答案】x 2+3x -18【分析】根据多项式乘以多项式的计算方法进行计算即可. 【详解】解:(x -3)(x +6)=x 2+6x -3x -18 =x 2+3x -18.【点睛】本题考查多项式乘以多项式的计算方法,掌握多项式乘以多项式的计算法则,是解决问题的关键. 变式训练【变式1-1】(2021·陕西)计算:()()()241221x x x x +---. 【答案】92x -【分析】先根据多项式与多项式乘法及单项式与多项式的乘法法则计算,再去括号合并同类项即可. 【详解】解:()()()241221x x x x +--- =4x 2-x +8x -2-(4x 2-2x ) =4x 2-x +8x -2-4x 2+2x =92x -.【点睛】本题考查了整式的混合运算,熟练掌握运算顺序是解答本题的关键.混合运算的顺序是先算乘方,知识点管理 归类探究再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序. 【变式1-2】(2021·江西南昌·八年级期末)计算:(1)()()211x x x -++;(2)()()()321x x x x +---. 【答案】(1)31x -;(2)26x -【分析】根据多项式乘以多项式,单项式乘以多项式的法则计算即可. 【详解】(1)解:原式3221x x x x x =++---31x =-.(2)解:原式22236x x x x x =-+--+26x =-.【点睛】本题考查了整式的乘法,熟练掌握单项式乘以多项式,多项式乘以多项式法则是解题的关键. 【变式1-3】(2021·湖南七年级期中)计算: (1)222(35)a a b - (2)(53)(32)x y x y +-.【答案】(1)42610a a b -;(2)22156x xy y --【分析】(1)根据单项式乘多项式的计算方法及同底数幂的乘法运算直接计算; (2)根据多项式乘多项式的计算方法及同底数幂的乘法运算,合并同类项直接计算. 【详解】解:(1)22422(35)610a a b a a b -=-, (2)22(53)(32)151096x y x y x xy xy y +-=-+- 22156x xy y =--.【点睛】本题考查了单项式乘多项式、多项式乘多项式,解题的关键是掌握基本的运算法则. 题型二:(x+a)(x+b)型多项式相乘【例题2】(2021·福建省宁化县教师进修学校七年级月考)(Ⅰ)计算,将结果直接填在横线上: (1)(2)x x ++=______.(1)(2)x x --=______. (1)(2)x x -+=______.(1)(2)x x +-=______.(Ⅰ)认真观察(Ⅰ)中的算式与计算结果的特征,总结其中运算规律,用公式来表示这种运算规律(用a ,b 表示常数,).【答案】(1)x 2+3x +2,x 2−3x +2,x 2+x −2,x 2−x −2;(2)(x +a )(x +b )=x 2+(a +b )x +ab 【分析】(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.(2)根据(1)计算的结果,式子的一般形式是(x +a )(x +b )=x 2+(a +b )x +ab . 【详解】解:(1)(x +1)(x +2)=x 2+3x +2, (x −1)(x −2)=x 2−3x +2, (x −1)(x +2)=x 2+x −2, (x +1)(x −2)=x 2−x −2.故答案是:x 2+3x +2,x 2−3x +2,x 2+x −2,x 2−x −2;(2)可以发现题(1)中,左右两边式子符合(x +a )(x +b )=x 2+(a +b )x +ab 结构. 【点睛】本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键. 变式训练【变式2-1】(2019·全国七年级单元测试)若(x +a )(x +2)=x 2-5x +b ,求a +b 的值. 【答案】-21.【分析】先根据多项式乘多项式法则把多项式的左边展开,合并同类项后再根据多项式两边相同字母的系数相等,列出方程,求出a ,b 的值即可.【详解】解:()()222225x a x x ax x a x x b ++=+++=-+,则252a a b +=-=,, 解得714.a b =-=-, 则21.a b +=-【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键. 【变式2-2】(2021·福建)阅读理解: (1)计算()()21232x x x x ++=++,()()12x x --=____________________, ()()12x x -+=_______________,()()12x x +-=___________________,()()()2x a x b x x ++=++_____________;( 2)应用已知a 、b 、m 均为整数,且()()212x a x b x mx ++=++,则m 的可能取值有_____________个.【答案】(1)232x x -+,22x x +-,22x x --;a b +,ab ;(2)6【分析】(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.(2)根据(1)计算的结果,式子的一般形式是2()()()x p x q x p q x pq ++=+++,121122634(1)(12)(2)(6)(3)(4)=⨯=⨯=⨯=-⨯-=-⨯-=-⨯-,故m 的取值6个.