期中卷J012——洛阳市宜阳县2014-2015年八年级下期中数学
2014-2015学年度第二学期八年级数学期中考试卷附答案
2014-2015学年度第二学期八年级数学期中考试卷(考试时间:100分钟 满分:120分)一、选择题:(每小题3分,共42分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,请把认为正确的答案前面的字母编号写在相应的题号下。
1.下列式子是分式的是( )A.2x B.11+x C.y x +2 D.πxy2 2. 使分式2-x x有意义的x 的取值范围是( )A. 2x =B.2x ≠C.2x =-D.2x ≠-3. 某种感冒病毒的直径是0.00000012米,用科学记数法表示为( )米.A .71.210-⨯ B .71012.0-⨯ C .6102.1-⨯ D .61012.0-⨯ 4.点)0,2(在( )A.x 轴上B.y 轴上C.第一象限D.第四象限 5.点P (5,4-)关于x 轴对称点是( )A .(5,4) B.(5,4-) C.(4,5-) D.(5-,4-) 6.若点P(3,-1m )在第二象限,则m 的取值范围是( )A. m <1B. m <0C. m >0D. m >1 7.函数23-=x y 的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限8.在同一坐标系中,函数x ky =和3+=kx y )0(≠k 的图像大致是( )9. 在平行四边形ABCD 中,A B C D ∠∠∠∠∶∶∶的值可以是( ) A.1234∶∶∶ B.1221∶∶∶ C.2211∶∶∶ D.2121∶∶∶ 10.下列说法错误的是( )学校: 班别: 姓名: 座号:………………………………………………………………装………………订………………线………………………………………………得分E A .平行四边形的对角相等 B.平行四边形的对角互补 C .平行四边形的对边相等 D.平行四边形的内角和是360°11.如图1,在平行四边形ABCD 中,CA ⊥AB ,若AB=3,BC=5,则平行四边形的面积等于( )A .6 B. 10 C. 12 D. 1512. 如图2,a b ∥,下列线段中是a b ,之间的距离的是( )A.AB B.AE C.EF D.BC图2 13.已知2111=-b a ,则b a ab -的值是( ) A .21 B.21- C.2 D.2-14.当一次函数32-=x y 的图像在第四象限时,自变量x 的取值范围是( ) A.0<x <23 B.x >0 C.x <23D.无法确定二、填空题:(每小题4分,共16分)15. 若分式方程212-=--x x m x 有增根,则这个增根是=x 16.若反比例函数xky = 的图象经过点(1,-2),则此函数的解析式为 。
2014-2015学年八年级下学期期中数学试卷附答案
2014-2015学年八年级下学期期中数学试卷一、选择题(本大题共10题,每小题3分,共计30分)1.下列各式、、、+1、中分式有( )A.2个B.3个C.4个D.5个2.顺次连结矩形四边的中点所得的四边形是( )A.矩形B.正方形C.菱形D.以上都不对3.函数中,自变量x的取值范围是( )A.B.C.D.4.如图,四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )A.AB=DC,AD=BC B.AB∥DC,AO=BO C.AB=DC,∠B=∠D D.AB∥DC,∠B=∠D5.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍6.如图,平行四边形ABCD的对角线交于点O,且AB=7,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.32 B.28 C.16 D.467.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为( ) A.1 B.1或﹣1 C.﹣1 D.0.58.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )A.B.C.D.9.若要使分式的值为整数,则整数x可取的个数为( )A.5个B.2个C.3个D.4个10.在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为( )A.(0,4)B.(3,4)C.(,4)D.(,3)二、填空题(本大题共8小题,每小题3分,共计24分)11.当x=__________时,分式的值为0.12.,﹣的最简公分母是__________.13.如果菱形的两条对角线长为a和b,且a、b满足,那么菱形的面积等于__________.14.如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为__________.15.如果分式方程无解,则m=__________.16.已知﹣=3,则代数式的值为__________.17.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为__________.18.关于x的方程:x+=c+的解是x1=c,x2=,x﹣=c﹣解是x1=c,x2=﹣,则x+=c+的解是__________.三、解答题(本大题共8小题,共计66分)19.计算或化简:(1)计算:a﹣1﹣;(2)先化简(﹣)÷,再从(1)中m的取值范围内,选取一个你认为合适的m的整数值代入求值.20.解方程(1)(x﹣5)2=2(5﹣x);(2)2x2﹣4x﹣6=0(用配方法).21.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.22.如图,线段AC是矩形ABCD的对角线,(1)请你作出线段AC的垂直平分线,交AC于点O,交AB于点E,交DC于点F(保留作图痕迹,不写作法)(2)求证:AE=AF.23.某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,每天能多做原来的25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?24.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形__________A.平行四边形B.矩形C.菱形D.等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD 的和谐线,且AB=BC,请直接写出∠ABC的度数.25.如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D→A匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图象由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为__________cm/s,a﹦__________cm2;(2)若BC﹦3cm,①求t>3时S的函数关系式;②在图(2)中画出①中相应的函数图象.26.如图①,在▱ABCD中,AB=13,BC=50,点P从点B出发,沿B﹣A﹣D﹣A运动.已知沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况?若存在,求出所有t的值;若不存在,请说明理由.(3)设点C、D关于直线PQ的对称点分别为C′、D′,在点P沿B﹣A﹣D运动过程中,当C′D′∥BC时,求t的值(直接写出结果)一、选择题(本大题共10题,每小题3分,共计30分)1.下列各式、、、+1、中分式有( )A.2个B.3个C.4个D.5个考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:、、的分母中均不含有字母,因此它们是整式,而不是分式.、+1分母中含有字母,因此是分式.故选:A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.顺次连结矩形四边的中点所得的四边形是( )A.矩形B.正方形C.菱形D.以上都不对考点:中点四边形.分析:因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解答:解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=G F=FE,∴四边形EFGH为菱形.故选:C.点评:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.3.函数中,自变量x的取值范围是( )A.B.C.D.考点:函数自变量的取值范围.分析:根据当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.解答:解:由,得3﹣2x>0,解得x<,故选:B.点评:本题考查了函数自变量的范围,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.4.如图,四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )A.AB=DC,AD=BC B.AB∥DC,AO=BO C.AB=DC,∠B=∠DD.AB∥DC,∠B=∠D考点:平行四边形的判定.分析:根据平行四边形的判定定理进行判断即可.解答:解:A、根据两组对边分别相等的四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形为平行四边形,故此选项符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠B=∠D,∴AD∥BC,∴根据两组对边分别平行四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.点评:此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.5.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍考点:分式的基本性质.分析:根据分式的分子分母都乘以或除以同一个不为0的整式,结果不变,可得答案.解答:如果把分式中的m和n都扩大3倍,那么分式的值不变,故选:A.点评:本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,结果不变.6.如图,平行四边形ABCD的对角线交于点O,且AB=7,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.32 B.28 C.16 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=7,∵△OCD的周长为23,∴OD+OC=23﹣7=16,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=32,故选A.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为( ) A.1 B.1或﹣1 C.﹣1 D.0.5考点:一元二次方程的解;一元二次方程的定义.分析:根据一元二次方程的定义得到m﹣1≠0;根据方程的解的定义得到m2﹣1=0,由此可以求得m的值.解答:解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,∴m2﹣1=0且m﹣1≠0,解得m=﹣1.故选:C.点评:本题考查了一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.8.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )A.B.C. D.考点:由实际问题抽象出分式方程.分析:关键描述语是:“提前2天完成绿化改造任务”.等量关系为:原计划的工作时间﹣实际的工作时间=2.解答:解:若设原计划每天绿化(x)m,实际每天绿化(x+10)m,原计划的工作时间为:,实际的工作时间为:方程应该为:﹣=2.故选:A.点评:此题主要考查了由实际问题抽象出分式方程,列方程解应用题的关键步骤在于找相等关系.本题主要用到的关系为:工作时间=工作总量÷工作效率.9.若要使分式的值为整数,则整数x可取的个数为( )A.5个B.2个C.3个D.4个考点:分式的值;约分.分析:首先化简分式可得,要使它的值为整数,则(x﹣1)应是3的约数,即x﹣1=±1或±3,进而解出x的值.解答:解:∵,∴根据题意,得x﹣1=±1或±3,解得x=0或x=2或x=﹣2或x=4,故选D.点评:此题考查分式的值,此类题首先要正确化简分式,然后要保证分式的值为整数,则根据分母应是分子的约数,进行分析.10.在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为( )A.(0,4)B.(3,4)C.(,4)D.(,3)考点:轴对称-最短路线问题;坐标与图形性质.分析:过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•NG=MP•QN,因为QN取得最大值是OB 时,△MON的面积最大值=OA•OB,设O关于AC的对称点D,连接DB,交AC于M,此时AM=3,从而求得M的坐标(3,4).解答:解:如图,过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•NG=MP•QN,∵MP≤OA,QN≤OB,∴当点N与点B重合,QN取得最大值OB时,△MON的面积最大值=OA•OB,设O关于AC的对称点D,连接DB,交AC于M,此时△MON的面积最大,周长最短,∵=,即=,∴AM=3,∴M(3,4).故选B.点评:本题考查了直角梯形的性质,坐标和图形的性质,轴对称的性质等,作出辅助线是本题的关键.二、填空题(本大题共8小题,每小题3分,共计24分)11.当x=﹣1时,分式的值为0.考点:分式的值为零的条件.分析:根据分式值为零的条件得x+1=0且x﹣2≠0,再解方程即可.解答:解:由分式的值为零的条件得x+1=0,且x﹣2≠0,解得:x=﹣1,故答案为:﹣1.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.12.,﹣的最简公分母是4x3y.考点:最简公分母.分析:确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解答:解:,﹣的最简公分母是4x3y;故答案为:4x3y.点评:此题考查了最简公分母,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.13.如果菱形的两条对角线长为a和b,且a、b满足,那么菱形的面积等于12.考点:菱形的性质;非负数的性质:偶次方;非负数的性质:算术平方根.分析:由a、b满足,即可求得a与b的值,又由菱形的两条对角线长为a和b,根据菱形的面积等于对角线积的一半,即可求得答案.解答:解:∵a、b满足,∴,解得:a=4,b=6,∵菱形的两条对角线长为a和b,∴菱形的面积为:ab=12.故答案为:12.点评:此题考查了菱形的性质以及非负数的非负性.注意掌握菱形的面积等于对角线积的一半是关键.14.如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为6.考点:三角形中位线定理;平行四边形的性质.分析:根据三角形中位线等于三角形第三边的一半可得AB长,进而根据平行四边形的对边相等可得CD=AB.解答:解:∵EF是△ABD的中位线,∴AB=2EF=6,又∵AB=CD,∴CD=6.故答案为:6.点评:本题考查了三角形中位线定理及平行四边形的性质,熟练掌握定理和性质是解题的关键.15.如果分式方程无解,则m=﹣1.考点:分式方程的解.专题:计算题.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评:本题考查了分式方程无解的条件,是需要识记的内容.16.已知﹣=3,则代数式的值为﹣.考点:分式的化简求值.专题:计算题.分析:已知等式左边通分并利用同分母分式的减法法则计算,整理得到x﹣y=﹣3xy,原式变形后代入计算即可求出值.解答:解:∵﹣==3,即x﹣y=﹣3xy,∴原式===﹣,故答案为:﹣点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.考点:菱形的性质;勾股定理.专题:几何图形问题.分析:根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角函的性质求得BC 的长.解答:解:∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴BC=,故答案为:.点评:根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.18.关于x的方程:x+=c+的解是x1=c,x2=,x﹣=c﹣解是x1=c,x2=﹣,则x+=c+的解是x1=c,x2=+3.考点:分式方程的解.专题:计算题.分析:根据题中方程的解归纳总结得到一般性规律,所求方程变形后确定出解即可.解答:解:所求方程变形得:x﹣3+=c﹣3+,根据题中的规律得:x﹣3=c﹣3,x﹣3=,解得:x1=c,x2=+3,故答案为:x1=c,x2=+3点评:此题考查了分式方程的解,归纳总结得到题中方程解的规律是解本题的关键.三、解答题(本大题共8小题,共计66分)19.计算或化简:(1)计算:a﹣1﹣;(2)先化简(﹣)÷,再从(1)中m的取值范围内,选取一个你认为合适的m的整数值代入求值.考点:分式的化简求值.专题:计算题.分析:(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m=0代入计算即可求出值.解答:解:(1)原式=﹣=﹣;(2)原式=•=•=,当m=0时,原式=﹣1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.解方程(1)(x﹣5)2=2(5﹣x);(2)2x2﹣4x﹣6=0(用配方法).考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:(1)先变形,再提公因式即可;(2)先把系数化为1,再配方法即可.解答:解:(1)整理得:(x﹣5)2+2(x﹣5)=0;(x﹣5)(x﹣5+2)=0,x﹣5=0或x﹣3=0,解得x1=5,x2=3;(2)把二次项系数化为1得,x2﹣2x﹣3=0,x2﹣2x=3,x2﹣2x+1=4,(x﹣1)2=4,x﹣1=±2;解得x1=﹣1,x2=3.点评:本题考查了解一元二次方程,用到的方法有:提公因式法和配方法,是常见题型,要熟练掌握.21.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB 即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;(2)根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC的中点,代入直线计算即可求出k值.解答:解:(1)①如图所示;②直线CD如图所示;(2)∵由图可知,AD=BC,AD∥BC,∴四边形ABCD是平行四边形.∵A(0,4),C(3,0),∴平行四边形ABCD的中心坐标为(,2),代入直线得,k=2,解得k=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,还考查了平行四边形的判定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.22.如图,线段AC是矩形ABCD的对角线,(1)请你作出线段AC的垂直平分线,交AC于点O,交AB于点E,交DC于点F(保留作图痕迹,不写作法)(2)求证:AE=AF.