最新一次函数知识点总结79964doc资料
一次函数知识点总结
一次函数知识点总结(一)函数1、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断y 是否为x 的函数,只要看x 取值确定的时候,y 是否有唯一确定的值与之对应 2、确定函数自变量取值范围的方法:(1)关系式为整式时,自变量取值范围为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)实际问题中,自变量取值范围还要和实际情况相符合,使之有意义。
3、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
4、函数的表示方法:(1)列表法:(2)解析式法:(3)图象法: (二)一次函数1、一次函数的定义:一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.(3)正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质:一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 (1)解析式:y=kx (k 是常数,k ≠0);(2)必过点:(0,0)、(1,k );(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象;(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小;(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质:一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位. 4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.5、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)7、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b = 8、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.。
(完整版)一次函数知识点复习总结
6、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
一次函数
(1)函数
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
⑶当 , 时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式y=kx (k不为零) k不为零 x指数为1 b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时, 直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
k<0,y随x的增大而减小。(从左向右下降)
倾斜度
|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平 移
b>0时,将直线y=kx的图象向上平移 个单位;
b<0时,将直线y=kx的图象向下平移 个单位.
6、直线 ( )与 ( )的位置关系
(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
一次函数的知识点
一次函数的知识点一、函数基本概念一次函数的定义:形如y = kx + b(其中k和b是常数,且k ≠ 0)的函数称为一次函数。
二、一次函数的性质1、斜率(k):当k > 0时,函数图像从左到右上升,即函数是增函数。
当k < 0时,函数图像从左到右下降,即函数是减函数。
斜率k表示函数图像与x轴正方向的夹角大小。
2、截距(b):当x = 0时,y = b,即点(0, b)为一次函数与y轴的交点,b称为y轴截距。
3、图象:一次函数的图象是一条直线。
当k > 0时,直线从左到右上升;当k < 0时,直线从左到右下降。
三、一次函数的表达式1、点斜式:y - y1 = k(x - x1),其中(x1, y1)是直线上的一点。
2、斜截式:y = kx + b,其中k是斜率,b是y轴截距。
3、两点式:当已知直线上的两点(x1, y1)和(x2, y2)时,可以使用两点式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)。
四、一次函数的应用1、线性方程:一次函数常用于表示线性方程,如ax + by = c(其中a和b不全为0)可以转化为斜截式y = (-a/b)x + (c/b)。
2、实际问题建模:一次函数常用于建模实际问题中的线性关系,如物价增长、距离速度时间的关系等。
五、一次函数的平移和对称1、平移:2、上下平移:上加下减,即y = kx + b向上平移m个单位变为y = kx + (b + m),向下平移m个单位变为y = kx + (b - m)。
3、左右平移:左加右减,即y = kx + b向左平移m个单位变为y = k(x + m) + b,向右平移m个单位变为y = k(x - m) + b。
4、对称:一次函数图像关于x轴对称时,其解析式中的y变为-y,即y = -kx - b。
一次函数图像关于y轴对称时,其解析式中的x变为-x,即y = -kx + b。
一次函数知识点总结
一次函数知识点总结一次函数是初中数学中的重要内容,它不仅在数学学科中有着广泛的应用,还为后续学习其他函数奠定了基础。
接下来,让我们一起系统地梳理一下一次函数的相关知识点。
一、一次函数的定义一般地,形如 y = kx + b(k,b 是常数,k ≠ 0)的函数,叫做一次函数。
当 b = 0 时,即 y = kx(k 为常数,k ≠ 0),这时称 y 是 x 的正比例函数。
理解一次函数的定义需要注意以下几点:1、自变量 x 的次数是 1。
2、系数 k 不为 0。