【详解】解:(1)2(1)(2)32x x x x ++=++, 2(1)(2)32x x x x --=-+,2(1)(2)2x x x x -+=+-,2(1)(2)2x x x x +-=--;()()()2x a x b x a b x ab ++=+++(2)可以发现题(1)中,左右两边式子符合2()()()x p x q x p q x pq ++=+++结构,因为12可以分解以下6组数,112a b ⨯=⨯,26⨯,34⨯,(1)(12)-⨯-,(2)(6)-⨯-(3)(4)-⨯-,所以m a b =+应有6个值.【点睛】本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键.【变式2-3】(2020·厦门外国语学校海沧附属学校八年级期中)已知(x+a)(x+b)=x 2+mx+n (1)若a=1,b=2,则m=______,n=_______ (2)若a=6,b=-3,求2m+2n 的值 【答案】(1)m=3,n=2;(2)-28【分析】把已知式子展开,得出m ,n 和a ,b 的关系式,带入求解即可;【详解】Ⅰ()()()22x a x b x a b x ab x mx n ++=+++=++,Ⅰa b m +=,ab n =, (1)Ⅰa =1,b =2,Ⅰ123m =+=,122n =⨯=, 故答案是:3,2. (2)Ⅰa =6,b =-3,Ⅰ()633m =+-=,()6318n =⨯-=-,Ⅰ()322221883628m n +=+⨯-=-=-.【点睛】本题主要考查了代数式求值,准确利用整式乘法展开计算是解题的关键. 题型三:多项式乘以多项式化简求值【例题3】(2021·江苏鼓楼·七年级期中)先化简,再求值:(1)(2)3(3)2(2)(1)x x x x x x ---+++-,其中12x =. 【答案】102x --; 7-【分析】多项式乘以多项式,单项式乘以多项式展开,合并同类项对整式进行化简,然后再代值求解即可. 【详解】解:(1)(2)3(3)2(2)(1)x x x x x x ---+++-()2223239222x x x x x x x =-+--++--,222122224x x x x =--+++-, 102x =--,当12x =时,原式110272=-⨯-=-. 【点睛】本题主要考查整式的乘法运算,多项式乘以多项式,单项式乘以多项式展开,合并同类项代入求值,熟练掌握整式的乘法运算法则是解题的关键. 变式训练【变式3-1】(2021·江苏省江阴市第一中学七年级阶段练习)先化简,再求值:(3)(4)2(1)(5)y y y y +---+,其中2y =-【答案】292y y ---;12.【分析】利用多项式乘以多项式法则计算,去括号合并得到最简结果,把y 的值代入计算即可求出值. 【详解】解:(3)(4)2(1)(5)y y y y +---+22(12)2(45)y y y y =---+- 22122810y y y y =----+ 292y y =---,当2y =-时,原式()()22922=---⨯--12=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则,准确计算是解本题的关键.【变式3-2】(2021·浙江七年级期中)先化简,再求值:()222242(()3)m m m m m -++--,其中2m =-【答案】368m m -+-,12-【分析】先分别根据多项式乘多项式、单项式乘单项式计算,再合并同类项,最后代入2m =-即可求解. 【详解】解:原式322382++44622m m m m m m m ---+-=33826m m m -=-+368m m =-+-,当2m =-时,原式()()32628=--+⨯--8128=--12=-【点睛】本题考查整式的化简求值,解题的关键是熟练掌握多项式乘多项式、单项式乘单项式计算法则. 【变式3-3】(2020·江苏省盐城中学新洋分校七年级期中)先化简,再求值:(x+2)(x -1)-2x (x+3),其中x=-1.【答案】252x x ---,2.【分析】原式利用多项式乘以多项式、单项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式=222226x x x x x -+---, =252x x ---, 当x=-1时, 原式=-1+5-2=2.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 题型四:已知多项式乘积不含某项求字母的值【例题4】(2017·江苏·兴化市海河学校七年级阶段练习)若(x 2+ax +8)(x 2﹣3x +b )的乘积中不含x 2和x 3项,求a ,b 的值. 【答案】a =3,b =1【分析】直接利用多项式乘以多项式运算法则,进而利用合并同类项法则得出x 2和x 3项的系数为零进而得出答案.【详解】解:(x 2+ax +8)(x 2-3x +b ) =x 4-3x 3+bx 2+ax 3-3ax 2+abx +8x 2-24x +8b=x 4+(-3+a )x 3+(b -3a +8)x 2+(ab -24)x +8b , Ⅰ(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项, Ⅰ-3+a =0,b -3a +8=0, 解得:a =3,b =1.