考点:矩形的性质;线段垂直平分线的性质;作图—基本作图.分析:(1)分别以A,C为圆心,以大于AC的长为半径画弧,然后连接即可;(2)首先证得△COF≌△AOE,然后由线段垂直平分线的性质,证得AF=CF,即可证得结论.解答:(1)解:如图:分别以A,C为圆心,以大于AC的长为半径画弧,然后连接即可;(2)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠OCF=∠OAE,在△OCF和△OAE中,,∴△COF≌△AOE(ASA),∴AE=CF,∵EF是AC的垂直平分线,∴AF=CF,∴AE=AF.点评:此题考查了矩形的性质、线段垂直平分线的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23.某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,每天能多做原来的25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?考点:分式方程的应用.分析:根据实际比计划提前了4天这一等量关系列出方程求解.解答:解:设原来每天加固x平方米,则熟练后每天加固(1+25%)x平方米,由题意得:=解得:x=60经检验x=60是方程的解,∴﹣4=22答:原来每天能加固60平方米校舍,实际上加固校舍花了22天时间.点评:本题考查了分式方程的应用,解题的关键是找到等量关系.24.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形CA.平行四边形B.矩形C.菱形D.等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD 的和谐线,且AB=BC,请直接写出∠ABC的度数.考点:等腰梯形的性质;等腰直角三角形;平行四边形的性质;菱形的性质;矩形的性质.专题:新定义.分析:(1)有和谐四边形的定义即可得到菱形是和谐四边形;(2)首先根据题意画出图形,然后由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图1,图2,图3三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠ABC的度数.解答:解:(1)∵菱形的四条边相等,∴连接对角线能得到两个等腰三角形,∴菱形是和谐四边形;(2)解:∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形,在等腰Rt△ABD中,∵AB=AD,∴AB=AD=BC,如图1,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠ABC=60°.如图2,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠ABC=90°;如图3,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠BAC=∠BCF=15°,∴∠ABC=150°,综上:∠ABC的度数可能是:60°90°150°.点评:此题考查了等腰直角三角形的性质,等腰三角形的性质、矩形的性质、正方形的性质,菱形的性质,此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.25.如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D→A匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图象由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为1cm/s,a﹦6cm2;(2)若BC﹦3cm,①求t>3时S的函数关系式;②在图(2)中画出①中相应的函数图象.考点:二次函数综合题;动点问题的函数图象.专题:压轴题.分析:(1)根据点E时S最大,判断出2秒时点P运动至点B,点Q运动至点C,然后根据点P的速度求出AB,再根据3秒时,S=0判断出点P与点Q重合,然后根据追击问题的等量关系列出方程求出点Q的速度即可得解;(2)①求出3秒时点P、Q在点C重合,再求出点P到达点D的时间为5秒,到达点A 的时间为6秒,然后分3<t≤5时表示出PQ,然后根据三角形的面积公式列式整理即可;5<t≤6时,表示出AP、DQ,然后利用三角形的面积公式列式整理即可;②根据函数解析式作出图象即可.解答:解:(1)由图可知,2秒时点P运动至点B,点Q运动至点C,∵点P的速度为3cm/s,∴AB=3×=6cm,3秒时,S=0判断出点P与点Q重合,设点Q的速度为xcm/s,则3x+6=3×3,解得x=1,此时,BC=2×1=2cm,a=×6×2=6cm2,故答案为:1,6;(2)∵(6+3)÷3=3s,3÷1=3s,∴3秒时点P、Q在点C重合,点P到达点D的时间为:(6+3+6)÷3=5s到达点A的时间为:(6+3+6+3)÷3=6s,①若3<t≤5,则PQ=3t﹣t﹣6=2t﹣6,S=×(2t﹣6)×3=3t﹣9;若5<t≤6,则AP=(6+3+6+3)﹣3t=18﹣3t,DQ=(6+3)﹣t=9﹣t,S=×(18﹣3t)×(9﹣t)=t2﹣t+81;所以,S=;②函数图象如图2所示.点评:本题是二次函数综合题型,动点问题函数图象,主要利用了路程、速度、时间三者之间的关系,根据图2判断出2秒时点P、Q的位置是解题的关键,也是本题的难点,根据3秒时,点P、Q重合利用追击问题等量关系求出点Q的速度也很重要.26.如图①,在▱ABCD中,AB=13,BC=50,点P从点B出发,沿B﹣A﹣D﹣A运动.已知沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况?若存在,求出所有t的值;若不存在,请说明理由.(3)设点C、D关于直线PQ的对称点分别为C′、D′,在点P沿B﹣A﹣D运动过程中,当C′D′∥BC时,求t的值(直接写出结果)考点:相似形综合题.分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(3)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8,当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t;(2)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,∴∠PBM=∠QRM,∠BPM=∠MQR,在△BPM和△RQM中,∴△BPM≌△RQM(AAS).∴BP=RQ,∵RQ=AB,∴BP=AB∴13t=13,解得:t=1当1<t≤时,如图④.∵BR平分阴影部分面积,∴P与点R重合.∴t=.当<t≤时,如图⑤.∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(3)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,解得:t=7或t=.当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50﹣5t+13=8(t﹣1)﹣50,解得:t=.∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.点评:本题考查了平行四边形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,分类讨论的数学思想的运用,轴对称的性质的运用,三角形的面积公式的运用,解答时灵活运用动点问题的解答方法确定分界点是解答本题的关键和难点.。
2014—2015学年度第二学期期中考试初二年级数学试卷附答案
OABCD2014—2015学年度第二学期期中考试初二年级数学试卷考试时间:100分钟 满分:100分一、选择题 (每小题3分,共30分)1.下列各组长度的线段能组成直角三角形的是( ) A .a =2,b =3,c =4 B .a =4,b =4,c =5 C .a =5,b =6,c =7 D .a =5,b =12,c =132.下面各条件中,能判定四边形是平行四边形的是( )A.对角线互相垂直B.对角线互相平分C.一组对角相等D.一组对边相等3.直角三角形一条直角边长为8 cm ,它所对的角为30°,则斜边为( ) A. 16 cm B. 4cm C. 12cm D. 8 cm 4.用配方法解方程0262=+-x x 时,下列配方正确的是( )A .9)3(2=-xB .7)3(2=-xC .9)9(2=-xD . 7)9(2=-x 5.顺次连结菱形各边中点所围成的四边形是( )A .一般的平行四边形B .矩形C .菱形D .等腰梯形6.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为( )A .6B .3C .33D .637.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形8.如图,□ABCD 中,∠DAB 的平分线AE 交CD 于E ,AB=5, BC=3,则EC 的长( ) A. 1 B. 1.5 C. 2 D. 39.直角三角形两直角边的长度分别为6和8,则斜边上的高为( )CBAED年级 班级 姓名 学号装 订 线3A.10B.5C. 9.6D.4.810.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围 是 ( )A.1k >-B. 1k >-且0k ≠C.1k <D. 1k <且0k ≠二、填空题(每小题3分,共30分)11.命题“菱形是对角线互相垂直的四边形”的逆命题是 . 12.梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 米. 13.如果菱形的两条对角线长为cm 10与cm 12,则此菱形的面积______2cm . 14.在ABC ∆中,∠C=090,AC=12,BC=5,则AB 边上的中线CD= . 15.一个正方形的面积为81cm 2,则它的对角线长为 cm.16. 已知□ABCD 的周长是24,对角线AC 、BD 相交于点O ,且△OAB 的周长比△OBC 的周长大4,则AB= .17.若关于x 的一元二次方程 220x x k -+=的一个实数根为2,则k 的值为________.18.如下图,已知OA=OB ,那么数轴上点A 所表示的数是____________.19.若(m -2)22-m x+x -3=0是关于x 的一元二次方程,则m 的值是______.20. 如图,⊿ABC 的周长为16,D, E, F 分别为AB, BC, AC1-30-1-2-4231B A A的中点,M, N, P 分别为DE, EF, DF 的中点,则⊿MNP 的周长为 。
2014—2015学年度第二学期期中考试试卷八年级数学
2014—2015学年度第二学期期中考试试卷八年级数学2015.04本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分.考试用时120分钟. 注意事项:l 、答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2、答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3、考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.) 1.分式12x x -+的值为0时,x 的值是A .0B .1C .-1D . -2 2.下列事件中,属于不可能事件的是 A .明天某地区早晨有雾B .抛掷一枚质地均匀的骰子,向上一面的点数是6C .一个不透明的袋子中有2个红球和1个白球,从中摸出1个球,该球是黑球D .明天见到的第一辆公交车的牌照的末位数字将是偶数 3.已知平行四边形ABCD 中,∠B=4 ∠A ,则∠C=A .180︒B .36︒C .72︒D .144︒ 4.下列计算错误的是A .0.220.77a ba ba b a b ++=-- B .3223xx yx y y=C .1a b b a--=- D .123ccc+=5.已知四边形ABCD 中,∠A=∠B=∠C=90︒,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是A .∠D=90︒B .AB=CDC .AD=BCD .BC=CD6.已知:菱形ABCD 中,对角线AC 与BD 相交O .E 是BC 中点E , AD =6,则OE 的长为A .6B .4C .3D .2 7.若双曲线k y x=与直线y =2x +1的一个交点的横坐标为-1,则k 的值为A .-1B .1C .-2D .28.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有A .4个B .3个C .2个D .1个9.函数y=mx+n 与y =n mx,其中m ≠0,n ≠0,那么它们在同一坐标系中的图象可能是10.如图,将矩形ABCO 放在直角坐标系中,其中顶点B 的坐标为(10, 8),E 是BC 边上一点,:博△ABE 沿AE 折叠,点B 刚好与OC 边上点D 重合,过点E 的反比例函数y=k x的图象与边AB 交于点F , 则线段AF的长为 A .154B. 2 C .158D .32二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上) 11.已知反比例函数y=13m x- (m 为常数)的图象在一、三象限,则m 的取值范围为 ▲ .12.分式方程3220xx --=的解为x = ▲ .13.某学校计划开设A ,B ,C ,D 四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C 课程的学生有 ▲ 人.14.如图,在矩形ABCD 中,AB =3,BC =5,以点B 为圆心,BC 长为半径画弧,交边 AD于点E ,则AE ·ED = ▲ . 15.已知1112ab+=,则ab a b+的值是 ▲ .16.如图,点O 是菱形ABCD 两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 ▲ . 17.如图,已知正方形ABCD 的边长为1,连接AC 、BD ,CE 平分∠ACD 交BD 于点E , 则DE = ▲ . 18.如图,△OAC 和△BAD 都是等腰直角三角形,∠A CO =∠ADB =90︒,反比例函数y=k x在第一象限的图象经过点B ,若OA 2-AB 2=6,则k 的值为 ▲ .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明). 19.(本题满分8分,每小题4分)约分: (1) 262ab b-; (2)22222a a bab b-++ .20.(本题满分5分) 解方程:22210224x x x x x -++--=-21.(本题满分6分)先化简,再求值:21211x x ---,其中x =1.22.(本题满分6分)下面是小明和同学做“抛掷质地均匀的硬币试验”获得的数据.(1)填写表中的空格; (2)画出折线统计图; (3)当试验次数很大时,“正面朝上”的频率在 ▲ 附近摆动.23.(本题满分7分)如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点. (1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;24.(本题满分6分) 如图,已知点A 、B 的坐标分别为(0,0),(4,0),将△ABC 绕点A 按逆时针方向旋转90°得到△AB ′C '. (1)画出AAB 'C ';(2)写出点C ′,的坐标 ▲ ; (3)线段BB ′的长为 ▲ .25.(本题满分6分)给出下列命题: 命题l :直线y=x 与双曲线y=1x有一个交点是(1,1);命题2:直线y=8x 与双曲线y=2x有一个交点是(12,4);命题3:直线y=27x 与双曲线y=3x有一个交点是(13,9);命题4:直线y=64x 与双曲线y=4x有一个交点是(14,16);(1)请你阅读、观察上面命题,猜想出命题n (n 为正整数); (2)请验证你猜想的命题n 是真命题.26.(本题满分10分)如图,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF .(1)求证:∠ADP =∠EPB ; (2)求∠CBE 的度数;(3)当点P 是AB 的中点且AB=2,则BF 的长为 ▲ .27.(本题满分10分)如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y=k x的图象经过点A (2,m ),过点A 作AB 上⊥x 轴于点B ,且△A OB 的面积为12.(1)则m = ▲ ,k = ▲ ;(2)点C (x ,y )在该反比例函数的图象上,求当1≤x ≤3时函数值y 的取值范围;(3)过原点O 的直线l 与该反比例函数的图象交于P 、Q 两点,试根据图象直接写出线段PQ 长度的最小值.28.(本题满分12分) 已知,矩形ABCD 中.AB =4cm ,BC =8cm ,对角线AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE ,试证明:四边形AFCE 为菱形; (2)求AF 的长;(3)如图2,动点P 以每秒5cm 的速度自A →F →B →A 运动、同时点Q 以每秒4cm 的速度自C →D →E →C 运动,当点P 到达A 点时两点同时停止运动. 若运动t 秒后,以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.。
2014-2015学年度第二学期期中考试试卷初二数学附答案