3、常数项 b 可以为任意实数。
二、一次函数的图像一次函数的图像是一条直线。
1、当 k > 0 时,直线从左到右上升,y 随 x 的增大而增大;当 k < 0 时,直线从左到右下降,y 随 x 的增大而减小。
2、 b 的值决定了直线与 y 轴的交点坐标。
当 x = 0 时,y = b,所以直线 y = kx + b 与 y 轴的交点坐标为(0,b)。
例如,函数 y = 2x + 1 的图像是一条斜率为 2,截距为 1 的直线。
当 x = 0 时,y = 1,所以它与 y 轴交于点(0,1);当 y = 0 时,2x + 1 = 0,解得 x =-1/2,所以它与 x 轴交于点(-1/2,0)。
三、一次函数的性质1、增减性如前所述,k 的正负决定了函数的增减性。
2、对称性一次函数的图像是轴对称图形,直线 y = kx + b 关于直线 x =b/2k 对称。
四、一次函数的表达式1、已知两点坐标(x₁,y₁),(x₂,y₂),可以通过待定系数法求出一次函数的表达式。
设一次函数的表达式为 y = kx + b,将两点坐标代入,得到方程组:y₁= kx₁+ by₂= kx₂+ b解这个方程组,求出 k 和 b 的值,即可得到一次函数的表达式。
2、已知直线的斜率 k 和一个点的坐标(x₀,y₀),也可以用点斜式求出表达式:y y₀= k(x x₀)五、一次函数与方程、不等式的关系1、一次函数与一元一次方程一次函数 y = kx + b 的图像与 x 轴交点的横坐标,就是一元一次方程 kx + b = 0 的解。
《一次函数》知识总结
《一次函数》知识总结《一次函数》知识总结《一次函数》知识总结一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1).用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。
)注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
初中数学一次函数知识点总结.doc
初中数学一次函数知识点总结
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点p(x,y),都满足等式:y=kx+b。
(2)一次函数与y 轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
一次函数知识点总结
一次函数知识点总结一次函数是初中数学中的重要内容,它不仅在数学学科中有着广泛的应用,也为后续学习其他函数和数学知识打下了坚实的基础。
接下来,让我们系统地总结一下一次函数的相关知识点。
一、一次函数的定义一般地,如果两个变量 x 和 y 之间的关系可以表示为 y = kx + b (k,b 为常数,且k ≠ 0)的形式,那么我们称 y 是 x 的一次函数。
特别地,当 b = 0 时,y = kx(k ≠ 0),这时称 y 是 x 的正比例函数。
二、一次函数的图像一次函数 y = kx + b 的图像是一条直线。
当 k > 0 时,直线从左到右上升,y 随 x 的增大而增大;当 k < 0 时,直线从左到右下降,y 随 x 的增大而减小。
b 的值决定了直线与 y 轴的交点坐标。
当 b > 0 时,直线与 y 轴交于正半轴;当 b < 0 时,直线与 y 轴交于负半轴;当 b = 0 时,直线经过原点。
三、一次函数的性质1、增减性由 k 的正负决定。
k > 0 时,函数单调递增;k < 0 时,函数单调递减。
2、与坐标轴的交点与 x 轴的交点:令 y = 0,解得 x = b/k,所以交点坐标为(b/k,0)。
与 y 轴的交点:令 x = 0,得 y = b,所以交点坐标为(0,b)。
四、一次函数的解析式1、待定系数法若已知一次函数图像上的两个点的坐标,可设函数解析式为 y = kx + b,然后将两点坐标代入,得到关于 k 和 b 的方程组,解方程组即可求出 k 和 b 的值,从而确定函数解析式。
2、平移规律一次函数图像的平移遵循“上加下减,左加右减”的原则。
例如,将函数 y = 2x + 3 的图像向上平移 2 个单位,得到 y = 2x + 3 + 2 = 2x + 5;将其向左平移 1 个单位,得到 y = 2(x + 1) + 3 = 2x + 5。
五、一次函数与方程、不等式的关系1、与一元一次方程的关系一次函数 y = kx + b 的图像与 x 轴交点的横坐标,就是一元一次方程 kx + b = 0 的解。
总结一次函数的知识点(实用3篇)
总结一次函数的知识点(实用3篇)总结一次函数的知识点(1)一次函数的图像及性质:作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点) 性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
限。
总结一次函数的知识点(2)一次函数的图像及性质:作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点) 性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
限。
总结一次函数的知识点(3)一次函数基本知识点总结在我们的学习时代,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是学习的重点。
一次函数知识点.docx