【点睛】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键. 变式训练【变式4-1】(2021·江苏·常熟市第一中学七年级阶段练习)若关于x 的多项式()2(3)x x m mx +-⋅-的展开式中不含2x 项,求4(1)(2)(25)(3)m m m m +--+-的值. 【答案】16【分析】将多项式展开,合并同类项,根据不含2x 项得到m 值,再代入计算.【详解】解:原式()2(3)x x m mx =+-⋅-3222333mx x mx x m x m =-+--+()322(3)33mx m x m x m =+--++由题意得30m -=, Ⅰ3m =,Ⅰ原式4(31)(32)(235)(33)16=⨯+⨯--⨯+⨯-=.【点睛】本题考查了整式的混合运算和求值,多项式的应用,解此题的关键是能根据整式的运算法则进行化简,难度不是很大.【变式4-2】(2021·江苏·昆山市第二中学七年级阶段练习)若()2(2)x x ax b -++的积中不含x 的二次项和一次项,求2(32)2a b ab -+的值. 【答案】20【分析】原式利用多项式乘多项式法则计算,由积中不含x 的二次项和一次项,求出a 与b 的值,再把a 、b 的值代入计算可得.【详解】解:(x -2)(x 2+ax +b )=x 3+ax 2+bx -2x 2-2ax -2b =x 3+(a -2)x 2+(b -2a )x -2b , Ⅰ(x -2)(x 2+ax +b )的积中不含x 的二次项和一次项, Ⅰa -2=0且b -2a =0, 解得:a =2、b =4,将a =2、b =4代入2(32)2a b ab -+=2(3224)224⨯-⨯+⨯⨯ =4+16 =20.【点睛】本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则. 【变式4-3】(2021·江苏省江阴市第一中学七年级阶段练习)若()2133x p x x q ⎛⎫+-+ ⎪⎝⎭的积中不含x 项与2x 项(1)求p 、q 的值; (2)求代数式20192020p q 的值 【答案】(1)13p =,3q =;(2)3 【分析】(1)先用多项式乘以多项式的运算法则展开求它们的积,并且把p 、q 看作常数合并关于x 的同类项,令x 2及x 的系数为0,分别求出p 、q 的值. (2)把p 、q 的值代入求解即可. 【详解】解:(1)21(3)()3x p x x q +-+=2321333x x qx px px pq -++-+=23131)(3+3()x p x q p x pq -+-+又Ⅰ式子展开式中不含x 2项和x 项, Ⅰ310p -=,13=03q p -解得,13p =,3q = (2)当13p =,3q =时,20192019201920201=()(3)31333p p q q q =⨯⨯=⨯= 【点睛】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.题型五:多项式乘以多项式面积问题【例题5】(2020·江苏·泰兴市实验初级中学七年级期中)如图是火箭模型截面图,上面是三角形,中间是长方形,下面是梯形.(1)用含有a 、b 的代数式表示该截面的面积S ;(需化简) (2)当a =8cm ,b =5cm 时,求这个截面图的面积.【答案】(1)S=2a 2+2ab ;(2)208【分析】(1)先算出上面三角形的面积,中间长方形的面积,下面梯形的面积,即可表示出横截面的面积; (2)把a ,b 代入(1)式中求解即可;【详解】(1)上面三角形的面积为12ab ,中间长方形的面积为22a ,下面梯形的面积为()13222a b b ab +=,则该截面的面积为221322222S ab a ab a ab =++=+; (2)当a =8cm ,b =5cm 时,22226428512880208S a ab =+=⨯+⨯⨯=+=.【点睛】本题主要考查了代数式求值,准确计算是解题的关键. 变式训练【变式5-1】(2021·江苏淮安·七年级期末)如图,某市有一块长(3)a b +米,宽为(2)a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间空白处将修建一座雕像.(1)求绿化的面积是多少平方米. (2)当2,1a b ==时求绿化面积. 【答案】(1)5a 2+3ab ;(2)26平方米【分析】(1)绿化面积=长方形的面积-正方形的面积; (2)把a =2,b =1代入(1)求出绿化面积.【详解】解:(1)S 绿化面积=(3a +b )(2a +b )-(a +b )2 =6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab ;答:绿化的面积是(5a 2+3ab )平方米; (2)当a =2,b =1时,绿化面积=5×22+3×2×1 =20+6 =26.答:当a =2,b =1时,绿化面积为26平方米.【点睛】本题考查了多项式乘多项式及代数式求值,看懂题图掌握多项式乘多项式法则是解决本题的关键. 【变式5-2】(2021·江苏滨湖·七年级期中)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解决下列问题.(1)在图4中,黑色瓷砖有 块,白色瓷砖有 块;(2)已知正方形白色瓷砖边长为1米,长方形黑色瓷砖长为1米,宽为0.5米.