2014-2015学年度第二学期期中考试试卷初二数学班级______分层班________ 姓名______________ 学号_________ 成绩___________注意:时间100分钟,满分120分一、选择题(本题共30分,每小题3分)1. 一元二次方程2410x x +-=的二次项系数、一次项系数、常数项分别是( ). A .4,0,1B .4,1,1C .4,1,-1D .4,1,02. 由下列线段a ,b ,c 不能..组成直角三角形的是( ). A .a =1,b =2,c =3 B .a =1, b =2, c =5 C .a =3,b =4,c =5 D .a =2,b=c =33. 如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连结AB 、AD 、CD ,则四边形ABCD 一定是( ). A .平行四边形 B .矩形C .菱形D .正方形4. 下列各式是完全平方式的是( ). A. 224x x ++B. 269x x -+C. 244x x --D. 232x x -+5. 正方形具有而矩形不一定具有的性质是( ). A .四个角都是直角 B .对角线互相平分 C .对角线相等 D .对角线互相垂直6. 如图,数轴上点M 所表示的数为m ,则m 的值是( ).AB .CD7. 已知平行四边形ABCD 的两条对角线 AC 、BD 交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为( ).A. (3,-2)B. (2,-3)C. (-3,2)D. (-2,-3)8. 某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则由题意可列方程为( ). A. 100)1(1442=-x B. 144)1(1002=-xC. 100)1(1442=+x D. 144)1(1002=+x9. 如图,平行四边形ABCD 的两条对角线相交于点O ,E 是AB边的中点,第16题图图中与△ADE 面积相等的三角形(不包括...△.ADE ...)的个数为( ). A . 3 B . 4 C . 5 D . 610. 如图,在长方形ABCD 中,AC 是对角线,将长方形ABCD 绕点B 顺时针旋转90°到长方形GBEF 位置,H 是EG 的中点,若AB =6,BC =8, 则线段CH 的长为( ).A .52B .41C .102D .21 二、填空题(本题共24分,每小题3分)11. 已知2x =是一元二次方程2280x ax ++=的一个根,则a 的值为 .12. 如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连接AC 和BC ,并分别找出它们的中点M 和N .如果测得MN =15m ,则A ,B 两点间的距离为 m .13. 如图,在□ABCD 中,CE ⊥AB 于E ,如果∠A =125°,那么∠BCE = °.14. 若把代数式223x x --化为2()x m k -+的形式,其中m 、k 为常数,则m +k = .15.如图,在□ABCD 中,E 为AB 中点,AC BC ⊥,若CE =3,则CD = .16. 如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为 .17. 如图,菱形ABCD 的周长为40,∠ABC =60°,E 是AB 的中点,点P 是BD 上的一个动点, 则P A+PE 的最小值为___________.班级______分层班________ 姓名________ 学号______第17题图第12题图第13题图第15题图8. 如图:在平面直角坐标系中,A 、B 两点的坐标分别为 (1,5)、(3,3), M 、N 分别是x 轴、y 轴上的点. 如果以点A 、B 、M 、N 为顶点的四边形是平行四边形, 则M .的坐标...为 .三、解答题(本题共26分,第19题每小题5分,第20、21题每小题5分,第22题每小题6分) 19. 解方程:(1) x 2(3)25-=; (2) 2610x x -+=.解: 解:20. 如图,在□ABCD 中,已知AD =16cm ,AB =12cm ,DE 平分∠ADC 交BC 边于点E , 求BE 的长度. 解:21. 一个矩形的长比宽多1cm ,面积是90cm 2,矩形的长和宽各是多少? 解:22. 已知:关于x 的一元二次方程2(21)20x m x m +++=.B(1)求证:无论m 为何值,此方程总有两个实数根;(2)若x 为此方程的一个根,且满足06x <<,求整数m 的值. (1)证明:(2)解:四、解答题(本题共20分,第23题6分,第24、25题每小题7分)23.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连结CE .(1) 求证:BD =EC ; (2) 若∠E =57°,求∠BAO 的大小.(1)证明:(2)解:班级______分层班________ 姓名_____ 学号____24. 已知:关于x 的一元二次方程2251(21)0422a x a x a +++++=有实根. (1)求a 的值;(2)若关于x 的方程23210kx x k a ----=的所有根均为整数,求整数k 的值. 解:(1) (2)25. 阅读下列材料:问题:如图1,在□ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB交GE于点H,构造全等三角形,经过推理解决问题.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.(1)证明:(2)解:线段EG、AG、BG之间的数量关系为____________________________.班级______分层班________姓名_____学号____图1图2五、解答题(本题共20分,第26、27题每小题6分,第28题8分)26.已知a 是方程2520x x +-=的一个根,则代数式22109a a +-的值为___________;代数式32635a a a ++-的值为___________.27.如图,四边形ABCD 中,AC =m ,BD =n ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n . ①四边形A 2B 2C 2D 2是 形; ②四边形A 3B 3C 3D 3是 形; ③四边形A 5B 5C 5D 5的周长是 ; ④四边形A n B n C n D n 的面积是 .28.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =120°,∠C =75°,BD 平分∠ABC .求证:BD 是四边形ABCD 的和谐线;(2)图2和图3中有三点A 、B 、C ,且AB =AC , 请分别在图2和图3方框内...作一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(要求尺规作图,保........留作图痕迹,不写作法..........); (3)四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数. (1)证明:B图1(2)在方框内用尺规作图,..........保留作图痕迹,不写作法...........(3)解:图3图2初二数学 答案及评分参考标准班级_____ 姓名_____ 学号_____ 成绩_____一、选择题(本题共30分每小题3分,)三、解答题(本题共26分,第19题每小题5分,第20、21题每小题5分,第22题每小题6分) 19. 解方程(1)x 2(3)25-=解: 35x -=± ----------------------------3分 ∴ 1282x x ==-, ------------------------5分(2) 2610x x -+=解: 261x x -=- -----------------------1分 2698x x -+= -----------------------2分2(3)8x -= --------------------3分3x -=± --------------4分∴13x =+23x =- --------------5分 另解:1a =,6b =-,1c =,--------------------------1分()224641132b ac -=--⨯⨯= -----------------2分x 3=± ------------------- 4分∴ 13x =+23x =- --------------5分20. 如图,在□ABCD 中,已知AD =16cm ,AB =12cm , DE 平分∠ADC 交BC 边于点E ,求BE 的长度.解: ∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD =12cm ,AD =BC =16cm , ---------2分 ∵AD ∥BC ∴∠ADE =∠DEC ,∵DE 平分∠ADC ,∴∠ADE =∠E DC , ∴∠DEC =∠EDC ,∴CE=CD =12cm , ----------4分 ∴BE=BC-CE =4cm. ----------5分21. 一个矩形的长比宽多1cm ,面积是90cm 2,矩形的长和宽各是多少?解:设矩形长为x cm ,则宽为(1x -)cm ,--------------1分 依题意得 (x 1)90x -=--------------3分解得1210,9x x ==-(不合题意,舍去)--------------4分 答:矩形的长和宽各是10cm 、9cm .--------------5分 22.已知:关于x 的一元二次方程2(21)20x m x m +++=. (1)求证:无论m 为何值,此方程总有两个实数根;(2)若x 为此方程的一个根,且满足06x <<,求整数m 的值. (1)证明: 2(21)412m m ∆=+-⨯⨯ 2441m m =-+ 2(21)m =-.∵2(21)m -≥0,即∆≥0,--------------1分∴无论m 为何值,此方程总有两个实数根.-----------2分(2)解:因式分解,得 (2)(1)0x m x ++=.于是得 20x m +=或10x +=.解得 12x m =-,21x =-. --------------4分∵10-<,而06x <<,∴2x m =-,即 026m <-<.∴30m -<<. ……………………………… 5分 ∵m 为整数,∴1m =-或2-. ……………………………… 6分B第19题B四、解答题(本题共20分,第23题6分,第24、25题每小题,7分) 23. 如图,已知菱形ABCD 的对角线相交于点O,延长AB 至点E,使BE=AB,连结CE. (1)求证:BD=EC;(2)若∠E =50°,求∠BAO 的大小. (1)证明:∵菱形ABCD ,∴AB=CD ,AB ∥CD ,……………………………1分 又∵BE=AB , ∴BE=CD ,BE ∥CD ,∴四边形BECD 是平行四边形,…………………………2分 ∴BD=EC …………………………3分 (2)解:∵平行四边形BECD ,∴BD ∥CE ,∴∠ABO=∠E=57°,…………………………4分 又∵菱形ABCD , ∴AC 丄BD ,∴∠BAO=90°…………………………5分 ∴∠BAO +∠ABO=90°∴∠BAO =90°-∠ABO=33°.………………………………6分24. 已知:关于x 的一元二次方程2251(21)0422a x a x a +++++=有实根. (1)求a 的值;(2)若关于x 的方程23210kx x k a ----=的所有根均为整数,求整数k 的值. 解:(1) ∵关于x 的一元二次方程2251(21)0422a x a x a +++++=有实数根. 22222514(21)4()42221(1)0a b ac a a a a a ∴-=+-++=-+-=--≥……………………1分 1a ∴=……………………………2分(2)由1a =得2330kx x k ---=当k=0时,所给方程为-3x-3=0,有整数根x= -1.……………………………3分 当k ≠0时,所给方程为二次方程,有(1)(3)0x kx k +--= 12331,1k x x k k+∴=-==+……………………………5分 1,3k x k ∴=±±、为整数……………………………6分综上0,1,3k =±±.……………………………7分 25. 阅读下列材料:问题:如图1,在□ABCD 中,E 是AD 上一点,AE =AB ,∠EAB =60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG . 求证:EG =AG +BG .小明同学的思路是:作∠GAH =∠EAB 交GE 于点H ,构造全等三角形,经过推理使问题得到解决.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明; (2)如果将原问题中的“∠EAB =60°”改为“∠EAB =90°”,原问题中的其它条件不变(如图2),请探究线段EG 、AG 、BG 之间的数量关系,并证明你的结论.图1 图2(1)证明:如图1,作∠GAH=∠EAB 交GE 于点H , 则∠GAB=∠HAE .……………………1分 ∵∠EAB=∠EGB ,∠AOE=∠BOF , ∴∠ABG=∠AEH . 在△ABG 和△AEH 中OGAB HAE AB AEABG AEH⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH .……………………2分∴BG=EH ,AG=AH . ∵∠GAH=∠EAB=60°, ∴△AGH 是等边三角形. ∴AG=HG .∴EG=AG+BG ;……………………3分(2)线段EG 、AG 、BG 之间的数量关系是EG+BG =AG .……………………4分 证明:如图2,作∠GAH=∠EAB 交GE 的延长线于点H ,则∠GAB=∠HAE . ∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°. ∴∠ABG=∠AEH .……………………5分在△ABG 和△AEH 中,∴△ABG ≌△AEH .……………………6分 ∴BG=EH ,AG=AH . ∵∠GAH=∠EAB=90°,∴△AGH 是等腰直角三角形. ∴AG=HG ,∴EG+BG =AG .……………………7分五、解答题(本题共20分,第26、27题每小题6分,第28题8分)26.已知a 是方程2520x x +-=的一个根,则代数式22109a a +-的值为__-5____;代数式32635a a a ++-的值为___-3____. ……………………每空3分27.如图,四边形ABCD 中,AC =m ,BD =n ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n . ①四边形A 2B 2C 2D 2是 菱形;………1分 ②四边形A 3B 3C 3D 3是 矩形 ;………2分ABD1A1C1D 2A2C2D2B③四边形A 5B 5C 5D 5的周长是 4m n+ ;………4分 ④四边形A n B n C n D n 的面积是 12n mn+ .……6分28.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =120°,∠C =75°,BD 平分∠ABC .求证:BD 是四边形ABCD 的和谐线;(2)图2和图3中有三点A 、B 、C ,且AB =AC , 请分别在图2和图3方框内...作一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(要求尺规作图,.......保留作图痕迹,不写作法...........); (3)四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数. (1)证:(1)∵AD ∥BC , ∴∠ABC+∠BAD=180°,∠ADB=∠DBC . ∵∠BAD=120°, ∴∠ABC=60°. ∵BD 平分∠ABC , ∴∠ABD=∠DBC=30°, ∴∠ABD=∠ADB , ∴△ADB 是等腰三角形.…………………1分 在△BCD 中,∠C=75°,∠DBC=30°, ∴∠BDC=∠C=75°, ∴△BCD 为等腰三角形,∴BD 是四边形ABCD 的和谐线;……………………2分 (2)由题意作图为:图2,图3 ……………………4分(在方框内用.....尺规作图,..... 保留作图痕迹,....... 不写作法....)解(3)∵AC 是四边形ABCD 的和谐线,图1图3图2∴△ACD 是等腰三角形. ∵AB=AD=BC ,如图4,当AD=AC 时, ∴AB=AC=BC ,∠ACD=∠ADC ∴△ABC 是正三角形, ∴∠BAC=∠BCA=60°. ∵∠BAD=90°, ∴∠CAD=30°, ∴∠ACD=∠ADC=75°, ∴∠BCD=60°+75°=135°.……………………5分 如图5,当AD=CD 时, ∴AB=AD=BC=CD . ∵∠BAD=90°, ∴四边形ABCD 是正方形, ∴∠BCD=90°……………………6分 如图6,当AC=CD 时 法(一):过点C 作CE ⊥AD 于E ,过点B 作BF ⊥CE 于F , ∵AC=CD .CE ⊥AD , ∴AE=AD ,∠ACE=∠DCE . ∵∠BAD=∠AEF=∠BFE=90°, ∴四边形ABFE 是矩形. ∴BF=AE . ∵AB=AD=BC , ∴BF=BC , ∴∠BCF=30°. ∵AB=BC , ∴∠ACB=∠BAC . ∵AB ∥CE , ∴∠BAC=∠ACE , ∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.……………………8分 法(二): 作DM ⊥AD ,作BM ⊥AB ,则四边形ABMD 是正方形 ∴BC=B M ∵AC=CD ∴∠CA D=∠CDA ∴∠BAC=∠C DM在△AB C和△DMC中AB BAC CDM AC ⎧⎪∠∠⎨⎪⎩=DM ==CD∴△ABC ≌△D MC.B∴BC=CM,∠BCA=∠MCD∴△BCM为等边三角形∴∠CMD=150o∵MC=MD∴∠MCD=∠MDC=15o∴∠BCD=∠BCM-∠MCD=60°-15=45o……………………8分。
2014—2015学年度第二学期期中教学质量检测八年级数学试卷附答案
2014—2015学年度第二学期期中教学质量检测八年级数学试卷一、选择题(30分)1x 的取值范围是( ) A .x >0 B .x ≥-2 C .x ≥2 D .x ≤2 2.下列式子中,属于最简二次根式的是( ) A.B.C.D.3.下列计算正确的是( )A. B. C. D.4.如图,数轴上点A 对应的数为2,AB ⊥OA 于A ,且AB=1,以OB 为半径画圆,交数轴于点C ,则OC 的长为( )A .3 BCD.5.下列命题中正确的是( )A. 有一组邻边相等的四边形是菱形B. 有一个角是直角的平行四边形是矩形C. 对角线垂直的平行四边形是正方形D. 一组对边平行的四边形是平行四边形 6.如图所示,AD ∥BC ,要使四边形ABCD 成为平行四边形还需要条件( ) A.AB=DC B.∠1=∠2 C.AB=AD D.∠D=∠B7.ABC ∆的三边为,,a b c 且2()()a b a b c +-=,则该三角形是( ) A.以a 为斜边的直角三角形 B.以b 为斜边的直角三角形 C.以c 为斜边的直角三角形 D.锐角三角形8.如图, 15个外径为1m 的钢管以如图方式堆放, 为了防雨, 需要搭建防雨棚的高度最低应为_______m. ( ) A. 23+1 B.255 C. 5 D. 23+29.如图,两个正方形的边长分别为a 和b ,如果a+b=10,ab=20,那么阴影部分的面积是( )A.10 B.20 C .30 D .4010.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( ) A .2.4 B .4 C .4.8 D .5二、填空题(24分)11.2(-= .12.已知x =+,y =,则x 2y +xy 2=________.13.已知△ABC 是直角三角形,AB=5,BC=12,则AC= .14.如图,在□ABCD 中,点E 、F 分别在边AD ,BC 上,且BE ∥DF .若∠EBF =50°,则∠EDF 的度数是________°.15.如图,在□ABCD 中,AC ⊥AB ,∠ABD =30°,AC 交BD 于O ,AO =1,则BC 的长为___ _____. 16.如图,网格中的小正方形边长均为1,△ABC 的三个顶点均在格点上,则AB 边上的高为 .17.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB =5,AD =12,则四边形ABOM的周长为_____ ___.18.如图,矩形ABCD 中,AB =12cm ,BC =24cm ,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BDE 的面积 cm 2.三、解答题 (46分)19.化简与计算(5+6)B(1)计算:-÷ (2)计算:21)---21.(7分)如图,在矩形ABCD 中,对角线AC 与DB 相交于点O ,CP ∥DB , BP ∥AC 。
2014~2015学年度下学期期中调研测试八年级数学试卷附答案