一次函数知识点1、(1)变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.(2)方法:①常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中; 二是看它在这个变化过程中的取值情况是否发生变化;②常量和变量是相对于变化过程而言的.可以互相转化;③不要认为字母就是变量,例如口是常量.2、函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,X是自变量. 说明:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于口变量的每一个确定的值,函数值有且只有一个值与之对应, 即单对应.3、用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注①函数解析式是等式.②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.③函数的解析式在书写时有顺序性,例y二x+9时表示y是x的函数,若写成x=-y+9就表示x是y的函数.4、自变量的取值范围必须使含有自变量的表达式都有意义.①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13 中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-l ・③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.5、函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.注意:①当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程;②当自变量确定时,函数值是唯一确定的.但当函数值唯一确定时, 对应的自变量可以是多个.6、函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x, y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P (x, y)是否在函数图象上的方法是:将点P (x, y)的X、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上…7、函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力'用图象解决问题时,要理清图象的含义即会识图.8、函数的三种表示方法:列表法、解析式法、图象法.其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.9、函数的三种表示方法:列表法、解析式法、图象法.其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.10、(1)正比例函数的定义:一般地,形如y=kx (k是常数,kHO) 的函数叫做正比例函数,其中k叫做比例系数.注意:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数的要求:k 是常数,kHO, k是正数也可以是负数.(2)正比例函数图象的性质正比例函数y=kx (k是常数,kHO), 我们通常称之为直线y二kx・当k>0时,直线y二kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y=kx 依次经过笫二、四象限,从左向右下降,y随x的增大而减小.(3)“两点法”画正比例函数的图象:经过原点与点(1, k)的直线是y二kx (k是常数,kHO)的图象.11> (1)一次函数的图象的画法:经过两点(0, b)、(七k, 0)或(1, k+b)作直线y=kx+b.注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数, 以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a, y=b分别是与y轴,x轴平行的直线,就不是一次函数的图象.(2)一次函数图象之间的位置关系:直线y二kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.注意:①如果两条直线平行,则其比例系数相等;反之亦然;②将直线平移,其规律是:上加下减,左加右减;12、 正比例函数的图象.13、 一次函数的性质:k>0, y 随x 的增大而增大,函数从左到右上升;k<0, y 随x 的增大而减小,函数从左到右下 降.由于y二kx+b 与y 轴交于(0, b ),当b>0时,(0, b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0, b )在y 轴的负半轴,直线与y 轴交于负 半轴.14、 正比例函数的性质.15> 由于 y 二kx+b 与 y 轴交于(0, b ),当 b>0 时,(0, b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b<0时,(0, b )在y 轴的负半轴,直线与y 轴交于负半轴.条直线•它与x 轴的交点坐标是(・bk, 0);与y 轴的交 点坐标是(0, b )・直线上任意一点的坐标都满足函数关系式y 二kx+b ・17、直线 y 二kx+b, ( kHO,且 k, b 为常数)①关于x 轴对称,就是x 不变,y 变成-y : -y=kx+b,即y=-kx-b ; (关于X 轴对称,横坐标不变,纵坐标是原① k>0, b>0oy 二kx+b② k>0, b<0oy 二kx+b③ k<0, b>Ooy 二kx+b④ kVO, bVOoy 二kx+b 16、一次函数 y 二kx+b, 的图象在一、二、 的图象在一、三、 的图象在一、二、 的图象在二、三、 (kHO,且 k, b三象限; 四象限; 四象限; 四象限.为常数)的图象是一来的相反数)②关于y轴对称,就是y不变,x变成-x:y=k(-x)+b,即y=-kx+b;(关于y轴对称,纵坐标不变,横坐标是原来的相反数)③关于原点对称,就是x和y都变成相反数:・y二k (-x) +b,即y=kx-b・(关于原点轴对称,横、纵坐标都变为原来的相反数)18、待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.