现准备按照此图案进行装修,瓷砖无需切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.请回答下列问题: Ⅰ铺设图2需要的总费用为 元;Ⅰ铺设图n 需要的总费用为多少元?(用含n 的代数式表示) 【答案】(1)20;20;(2)Ⅰ1380; Ⅰ2115345230n n ++.【分析】(1)通过观察发现规律得出,第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +,将4n =代入即可求解;(2)Ⅰ求得图2的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可;Ⅰ求得图n 的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可; 【详解】解:(1)通过观察图形可知,1n =时,黑色瓷砖的块数为8,白色瓷砖的块数为22n =时,黑色瓷砖的块数为12,白色瓷砖的块数为6 3n =时,黑色瓷砖的块数为16,白色瓷砖的块数为12则第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +当4n =时,黑色瓷砖的块数为20,白瓷砖的块数为20故答案为20,20(2)Ⅰ图2,黑色瓷砖的块数为12,白色瓷砖的块数为6,所占用的面积为1210.561112⨯⨯+⨯⨯=(平方米)所需的费用为1250610012151380⨯+⨯+⨯=(元)故答案为1380Ⅰ第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +占用的面积为4(1)10.5(1)112(1)(1)(1)(2)n n n n n n n n +⨯⨯++⨯⨯=+++=++所需的费用为24(1)50(1)10015(1)(2)115345230n n n n n n n +⨯++⨯+⨯++=++故答案为2115345230n n ++【点睛】此题考查了图形类规律的探索问题,涉及了列代数式,整式的乘法等运算,解题的关键是根据前面图形,找到规律.【变式5-3】(2021·江苏徐州·七年级期中)(1)探究:我们小学时学过乘法分配律a (b +c )=ab +ac . 下面我们用等积法证明乘法分配律:如图,方法一:长方形ABCD 的一边长为a ,另一边长为(b +c ),所以长方形ABCD 的面积为a (b +c );方法二,长方形ABFE 的面积为ab ,长方形CDEF 的面积为ac ,所以长方形ABCD 的面积为(ab +ac ),所以a (b +c )=ab +ac .我们把这种用两种不同的方式表示同一图形面积的方法称为等积法.(2)应用请你用等积法,画出图形,并仿照上面的说理方法证明:(a +b )(c +d )=ac +ad +bc +bd ;(3)拓展请直接写出(a +b )(c +d +e )= .【答案】(2)证明见解析;(3)ac ad ae bc bd be +++++【分析】(2)画出图形,并仿照(1)的说理方法证明即可;(3)根据(1)的方法画出图形,进行计算即可.【详解】(2)如图,方法一:长方形ABCD 的一边长为()a b +,另一边长为()c d +,所以长方形ABCD 的面积为()()a b c d ++; 方法二,长方形AGOE 的面积为ac ,长方形EODH 的面积为ad ,长方形GOFB 的面积为bc ,长方形OFCH 的面积为bd ,所以长方形ABCD 的面积为(ac ad bc bd +++),所以()()a b c d ac ad bc bd ++=+++.(3)如图,同理可得:方法一可得长方形ABCD 的面积为()()a b c d e +++,方法二可得长方形ABCD 的面积为ac ad ae bc bd be +++++∴()()a b c d e ac ad ae bc bd be +++=+++++故答案为:ac ad ae bc bd be +++++【点睛】本题考查了多项式乘法与图形面积的关系,数形结合是解题的关键.题型六:多项式乘以多项式规律问题【例题6】(2021·常熟市第一中学七年级月考)观察下列各式:223324(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x -+=--++=--+++=-(1)根据以上的规律得:123(1)(1)_______m m m x x x x x ----+++++=(m 为正整数)(2) 请你利用上面的结论,完成下面两题的计算:Ⅰ23468691222222+++++++Ⅰ(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1【答案】(1)x m -1;(2)Ⅰ7021-;Ⅰ51213+ 【分析】(1)归纳出一般规律可得;(2)Ⅰ原式乘(2-1),用规律即可得出结论;Ⅰ将原式变形为()()()()()5049481121222213++⎦⎡⎤-⨯---+--⋯+-+⎣,再依照所得规律计算即可. 【详解】解:(1)(x -1)(x m -1+x m -2+…+x +1)═x m -1(m 为正整数);(2)Ⅰ23468691222222+++++++ =()()2346869212222221+++++++- =7021-;Ⅰ()()()()50494822221---⋯++-+++ =()()()()()5049481121222213++⎦⎡⎤-⨯---+--⋯+-+⎣ =()511123⎡⎤--⨯-⎣⎦ =51213+ 【点睛】本题考查找规律解题,仔细观察,找出规律是求解本题的关键.