单项式乘多项式练习题含标准答案
单项式乘多项式练习题(含答案)
兴兴文化八年级数学上册单项式乘多项式练习题一•解答题(共18小题)1. 先化简,再求值:2(a2b+ab2)- 2 (a2b- 1)- ab2-2,其中a=- 2, b=2.2•计算:(1)6x2?3xy (2) (4a- b2) (- 2b) (3) (3x2y- 2x+1) (- 2xy) (4) (- a2b) ( :b2- a+ )2 3 3 44. 计算:(1)_________________________________________ (- 12a b2c) ? (-^abc?) 2= ;2 2 2(2)(3a2b-4at T- 5ab- 1) ? (- 2at)) = _______________ .5. 计算:-6a?(-订J- a+2)6.- 3x? (2x2- x+4)乙07. 先化简,再求值3a (2a2-4a+3)- 2a2(3a+4),其中a=- 28. —条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?9. 2ab (5ab+3a2b) 11.计算:■|xy2) 2 (3ay- 4xy2+l)o Q o 910.计算:2x (x —x+3) 13. (- 4a+12ab—7a b ) (- 4a) = _______________2 2 2 2 211.计算:xy (3x y- xy +y) 15. (- 2ab) (3a - 2ab-4b )12 .计算:(-2a2 b) 3(3b2- 4a+6)13. 某同学在计算一个多项式乘以-3x2时,因抄错运算符号,算成了加上-3x2,得到的结果是x2 -4x+1,那么正确的计算结果是多少?14. 对任意有理数x、y定义运算如下:x△ y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1, b=2, c=3时,I△ 3=1 X+2>3+3X1X3=16,现已知所定义的新运算满足条件,2=3,2^3=4,并且有一个不为零的数d使得对任意有理数*△ d=x,求a、b、c、d的值.参考答案与试题解析一•解答题(共18小题)1.先化简,再求值:2 (a2b+ab2)- 2 (a2b- 1)- ab2-2,其中a=- 2, b=2.考点:整式的加减一化简求值;整式的加减;单项式乘多项式. 710158分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2- 2a2b+2- ab2- 2=(2a2b - 2a b) + (2ab2- ab2) + (2 - 2)=0+ab2=ab2当a=- 2, b=2 时,2原式=(-2) >2 =-2>4 =—8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2. 计算:(1)6x2?3xy(2)(4a- b2) (- 2b)考点:单项式乘单项式;单项式乘多项式.710158分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1) 6x2?3xy=18x3y ;(2) (4a- b2) (- 2b) =-8ab+2t i.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.23. (3x y- 2x+1) (- 2xy)4. 计算:(1) (- 12a b2c) ?(—石abc?) 2=_ 一a4b4c5;(2) (3a2b - 4ab2- 5ab- 1) ? (- 2ab2) = - 6a3b3+8a2b4+10a2b3+2ab2考点:单项式乘多项式;单项式乘单项式.710158分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幕相乘;单项式乘单项式,把他们的系数,相同字母的幕分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1) (- 12a2b2c) ? (- abc2)),4=(-i2aVc)?寺怡?,=—3 4, 5;=孑b c ;故答案为:-空a4b4c5;4(2) (3a2b-4ab2- 5ab— 1) ? (- 2ab2),2 2 2 2 2 2=3a b? (- 2ab )- 4ab? (- 2ab )- 5ab? (- 2ab )- 1? (- 2ab ),3 3 24 2, 3 ,=-6a b +8a b +10a b +2ab .故答案为:-6a3b3+8a2b4+10ab3+2ab.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5 .计算:-6 a? (- - —a+2)2 3考点:单项式乘多项式.710158分析::根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:- 6a? (- - a+2) =3a3+2a2- 12a.23点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.- 3x? (2X2-X+4)考点:单项式乘多项式.710158 分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可. 解答:解:-3X? ( 2X2-X+4 ),=-3X?2X2 - 3X? (- X)- 3X?4,=-6X3+3X2 - 12X.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号. 7.先化简,再求值3a (2a2-4a+3)- 2a2(3a+4),其中a=- 2考点:单项式乘多项式.710158分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a (2a2- 4a+3)- 2a2(3a+4)=6a3- 12『+9a— 6a3- 8a2= - 20a2+9a,当a=- 2 时,原式=-20X1- 9>2= - 98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.& 计算:(-[a2b) ( b2-,a+)考点: 单项式乘多项式.710158专题: 分析:. 计算题.此题直接利用单项式乘以多项式, 先把单项式乘以多项式的每一项, 再把所得的积相加,利用 法则计算即可.解答: 解:「£a 2b )(彳尹+寸),=(-a 2b ) ? b 2+ (- a 2b) (- a ) + (- a 2b ) ?, 2 3 2 3 2 4=-—a 2b 3+ a 3b —_『b . 3 6 8点评: 本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9. 一条防洪堤坝,其横断面是梯形,上底宽 a 米,下底宽(a+2b )米,坝高.米.2(1) 求防洪堤坝的横断面积;(2) 如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解答:解:(1)防洪堤坝的横断面积S=[a+ (a+2b ) ] x a2 2—a (2a+2b ) 4=£2+丄 ab. 2 2故防洪堤坝的横断面积为(丄a 2+丄ab )平方米; 2 2(2)堤坝的体积 V=Sh=(丄彳+丄ab ) X 00=50a 2+50ab. 2 2故这段防洪堤坝的体积是(50a 2+50ab )立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积 =梯形面积X 长度,熟练掌握单项式乘多项式的 运算法则是解题的关键.210. 2ab (5ab+3a 2b ) 考点:单项式乘多项式.710158分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可. 解答:解:2ab(5ab+3a b ) =10a 2b 2+6a 3b 2;故答案为:10a 2b 2+6a 3b 2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.