注意:求正比例函数,只要一对x, y的值就可以,因为它只有一个待定系数;而求一次函数y二kx+b,则需要两组x, y的值.19、待定系数法求正比例函数的解析式.20、一次函数与一元一次方程.21、(1)一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y二ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y二kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.(2)用画函数图象的方法解不等式ax+b>0 (或VO)对应一次函数y二kx+b,它与x轴交点为(・bk, 0).当k>0时,不等式kx+b>0的解为:x>-bk,不等式kx+bVO的解为:x<-bk;当k<0,不等式kx+b>0的解为:x<-bk,不等式kx+b<0的解为:x>-bk.22、(1)一次函数与一元一次方程的关系:由于任何一元一次方程都可以转化为ax+b二0 (a, b为常数,aHO)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值,从图象上看,这相当于已知直线y二kx+b确定它与x轴交点的横坐标值.(2)二元一次方程(组)与一次函数的关系(3)一次函数和二元一次方程(组)的关系在实际问题中的应用:要准确的将条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.23、直线y二kx+b, (kHO,且k, b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交; 当k, b都相同时,两条线段重合.(1)两条直线的交点问题两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.(2)两条直线的平行问题若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线yl=klx+bl 与直线y2二k2x+b2 平行,那么kl=k2.24、根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.①描点猜想问题需要动手操作,这类问题需要真正的去描点, 观察图象后再判断是一次函数还是其他函数,再利用待定系数法求解相关的问题.②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.25、1、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.2、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.3、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.(2)理清题意是采用分段函数解决问题的关键.26、(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x 的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.。
一次函数知识点总结
一次函数知识点总结一次函数是数学中非常重要的一个概念,它在解决实际问题和理解数学关系方面有着广泛的应用。
下面我们就来详细总结一下一次函数的相关知识点。
一、一次函数的定义一般地,形如$y = kx + b$($k$,$b$是常数,$k≠0$)的函数,叫做一次函数。
其中$x$是自变量,$y$是因变量。
当$b = 0$时,$y = kx$($k≠0$),这时称$y$是$x$的正比例函数。
二、一次函数的图像一次函数$y = kx + b$的图像是一条直线。
当$k > 0$时,直线从左到右上升;当$k < 0$时,直线从左到右下降。
直线$y = kx + b$与$y$轴的交点坐标为$(0, b)$,与$x$轴的交点坐标为$(\frac{b}{k}, 0)$。
三、一次函数的性质1、当$k > 0$时,$y$随$x$的增大而增大;当$k < 0$时,$y$随$x$的增大而减小。
2、直线$y = kx + b$经过的象限:当$k > 0$,$b > 0$时,直线经过第一、二、三象限;当$k > 0$,$b < 0$时,直线经过第一、三、四象限;当$k < 0$,$b > 0$时,直线经过第一、二、四象限;当$k < 0$,$b < 0$时,直线经过第二、三、四象限。
四、求一次函数解析式的方法1、待定系数法设一次函数的解析式为$y = kx + b$,然后将已知条件中的两个点的坐标代入解析式中,得到一个关于$k$和$b$的方程组,解这个方程组,求出$k$和$b$的值,就得到了一次函数的解析式。
五、一次函数与方程、不等式的关系1、一次函数与一元一次方程一次函数$y = kx + b$($k≠0$)的函数值为$0$时,相应的自变量的值就是一元一次方程$kx + b = 0$的解。
2、一次函数与一元一次不等式一元一次不等式$kx + b > 0$(或$kx + b < 0$)的解集,就是一次函数$y = kx + b$的图像在$x$轴上方(或下方)时对应的自变量$x$的取值范围。
一次函数知识点(全)
一次函数知识点(全)一次函数,也称为线性函数,是数学中最简单的一类函数之一,其定义域为全体实数,函数的表达式为f(x) = ax + b,其中a和b为常数。
一次函数以一条直线表示,具有线性关系,其图像是一条直线,斜率为a,截距为b。
一次函数的基本性质及应用:1. 斜率:一次函数的斜率a代表了直线的倾斜程度,也称为直线的导数或变化率。
斜率的计算方法为:a = (y2 - y1) / (x2 - x1),其中(x1,y1)和(x2,y2)为直线上的两个点。
斜率可正可负,若a > 0,表示直线向右上方倾斜;若a < 0,表示直线向右下方倾斜;若a = 0,表示直线水平。
2. 截距:一次函数的截距b代表了直线与y轴的交点,即x = 0时对应的y值。
截距可为正、负或零,当b > 0时,直线在y轴上方与之交点在正半轴;当b < 0时,直线在y轴下方与之交点在负半轴;当b = 0时,直线通过原点。
3. 表示方式:一次函数可以通过函数表达式、函数关系式、函数图像、函数性质等多种方式进行表示和描述。
4. 对称性:一次函数的图像关于直线y = x具有对称性,即将图像沿y = x对称后,两者完全重合。