变式训练【变式6-1】(2021·利辛县第四中学七年级期中)(1)计算:(1)(1)______a a -+=;2(1)(1)____a a a -++=;......猜想:9998972(1)(......1)_____a a a a a a -++++++=;(2)请你利用上式的结论,求199198212+2++2+2+1的值;(3)请直接写出202020192018213+3+3+3+3+1+的值.【答案】(1)231;1;a a --1001a -;(2)20021-;(3)20211(31)2⋅-. 【分析】(1)根据多项式乘多项式可进行求解;(2)由2-1=1及(1)中结论可直接进行求解;(3)根据(1)中结论可进行求解.【详解】解:(1)由题意得:2(1)(1)1a a a -+=-,23223(1)(1)11a a a a a a a a a -++=++---=-,……猜想:9998972100(1)(......1)1a a a a a a a -++++++=-;故答案为231,1,a a --1001a -;(2)由(1)可得:原式=()()19919819720021222......2121-+++++=- (3)由(1)的结论可得:原式=()()2020201928201210211)3+3+3131(31221+3+3+-+=⨯⨯⋅-. 【点睛】本题主要考查多项式乘多项式的应用,熟练掌握多项式乘多项式是解题的关键.【变式6-2】(2021·辽宁)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a +b )n (n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a +b )2=a 2+2ab +b 2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a +b )3=a 3+3a 2b +3ab 2+b 3展开式中各项的系数等等.(1)根据上面的规律,(a +b )4展开式的各项系数中最大的数为 ;(2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(x ﹣1)2020=a 1x 2020+a 2x 2019+a 3x 2018+……+a 2019x 2+a 2020x +a 2021,求出a 1+a 2+a 3+……+a 2019+a 2020的值.【答案】(1)6;(2)﹣1;(3)﹣1【分析】(1)由“杨辉三角”构造方法判断即可确定出(a+b )4的展开式中各项系数最大的数;(2)将原式写成“杨辉三角”的展开式形式,即可的结果;(3)当x =0时,a 2021=1,当x =1时,得到a 1+a 2+a 3+……+a 2019+a 2020+a 2021=0,即可得到结论.【详解】解:(1)第五行即为1、 4、 6、 4 、1对应(a +b )4展开式中各项的系数,Ⅰ(a +b )4展开式的各项系数中最大的数为6,故答案为6;(2)Ⅰ(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,......根据展式中的2最大指数是5,首项a =2,末项b =-3,Ⅰ25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5=[2+(﹣3)]5=(2﹣3)5=﹣1;(3)Ⅰ(x ﹣1)2020=a 1x 2020+a 2x 2019+a 3x 2018+……+a 2019x 2+a 2020x +a 2021,Ⅰ当x =1时,(1﹣1)2020=a 1×12020+a 2×12019+a 3×12018+……+a 201912+a 2020×1+a 2021,即a 1+a 2+a 3+……+a 2019+a 2020+a 2021=0,当x =0时,(0﹣1)2020=a 1×02020+a 2×02019+a 3×02018+……+a 2019×02+a 2020×0+a 2021,即a 2021=1,Ⅰa 1+a 2+a 3+……+a 2019+a 2020= a 1+a 2+a 3+……+a 2019+a 2020+a 2021- a 2021=0﹣1=﹣1.【点睛】本题考查完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应a b n +()中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高. 【变式6-3】(2021·河南省淮滨县第一中学)好学的小东同学,在学习多项式乘以多项式时发现:14(25)(36)2x x x ⎛⎫++- ⎪⎝⎭的结果是一个多项式,并且最高次项为:312332x x x x ⋅⋅=,常数项为:45(6)120⨯⨯-=-,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:15(6)2(6)434532⨯⨯-+⨯-⨯+⨯⨯=-,即一次项为3x -. 请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算()()()23153x x x ++-所得多项式的一次项系数为______.