2014~2015学年度下学期期中调研测试八年级数学试卷本试卷满分120分 考试用时12O 分钟一、你一定能选对!(本大题共10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有个是正确的,请将正确答案的代号在答题卡上, 将对应的答案标号涂黑1.若x-3在实数范围内有意义,则x 的取值范围是( ) A. x>0 B x>3 Cx>3 D.x ≤32 下列三条线段能构成直角三角形的是( ) A. 4,5,6 B 1,2 c,3,6 D. 6,8,103 下列计算正确的是( ) A.2+3= 5 B.43-33=1 C.212= 2 D.3÷2=2 64.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,下列结论中不定成立的是( ) A. ∠BAC=∠DAC B.AC=BD C. AC ⊥BD D. OA=OCCA5.电流通过导线时会产生热量,电流,(单位:A)、导线电阻R (单位:Q )、通电时间t (单位:s )与产生的热量Q (单位:J )满足Q=I 2Rt 已知导线的电阻为5Ω,1 s 时间导线产生30J 的热量, 则I 的值为( ) A. 2.4A B.6A C. 4.8A D. 56A6.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条 对角线如果条对角线用了49盆红花,还需要从花房运来红花( ) A. 48盆 B 49盆 C 50盆 D. 51盆7如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1 尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面 则这根芦苇的长度是( )A. 10尺 B 11尺 C. 12尺 D. 13尺8.如图,下列四组条件中,能判定□ABCD 是正方形的有 ①AB=BC, ∠A=90°②AC ⊥BD, AC=BD③OA=OD, BC=CD ④∠BOC=90°,∠ABD=∠DCA A. 1个 B 2个 C 3个 D. 4个9.如图是用火柴棍摆成的边长分别是1,2,3根火柴棍时的正方形,当 边长为10根火柴棍时,摆出的正方形所用的火柴棍的根数为( ) A. 220 8 200 C. 120 D. 1OO 10.在□ABCD 中,BC 边上的高为4,AB=5,AC=2 则□ABCD 的周长等于( ) A. 12 8 16C. 16或24 D 12或20二、填空题(本大题共有6小题,每小题3分,共18分) 11.化简:40 =_______.12顺次连接矩形四边的中点得到的四边形一定是_______.13.如图,池塘边有两点A ,B ,点C 是与BA 方向成直角的AC 方向上点,测得BC=60m , AC=20m ,则A ,B 两点问的距离____m.14.如图,□ABCD 的对角线AC 、BD 相交于点0,EF 过点O 与AD 、BC 分别相交于点E 、F , 若AB=5,AD=8,OE=3,那么四边形EFCD 的周长为______.BDE15.如图,正六边形ABCDEF 的边长为1,M 、N 分别为边BC 、EF 的中点,则四边形AMDN 的••••••n=3n=2n=1面积为_______.FC16.如图,在矩形ABCD 中,AB=2,AD=1,点P 在线段AB 上运动,现将纸片折叠,使点D 与点P 重台,得折痕EF (点E 、F 为折痕与矩形边的交点),再将纸片还原设四边形EPFD 的面积为S,当四边形EPFD 为菱形时,请写出S 的取值范围____F E A P三、解下列各题(本题共8题,共72分)1 7.(本小题满分8分)(1)(8+3)× 6 (2)(42-36)÷ 21 8(本小题满分8分)如图,在□ABCD 中,AE=CF求证:四边形DEBF 是平行四边形.FACE19.(本小题满分8分)已知x= 2- 3,求代数式x 2- 2x+3的值.20.(本小题满分8分)如图,某港口P 位于东西方向的海岸线上“远航”号、“海天”号轮船 同时离开港口,各自沿同定方向航行,“远航”号每小时航行16 n mile ,“海天”号每小时 航行12 n mile 它们离开港口一个半小时后分别位于点Q ,R 处,且相距30 n mile (1)求PQ ,PR 的长度;(2)如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?21.(本小题满分8分)在矩形ABCD 中,点E ,点F 为对角线BD 上两点,DE=EF=FB (1)求证:四边形ACE 是平行四边形:图1AD(2)若AE ⊥BD ,AF= 2,AB=4,求BF 的长度.图2AD22.(本小题满分10分)有5个边长为1的正方形,排列成形式如图1-1的矩形将该矩形以 图1一2的方式分割后拼接成正方形,并在正方形网格中,以格点为顶点画出该正方形ABCD (1) 正方形ABCD 的边长为____;图1-2图1-1(2)现有10个边长为1的正方形排列成形式如图2-1的矩形将矩形重新分割后拼接成正方形 EFGH ,请你在图2-2中画出分割的方法,并在图2-3的正方形网格中,以格点为顶点画出该正 方形EFGH.图2-3图2-2图2-1(3)如图3,从正方形A MGN 中裁去(1)中的正方形ABCD 和(2)中的正方形EFGH ,求留下部分的 面积.F D NAB23.(本小题满分10分)如图l ,已知AB ∥CD ,AB=CD ,∠A=∠D (1)求证:四边形ABCD 为矩形:图1BAD(2)E 是AB 边的中点,F 为AD 边上一点,∠DFC=2∠BCE. ①如图2,若F 为AD 中点,DF=1.6,求CF 的长度:图2EBADF②如图3,若CE=4,CF=5,则AF+BC=_____,AF=________.图2EBAD24.(本小题满分12分)如图1,四边形ABCO 为正方形. (1)若点A 坐标为(0,10) ①点B 的坐标:x②如图2,点D 为y 轴上一点,连接BD ,若点A 到BD 的距离为l ,求点C 到BD 的距离:xy(2)如图3,连接正方形ABCO 的对角线AC ,OB 交于点Q ,点F 为线段BC 上一点,以OF 为 直角边向上构造等腰Rt △EOF ,∠EOF=90°,EF 交AC 于P ,若PQ=1,求CF 的长度.xy2014~2015学年度第二学期期中试题八年级数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.) 11.102 12. 菱形 13.240 14. 19 15.3 16.1≤S ≤45 三、解答题:(本大题共7个小题.共72分.解答应写出文字说明、证明过程或演算步骤.) 17.(1)解:原式=1848+ …………(2分)=2334+ ………… (4分)(2)解:原式=4-263÷ ………… (6分)图2-3 (6分)图2-2 (4分)图2-1=4-33 …………(8分)18.证:在□ABCD 中,AB ∥CD ,AB =CD ………… (2分) ∵AE =CF∴AB -AE =CD -CF ………… (3分) ∴BE =DF ………… (5分) ∵BE ∥DF ………… (6分)∴四边形DEBF 是平行四边形.………… (8分) 19.解:322+-x x =()3112+--x ………… (2分)将32-=x 代入原式=()311322+---………… (4分)=31324+-- …………(6分)=33- …………(8分)20.解:(1) PQ 的长度16⨯1.5=24 n mile ………… (2分)PR 的长度12⨯1.5=18 n mile ………… (4分)(2)∵222PQ PR RQ +=∴∠RPQ =90° ………… (6分) ∵“远航”号沿东北方向航行,∴“海天”号沿西北方向(或北偏东45°)航行…………(8分) 21.解(1)连接AC 交BD 于点O 在矩形ABCD 中OA =OC ,OB =OD …………(1分)又DE =EF =FB ∴OB -BF =OD -DE …………(2分)∴OE =OF …………(3分)∴四边形AFCE 是平行四边形………… (4分)(2)∵AE ⊥BD ,DE =EF∴AD =AF =22 ………… (5分) 在Rt △ABD 中222AB AD BD +=………… (6分) ∴BD =62 ………… (7分)∴BF =362 …………(8分) 22.解:(1)求正方形ABCD 的边长为5;…………(2分) (2)(3) 正方形AMGN 的边长:105+ …………(7分)A正方形AMGN 的面积:()2105+ …………(8分) 留下部分的面积:()10-5-1052+…………(9分)=210 …………(10分)23.证:(1)∵AB ∥CD ,AB =CD∴四边形ABCD 为平行四边形…………(1分) ∵∠A =∠D ,∠A +∠D =180°∴∠A =90° …………(2分) ∴四边形ABCD 为矩形 …………(3分)(2)①延长DA ,CE 交于点G 在矩形ABCD 中∠DAB =∠B =90°,∴∠DAB =∠B =90°,∠G =∠ECB ∵E 是AB 边的中点∴AE =BE∴△AGE ≌△BCE …………(4分) ∴AG =BC∵DF =1.6,F 为AD 中点 ∴BC =3.2∴AG =BC =3.2…………(5分) ∵AD ∥BC∴∠DFC =∠BCF ∵∠DFC =2∠BCE∴∠BCE =∠FCE …………(6分) ∵AD ∥BC ∴∠BCE =∠G∴FC =FG =4.8…………(7分)②若CE =4,CF =5,则AF +BC = 5 ,(8分)AF =59.(10分) 24.证(1)①∵A (0,10) ∴OA =10…………(1分)在正方形ABCD 中∵BA =BC =OA =10 …………(2分) ∵BA ⊥y 轴,BC ⊥x 轴∴B (10,10)…………(3分)②分别过点A ,点B 作AM ⊥BD ,CN ⊥BD ∵∠1+∠2=90°,∠1+∠3=90° ∴∠2=∠3∵AB =BC ,∠AMB =∠BNC=90° ∴△AMB ≌△BNC …………(5分) ∴BM= CN . ∵AB =10,AM =1 ∴BM=22AM AB =3 …………(6分)∴CN =3∴点C 到BD 的距离为3 …………(7分) (2)连接AE ,作FG ∥AB 交AC 于点G易证△AOE ≌△COF …………(8分) ∴AE =CF ∵∠ACB =45° ∴GF =CF易证△AEP ≌△FGP ∴EP =FP∴P 为EF 中点 …………(9分) 连接AF ,取AF 的中点H ,连接PH ,QH PH ∥AE ,PH =21AE ;QH ∥CF ,QH =21CF …………(10分) ∵AE =CF ,AE ⊥CF∴△PQH 为等腰直角三角形 ∵PQ =1 ∴QH =22…………(11分) ∴CF =2…………(12分)。
2014-2015年下学期八年级期中考试数学试卷附答案
2014-2015年下学期八年级期中考试数学试卷总分:120分 时量:120分钟一.精心选一选,旗开得胜(每小题3分,共30分)1. 把直角三角形的两直角边均扩大到原来的两倍,则斜边扩大到原来的( )A.8倍B.4倍C. 2倍D. 6倍2.两个直角三角形全等的条件是( )A. 一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.下面的性质中,平行四边形不一定具有的是( )A.内角和为360°B.邻角互补C.对角相等D. 对角互补4.如图,如果平行四边形ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对ODCB A第4题图 5.□ABCD 的对角线交于点O ,且AB=5,△OCD 的周长为23,则□ABCD 的两条对角线的和是 ( )A.18B.28C.36D.466. 若点M(x ,y )满足x+y=0,则点M位于 ( )A. 第一、三象限两坐标轴夹角的平分线上;B. x 轴上;C. 第二、四象限两坐标轴夹角的平分线上;D. y 轴上。
7.已知x 、y 为正数,且|42-X |+(y 2-3)2=0,如果以x ,y 的长为直角边作一直角三角形, 那么以此直角三角形的斜边为边长的正方形的面积为( )A.5B.25C.7D.158.在平面中,下列说法正确的是( )A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形9.下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个第9题图 第10题图10. 如图所示,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若 BD = 6,则四边形CODE 的周长是( ) A .10 B .12 C .18 D .24二.细心填一填,一锤定音(每小题3分,共30分)11. 在Rt ∆ABC 中,∠C=90°,∠A=65°,则∠B= .D CA B 12一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm ,那么斜边上的高为 cm .13.如图,已知□A BCD 中,AB=4,BC=6,BC 边上的高AE=2,则DC 边上的高AF 的长是 .C F ED A B C D FEA B C D1A B -2-10 第13题图 第15题图 第17题图14.□ABCD 的周长为60cm,其对角线交于O 点,若△AOB 的周长比△BOC 的周长多10cm, 则 AB= cm.15.如图,已知在□ABCD 中,AB=4cm,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线 于点F ,则DF= cm.16. 一个多边形的每一个外角等于30°,则此多边形是 边形,它的内角和等于 。
河南省洛阳市宜阳县八年级下期中数学考试卷(解析版)(初二)期中考试.doc
河南省洛阳市宜阳县八年级下期中数学考试卷(解析版)(初二)期中考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】在代数式,,+,,中,分式有()A.1个 B.2个 C.3个 D.4个【答案】B【解析】试题分析:依据分式的定义进行判断即可.解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选B【题文】若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或2【答案】B【解析】试题分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0.解:由分子x2﹣4=0解得:x=±2.当x=2时分母x2﹣2x=4﹣4=0,分式没有意义;当x=﹣2时分母x2﹣2x=4+4=8≠0.所以x=﹣2.故选B.【题文】有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108 B.12×10﹣8 C.1.2×10﹣8 D.1.2×10﹣9【答案】C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 000 012=1.2×10﹣8.故选:C.【题文】下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形【答案】C【解析】试题分析:根据平行四边形的对角相等,对角线互相平分可判断出A、B正确;再由平行四边形是中心对称图形可对C、D进行判断.解:A、∵平行四边形的对角线互相平分,∴此命题是真命题;B、∵平行四边形的对角相等,∴此命题是真命题;C、∵平行四边形是中心对称图形,不是轴对称图形,∴此命题是假命题;D、∵平行四边形是中心对称图形,∴此命题是真命题.故选C.【题文】在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5) B.(4,5) C.(﹣5,﹣4) D.(5,﹣4)【答案】D【解析】试题分析:根据第四象限内点的横坐标是正数,纵坐标是负数以及点到x轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答.解:∵第四象限的点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标是5,纵坐标是﹣4,∴点P的坐标为(5,﹣4).故选D.【题文】将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣4【答案】A【解析】试题分析:分式方程两边乘以最简公分母x(x﹣2)即可得到结果.解:去分母得:x﹣2=2x,故选:A.【题文】对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内【答案】C【解析】试题分析:根据反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.解:函数y=(k>0),图象是双曲线,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.故选:C.【题文】已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B. C. D.【答案】A【解析】试题分析:由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,﹣k<0,然后,判断一次函数y=﹣kx+k的图象经过象限即可.解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴﹣k<0,∴一次函数y=﹣kx+k的图象经过一、二、四象限;故选A【题文】若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2【答案】A【解析】试题分析:先把点(m,n)代入函数y=2x+1求出2m﹣n的值,再代入所求代数式进行计算即可.解:∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1,∴4m﹣2n+1=2(2m﹣n)+1=2×(﹣1)+1=﹣1.故选A.【题文】根据分式的基本性质填空:=.【答案】a﹣2.【解析】试题分析:根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.解:分子除以(a﹣2),分母也除以(a﹣2),得=,故答案为:a﹣2.【题文】若分式方程=有增根,则这个增根是x=.【答案】2【解析】试题分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.解:∵分式方程=有增根,∴x﹣2=0∴原方程增根为x=2,故答案为2.【题文】写出同时具备下列两个条件的一次函数表达式(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(0,2)【答案】y=﹣x+2【解析】试题分析:设一次函数的解析式为y=kx+b,由一次函数的单调性即可得出k的取值范围,随便选取一个k 值,再将点(0,2)代入一次函数解析式求出b值即可.解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k<0.令k=﹣1,则函数解析式为y=﹣x+b,又∵点(0,2)在一次函数y=﹣x+b的图象上,∴2=b,∴一次函数的解析式为y=﹣x+2.故答案为:y=﹣x+2.【题文】直线y=﹣2x+6与两坐标轴围成的三角形面积是.【答案】9【解析】试题分析:首先求出直线y=﹣2x+6与x轴、y轴的交点的坐标,然后根据三角形的面积公式,得出结果.解:∵直线y=﹣2x+6中,﹣=﹣=3,b=6,∴直线与x轴、y轴的交点的坐标分别为A(3,0),B(0,6),∴故S△AOB=×3×6=9.故答案为:9.【题文】点P(﹣5,﹣4)到x轴的距离是单位长度.【答案】4【解析】试题分析:求得P的纵坐标绝对值即可求得P点到x轴的距离.解:∵|﹣4|=4,∴P点到x轴的距离是4,故答案为4.【题文】已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO 的面积是3,那么该反比例函数在第二象限的表达式为.【答案】y=﹣(x<0)【解析】试题分析:设比例函数的解析式为y=(k≠0),再根据反比例函数的图象在第二象限判断出k的符号,由反比例函数系数k的几何意义求出k的值即可.解:设比例函数的解析式为y=(k≠0),∵反比例函数的图象在第二象限,∴k<0,∵PA⊥x轴,S△PAO=3,∴=3,即k=﹣6,∴该反比例函数在第二象限的表达式为:y=﹣(x<0).