5. 平行和垂直:两条直线平行的情况是它们的斜率相等,即a1 = a2;两条直线垂直的情况是它们的斜率之积等于-1,即a1 * a2 = -1。
6. 定义域和值域:一次函数的定义域为全体实数,即(-∞, +∞);值域为全体实数,即(-∞, +∞)。
7. 函数运算:一次函数可以进行相加、相减、相乘、相除等运算,运算结果仍为一次函数。
8. 应用:一次函数广泛应用于经济学、物理学、工程学等领域。
在经济学中,一次函数常用来描述成本、收入、利润等与产量的关系。
在物理学中,一次函数可以描述速度、位移与时间的关系。
在工程学中,一次函数可用于线性规划、线性回归等问题的建模与解决。
综上所述,一次函数是数学中基础的一类函数,具有简单明了的性质和应用。
一次函数知识点
一次函数知识点一次函数是数学中一种基本的函数类型,它在解析几何、函数分析等领域中有着广泛的应用。
一次函数的表达式通常写作y = kx + b,其中k是斜率,b是y轴截距。
以下是一次函数的主要知识点总结:1. 定义:一次函数是形如y = kx + b的函数,其中k和b是常数,k≠0。
2. 图像:一次函数的图像是一条直线,这条直线的斜率由k决定,截距由b决定。
3. 斜率:斜率k表示函数图像的倾斜程度,斜率的正负决定了直线的上升或下降方向。
4. 截距:截距b是直线与y轴交点的y坐标,当x=0时,y的值即为b。
5. 增减性:当k>0时,函数随着x的增加而增加;当k<0时,函数随着x的增加而减少。
6. 函数值的正负:当k>0,b>0时,函数值y>0;当k>0,b<0时,函数值y可能为正或负;当k<0,b>0时,函数值y可能为正或负;当k<0,b<0时,函数值y<0。
7. 函数的平移:一次函数可以通过改变k和b的值来实现图像的平移。
8. 函数的对称性:一次函数没有对称性,因为它的图像是一条直线,不会关于任何点或线对称。
9. 函数的交点:两条一次函数的图像相交于一点,这一点的坐标满足两个函数的方程。
10. 函数的应用:一次函数在现实生活中有着广泛的应用,如计算斜率、预测趋势、解决实际问题等。
11. 函数的解析:通过解析一次函数的方程,可以找到函数图像上任意一点的坐标。
12. 函数的变换:一次函数可以通过缩放、平移等方式进行变换,以适应不同的数学和实际问题。
13. 函数的方程:一次函数的方程可以表示为y = kx + b,也可以表示为x = (y - b) / k。
14. 函数的解析式:解析式是描述一次函数图像特征的数学表达式,它包含了斜率和截距的信息。
15. 函数的图像绘制:通过绘制一次函数的图像,可以直观地理解函数的性质和变化趋势。
掌握这些知识点,可以帮助我们更好地理解和应用一次函数,解决与之相关的数学问题。
八年级数学一-次函数知识点总结
一、一次函数的定义一次函数是指形如 $y = ax + b$ 的函数,其中 $a$ 和 $b$ 是常数,且 $a \neq 0$。
这个函数的图像是一条直线,其斜率由$a$ 决定,截距由 $b$ 决定。
二、一次函数的性质1. 斜率:一次函数的斜率 $a$ 表示函数图像的倾斜程度。
当$a > 0$ 时,直线向上倾斜;当 $a < 0$ 时,直线向下倾斜。
2. 截距:一次函数的截距 $b$ 表示直线与 y 轴的交点。
当 $b > 0$ 时,直线与 y 轴的交点在 y 轴的正半轴;当 $b < 0$ 时,直线与 y 轴的交点在 y 轴的负半轴。
3. 增减性:一次函数在其定义域内是单调的。
当 $a > 0$ 时,函数随着 $x$ 的增大而增大;当 $a < 0$ 时,函数随着 $x$ 的增大而减小。
4. 奇偶性:一次函数既不是奇函数也不是偶函数,因为它的图像不是关于原点对称的,也不是关于 y 轴对称的。
三、一次函数的图像1. 确定函数的一般形式 $y = ax + b$。
2. 确定直线的斜率 $a$ 和截距 $b$。
3. 在坐标系中绘制直线,使其通过点 $(0, b)$(即 y 轴上的截距点)。
4. 利用斜率 $a$,从截距点出发,绘制一条直线,使其与 x 轴和 y 轴的交点满足函数的方程。
四、一次函数的应用1. 在日常生活中,一次函数可以用来描述物体的线性变化,如温度随时间的变化、速度随距离的变化等。
2. 在物理学中,一次函数可以用来描述物体的直线运动,如自由落体运动。
3. 在经济学中,一次函数可以用来描述线性成本、线性收益等经济变量之间的关系。
4. 在计算机科学中,一次函数可以用来直线和折线图。
5. 在工程设计中,一次函数可以用来优化设计方案,如桥梁、建筑等。
一次函数是数学中的一个基本概念,它具有简单的形式和丰富的性质。
通过深入理解一次函数的定义、性质和图像,我们可以更好地掌握数学和物理学的相关知识,从而为解决实际问题提供有力的工具。
一次函数主要知识点
一次函数主要知识点一、一次函数的定义。
1. 一般地,形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。
- 当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是一种特殊的一次函数。
2. 自变量x的取值范围。
- 自变量x的取值范围是全体实数。
但在实际问题中,要根据具体情况确定自变量的取值范围。
例如,在计算长方形周长C = 2(x + y),如果把y用含x的一次函数表示,且x、y表示长方形的长和宽,那么x>0,y>0,这就限制了x的取值范围。
二、一次函数的图象。
1. 一次函数y = kx + b(k,b是常数,k≠0)的图象是一条直线。
- y = kx(k为常数,k≠0)的图象是经过原点(0,0)的一条直线。
2. 画一次函数图象的方法:两点法。
- 通常取直线与y轴的交点(0,b)和直线与x轴的交点(-(b)/(k),0)(k≠0)。
例如,对于一次函数y = 2x+3,与y轴交点为(0,3),令y = 0,则0 = 2x+3,解得x=-(3)/(2),与x轴交点为(-(3)/(2),0),然后过这两点画直线即可。
3. 一次函数图象的性质。
- 当k>0时,y随x的增大而增大,图象从左到右上升。
例如y = 3x+1,k = 3>0,随着x的值增大,y的值也增大,其图象是上升的直线。