(2)若计算()()2213(21)x x x x a x ++-+-所得多项式不含一次项,求a 的值;(3)若202120212020201901220202021(1)x a x a x a x a x a +=+++⋯++,则2020a =______.【答案】(1)-11;(2)3a =-;(3)2021.【分析】根据题意可得出结论多项式和多项式相乘所得结果的一次项系数是每个多项式的一次项系数分别乘以其他多项式的常数项后相加所得.(1)(2)(31)(53)x x x ++-中每个多项式的一次项系数分别是1、3、5,常数项分别是2、1、-3,再根据结论即可求出(2)(31)(53)x x x ++-所得多项式的一次项系数.(2)22(1)(3)(21)x x x x a x ++-+-中每个多项式的一次项系数分别是1、-3、2,常数项分别是1、a 、-1,再根据22(1)(3)(21)x x x x a x ++-+-所得多项式的一次项系数为0,结合结论即可列关于a 的一元一次方程,从而求出a .(3)2021(1)x +中每个多项式一次项系数为1,常数项系数也为1,2020a 为2021(1)x +所得多项式的一次项系数.所以根据结论2020a 为2121个11⨯相加,即可得出结果.【详解】(1)根据题意可知(2)(31)(53)x x x ++-的一次项系数为:()()11333252111⨯⨯-+⨯-⨯+⨯⨯=-.故答案为-11.(2)根据题意可知22(1)(3)(21)x x x x a x ++-+-的一次项系数为:()()()11311213a a a ⨯⨯-+-⨯⨯-+⨯⨯=+Ⅰ该多项式不含一次项,即一次项系数为0,Ⅰ30a +=解得3a =-.(3)根据题意可知2020a 即为2021(1)x +所得多项式的一次项系数.Ⅰ20202021(11111111)2021a =⨯+⨯+⨯++⨯=故答案为2021【点睛】本题考查多项式乘多项式以及对多项式中一次项系数的理解,根据题意找出多项式乘多项式所得结果的一次项系数与多项式乘多项式中每个多项式的一次项系数和常数项关系规律是解题关键.【真题1】(2019·江苏南京·中考真题)计算22()()x y x xy y +-+.【答案】33x y +【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn ,计算即可.【详解】解:()()22x y x xy y +-+322223x x y xy x y xy y =-++-+33x y =+.【点睛】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.【真题2】(2013·江苏南京·中考真题)计算11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫----++++------+++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的结果是_______. 【答案】16【详解】设11112345x +++=, 则原式()111166x x x x ⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭= 22115666x x x x x +---+= 16= 【真题3】(2015·江苏连云港·中考真题)已知m +n =mn ,则(m -1)(n -1)=_______.【答案】1【详解】试题分析:根据乘法公式多项式乘以多项式,用第一个多项式的每一项乘以第二个多项式的每一项,可求(1)(1)m n --=mn -m -n+1=mn -(m+n )+1,直接代入m+n=mn 可求得(1)(1)m n --=1.考点:整体代入法【真题4】(2019·台湾·中考真题)计算()()2334xx +﹣的结果,与下列哪一个式子相同?( ) A .74x -+B .712x --C .2612x -D .2612x x --【答案】D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再链接中考把所得的积相加,合并同类项后所得的式子就是它们的积.【详解】解:由多项式乘法运算法则得()()22233468912612x x x x x x x-+=+---=-.故选D.【点睛】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.【拓展1】(2021·江苏阜宁·七年级期中)如图,长方形的长为a,宽为b,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是___.【答案】2ab ac bc c--+【分析】先把阴影的为平行四边形的面积化为长方形的面积,然后经过平移得到空白部分的为长方形,长为a-c,宽为b-c,根据长方形面积公式列式计算即可求解即可求解.【详解】解:原图形可化为图1,将阴影部分平移得到图2,所以空白部分的面积为:()()2=a cbc ab ac bc c----+.故答案为:2ab ac bc c--+满分冲刺【点睛】本题考查了列代数式,平移,多项式乘以多项式等知识,根据题意,将平行四边形的面积转化为长方形的面积,进而进行平移,将空白部分面积转化为长方形的面积是解题关键.