故答案为:y=﹣(x<0).【题文】计算:(1)﹣(2)()3÷(﹣)2.【答案】(1);(2)【解析】试题分析:(1)先通分,然后进行通分母的减法运算;(2)先进行乘方运算,然后把除法运算化为乘法运算,再约分即可.解:(1)原式=﹣=;(2)原式=÷=•=.【题文】先化简,再求值:(﹣)×,其中x=2.【答案】1【解析】试题分析:先把括号内根据分式的通分法则进行计算,根据约分法则把原式化简,代入已知数据计算即可.解:原式=×=×=,当x=2时,原式=1.【题文】解方程(1)(2)+=.【答案】(1)经检验x=是分式方程的解;(2)经检验x=﹣4是分式方程的解.【解析】试题分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)去分母得:x2﹣3x=x2﹣8x+12,解得:x=,经检验x=是分式方程的解;(2)去分母得:6+3(x+1)=x+1,去括号得:6+3x+3=x+1,移项合并得:2x=﹣8,解得:x=﹣4,经检验x=﹣4是分式方程的解.【题文】已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?【答案】(1)一次函数的解析式为y=﹣x﹣1;(2)当0<x<1或x<﹣2时一次函数的值大于反比例函数的值.见解析【解析】试题分析:(1)设出反比例函数关系式,利用代定系数法把P(﹣2,1)代入函数解析式即可.由于Q点也在反比例函数图象上,所以把Q点坐标代入反比例函数解析式中即可得到Q点坐标,求出m的值,利用待定系数法求一次函数解析式;(2)根据图象可得到答案,注意反比例函数图象与y轴无交点,所以分开看.解:(1)设反比例函数的解析式为y=∵反比例函数经过点P(﹣2,1),∴a=﹣2×1,∴a=﹣2,∴反比例函数的解析式为y=﹣,∵Q(1,m)在反比例函数图象上,∴m=﹣2,设一次函数的解析式为y=kx+b∵P(﹣2,1),Q(1,﹣2)在一次函数图象上∴,∴,∴一次函数的解析式为y=﹣x﹣1;(2)如图所示:由图可知:当0<x<1或x<﹣2时一次函数的值大于反比例函数的值.【题文】计算×+1,并从0,1,2三个数中选一个合适的数代入求值.【答案】【解析】试题分析:把分式的分子分母因式分解,再约分,根据分式有意义的条件,选择x的值,再计算即可.解:原式=•+1=+1=x,∵2x≠0且x(x﹣2)≠0,∴x≠0,2,∴x=1,∴原式=×1=.【题文】已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【答案】(1)点P的坐标为:(﹣12,﹣9);(2)P点坐标为:(0,﹣3).【解析】试题分析:(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【题文】甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360乙车320x(2)求甲、乙两车的速度.【答案】(1)行驶的路程(km)速度(km/h)所需时间(h)甲车360x+10乙车320x(2)甲的速度是90千米/时,乙的速度是80千米/时.【解析】试题分析:(1)设乙的速度是x千米/时,那么甲的速度是(x+10)千米/时,根据时间=可求甲、乙两辆汽车所需时间;(2)路程知道,且同时到达,可以时间做为等量关系列方程求解.解:(1)甲的速度是(x+10)千米/时,甲车所需时间是,乙车所需时间是;行驶的路程(km)速度(km/h)所需时间(h)甲车360x+10乙车320x(2)乙的速度是x千米/时,甲的速度是(x+10)千米/时,依题意得:=,解得x=80,经检验:x=80是原方程的解,x+10=90,答:甲的速度是90千米/时,乙的速度是80千米/时.【题文】小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【答案】(1)15分钟,千米/分钟.(2)s=t(0≤t≤45).(3)当小聪与小明迎面相遇时,他们离学校的路程是3千米.【解析】试题分析:(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0)把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.解:(1)∵30﹣15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s=t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0)代入(30,4),(45,0),得解得∴s=﹣t+12(30≤t≤45)令﹣t+12=t,解得t=当t=时,S=×=3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.。
2014-2015学年第二学期初二数学期中试卷附答案
2014-2015学年第二学期初二数学期中试卷2015、4一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是…………………( ▲ ) A .B .C .D .2.用配方法解一元二次方程2430x x -+=时可配方得……………… ( ▲ ) A .2(2)7x -= B .2(2)1x += C .2(2)1x -= D .2(2)2x += 3.矩形具有而菱形不一定具有的性质是…………………… ( ▲ ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角互补4.在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,如果AC=10,BD=8,AB=x ,则x 的取值范围是 ……… ( ▲ ) A .1<x <9 B .2<x <18 C .8<x <10 D .4<x <55.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是……… ( ▲ ) A .x 2+4=0 B .4x 2-4x +1=0 C .x 2+x +3=0 D .x 2+2x -1=06. 某市为发展教育事业,加强了对教育经费的投入,2013年投入3 000万元,预计2015年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是 …………………………………………………… ( ▲ ) A .23000(1)5000x +=% B .230005000x =C .23000(1)5000x +=D .23000(1)3000(1)5000x x +++=7.函数ky x=的图象经过点A (6,-1),则下列点中不在该函数图象上的点是 A .(-2,3) B .(-1,-6) C .(1,-6) D .(2,-3) ( ▲ ) 8.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应 ( ▲ ) A .不小于54 m 3 B .小于54 m 3 C .不小于45m 3D .小于45m 39.如图,P 为平行四边形ABCD 内一点,过点P 分别作AB 、AD 的平行线交平行四边 形于E 、F 、G 、H 四点,若5,3==PFCG AHPE S S ,则PBD S ∆为 ( ▲ )第4题第8题第9题A .0.5B .1C .1.5D .210.如图所示,已知A (21,1y ),B (2,2y )为反比例函数 1y x=图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 A (21,0) B (1,0) C (23,0) D (25,0) ( ▲ ) 二、填空题(本大题共8小题,每空2分,共18分)11.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 1+x 2=__▲____,x 1·x 2= ▲ . 12.已知y 与2x+1成反比例,且当x=1时,y=2,那么当x=-2时,y=__▲____. 13.关于x 的一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 ▲ . 14.在菱形ABCD 中,已知AB=10,AC=16,那么菱形ABCD 的面积为___▲____.15.如图,平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 折叠,使点A 正好与CD 上的F 点重合,若△FDE 的周长为16,△FCB 的周长为28,则FC 的长为 ▲ .16.若函数y=kx的图象在第二、四象限,则函数y=kx-1的图象经过第__▲___象限.17.如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为 ▲ .18.如图,在平面直角坐标系中,A(1,0),B(0,3),以AB 为边在第一象限作正方形ABCD,点D 在双曲线y=kx(k≠0)上,将正方形沿x 轴负方向平移 m 个单位长度后,点C 恰好落在双曲线上,则m的值是 ▲ . 三、解答题(共82分)19.解方程组(每题4分,共16分)(1) x 2-5x -6=0 (2) 3x 2-4x -1=0;(3) x(x-1)=3-3x ; (4)x 222-x+1=020.(本题8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点.(1)若AE ⊥BD ,CF ⊥BD ,证明BE =DF .(2)若AE =CF ,能否说明BE =DF ?若能,请说明理由;若不能,请画出反例.A B CDOxy(第18题) 第15题第17题21.(本题8分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?22.(本题8分)在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于F ,且AF=BD ,连接BF . (1)求证:BD=CD .(2)如果AB=AC ,试判断四边形AFBD 的形状,并证明你的结论.23.(本题12分)如图,已知()n A ,4-,()4,2-B 是一次函数b kx y +=1的图象和 反比例函数xmy =2的图象的两个交点. (1) 求一次函数、反比例函数的关系式;(2) 求△AOB 的面积.(3) 当自变量x 满足什么条件时,y 1>y 2 .(直接写出答案)(4)将反比例函数xmy =2的图象向右平移n (n >0)个单位,得到的新图象经过点(3,-4),求对应的函数关系式y 3.(直接写出答案)24.(本题6分)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪..出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是 ;(不必说明理由)ABCDE F (图1)ABCD(备用图)1米1米AFB C D E(2)请用矩形纸片ABCD 剪拼..成一个面积最大的正方形.要求:在图2的矩形ABCD 中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).25.(本题12分)如图,ABCD 是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD 的边AB 上取一点M ,在CD 上取一点N ,将纸片沿MN 折叠,使MB 与DN 交于点K ,得到△MNK .(1)若∠1=70°,求∠MKN 的度数. (2)△MNK 的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由. (3)如何折叠能够使△MNK 的面积最大?请你利用备用图探究可能出现的情况.......,求出最大值.26.(本题12分)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。
2014——2015学年八年级数学下册期中试卷
2014——2015学年第二学期八年级数学期中试卷分析本次测试试卷涉及的知识面较广,立足课本、关注过程、重视方法、体现应用、开放渗透、题量适当、难度适宜,让全体学生在考试中发展各种数学潜能。
一、本试题具有以下特点:1、试题考查全面,覆盖面广。
本试题共计26小题,涵盖了教材中的所有内容,比较全面的考查了学生的学习情况。
本卷在考查学生基本知识和基本能力的同时,适当考查了教学过程,较好的体现了新课标的目标体系。
试题又较好的体现了层次性,其中基础题约占85%,稍难题约占15%。
2、注重联系生活实际,让学生感受数学的生活价值,《课程标准》认为:“学习素材应尽量来源与自然、社会和生活,让学生学有价值的数学。
”考试试题应更是这一观念的航向标。
本卷试题从学生熟悉现实情境和知识经验出发,选取来源与现实社会、生活,发生在学生身边的,可以直接额接触到得事和物,让学生切实体会数学和生活的联系,感受数学的生活价值。
3、注重了学生创新能力的培养。
根据新的课程标准对学生的能力与创新有了较高的要求,一方面创新能力和思维的培养是一个长期的过程;另一方面学生的创新能力和思维的培养需要教师的认同和相应的教学策略,所以创新题的出现应逐步使教师适应使学生适应。
本次试题创新题的出现是比较适度。
二、试题分析和学生做题情况分析:1、单项选择题:看似简单的问题,要做对却需要足够的细心,主要考察了学生对基础知识的运用,但很多学生都掌握不好,在做题时没有把握住题意,粗心大意,导致得分较低,以后要注意基础知识的教学和掌握。
其中第3、6、7、9、10题这几道题失分较严重。
2、填空:第12题是考查了勾股定理;第16考查了算术平方根的非负性;第18题考查了勾股定理的实际运用,第19题考查了线段垂直平分线的性质;第20题是一道规律探究题,这几道题学生出错的相对较多。
3、解答题:21题是计算,个别同学在化解后合并时出现错误,说明同学们在做题时不细心。
22题是利用平行四边形性质求角和线段的长。
2014—2015学年第二学期期中考试初二数学试卷
2014—2015学年第二学期期中考试初二数学试卷一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是…………………… …( )A .B .C .D .2.下列调查中,适宜采用普查方式的是…………………………………………………………………( ) A .调查市场上酸奶的质量情况 B .调查乘坐飞机的旅客是否携带了危禁物品 C .调查某品牌日光灯管的使用寿命 D .调查《阿福聊斋》节目的收视率情况 3.对60个数据进行处理时,适当分组,各组数据个数之和与百分率之和分别等于( ) A .60,1 B .60,60 C .1,60 D .1,14.一个不透明口袋中装有2个红球1个白球,除颜色外都相同,从中任意摸出一个球, 下列叙述正确的是……………………………………………………………… …( ) A .摸到红球是必然事件 B .摸到白球是不可能事件 C .摸到红球的可能性比白球大 D .摸到白球的可能性比红球大5.下列各式中,与18是同类二次根式的是…………………………………… …( )A . 8B . 6C . 13D .276.在平面中,下列命题中为真命题的是……………………………………………( ) A .四边相等的四边形是正方形 B .四个角相等的四边形是矩形C .对角线相等的四边形是菱形D .对角线互相垂直的四边形是平行四边形7.平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是…………( )A .6和14B .10和14C .18和20D .12和368.如果顺次连接四边形各边中点所得的四边形是菱形,则原四边形……………( ) A .一定是矩形 B .一定是菱形 C .对角线一定互相垂直 D .对角线一定相等9.如图,在矩形ABCD 中,AB =4,BC =8,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则AE 的长是……………………………………………( )A .3B .5C .2.4D .2.5(第9题图) (第10题图) 10.如图:已知AB =16,点C 、D 在线段AB 上且AC =DB =3; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是………( ) A .0 B .3 C .5 D .8 11.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个12.如果实数x 满足2230x x +-=,那么代数式21211x x x ⎛⎫+÷ ⎪++⎝⎭的值为 . 13.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= . 14.下列计算正确的是( ) A .43-33=1B .2+3= 5C .212= 2 D .3+22=5 215.实数a 、b 在数轴上的位置如图所示,且b a >,则化简b a a +-2的结果为· ( )A .b a +2B .b a +-2C .b a -2D . b16.把分式3x y x y+-中的x 和y 都扩大为原来的2倍,则分式的值 ········ ( ) A .不变 B .扩大为原来的2倍 C .缩小为原来的21D .扩大为原来的4倍17.若关于x 的方程111m x x x -=--有增根,则m 的值是 ············ ( )A .3B .2C .1D .018.矩形具有而菱形不一定具有的性质是 ·················· ( )A .邻边相等B .对角线相等C .对角线互相平分D .对角线互相垂直 19.如图,点O 是正△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB =150°;④'AO BO S =6+33四形边;⑤AOC AOB 93S S 6+4+=.其中正确的结论是( )A .①②③④B .①②③⑤C .①②③④⑤D .①②③20.如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一动点P ,若使PD +PE 的和最小,则这个最小值为 .21.已知:□ABCD 的周长为52cm ,DE ⊥BC ,DF ⊥AB ,垂足分别为E 、F ,且DE =5cm ,DF =8cm ,则BE +BF 的值为 . 22、已知32552--+-=x x y ,则2xy 的值为( )A .−15B .15C .−152 D. 15223.如果最简二次根式38a -与172a -是同类二次根式,那么a 的值为____________.24.已知在分式x bx a+-中,当x ≠2时分式有意义,当x =1时分式值为0,则a b -= . 25.已知□ABCD 中,∠C =∠B +∠D ,则∠A =_______度.26.如图,□ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使□ABCD 是矩形.27.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,PO =3,则菱形ABCD 的周长是 .b0 a 第6题图第26题图 DA B C OA D CB O P 第27题图 第28题图 FE D CB A 第29题图 第19题图28.如图,菱形ABCD ,∠A =60°,E 点、F 点为菱形内两点,且DE ⊥EF ,BF ⊥EF ,若DE =3,EF =4,BF =5,则菱形ABCD 的边长为 .29.如图,已知Rt △ABC 中,∠ACB =90︒,以斜边AB 为边向外作正方形ABCD ,且对角线交于点O ,连接OC .已知AC =4,OC =25,则另一条直角边BC 的长为 .30、某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x 米,则可得方程153000103000=--xx ,根据此情景,题中用“…”表示的缺失的条件应补为( )A .每天比原计划多铺设10米,结果延期15天完成.B .每天比原计划少铺设10米,结果延期15天完成.C .每天比原计划多铺设10米,结果提前15天完成.D .每天比原计划少铺设10米,结果提前15天完成.31、如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别是S 1、S 2的大小关系是( ) A . S 1>S 2 B . S 1=S 2 C . S 1<S 2 D . 3S 1=2S 232、如图,在Rt △ABC 中,∠C=90°,AC=BC=6cm ,点P 从点A 出发,沿AB 方向以每秒2cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设点Q 运动的时间为t 秒,若四边形QPCP ′为菱形,则t 的值为( ). A .2 B .2 C .22 D .333.已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围是 34.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在边BC 上运动,当△ODP 是腰长为5的等腰三角形 时,点P 的坐标为.35.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .36、如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是___________.37、已知关于x 的一次函数y =mx +n 的图象如图所示,则|n −m |−2m 可化简为 _____________.38、如图,在梯形ABCD 中,AD //BC ,AB =DC ,AC 与BD 相交于点P..已知A (2, 3),B (1, 1),D (4, 3),则点P 的坐标为________________.x yABC DPO 第9题 第10题 第13题 第14题第35题 第37题 第38题第18题AB CDEF39.(1)计算:① 482739-+ ② 1(2123)62-⨯ ③ (1-2)2- 3-6 3④ ()02231221---⎪⎭⎫ ⎝⎛-; (2)化简:mm m ----329152.40.(1)解分式方程:121=+-xx x (2)3233x x x =---(3)先化简,再求值:14411122-+-÷⎪⎭⎫ ⎝⎛--x x x x ,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.41.在我市某一城市美化工程招标时,有甲、乙两个工程队投标。