- 当k<0时,y随x的增大而减小,图象从左到右下降。
例如y=-2x + 4,k=-2<0,随着x的值增大,y的值减小,其图象是下降的直线。
- 对于y = kx + b,b决定直线与y轴交点的位置。
当b>0时,直线与y轴交于正半轴;当b = 0时,直线过原点;当b<0时,直线与y轴交于负半轴。
三、一次函数的解析式确定。
1. 待定系数法。
- 如果知道一次函数图象上的两个点的坐标(x_1,y_1),(x_2,y_2),将其代入y = kx + b中,得到方程组y_1=kx_1 + b y_2=kx_2 + b,解这个方程组求出k和b的值,就可以确定一次函数的解析式。
一次函数考点归纳
二、考点归纳考点1:一次函数的概念.相关知识:一次函数是形如(、为常数,且)的函数,特别的当时函数为,叫正比例函数.1、已知一次函数+3,则= .2、函数,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数的图象是一条直线,图象位置由k、b确定,直线要经过一、三象限,直线必经过二、四象限,直线与y轴的交点在正半轴上,直线与y轴的交点在负半轴上.1. 直线y=x-1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2. 一次函数y=6x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3. 一次函数y= 3 x + 2的图象不经过第象限.4. 一次函数的图象大致是()5. 关于x的一次函数y=kx+k2+1的图像可能是()6.已知一次函数y=x+b的图像经过一、二、三象限,则b的值可以是().A.-2B.-1C.0D.27.若一次函数的图像经过一、二、四象限,则m的取值范围是.8. 已知一次函数y=mx+n-2的图像如图所示,则m、n的取值范围是()A.m>0,n<2B. m>0,n>2C. m<0,n<2D. m<0,n>29.已知关于x的一次函数的图象如图所示,则可化简为__ __.10. 如果一次函数y=4x+b的图像经过第一、三、四象限,那么b的取值范围是_ _。
考点3:一次函数的增减性相关知识:一次函数时,y随x的增大而增大,当时,y随x的增大而减小.规律总结:从图象上看只要图象经过一、三象限,y随x的增大而增大,经过二、四象限,y随x的增大而减小.1.写出一个具体的随的增大而减小的一次函数解析式_ _2.一次函数y=-2x+3中,y的值随x值增大而____ ___.(填“增大”或“减小”)3.已知关于x的一次函数y=kx+4k-2(k≠0).若其图象经过原点,则k=_____;若y随x的增大而减小,则k的取值范围是________.4.若一次函数的函数值随的增大而减小,则的取值范围是()A.B.C.5. (2011内蒙古赤峰)已知点A(-5,a),B(4,b)在直线y=-3x+2上,则a b。
(完整word版)八年级数学一次函数知识点总结
新新教育1一次函数知识点总结一、函数1.变量的定义:在某一变化过程中,我们称数值发生变化的量为变量。
注:变量还分为自变量和因变量。
2.常量的定义:在某一变化过程中,有些量的数值向来不变,我们称它们为常量。
3.函数的定义:一般地,在一个变化过程中,若是有两个变量 x 与 y,并且关于 x?的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数,y 的值称为函数值.4.函数的三种表示法:〔1〕表达式法〔剖析式法〕;〔 2〕列表法;〔3〕图象法.a、用数学式子表示函数的方法叫做表达式法〔剖析式法〕。
b、由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。
c、把这些对应值〔有序的〕看作点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的方法叫做图像法。
5.求函数的自变量取值范围的方法.〔1〕要使函数的表达式有意义:a、整式〔多项式和单项式〕时为全体实数;b、分式时,让分母≠0;c、含二次根号时,让被开方数≠ 0 。
〔 2〕对实责问题中的函数关系,要使实责问题有意义。
注意可能含有隐含非负或大于0 的条件。
6.求函数值方法:把所给自变量的值代入函数表达式中,就可以求出相应的函数值.7.描点法画函数图象的一般步骤以下:Step1 :列表〔表中给出一些自变量的值及其对应的函数值〕;Step2 :描点〔在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点〕;Step3 :连线〔依照横坐标由小到大的序次把所描出的各点用圆滑曲线连接起来〕.8.判断 y 是不是 x 的函数的题型A、给出剖析式让你判断:可给 x 值来求 y 的值,假设 y 的值唯一确定,那么 y 是 x 的函数;否那么不是。
B、给出图像让你判断:过 x 轴做垂线,垂线与图像交点节余一个〔≥ 2〕时, y 不是 x 的函数;否那么y 是 x 的函数。
二、正比率函数1.正比率函数的定义:一般地,形如 y=kx〔 k 是常数, k≠0〕的函数,叫做正比率函数, ?其中 k 叫做比率系数。
一次函数知识点整理
一次函数知识点整理(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第二十章一次函数知识点整理1.一次函数的概念:解析式形如y kx b=+(k≠0)的函数叫一次函数2.判断一次函数的依据:⑴表示函数的式子是关于自变量的整式(自变量不能出现在分母的位置)⑵自变量的次数是一次⑶比例系数不能为零3.一次函数与正比例函数的关系:当b=0时,一次函数y kx b=+(k≠0)变为正比例函数(0)y kx k=≠,所以正比例函数是一次函数的特殊形式,换句话说:正比例函数一定是一次函数,一次函数不一定是正比例函数4.