【拓展2】(2020·江苏徐州·七年级期中)阅读以下材料:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-; ()324(1)11x x x x x -+++=-(1)根据以上规律,()123(1)1n n n x x x x x ----+++++= ;(2)利用(1)的结论,求2345201820192000155555555+++++++++的值 【答案】(1)1nx -;(2)2021514- 【分析】(1)仔细观察上式就可以发现得数中x 的指数是式子中x 的最高指数减1,根据此规律就可求出本题.(2)不难看出所求式子是材料中等号左边式子的一个因式,将所求式子转化成()123(1)1n n n x x x x x ----+++++形式,即可利用(1)的结论进行求解.【详解】(1)()123(1)1n n n x xx x x ----+++++中最高次项为1n n x x x -•=, 所以()123(1)1n n n x x x x x ----+++++=n x -1;(2)2345201820192000155555555+++++++++ =14(5-1)(2345201820192000155555555+++++++++) =2021514- 【点睛】仔细观察式子,总结出运算规律,是解决此类题的关键.【拓展3】(2020·江苏·南通市八一中学八年级期中)阅读材料小明遇到这样一个问题:求计算()()()22334x x x +++所得多项式的一次项系数.小明想通过计算()()()22334x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x ++所得多项式中的一次项系数,通过观察发现:也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数.延续上面的方法,求计算()()()22334x x x +++所得多项式的一次项系数,可以先用2x +的一次项系数1,23x +的常数项3,34+x 的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34+x 的常数项4,相乘得到16;然后用34+x 的一次项系数3,2x +的常数项223x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()443x x ++所得多项式的一次项系数为____________________.(2)计算()()()13225x x x +-+所得多项式的一次项系数为_____________.(3)若231x x -+是422x ax bx +++的一个因式,求a 、b 的值.【答案】(1)19;(2)1;(3) a= -6,b= -3.【分析】(1)根据两多项式常数项与一次项系数乘积的和即为所得多项式一次项系数可得;(2)根据三个多项式中两个多项式的常数项与另一个多项式一次项系数的乘积即为所求可得;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,根据三次项系数为0、二次项系数为a 、一次项系数为b 列出方程组求出a 、b 的值,可得答案.【详解】解:(1)(x+4)(4x+3)所得多项式的一次项系数为1×3+4×4=19,故答案为19;(2)()()()13225x x x +-+所得多项式的一次项系数为1×(-2)×5+1×3×5+1×(-2)×2=1,故答案为1;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,则(x 2-3x+1)(x 2+mx+2)=x 4+ax 2+bx+2,13101211(3)321m m a m b ⨯-⨯=⎧⎪∴⨯+⨯+-⨯=⎨⎪-⨯+⨯=⎩解得: 363m a b =⎧⎪=-⎨⎪=-⎩故答案为a= -6,b= -3.【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式的运算法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.。

9.3多项式乘多项式(原卷版)

9.3多项式乘多项式(原卷版)

9.3多项式乘多项式多项式乘多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

题型1:多项式乘多项式1.计算:(x﹣2)(x+3)=.题型2:图形面积问题2.如图:已知长方形纸片ABCD长为3a+1,宽为b+3,裁去一个长为2a+1,宽为b+1的长方形AEFG,则剩余部分面积为.形的面积分别表示为S1,S2,若S=S1﹣S2,且S为定值,则a,b满足的数量关系:.【变式2-2】用如图所示的正方形和长方形卡片若干张,拼成一个长为3a+2b,宽为a+b的矩形,需要B 类卡片张.【变式2-3】如图,某中学校园内有一块长为(3a+2b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块长为(2a﹣b)米、宽为2b米的小长方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求长方形地块的面积;(用含a,b的代数式表示)(2)求修建雕像的小长方形地块的面积;(用含a,b的代数式表示)(3)当a=3,b=1时,求绿化部分的面积.题型3:项的存在问题3.若x+m与x2+2x﹣1的乘积中不含x的二次项,则实数m的值为.题型4:规律题4.观察下列各式:(1)(x+2)(x+3)=x2+5x+61.若(x﹣1)(x+m)=x2+2x﹣3,则常数m的值为()A.3B.2C.﹣3D.﹣22.