2014-2015学年第二学期期中质量检测八年级数学卷 附答案
学校:____________________ 班级:___________________ 姓名:___________________ 考号:_________________ ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------2014-2015学年第二学期期中质量检测八年级数学卷2015.5一、精心选一选:(每题3分,共30分)1. 9化简的结果是( ) A. -3B. 3C. ±3D. 32.下列方程中,属于一元二次方程的是 ( )A 、321-=-x xB 、022=-x xC 、y x =-23D 、0312=+-x x 3.下列运算正确的是 ( ) A. 2(11)11-=- B. 2221-=C. 2(2)2-=D. 22223+23+23+25===4、关于x 的方程 有实数根,则a 的取值可能是( )A 、-2B 、-3C 、-4D 、-5 5.某多边形的内角和是其外角和的3倍,则此多边形的边数是 ( ) A .5B .6C .7D .86.把方程2460x x --=配方,化为2(+)x m n =的形式应为( )A. 2(-4)6x =B. 2(-2)4x =C. 2(-2)0x =D. 2(-2)10x =7.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元) 20 30 35 50 100 学生数(人) 51051510在这次活动中,该班同学捐款金额的众数和中位数分别是( ).A .50,50B .50,35C .30,35D .15,508、三角形的两边长分别为3和6,第三边长是方程x 2-6x +8=0的根,则这个三角形的周长 是( )A 、 11B 、 13C 、11或13D 、11和13 9、如图,P 是□ABCD 上一点.已知3=∆ABP S , 2=∆PDC S ,那么 平行四边形ABCD 的面积是( )A .6B .8C .10D .无法确定032=--a x x10. 如图,在□ABCD 中,AB =6,AD =8,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于G ,BG =24,则四边形AECD 的周长为( ) A .20 B .21 C .22 D .23二、专心填一填:(每小题3分,共24分)11.若12+x 是二次根式,则字母x 满足的条件是 . 12 、化简515-= 13.已知x =-2是方程220x mx ++=的一个根,则m 的值是 . 14.如图,在平行四边形ABCD 中,∠A+∠C=2400, 则∠B= 度; 15..数据3,2,x ,-1,-3,的平均数是1,则这组数的方差是 .16.如图,某小区规划在一个长40m 、宽30m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为58m 2,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程16题 17题17.如图,在□ABCD 中,对角线AC,BD 交于点E ,AC ⊥BC , 若BC=5,AB=13,则BD 的长是 .18、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF=5CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为 .第18题ABCD八年级数学答案一、精心选一选(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BBcBBDABCA二、专心填一填(每小题3分,共24分)11. X ≥ - . 12. 13. 3 . 14. 60 .15. . 16. (40-2x)(30-x)=6×58 .17. . 18. 6 . 三、耐心做一做(本题有6大题,共46分) 19.(本题8分)计算(1) 解:原式=6-5+3 (3分) =4 (1分)(2)解:原式=1625)32(3622++=--++ (3分) 626+= (1分) 20. (1) x 1=3 x 2=0 (4分)(2) (4分)21.(1) 证明:∵四边形ABCD 是平行四边形,∴AB=DC ,AB ∥DC 。
2014~2015学年第二学期期中考试试卷八年级数学附答案
ODCBA2014~2015学年第二学期期中考试试卷八年级数学一、精心选一选(本大题共有8小题,每小题3分,共24分) 1.下列图形中,是轴对称图形又是中心对称图形的是( ) A .B .C .D .2.下列各式:()22214151 ,, ,,232x x y a x x b yπ-+--其中分式共有( ) A .2个 B .3个 C .4个 D .5个 3.如图,等边△ABC 中,点D 、E 分别为边AB 、AC 的中点,则∠DEC 的度数为( )A . 30°B . 60°C . 120°D . 150°4. 下列说法中不正确的是( )A . 抛掷一枚硬币,硬币落地时正面朝上是随机事件B . 把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C . 任意打开七年级下册数学教科书,正好是97页是确定事件D . 一个盒子中有白球m 个,红球6个,黑球n 个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是65.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定四边形ABCD 为平行四边形的是( )A . AB ∥CD ,AD ∥BC B . OA =OC ,OB =OD C . AD =BC ,AB ∥CD D . AB =CD ,AD =BC6.若分式方程2233x mx x --=--有增根,则m 的值为( ) A. 1- B. 1 C. 0 D.以上都不对7.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( )第3题图第5题图班级 姓名 考试号 .第8题图A .600600254x x -=+ B .600600254x x -=+ C .600600254x x -=- D .600600254x x -=- 8.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 6的坐标是( ) A .(63,32) B .(64,32) C .(63,31)D .(64,31)二、填空题(本大题共8小题,每空2分,共18分,请把答案直接填在题中的横线上)9.若分式211x x -+的值为零,则x 的值为____ ___;10.计算:(1) y 26x ÷y 3x = ;(2) a -2a -1-2a -3a -1= .11.分式2123a a-的值为负数,则a 的取值范围是__________.12.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是 .13.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的 中点,PO =5,则菱形ABCD 的周长是 .14.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是 .15.如图,在平面直角坐标系中,已知点A (1,1),B (﹣1,1), C (﹣1,﹣2),D (1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A→B→C→D→A…的规律紧绕在四边形ABCD 的边上,则细线的 另一端所在位置的点的坐标是 .16.如图,AB =12,AB ⊥BC 于点B ,AB ⊥AD 于点A ,AD =5, BC =10,E 是CD 的中点,则AE 的长是____ ___. 三、解答题(本大题共有10小题,共58分) 17. (本题满分6分)计算: (1)÷; (2) (1+)÷ADC BO P第12题图第14题图第13题图第15题图第16题图18、(本题满分7分)解方程:(1)212x x-=-(2)2216124xx x--=+-19.(本题满分6分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标____________________.20.(本题满分5分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克。
J012——洛阳市宜阳县2014-2015年八年级下期中数学
河南省洛阳市宜阳县2014-2015学年八年级下学期期中数学试卷一、选择题1.(3分)如果把分式中的a、b都扩大到原来的2倍,那么分式的值是原分式值的()A.4倍B.3倍C.2倍D.1倍2.(3分)下列各式中正确的是()A.B.C.D.3.(3分)如果=,则x应满足的条件是()A.x≠0 且x≠3B.x≠0或x≠3C.x>0 D.x≠04.(3分)长度单位1纳米=10﹣9米,目前发现一种新型病毒,其直径为25100纳米,用科学记数法表示该病毒直径是()A.2.51×10﹣6米B.2.51×10﹣5米C.2.51×10﹣4米D.2.51×10﹣3米5.(3分)对于反比例函数y=,下列说法不正确的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而减小C.点(﹣2,﹣1)在它的图象上D.它的图象在第一、三象限6.(3分)如果ab>0,且ac=0,那么直线y=﹣x+c一定通过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限7.(3分)反比例函数y=(k<0)的大致图象是()A.B.C.D.8.(3分)若方程+=﹣1无解,则m的值是()A.﹣1 B.3C.﹣1或3 D.﹣1或﹣9.(3分)(北师大版)如图,已知点A是一次函数y=x的图象与反比例函数y=的图象在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么△AOB的面积为()A.2B.C.D.二、填空题(共6小题,每小题3分,满分18分)10.(3分)点A(﹣3,2)关于y轴的对称点坐标是.11.(3分)已知﹣=,则=.12.(3分)若去分母解分式方程=2﹣时产生增根,则增根是.13.(3分)请写出一个一次函数,使它的图象经过第一、二、四象限.14.(3分)已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数,则自变量x的取值范围是.15.(3分)如图,已知点A在双曲线上y=上,且OA=4,过A作AC⊥x轴于点C,OA的垂直平分线交OC于点B,△ABC的周长为.三、解答题(共8小题,满分75分)16.(10分)计算.(1)•(2)+|﹣3|﹣+.17.(9分)先化简(a﹣)÷(),然后当=2时,求代数式的值.18.(10分)解方程.(1)+=2(2)=.19.(8分)张老师带学生暑假去某地旅游考察,向导要求大家上山时多带一件衣服,并在介绍当地山区地理环境时说,海拔每增加100米,气温下降0.6℃,张老师在山脚下看了一下随身带的温度计,气温为30℃,试写出山上气温T(℃)与该处距山脚垂直高度h(m)之间的函数关系式,当张老师到达山顶时,发现温度为8℃,求山高.20.(8分)为改善环境,洛阳市某小区,需铺设一段长为3000m的污水排放管道,铺设1200米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划提高20%,结果共用30天完成这一任务,原计划每天铺设管道多少米?(用方程解)21.(8分)如图,正方形ABCD的边长为4,P为边长DC上的一点,设DP=x,求△APD 的面积y与x之间的函数关系式,并画出这个函数的图象.22.(10分)如图,直线y1=x+m,分别与x轴、y轴交于点A、B,与双曲线y2=(x<0)的图象相交于点C、D,其中(﹣1,2).(1)求一次函数与反比例函数的关系式;(2)若点D的坐标为(﹣2,1),利用图象直接写出当y1>y2时,x的取值范围.23.(12分)阅读下文,寻找规律,并解答:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4,…(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)=;(2)根据你的猜想计算:(1﹣2)(1+2+22+23+24+25)=;(3)试用上面的规律计算:1+3+32+33+34+35+…32010+32011的值.河南省洛阳市宜阳县2014-2015学年八年级下学期期中数学试卷参考答案与试题解析一、选择题1.(3分)如果把分式中的a、b都扩大到原来的2倍,那么分式的值是原分式值的()A.4倍B.3倍C.2倍D.1倍考点:分式的基本性质.分析:根据分式的性质,可得答案.解答:解:把分式中的a、b都扩大到原来的2倍,那么分式的值是原分式值的2倍.故选:C.点评:本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.2.(3分)下列各式中正确的是()A.B.C.D.考点:分式的基本性质.分析:根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,分式的值不变;分式的分子、分母及分式的符号,只有同时改变两个其值才不变,可得答案.解答:解:A、分子分母都除以同一个不为零的整式,分式的值不变,故A错误;B、分子乘以y,分母乘以x,故B错误;C、分子分母都除以同一个不为零的整式,分式的值不变,故C错误;D、分式的分子、分母及分式的符号,只有同时改变两个其值才不变,故D正确;故选:D.点评:本题考查了分式的性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,分式的值不变,注意分式的分子、分母及分式的符号,只有同时改变两个其值才不变.3.(3分)如果=,则x应满足的条件是()A.x≠0 且x≠3B.x≠0或x≠3C.x>0 D.x≠0考点:分式的基本性质.分析:根据分式的性质,可得答案.解答:解:=,则x应满足的条件是x≠0,x≠3,故选:A.点评:本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变,注意分母不能为零.4.(3分)长度单位1纳米=10﹣9米,目前发现一种新型病毒,其直径为25100纳米,用科学记数法表示该病毒直径是()A.2.51×10﹣6米B.2.51×10﹣5米C.2.51×10﹣4米D.2.51×10﹣3米考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:25100纳米=2.51×104×10﹣9米=2.51×10﹣5米,故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)对于反比例函数y=,下列说法不正确的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而减小C.点(﹣2,﹣1)在它的图象上D.它的图象在第一、三象限考点:反比例函数的性质.分析:首先判断反比例函数的比例系数的符号,然后根据反比例函数的性质进行判断.解答:解:A、当x>0时,y随x的增大而减小,故此选项错误;B、当x<0时,y随x的增大而减小,故D选项正确.C、把点(﹣2,﹣1)代入反比例函数y=得﹣1=﹣1,故此选项正确;D、∵k=2>0,∴图象在第一、三象限,故B选项正确;故选:A.点评:本题主要考查了反比例函数y=(k≠0)的性质:①k>0时,函数图象在第一,三象限.在每个象限内y随x的增大而减小;②k<0时,函数图象在第二,四象限.在每个象限内y随x的增大而增大.6.(3分)如果ab>0,且ac=0,那么直线y=﹣x+c一定通过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限考点:一次函数图象与系数的关系.分析:根据已知条件来判断的符号,从而对直线ax+by+c=0一定通过的象限作出判断.解答:解:∵ab>0,∴a、b的符号相同,a≠0,b≠0,∴>0,∴﹣<0;又∵ac=0,∴c=0,∴直线y=﹣x一定通过第二、四象限,故选:D.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.(3分)反比例函数y=(k<0)的大致图象是()A.B.C.D.考点:反比例函数的图象.分析:反比例函数图象是关于原点对称的双曲线.当k<0时,该函数图象经过第二、四象限.解答:解:∵反比例函数y=中的k<0,∴该函数图象经过第二、四象限.故选:A.点评:本题考查了反比例函数的图象.反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.8.(3分)若方程+=﹣1无解,则m的值是()A.﹣1 B.3C.﹣1或3 D.﹣1或﹣考点:分式方程的解.分析:根据分式方程无解,即化成整式方程时整式方程无解,或者求得的x能令最简公分母为0,据此进行解答即可.解答:解:方程两边都乘(x﹣3)得,3﹣2x﹣2﹣mx=3﹣x整理得,(1+m)x=﹣2当1+m=0,即m=﹣1时,整式方程无解;当x=3时,分式方程无解,此时m=﹣,故选:D.点评:本题考查的是分式方程的解的知识,分式方程无解分两种情况:整式方程本身无解,分式方程产生增根.9.