考点:单项式乘多项式.710158分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.11.计算:2 (3xy- 4x y 2+l)解答:解:(-xy2) 2(3xy - 4xy2+1)2二丄x2y4(3xy - 4xy2+1)4—x3y5- x3y6+2x2y4.4 4点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12 .计算:2x (x2- x+3)考点:单项式乘多项式.710158专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x (x2-x+3)2=2x?x - 2x?x+2x ?3 =2x3- 2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13. (- 4a3+12a2b- 7a3b3) (- 4a2) = 16a5- 48a4b+28『b3.考点:单项式乘多项式.710158专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(-4a3+12^b- 7a3b3) (- 4a2) =16a5- 48a4b+28a5b3.故答案为:16a5-48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14 .计算:xy2(3x2y- xy2+y)考点:单项式乘多项式.710158分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)- xy2?xy2+xy2?y=3x3y3- x2y4+xy 3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.2 215. (- 2ab) (3a - 2ab- 4b )考点:单项式乘多项式.710158分析::根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解: (- 2ab) (3a2- 2ab- 4b2)=(-2ab) ? (3a2)- ( - 2ab) ? (2ab)- (- 2ab) ? (4b2) =-6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.o Q o16 .计算:(-2a b) (3b - 4a+6)考点:单项式乘多项式.710158分析:首先利用积的乘方求得(-2a2b) 3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(-2a2b) 3(3b2-4a+6) =-8a6b3? (3b2-4a+6) =-24a6b5+32a7 b3- 48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以-3x2时,因抄错运算符号,算成了加上-3x2,得到的结果是x2 -4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.710158专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以- 3x2得出正确结果.解答:解:这个多项式是(x2- 4x+1)- ( - 3x2) =4x2- 4x+1, (3 分) 正确的计算结果是:(4x2- 4x+1) ? (- 3x2) = - 12x4+12x3- 3x2. (3 分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△ y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1, b=2, c=3时,I△ 3=1 X+2>3+3X1X3=16,现已知所定义的新运算满足条件,2=3,2^3=4,并且有一个不为零的数d使得对任意有理数*△ d=x,求a、b、c、d的值.考点:单项式乘多项式.710158专题:新定义.^分析:「自+匕<1・1=0刀析:由x△ d=x,得ax+bd+cdx=x,即(a+cd- 1) x+bd=0,得* ①,由2=3,得(bd=0a+2b+2c=3②,2^3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d 的值.解答:解:T x△ d=x,「. ax+bd+cdx=x,•••( a+cd - 1) x+bd=0,•••有一个不为零的数d使得对任意有理数x△ d=x,贝诗(十「1二0①,Ud=oT1^2=3,二a+2b+2c=3②,T 2^3=4,二2a+3b+6c=4③,又T d旳,• b=0,a+cd - 1=0•••有方程组' a+2c=3解得y 1./二4故a的值为5、b的值为0、c的值为-1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数*△ d=x,得出方程(a+cd- 1) x+bd=0,得到方程组,卅"1°,求出b的值.。
初二单项式乘多项式练习题含答案
初二单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2?3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)?(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)?(﹣2ab2)=_________.5.计算:﹣6a?(﹣﹣a+2)6.﹣3x?(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)2222(1)6x2?3xy2(1)(﹣12a2b2c)?(﹣abc2)2=﹣a4b4c5;2223324232abc?,;a5.计算:﹣6a?(﹣﹣a+2)(﹣﹣8.计算:(﹣a2b)(b2﹣a+)解:(﹣(﹣a+a?b(﹣(﹣a(﹣?a a a9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;[a+×aba aba+11.计算:.解:(﹣x17.某同学在计算一个多项式乘以﹣3x时,因抄错运算符号,算成了加上﹣3x,得到的结果是x﹣4x+1,那么乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,,得①∴有方程组.,得到方程组。
(完整版)单项式乘多项式练习题(含标准答案)
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽aM,下底宽(a+2b)M,坝高M.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100M,那么这段防洪堤坝的体积是多少立方M?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试卷解读一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽aM,下底宽(a+2b)M,坝高M.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100M,那么这段防洪堤坝的体积是多少立方M?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方M;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方M.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。
(完整版)初二单项式乘多项式练习题含答案
初二单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:2222=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。
单项式乘多项式试题精选附答案.