一次函数的图像:⑴一次函数y kx b=+(k≠0)的图像是平行于对应正比例函数(0)y kx k=≠的一条直线⑵一次函数和y轴的交点是(0,b),其中b叫截距⑶画一次函数的图像用两点法,一般取和x轴和y轴的交点⑷一次函数y kx b=+(k≠0)的图像可由正比例函数(0)y kx k=≠的图像上下平移得到,当b>0时,向上平移b个单位,当b<0时,向下平移b个单位例如:132y x=-的图像是平行于12y x=图像的一条直线,直线132y x=-和y轴的交点是(0,-3),截距是-3,把直线12y x=向下平移3个单位可得直线132y x=-,画函数132y x=-的图像,取点(0,-3)和(6,0)5.求一次函数y kx b=+的图像和坐标轴的交点方法:当x=0时,y=b,和y轴的交点是(0,b)当y=0时,x=bk-,和x轴的交点是(bk-,0)6.求一次函数y kx b=+的解析式:待定系数法,⑴需要两组变量的值⑵两个已知点⑶已知截距和一个已知点⑷已知平行于某条已知直线和一个已知点⑸已知平行于某条已知直线和截距7.一次函数y kx b=+图像的性质:⑴增减性(和正比例函数一样):当比例系数k>0时,函数值y随自变量x的增大而增大当比例系数k<0时,函数值y随自变量x的增大而减小⑵倾斜程度(图像和x轴的夹角)当k越大,图像的倾斜程度越高(即图像和x轴的夹角越大)⑶经过象限:当k>0,b>0时,直线y kx b=+经过第一、二、三象限当k>0,b<0时,直线y kx b=+经过第一、三、四象限当k<0,b>0时,直线y kx b=+经过第一、二、四象限当k<0,b<0时,直线y kx b=+经过第二、三、四象限8.一次函数y kx b=+和一元一次方程kx+b=0的关系当y=0时,一次函数y kx b=+变为一元一次方程kx+b=0,一次函数y kx b=+图像和x轴交点的横坐标(bk-)是对应一元一次方程kx+b=0的根(x=bk -)9.一次函数y kx b=+和一元一次不等式kx+b>0(kx+b<0)的关系:当y>0时,一次函数y kx b=+变为一元一次不等式kx+b>0,所以一次函数y kx b=+图像在x轴上方的点的横坐标(x)的取值范围是对应一元一次不等式kx+b>0的解集;当y<0时,一次函数y kx b=+变为一元一次不等式kx+b<0,所以一次函数y kx b=+图像在x轴下方的点的横坐标(x)的取值范围是对应一元一次不等式kx+b<0的解集例如,已知一次函数132y x=-+,求在这个一次函数图像上且位于x轴上方的所有点的横坐标的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数知识点总结❖变量和函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y 是x的函数。
例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。
对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是13、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义❖函数的表示方法1、三种表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
公式法:即函数解析式,简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
2、列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值)3、公式法:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
一般情况下,等号右边的变量是自变量,等号左边的变量是因变量。
用函数解析式表示函数关系的方法就是公式法。
4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.5、描点法画函数图形的一般步骤(通常选五点法)第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
❖ 一次函数性质、图像1、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 k(称为斜率)表示直线y=kx+b (k≠0)的倾斜程度,b 称为截距一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到. (1)解析式:y=kx+b(k 、b 是常数,k 0) 必过点:(0,b )和(-k b ,0) (3)走向: 依据k 、b 的值分类判断,见下图(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.(上加下减,左加右减)(7)b 的正、负决定直线与y 轴交点的位置①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数2、正比例函数性质:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx (k不为零) ①k不为零②x指数为1 ③b取零(1)解析式:y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)(2)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(3)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(4)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴3、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.4一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移,).