(3分)(北师大版)如图,已知点A是一次函数y=x的图象与反比例函数y=的图象在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么△AOB的面积为()A.2B.C.D.考点:反比例函数综合题.专题:数形结合.分析:欲求OAB的面积,已知点A是一次函数y=x的图象与反比例函数y=的图象在第一象限内的交点,可求出点A的坐标,从而得到△AOB的高,结合已知OA=OB,求得底边OB,从而求出面积.解答:解:依题意A点的坐标满足方程组∴∴点A的坐标为()∴OA=2∵OB=OA=2∴S△AOB=OB×=×2×=.故选:C.点评:此题主要考查反比例函数的性质,注意通过解方程组求出交点坐标.同时要注意运用数形结合的思想.二、填空题(共6小题,每小题3分,满分18分)10.(3分)点A(﹣3,2)关于y轴的对称点坐标是(3,2).考点:关于x轴、y轴对称的点的坐标.分析:本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.解答:解:点A(﹣3,2)关于y轴的对称点坐标是(3,2).点评:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.(3分)已知﹣=,则=﹣2.考点:分式的化简求值.专题:计算题.分析:已知等式左边通分并利用同分母分式的减法法则计算,整理表示出a﹣b,代入原式计算即可得到结果.解答:解:∵﹣==,即a﹣b=﹣ab,∴原式==﹣2,故答案为:﹣2点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.(3分)若去分母解分式方程=2﹣时产生增根,则增根是x=5.考点:分式方程的增根.专题:计算题.分析:由分式方程有增根,得到最简公分母为0,即可求出增根.解答:解:分式方程变形得:=2+,最简公分母为x﹣5,由分式方程产生增根,得:x﹣5=0,解得:x=5,则增根为x=5,故答案为:x=5点评:此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.(3分)请写出一个一次函数,使它的图象经过第一、二、四象限y=﹣x+3.考点:一次函数的性质.专题:开放型.分析:一次函数的图象经过第一、二、四象限,说明x的系数小于0,常数项大于0,据此写出一次函数.解答:解:∵一次函数的图象经过第一、二、四象限,∴所填函数x的系数小于0,常数项大于0.如:y=﹣x+3(答案不唯一).点评:本题考查的知识点为:一次函数图象经过第一、二、四象限,说明x的系数小于0,常数项大于0.14.(3分)已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数,则自变量x的取值范围是5<x<10.考点:函数自变量的取值范围.分析:根据已知列方程,再根据三角形三边的关系确定义域即可.解答:解:∵2x+y=20∴y=20﹣2x,即x<10,∵两边之和大于第三边,∴x>5,综上可得5<x<10.故答案为:5<x<10.点评:本题考查了等腰三角形的性质及三角形三边关系;根据三角形三边关系求得x的取值范围是解答本题的关键.15.(3分)如图,已知点A在双曲线上y=上,且OA=4,过A作AC⊥x轴于点C,OA的垂直平分线交OC于点B,△ABC的周长为2.考点:反比例函数图象上点的坐标特征;线段垂直平分线的性质.分析:由双曲线解析式可知,OC×AC=6,由勾股定理可知OC2+AC2=OA2=42,由此可求OC+AC,由垂直平分线的性质可知AB=BO,则AB+BC+AC=AC+BC+BO=AC+CO,即可得出答案.解答:解:∵点A在双曲线y=上,∴OC×AC=6,又∵在Rt△ACO中,OC2+AC2=OA2=42,∴(OC+AC)2=OC2+AC2+2OC×AC=16+12=28,∴OC+AC=2,∵OA的垂直平分线交x轴于点C,∴AB=BO,∴AC+BC+AB=AC+BC+BO=AC+OC=2.故答案为:2.点评:本题考查了反比例函数的综合运用.关键是得到双曲线解析式与相关线段的关系,勾股定理,通过代数式的变形求AC+CO的值.三、解答题(共8小题,满分75分)16.(10分)计算.(1)•(2)+|﹣3|﹣+.考点:分式的乘除法;零指数幂.分析:(1)根据分式的乘法进行计算,分子,分母进行约分,即可解答;(2)先算乘方,再算加减,即可解答.解答:解:(1)原式==.(2)原式=1+3﹣+2=6﹣=.点评:本题考查了分式的乘法和有理数的混合运算,加减本题的关键是注意运算顺序.17.(9分)先化简(a﹣)÷(),然后当=2时,求代数式的值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=2代入计算即可求出值.解答:解:原式=•=﹣•=﹣(a﹣1)=﹣a+1,当a=2时,原式=﹣2+1=﹣1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(10分)解方程.(1)+=2(2)=.考点:解分式方程.专题:计算题.分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:10x﹣5=4x﹣2,解得:x=,经检验x=是增根,分式方程无解;(2)去分母得:x2+x+6=x2+5x﹣6,解得:x=3,经检验x=3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(8分)张老师带学生暑假去某地旅游考察,向导要求大家上山时多带一件衣服,并在介绍当地山区地理环境时说,海拔每增加100米,气温下降0.6℃,张老师在山脚下看了一下随身带的温度计,气温为30℃,试写出山上气温T(℃)与该处距山脚垂直高度h(m)之间的函数关系式,当张老师到达山顶时,发现温度为8℃,求山高.考点:函数关系式;函数值.分析:(1)海拔每上升100米,温度下降0.6度,所以可得h=×100,利用待定系数法求解;(2)代入气温就可求出函数值即海拔高度h的值.解答:解:(1)根据题意有h=×100,6h=30000﹣1000T,T=30﹣0.006h;(2)依题意有8=30﹣0.006h,解得h=3666.故山高3666米.点评:本题主要考查函数关系式,关键是待定系数法求出函数解析式.20.(8分)为改善环境,洛阳市某小区,需铺设一段长为3000m的污水排放管道,铺设1200米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划提高20%,结果共用30天完成这一任务,原计划每天铺设管道多少米?(用方程解)考点:分式方程的应用.分析:设原计划每天铺设xm管道,根据题意可得等量关系:铺设1200米所用时间+后来铺1800米所用时间=30天,根据等量关系列出方程,再解即可.解答:解:设原计划每天铺设xm管道,由题意得:+=30,解得:x=90,经检验:x=90是原分式方程的解,答:原计划每天铺设90m管道.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意不要忘记检验.21.(8分)如图,正方形ABCD的边长为4,P为边长DC上的一点,设DP=x,求△APD 的面积y与x之间的函数关系式,并画出这个函数的图象.考点:函数关系式;函数的图象.分析:(1)S△ADP=•DP•AD,然后代入数计算即可,由于P为DC上一点.故0<PD≤DC;(2)由(1)得到函数关系式后再画出图象,画图象时注意自变量取值范围.解答:解:(1)S△ADP=•DP•AD=x×4=2x,∴y=2x(0<x≤4);(2)此函数是正比例函数,图象经过(0,0)(1,2),因为自变量有取值范围,所以图象是一条线段.如图所示:点评:此题主要考查了三角形的面积的求法以及画正比例函数的图象,画图象不注意自变量取值范围是同学们容易出错的地方.22.(10分)如图,直线y1=x+m,分别与x轴、y轴交于点A、B,与双曲线y2=(x<0)的图象相交于点C、D,其中(﹣1,2).(1)求一次函数与反比例函数的关系式;(2)若点D的坐标为(﹣2,1),利用图象直接写出当y1>y2时,x的取值范围.考点:反比例函数与一次函数的交点问题.分析:(1)把点C的坐标分别代入一次函数与反比例函数解析式求出m、k的值,即可得解;(2)根据图象,找出一次函数图象在反比例函数图象上方的x的取值范围即可.解答:解:(1)∵点C(﹣1,2)为一次函数y1=x+m的图象与反比例函数y2=(x<0)的图象的交点,∴﹣1+m=2,=2,解得m=3,k=﹣2,∴一次函数解析式为y=x+3,反比例函数解析式为y=﹣;(2)由图可知,当﹣2<x<﹣1时,y1>y2,所以,y1>y2时x的取值范围是﹣2<x<﹣1.点评:本题考查了反比例函数与一次函数的交点问题,主要利用了待定系数法求函数解析式,三角形的面积的求解,都是基础知识,基本方法,一定要熟练掌握并灵活运用.23.(12分)阅读下文,寻找规律,并解答:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4,…(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;(2)根据你的猜想计算:(1﹣2)(1+2+22+23+24+25)=﹣63;(3)试用上面的规律计算:1+3+32+33+34+35+…32010+32011的值.考点:整式的混合运算.专题:规律型.分析:(1)由(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4可以推出(1﹣x)(1+x+…+x n)=1﹣x n+1;(2)利用(1)的规律得出答案即可;(3)把原式变为,进一步由(1)规律得出答案即可.解答:解:(1)(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;(2)(1﹣2)(1+2+22+23+24+25)=1﹣26=﹣63;(3)原式===.点评:此题考查数字的变化规律,关键在于根据各式发现规律(1﹣x)(1+x+x2+…+x n)=1﹣x n+1,使等式左右两边的最大指数相同且左边是右边的因式分解得规律.。
2014-2015学年度第二学期期中考试 八年级数学试卷
数学试卷 第1页 (共4页 ) 数学试卷 第2页 (共4页)2014-2015学年度第二学期期中考试八年级 数学试卷3分,共 30 分)的相反数是 ( )A. C. 下列二次根式中,最简二次根式是( ) A.51B.5.0C.5D.50 下列各式成立的是 ( ) A.2)2(2-=-5=± C.6=±2=如图所示,在数轴上点A 所表示的数为a ,则a 的值为 ( ) 51--B. 51-C. 5-D. 51+-计算)2012)(3252(+-的结果是( )A.32B.16C.8D.4在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A.26 B.18 C.20 D.21如图,ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=4 cm ,AB 的长为 ( ) A. 4 cm B.8 cm C.2 cmD.6cm 如果一个平行四边形的两条对角线相等,那么这个四边形是 ( ) A.平行四边形 B.菱形 C.矩形 D. 正方形已知a 、b 、c 是三角形的三边长,如果满足()010862=-+-+-c b a ,则三角形的形状是( )A.底与边不相等的等腰三角形 B.等边三角形 C.钝角三角形 D.直角三角形如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5 º,EF ⊥AB ,垂足为F ,则EF 的长为 ( ) A .1 B . 2 C .4-2 2 D .32-4 二、填空题(每小题4分,共32分.请将答案直接填在横线上) 11.ABCD 中一条对角线分∠A 为35°和45°,则∠B= __ 度.12. 式子x . 13.利用公式2(0)a a =≥,在实数范围内把7-x 2分解因式为 .14. 在平面直角坐标系中,点A (-1,0)与点B (0,2)的距离是_______.15. 已知菱形的两条对角线长为8cm 和6cm,那么这个菱形的周长是 cm,面积是 cm 2. 16. 如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为__ ____.17.如图,将四根木条钉成矩形木框变形为平行四边形ABCD 的形状,并使其面积变为矩形面积的一半,则平行四边形ABCD 的最小内角的大小为 .18.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF.若菱形ABCD 的边长为2cm ,∠A=120°,则EF= .三、解答题(解答时,应写出必要的文字说明、证明过程或演算步骤. 共52分) 19.计算:(每小题4分,共16分)(1)272833-+- (2)22)2664(÷-(3)((2211 (4)220.(本小题8分)如图是一块地,已知AD =4m,CD =3m, AB =13m, BC =12 m , 且CD ⊥AD,求这块地的面积.B A16题图17题图第10题图数学试卷 第3页 (共4页) 数学试卷 第4页 (共4页)DN21. (本小题8分)如图,已知△A BC 中,∠ACB=90 º,BC=6cm ,AC=8cm. (1)用直尺和圆规按下列要求作图:(保留作图痕迹,不写作法) 作线段AB 的垂直平分线,分别交AB 、AC 于点D 、E. 连接CD. (2)试求CD 和AE 的长.22.(本小题10分) 如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD. (1)试判断四边形OCED 的形状,并说明理由;(5分) (2)若AB =6,BC =8,求四边形OCED 的面积.(5分)23.(本小题10分) 已知:如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点;(1)(4分)求证:△ABM ≌△DCM ;(2)(5分)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)(1分)当AD :AB=____________时,四边形MENF 是正方形(只写结论,不需证明)。
2014~2015学年第二学期期中教学质量调研测试初二数学附答案
2014~2015学年第二学期期中教学质量调研测试初二数学一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是2.如图,菱形ABCD 的两条对角线相交于O ,若AC=6,BD=4,则菱形ABCD 的周长是A .24B .16C .D .3.已知反比例函数k y x =,当2x =时,12y =-,那么k 等于 A .1 B .一l C .一4 D .14- 4.在反比例函数9y x=的图像上,到x 轴和y 轴的距离相等的点有 A .1个 B .2个 C .4个 D .无数个 5.下列各式的约分,正确的是A .1a b a b --=- B .1a b a b --=-- C .22a b a b a b -=-+ D .22a b a b a b-=++ 6.菱形具有而矩形不一定具有的性质是A .内角和等于360°B .对角相等C .对边平行且相等D .对角线互相垂直 7.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行20千米, 求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是A .253520x x =-B .253520x x =-C .253520x x =+D .253520x x=+ 8.在同一平面直角坐标系中,画正比例函数y kx =和反比例函数(0)ky k x=<的图象,大致是9.如果22440x xy y -+=,那么x yx y-+的值等于 A .13-B .13y -C .13D .13y10.下列四个命题中 ①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形 ③对角线相等的四边形是矩形 ④对角线互相垂直平分的四边形是菱形 正确命题的序号是 A .①② B .②③ C .③④ D .①④ 二、填空题(本大题共8小题,每小题3分,共24分) 11.分式12(1)x +与13(1)x +的最简公分母是上 ▲ ;12.若33x x --的值为零,则x 的值是 ▲ ;13.若反比例函数ky x=的图像经过点(一2,3),则k = ▲ ; 14.矩形的两条对角线的夹角为60°,较短的一边长为4cm ,则较长的一边为 ▲ cm ; 15.等腰梯形的腰长为5cm ,它的周长是22cm ,则它的中位线长为 ▲ cm ; 16.已知反比例函数12my x-=的图象上两点1(A x 1、y ),2(B x 2、y ),当120x x <<时, 有12y <y ,则m 的取值范围是 ▲ ;17.如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点, 则PB+PE 的最小值是 ▲ ; 18.如图,点A 、B 在反比例函数(0,0)ky k x x=>>的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM=MN=NC ,2MNCS =,则k 的值为 ▲ .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.) 19.计算(本题满分9分)(1)111a a a --- (2)2224()222a a a a a a ⋅-+-- (3)2111a a a +-+-20.解下列分式方程(本题满分9分) (1)21111x x x +-=-- (2)221x x x x +=-+(3)3525112x x x x ---=--21.先化简,再求值.(本题6分)22244(4)2x x x x x+--÷+ ,其中1x =-22.(本题6分)如图,在□ABCD 中,AE 平分∠BAD 交DC 于点E ,AD=5cm ,AB=8cm . (1)求EC 的长; (2)作∠BCD 的平分线交AB 于F ,求证:四边形AECF 为平行四边形23.(本题6分)已知正比例函数2y x =和反比例函数的图象交于点A(m ,一2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;(3)若双曲线上点c(2,n)沿OA B ,判断四边形OABC 的形状并证明你的结论.24.(本题6分)如图,△ABC 中,AB=AC ,AD 、AE 分别是∠BAC 和∠BAC 的外角的平分线,BE ⊥AE(1)求证:DA ⊥AE ;(2)试判断AB 与DE 是否相等?并证明你的结论.25.(本题8分)如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象和矩形ABCD 在第一象 限,AD 平行于x 轴,且AB=2,AD=4,点A 的坐标为(2,6). (1)直接写出B 、C 、D 三点的坐标.(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪 两个点,并求矩形的平移距离和反比例函数的解析式.26.(本题满分8分)佳佳果品店刚试营业,就在批发市场购买某种水果销售,第一次用1200元购进若干千 克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用1500元所购买的数量比第一次多10千克.(1)求第一次该种水果的进价是每千克多少元?(2)佳佳果品店在第二次进货后,以每千克定价7元售出200千克水果后,因出现高温天气,水果不易保鲜,为减少损失,便以定价的4折售完剩余的水果,该果品店在这两次销售中,总体上是盈利还是亏损(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?27.