★试卷4套汇总★湖南省名校2021年中考数学学业水平测试试题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.(10分)如图,在平面直角坐标系中,反比例函数 的图像与边长是6的正方形 的两边 , 分别相交于 , 两点.若点 是 边的中点,求反比例函数 的解析式和点 的坐标;若 ,求直线 的解析式及 的面积
26.(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
20.(6分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:
2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
18.已知二次函数 的图象如图所示,若方程 有两个不相等的实数根,则 的取值范围是_____________.
三、解答题(本题包括8个小题)
19.(6分)如图,在 的矩形方格纸中,每个小正方形的边长均为 ,线段 的两个端点均在小正方形的顶点上.
在图中画出以线段 为底边的等腰 ,其面积为 ,点 在小正方形的顶点上;在图中面出以线段 为一边的 ,其面积为 ,点 和点 均在小正方形的顶点上;连接 ,并直接写出线段 的长.
A.30°B.50°C.40°D.70°
6.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为( )
A. B. C. D.
7.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为( )
A.3:2B.9:4C.2:3D.4:9
操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;
②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究
15.如图,矩形 中, , ,将矩形沿 折叠,点 落在点 处.则重叠部分 的面积为______.
16.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 cm,且tan∠EFC= ,那么矩形ABCD的周长_____________cm.
17.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______.
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长
24.(10分)如图所示,飞机在一定高度上沿水平直线飞行,先在点 处测得正前方小岛 的俯角为 ,面向小岛方向继续飞行 到达 处,发现小岛在其正后方,此时测得小岛的俯角为 .如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
2019-2020学年中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.将1、 、 、 按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()
A. B.6C. D.
2.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是( )
11.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
12.化简: =_____.
13.一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_____cm1.
14.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数 (k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.
A.15°B.30°C.45°D.60°
3.下列各式中,互为相反数的是()
A. 和 B. 和 C. 和 D. 和
4.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=( )
A.54°B.64°C.27°D.37°
5.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()
8.若| | =- ,则 一定是()
A.非正数B.正数C.非负数D.负数
9.在下面的四个几何体中,左视图与主视图不相同的几何体是()
A. B. C. D.
10.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是( )
A.4≤m<7B.4<m<7C.4≤m≤7D.4<m≤7
二、填空题(本题包括8个小题)
22.(8分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.
23.(8分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.Baidu Nhomakorabea
21.(6分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
26.(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
20.(6分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:
2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
18.已知二次函数 的图象如图所示,若方程 有两个不相等的实数根,则 的取值范围是_____________.
三、解答题(本题包括8个小题)
19.(6分)如图,在 的矩形方格纸中,每个小正方形的边长均为 ,线段 的两个端点均在小正方形的顶点上.
在图中画出以线段 为底边的等腰 ,其面积为 ,点 在小正方形的顶点上;在图中面出以线段 为一边的 ,其面积为 ,点 和点 均在小正方形的顶点上;连接 ,并直接写出线段 的长.
A.30°B.50°C.40°D.70°
6.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为( )
A. B. C. D.
7.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为( )
A.3:2B.9:4C.2:3D.4:9
操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;
②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究
15.如图,矩形 中, , ,将矩形沿 折叠,点 落在点 处.则重叠部分 的面积为______.
16.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 cm,且tan∠EFC= ,那么矩形ABCD的周长_____________cm.
17.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______.
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长
24.(10分)如图所示,飞机在一定高度上沿水平直线飞行,先在点 处测得正前方小岛 的俯角为 ,面向小岛方向继续飞行 到达 处,发现小岛在其正后方,此时测得小岛的俯角为 .如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
2019-2020学年中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.将1、 、 、 按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()
A. B.6C. D.
2.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是( )
11.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
12.化简: =_____.
13.一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_____cm1.
14.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数 (k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.
A.15°B.30°C.45°D.60°
3.下列各式中,互为相反数的是()
A. 和 B. 和 C. 和 D. 和
4.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=( )
A.54°B.64°C.27°D.37°
5.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()
8.若| | =- ,则 一定是()
A.非正数B.正数C.非负数D.负数
9.在下面的四个几何体中,左视图与主视图不相同的几何体是()
A. B. C. D.
10.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是( )
A.4≤m<7B.4<m<7C.4≤m≤7D.4<m≤7
二、填空题(本题包括8个小题)
22.(8分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.
23.(8分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.Baidu Nhomakorabea
21.(6分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?