上加下减,左加右减5、直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1≠b2 (2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2 (4)两直线垂直:即k1﹒k2=-1(5)两直线交于y轴上同一点: b1=b2❖用待定系数法确定一次函数解析式1、一般步骤(一设二代三解四还原):(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.2、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.3、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.4、一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=b c x b a +-的图象相同. (2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b c x b a +-和y=2222b c x b a +-的图象交点. 5、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 任意两点(,),(,)A A B B A x y B x y 的距离为22()()A B A B x x y y -+-;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -;若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y 到原点之间的距离为22A A x y +6、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x 轴的交点(k b -,0).直线(b ≠0)与两坐标轴围成的三角形面积为s =kb b k b 2212=⨯⨯ 7、对称性:若直线与直线y k x b=+关于 (1)x 轴对称,则直线l 的解析式为b kx y--= (2)y 轴对称,则直线l 的解析式为b kx y +-=(3)直线y =x 对称,则直线l 的解析式为k b x k y -=1 (4)直线y x =-对称,则直线l 的解析式为y k x b k =+1(5)原点对称,则直线l 的解析式为b kx y-=基础篇一、填空题1、在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______.在圆的周长公式C=2πr 中,变量是________,常量是_________.2、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个3、下列函数中,自变量x 的取值范围是x ≥2的是( )A ... D .4、函数y =x 的取值范围是___________.5、已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A.2325≤<-y B.2523<<y C.2523<≤y D.2523≤<y 6、正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大.7、若23y x b =+-是正比例函数,则b 的值是 ( ) A.0 B.23 C.23- D.32- 8、若关于x 的函数1(1)m y n x -=+是一次函数,则m= ,n= .9、当k_____________时,()2323y k x x =-++-是一次函数;10、若函数1)1(2-++=k x k y 是正比例函数,则k 的值为_______.11、已知32)12(--=m x m y 是正比例函数,且y 随x 的增大而减小,则m 的值为_______.12、当m=_______时,函数54)3(12-++=-x x m y m 是一次函数.13、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为_______.14、东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是_______.15、平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是_______.16、某商店出售货物时,要在进价的基础上增加一定的利润,下表体现了其数量x (个)与售价y (元)的对应关系,根据表中提供的信息可知y 与x 之间的关系式是_______________。
二、选择题1、下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0)2、下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3x C .y=2x 2 D .y=-2x+1 3、一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四4、若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<35、已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-16、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t(时)的函数关系用图象表示应为下图中的()7、李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()8、一次函数y=kx+b的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为()A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=12x-39、一次函数y=kx+b满足kb>0且y随x的增大而减小,则此函数的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限10、一次函数y=ax+b,若a+b=1,则它的图象必经过点()A、(-1,-1)B、(-1, 1)C、(1, -1)D、(1, 1)三、解答题1、直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。