(本题8分)喝绿茶前需要烧水和泡茶两个工序,即需要将电热壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间菇(min)成一次函数关系;停止加热1分钟后(1分钟内水温不变),水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)求出图中AB所在直线对应的函数关系式,并且写出自变量x的取值范围;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?28.(本题10分)如图所示,在直角△ABC中,∠B=90°,BC=C=30°,点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE,EF.(1)求证AE=DF.(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t的值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形,∠EDF=90°?请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省洛阳市宜阳县2014-2015学年八年级下学期期中数学试卷一、选择题1.(3分)如果把分式中的a、b都扩大到原来的2倍,那么分式的值是原分式值的()A.4倍B.3倍C.2倍D.1倍2.(3分)下列各式中正确的是()A.B.C.D.3.(3分)如果=,则x应满足的条件是()A.x≠0 且x≠3B.x≠0或x≠3C.x>0 D.x≠04.(3分)长度单位1纳米=10﹣9米,目前发现一种新型病毒,其直径为25100纳米,用科学记数法表示该病毒直径是()A.2.51×10﹣6米B.2.51×10﹣5米C.2.51×10﹣4米D.2.51×10﹣3米5.(3分)对于反比例函数y=,下列说法不正确的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而减小C.点(﹣2,﹣1)在它的图象上D.它的图象在第一、三象限6.(3分)如果ab>0,且ac=0,那么直线y=﹣x+c一定通过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限7.(3分)反比例函数y=(k<0)的大致图象是()A.B.C.D.8.(3分)若方程+=﹣1无解,则m的值是()A.﹣1 B.3C.﹣1或3 D.﹣1或﹣9.(3分)(北师大版)如图,已知点A是一次函数y=x的图象与反比例函数y=的图象在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么△AOB的面积为()A.2B.C.D.二、填空题(共6小题,每小题3分,满分18分)10.(3分)点A(﹣3,2)关于y轴的对称点坐标是.11.(3分)已知﹣=,则=.12.(3分)若去分母解分式方程=2﹣时产生增根,则增根是.13.(3分)请写出一个一次函数,使它的图象经过第一、二、四象限.14.(3分)已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数,则自变量x 的取值范围是.15.(3分)如图,已知点A在双曲线上y=上,且OA=4,过A作AC⊥x轴于点C,OA的垂直平分线交OC于点B,△ABC的周长为.三、解答题(共8小题,满分75分)16.(10分)计算.(1)•(2)+|﹣3|﹣+.17.(9分)先化简(a﹣)÷(),然后当=2时,求代数式的值.18.(10分)解方程.(1)+=2(2)=.19.(8分)张老师带学生暑假去某地旅游考察,向导要求大家上山时多带一件衣服,并在介绍当地山区地理环境时说,海拔每增加100米,气温下降0.6℃,张老师在山脚下看了一下随身带的温度计,气温为30℃,试写出山上气温T(℃)与该处距山脚垂直高度h(m)之间的函数关系式,当张老师到达山顶时,发现温度为8℃,求山高.20.(8分)为改善环境,洛阳市某小区,需铺设一段长为3000m的污水排放管道,铺设1200米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划提高20%,结果共用30天完成这一任务,原计划每天铺设管道多少米?(用方程解)21.(8分)如图,正方形ABCD的边长为4,P为边长DC上的一点,设DP=x,求△APD的面积y与x之间的函数关系式,并画出这个函数的图象.22.(10分)如图,直线y1=x+m,分别与x轴、y轴交于点A、B,与双曲线y2=(x<0)的图象相交于点C、D,其中(﹣1,2).(1)求一次函数与反比例函数的关系式;(2)若点D的坐标为(﹣2,1),利用图象直接写出当y1>y2时,x的取值范围.23.(12分)阅读下文,寻找规律,并解答:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4,…(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)=;(2)根据你的猜想计算:(1﹣2)(1+2+22+23+24+25)=;(3)试用上面的规律计算:1+3+32+33+34+35+…32010+32011的值.河南省洛阳市宜阳县2014-2015学年八年级下学期期中数学试卷参考答案与试题解析一、选择题1.(3分)如果把分式中的a、b都扩大到原来的2倍,那么分式的值是原分式值的()A.4倍B.3倍C.2倍D.1倍考点:分式的基本性质.分析:根据分式的性质,可得答案.解答:解:把分式中的a、b都扩大到原来的2倍,那么分式的值是原分式值的2倍.故选:C.点评:本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.2.(3分)下列各式中正确的是()A.B.C.D.考点:分式的基本性质.分析:根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,分式的值不变;分式的分子、分母及分式的符号,只有同时改变两个其值才不变,可得答案.解答:解:A、分子分母都除以同一个不为零的整式,分式的值不变,故A错误;B、分子乘以y,分母乘以x,故B错误;C、分子分母都除以同一个不为零的整式,分式的值不变,故C错误;D、分式的分子、分母及分式的符号,只有同时改变两个其值才不变,故D正确;故选:D.点评:本题考查了分式的性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,分式的值不变,注意分式的分子、分母及分式的符号,只有同时改变两个其值才不变.3.(3分)如果=,则x应满足的条件是()A.x≠0 且x≠3B.x≠0或x≠3C.x>0 D.x≠0考点:分式的基本性质.分析:根据分式的性质,可得答案.解答:解:=,则x应满足的条件是x≠0,x≠3,故选:A.点评:本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变,注意分母不能为零.4.(3分)长度单位1纳米=10﹣9米,目前发现一种新型病毒,其直径为25100纳米,用科学记数法表示该病毒直径是()A.2.51×10﹣6米B.2.51×10﹣5米C.2.51×10﹣4米D.2.51×10﹣3米考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:25100纳米=2.51×104×10﹣9米=2.51×10﹣5米,故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)对于反比例函数y=,下列说法不正确的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而减小C.点(﹣2,﹣1)在它的图象上D.它的图象在第一、三象限考点:反比例函数的性质.分析:首先判断反比例函数的比例系数的符号,然后根据反比例函数的性质进行判断.解答:解:A、当x>0时,y随x的增大而减小,故此选项错误;B、当x<0时,y随x的增大而减小,故D选项正确.C、把点(﹣2,﹣1)代入反比例函数y=得﹣1=﹣1,故此选项正确;D、∵k=2>0,∴图象在第一、三象限,故B选项正确;故选:A.点评:本题主要考查了反比例函数y=(k≠0)的性质:①k>0时,函数图象在第一,三象限.在每个象限内y随x的增大而减小;②k<0时,函数图象在第二,四象限.在每个象限内y随x的增大而增大.6.(3分)如果ab>0,且ac=0,那么直线y=﹣x+c一定通过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限考点:一次函数图象与系数的关系.分析:根据已知条件来判断的符号,从而对直线ax+by+c=0一定通过的象限作出判断.解答:解:∵ab>0,∴a、b的符号相同,a≠0,b≠0,∴>0,∴﹣<0;又∵ac=0,∴c=0,∴直线y=﹣x一定通过第二、四象限,故选:D.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.(3分)反比例函数y=(k<0)的大致图象是()A.B.C.D.考点:反比例函数的图象.分析:反比例函数图象是关于原点对称的双曲线.当k<0时,该函数图象经过第二、四象限.解答:解:∵反比例函数y=中的k<0,∴该函数图象经过第二、四象限.故选:A.点评:本题考查了反比例函数的图象.反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.8.(3分)若方程+=﹣1无解,则m的值是()A.﹣1 B.3C.﹣1或3 D.﹣1或﹣考点:分式方程的解.分析:根据分式方程无解,即化成整式方程时整式方程无解,或者求得的x能令最简公分母为0,据此进行解答即可.解答:解:方程两边都乘(x﹣3)得,3﹣2x﹣2﹣mx=3﹣x整理得,(1+m)x=﹣2当1+m=0,即m=﹣1时,整式方程无解;当x=3时,分式方程无解,此时m=﹣,故选:D.点评:本题考查的是分式方程的解的知识,分式方程无解分两种情况:整式方程本身无解,分式方程产生增根.9.(3分)(北师大版)如图,已知点A是一次函数y=x的图象与反比例函数y=的图象在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么△AOB的面积为()A.2B.C.D.考点:反比例函数综合题.专题:数形结合.分析:欲求OAB的面积,已知点A是一次函数y=x的图象与反比例函数y=的图象在第一象限内的交点,可求出点A的坐标,从而得到△AOB的高,结合已知OA=OB,求得底边OB,从而求出面积.解答:解:依题意A点的坐标满足方程组∴∴点A的坐标为()∴OA=2∵OB=OA=2∴S△AOB=OB×=×2×=.故选:C.点评:此题主要考查反比例函数的性质,注意通过解方程组求出交点坐标.同时要注意运用数形结合的思想.二、填空题(共6小题,每小题3分,满分18分)10.(3分)点A(﹣3,2)关于y轴的对称点坐标是(3,2).考点:关于x轴、y轴对称的点的坐标.分析:本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y 轴对称的点,纵坐标相同,横坐标互为相反数.解答:解:点A(﹣3,2)关于y轴的对称点坐标是(3,2).点评:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.(3分)已知﹣=,则=﹣2.考点:分式的化简求值.专题:计算题.分析:已知等式左边通分并利用同分母分式的减法法则计算,整理表示出a﹣b,代入原式计算即可得到结果.解答:解:∵﹣==,即a﹣b=﹣ab,∴原式==﹣2,故答案为:﹣2点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.(3分)若去分母解分式方程=2﹣时产生增根,则增根是x=5.考点:分式方程的增根.专题:计算题.分析:由分式方程有增根,得到最简公分母为0,即可求出增根.解答:解:分式方程变形得:=2+,最简公分母为x﹣5,由分式方程产生增根,得:x﹣5=0,解得:x=5,则增根为x=5,故答案为:x=5点评:此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.(3分)请写出一个一次函数,使它的图象经过第一、二、四象限y=﹣x+3.考点:一次函数的性质.专题:开放型.分析:一次函数的图象经过第一、二、四象限,说明x的系数小于0,常数项大于0,据此写出一次函数.解答:解:∵一次函数的图象经过第一、二、四象限,∴所填函数x的系数小于0,常数项大于0.如:y=﹣x+3(答案不唯一).点评:本题考查的知识点为:一次函数图象经过第一、二、四象限,说明x的系数小于0,常数项大于0.14.(3分)已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数,则自变量x 的取值范围是5<x<10.考点:函数自变量的取值范围.分析:根据已知列方程,再根据三角形三边的关系确定义域即可.解答:解:∵2x+y=20∴y=20﹣2x,即x<10,∵两边之和大于第三边,∴x>5,综上可得5<x<10.故答案为:5<x<10.点评:本题考查了等腰三角形的性质及三角形三边关系;根据三角形三边关系求得x的取值范围是解答本题的关键.15.(3分)如图,已知点A在双曲线上y=上,且OA=4,过A作AC⊥x轴于点C,OA的垂直平分线交OC于点B,△ABC的周长为2.考点:反比例函数图象上点的坐标特征;线段垂直平分线的性质.分析:由双曲线解析式可知,OC×AC=6,由勾股定理可知OC2+AC2=OA2=42,由此可求OC+AC,由垂直平分线的性质可知AB=BO,则AB+BC+AC=AC+BC+BO=AC+CO,即可得出答案.解答:解:∵点A在双曲线y=上,∴OC×AC=6,又∵在Rt△ACO中,OC2+AC2=OA2=42,∴(OC+AC)2=OC2+AC2+2OC×AC=16+12=28,∴OC+AC=2,∵OA的垂直平分线交x轴于点C,∴AB=BO,∴AC+BC+AB=AC+BC+BO=AC+OC=2.故答案为:2.点评:本题考查了反比例函数的综合运用.关键是得到双曲线解析式与相关线段的关系,勾股定理,通过代数式的变形求AC+CO的值.三、解答题(共8小题,满分75分)16.(10分)计算.(1)•(2)+|﹣3|﹣+.考点:分式的乘除法;零指数幂.分析:(1)根据分式的乘法进行计算,分子,分母进行约分,即可解答;(2)先算乘方,再算加减,即可解答.解答:解:(1)原式==.(2)原式=1+3﹣+2=6﹣=.点评:本题考查了分式的乘法和有理数的混合运算,加减本题的关键是注意运算顺序.17.(9分)先化简(a﹣)÷(),然后当=2时,求代数式的值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=2代入计算即可求出值.解答:解:原式=•=﹣•=﹣(a﹣1)=﹣a+1,当a=2时,原式=﹣2+1=﹣1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(10分)解方程.(1)+=2(2)=.考点:解分式方程.专题:计算题.分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:10x﹣5=4x﹣2,解得:x=,经检验x=是增根,分式方程无解;(2)去分母得:x2+x+6=x2+5x﹣6,解得:x=3,经检验x=3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(8分)张老师带学生暑假去某地旅游考察,向导要求大家上山时多带一件衣服,并在介绍当地山区地理环境时说,海拔每增加100米,气温下降0.6℃,张老师在山脚下看了一下随身带的温度计,气温为30℃,试写出山上气温T(℃)与该处距山脚垂直高度h(m)之间的函数关系式,当张老师到达山顶时,发现温度为8℃,求山高.考点:函数关系式;函数值.分析:(1)海拔每上升100米,温度下降0.6度,所以可得h=×100,利用待定系数法求解;(2)代入气温就可求出函数值即海拔高度h的值.解答:解:(1)根据题意有h=×100,6h=30000﹣1000T,T=30﹣0.006h;(2)依题意有8=30﹣0.006h,解得h=3666.故山高3666米.点评:本题主要考查函数关系式,关键是待定系数法求出函数解析式.20.(8分)为改善环境,洛阳市某小区,需铺设一段长为3000m的污水排放管道,铺设1200米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划提高20%,结果共用30天完成这一任务,原计划每天铺设管道多少米?(用方程解)考点:分式方程的应用.分析:设原计划每天铺设xm管道,根据题意可得等量关系:铺设1200米所用时间+后来铺1800米所用时间=30天,根据等量关系列出方程,再解即可.解答:解:设原计划每天铺设xm管道,由题意得:+=30,解得:x=90,经检验:x=90是原分式方程的解,答:原计划每天铺设90m管道.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意不要忘记检验.21.(8分)如图,正方形ABCD的边长为4,P为边长DC上的一点,设DP=x,求△APD的面积y与x之间的函数关系式,并画出这个函数的图象.考点:函数关系式;函数的图象.分析:(1)S△ADP=•DP•AD,然后代入数计算即可,由于P为DC上一点.故0<PD≤DC;(2)由(1)得到函数关系式后再画出图象,画图象时注意自变量取值范围.解答:解:(1)S△ADP=•DP•AD=x×4=2x,∴y=2x(0<x≤4);(2)此函数是正比例函数,图象经过(0,0)(1,2),因为自变量有取值范围,所以图象是一条线段.如图所示:点评:此题主要考查了三角形的面积的求法以及画正比例函数的图象,画图象不注意自变量取值范围是同学们容易出错的地方.22.(10分)如图,直线y1=x+m,分别与x轴、y轴交于点A、B,与双曲线y2=(x<0)的图象相交于点C、D,其中(﹣1,2).(1)求一次函数与反比例函数的关系式;(2)若点D的坐标为(﹣2,1),利用图象直接写出当y1>y2时,x的取值范围.考点:反比例函数与一次函数的交点问题.分析:(1)把点C的坐标分别代入一次函数与反比例函数解析式求出m、k的值,即可得解;(2)根据图象,找出一次函数图象在反比例函数图象上方的x的取值范围即可.解答:解:(1)∵点C(﹣1,2)为一次函数y1=x+m的图象与反比例函数y2=(x<0)的图象的交点,∴﹣1+m=2,=2,解得m=3,k=﹣2,∴一次函数解析式为y=x+3,反比例函数解析式为y=﹣;(2)由图可知,当﹣2<x<﹣1时,y1>y2,所以,y1>y2时x的取值范围是﹣2<x<﹣1.点评:本题考查了反比例函数与一次函数的交点问题,主要利用了待定系数法求函数解析式,三角形的面积的求解,都是基础知识,基本方法,一定要熟练掌握并灵活运用.23.(12分)阅读下文,寻找规律,并解答:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4,…(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;(2)根据你的猜想计算:(1﹣2)(1+2+22+23+24+25)=﹣63;(3)试用上面的规律计算:1+3+32+33+34+35+…32010+32011的值.考点:整式的混合运算.专题:规律型.分析:(1)由(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4可以推出(1﹣x)(1+x+…+x n)=1﹣x n+1;(2)利用(1)的规律得出答案即可;(3)把原式变为,进一步由(1)规律得出答案即可.解答:解:(1)(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;(2)(1﹣2)(1+2+22+23+24+25)=1﹣26=﹣63;(3)原式===.点评:此题考查数字的变化规律,关键在于根据各式发现规律(1﹣x)(1+x+x2+…+x n)=1﹣x n+1,使等式左右两边的最大指数相同且左边是右边的因式分解得规律.。