若(y﹣3)(y+2)=y2+my+n,则m,n的值分别为()A.m=1,n=﹣6B.m=﹣1,n=﹣6C.m=5,n=6D.m=﹣5,n=63.有足够多张如图所示的A类、B类正方形卡片和C类长方形卡片,若要拼一个长为(3a+2b)、宽为(a+b)的大长方形,则需要C类卡片的张数为()A .3B .4C .5D .64.下面四个整式中,不能表示图中(图中图形均为长方形)阴影部分面积的是( )A .﹣x 2+5xB .x (x +3)+6C .3(x +2)+x 2D .(x +3)(x +2)﹣2x5.如图,用代数式表示阴影部分面积正确的是( )A .ac +bc ﹣c 2B .(a ﹣c )(b ﹣c )C .abD .ac +bc二.填空题(共5小题)6.如果(x +3)(x ﹣4)=x 2﹣kx ﹣12成立,则k 的值为 .7.对于实数a ,b ,c ,d ,规定一种运算|a b c d|=ad ﹣bc ,如|102(−2)|=1×(﹣2)﹣0×2=﹣2,那么当|(x +1)(x +2)(x −3)(x −1)|=27时,则x = . 8.已知(x +p )(x +q )=x 2+mx +36,p ,q 均为正整数,则m 的可能值有 个.9.若(5x ﹣3b )(ax +1)=20x 2﹣7x ﹣c ,则(a +c )b = .10.如图,请根据图中标的数据,计算大长方形的面积.通过面积不同的计算方法,可以得到的等式关系是: .三.解答题(共6小题)11.计算:(x﹣1)(2x+1)﹣(x﹣5)(x+2).12.已知:﹣x2y1+a与x b y2是同类项.(1)求a、b的值;(2)计算a3+b3和(a+b)(a2﹣ab+b2)的值.13.在计算(2x+a)(x+b)时,甲错把b看成了6,得到结果是:2x2+8x﹣24;乙错把a看成了﹣a,得到结果:2x2+14x+20.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.14.如图,某小区有一块长为(2a+4b)米,宽为(2a﹣b)米的长方形地块,角上有四个边长为(a﹣b)米的小正方形空地,开发商计划将阴影部分进行绿化.(1)用含有a、b的式子表示绿化的总面积(结果写成最简形式);(2)物业找来阳光绿化团队完成此项绿化任务,已知该队每小时可绿化8b平方米,每小时收费200元,则该物业应该支付绿化队多少费用?(用含a、b的代数式表示)15.已知甲、乙两个长方形纸片,其边长(m>0)如图中所示,面积分别为S甲和S乙.(1)①用含m的代数式表示S甲=,S乙=;②填空S甲S乙(填>”,“<”或“=”).(2)若一个正方形纸片的周长与乙的周长相等,其面积设为S正.①该正方形的边长是(用含m的代数式表示);②S正与S乙的差是否为定值?如果不是,请说明你的理由;如果是,请求出值.16.如图所示,直角△ABD是“阳光小区”内一块空地,已知∠A=90°,AB=(2a+6b)米,AD=(8a+4b)米,若E为AB边的中点,DF=14AD,现打算在阴影部分种植一片草坪,则这片草坪的面积是多少平方米?。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多项式乘多项式 单项式乘多项式
单项式乘单项式
上面的运算过程,也可以表示为
(a b)(c d ) ac ad bc bd
3.多项式乘多项式的运算法则:
多项式与多项式相乘,先用一个多项 式的每一项乘另一个多项式的每一项,再 把所得的积相加.
展示析疑:
• 试一试: • (1)(a+4)(a+3) • = • =
宽为 (c d ) 的长方
形.
则此图的面积为: (a b)(c d )
a c
d
b
如果把此图看
成是由4个小长方形 组成,来自则此图的面积为:ac ad 由此可得
bc bd
(a b)(c d ) = ac ad bc bd
a c
d
b
把(c d ) 或(a b)看 成一个整体
活动2:探索发现 或 (a b)(c d ) (a b)(c d ) a (c d ) b (c d ) c ( a b ) d ( a b ) ac ad bc bd ac bc ad bd
2.思考:多项式乘多项式是如何转化进 行计算的?
初中数学 七年级(下册)
9.3
多项式乘多项式
沭阳国际学校 初一数学组
预习生疑:
• (1)3x(x+y)= _________.
• (2)(a-b)k=___________.
预习生疑:
活动1:请计算下图的面积,并把你
的算法与同学交流.
a c
d
b
a c
d
b
如果把此图看成 是一个长为 (a b) ,
3.已知长方形的长为a,宽为b,如果长方 形的长、宽各裁去2,求剩余部分的面积.
.
.
• (2)(x-2)(x-3) • = • =
. .
展示析疑:
例1 (1) 计算:
( x 2)(x 3)
(3x 1)(x 2)
(2)
展示析疑:
例2 计算:
(1) (3m n)(m 2n) (2) n(n 1)(n 2)
互动追疑:
• 例3计算: (1)(x+y)(x2-xy+y2)
(2)先化简,再求值: (a+2)(2a-1)-3(a-2)(2a+1),其中a=-2.
评价留疑:
1.计算: ( x 1)(2 x 3) (2) (7 3x)(7 3x) (1 ) (3m 2n)(7m 6n)(4) n(n 2)(2n 1) (3 ) 2.填空: 3 , (1)若 ( x 4)(x 7) x 2 mx n ,则m=___ n=_______ . -28 (2)若 a b 1, ab 2,则(a+1)(b-1)= -4 . _____
相关文档
最新文档