单项式乘多项式试题精选一.选择题(共13小题)2.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()3252二.填空题(共10小题)14.通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为_________.15.计算:2x2•(﹣3x3)=_________.16.当a=﹣2时,则代数式的值为_________.17.若2x(x﹣1)﹣x(2x+3)=15,则x=_________.18.若﹣2x2y(﹣x m y+3xy3)=2x5y2﹣6x3y n,则m=_________,n=_________.19.a n b2[3b n﹣1﹣2ab n+1+(﹣1)2003]=_________.20.(2014•盐城)已知x(x+3)=1,则代数式2x2+6x﹣5的值为_________.21.(2014•上海)计算:a(a+1)=_________.22.(1998•内江)计算:4x•(2x2﹣3x+1)=_________.23.(2009•贺州)计算:(﹣2a)•(a3﹣1)=_________.三.解答题(共7小题)24.计算:(﹣2x3y)•(3xy2﹣4xy+1).25.(2a2)•(3ab2﹣5ab3)26.长方形的长、宽、高分别是3x﹣4,2x和x,它们的表面积是多少?27.已知ab2=﹣1,求(﹣ab)(a2b5﹣ab3﹣b)的值.28.①xy•(x﹣y+1)②﹣3a(4a2﹣a+b)29.化简:(1)a(3+a)﹣3(a+2);(2)2a2b(﹣3ab2);(3)(x﹣)•(﹣12y).30.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值.单项式乘多项式试题精选参考答案与试题解析一.选择题(共13小题)2.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()3252二.填空题(共10小题)14.通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为2a(a+b)=2a2+2ab.15.计算:2x2•(﹣3x3)=﹣6x5.16.当a=﹣2时,则代数式的值为﹣8.a17.若2x(x﹣1)﹣x(2x+3)=15,则x=﹣3.18.若﹣2x2y(﹣x m y+3xy3)=2x5y2﹣6x3y n,则m=3,n=4.19.a n b2[3b n﹣1﹣2ab n+1+(﹣1)2003]=3a n b n+1﹣2a n+1b n+3﹣a n b2.20.(2014•盐城)已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3.21.(2014•上海)计算:a(a+1)=a2+a.22.(1998•内江)计算:4x•(2x2﹣3x+1)=8x3﹣12x2+4x.23.(2009•贺州)计算:(﹣2a)•(a3﹣1)=﹣a4+2a.aaa三.解答题(共7小题)24.计算:(﹣2x3y)•(3xy2﹣4xy+1).25.(2a2)•(3ab2﹣5ab3)26.长方形的长、宽、高分别是3x﹣4,2x和x,它们的表面积是多少?27.已知ab2=﹣1,求(﹣ab)(a2b5﹣ab3﹣b)的值.28.①xy•(x﹣y+1)②﹣3a(4a2﹣a+b)×a×29.化简:(1)a(3+a)﹣3(a+2);(2)2a2b(﹣3ab2);(3)(x﹣)•(﹣12y).30.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值.。
单项式乘多项式练习试题(含答案)
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。
单项式乘多项式试题精选附答案(供参考)
单项式乘多项式试题精选附答案(供参考)单项式乘多项式试题精选附答案(供参考)一、选择题1.将(x+2)(x-3)展开后的结果是:A. x^2 - x - 6B. x^2 - 6C. x^2 - 5D. x^2 + x - 62.将2x(3x^2 + 4x - 5)展开后的结果是:A. 6x^3 + 8x^2 - 10xB. 6x^3 + 8x^2 - 5xC. 6x^3 + 10x^2 - 5xD. 6x^3 + 10x^2 - 10x3.将3(4x^2 - 2x + 5)展开后的结果是:A. 12x^2 - 6x + 15B. 12x^2 - 6x - 15C. 12x^2 + 6x - 15D. 12x^2 + 6x + 15二、填空题1.将(a + 2b - c)(a - 2b + c)展开后的结果是________。
答案:a^2 - 4b^2 + c^22.将2(3x^2 - 4xy + 5y^2)展开后的结果是________。
答案:6x^2 - 8xy + 10y^23.将5(2x^2 - 3xy + 4y^2)展开后的结果是________。
答案:10x^2 - 15xy + 20y^2三、解答题1.将(x - 2)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是x^2 - 4x + 4。
展开后的单项式是x^2、-4x和4。
2.将(3a - 2b)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是9a^2 - 12ab + 4b^2。
展开后的单项式是9a^2、-12ab和4b^2。
3.将2(x + 3)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是2x^2 + 12x + 18。
展开后的单项式是2x^2、12x和18。
四、综合题将(x - 3)(x + 4)展开后的结果是什么?展开后的单项式是哪些?在展开中应用了什么运算法则?解答:展开后的结果是x^2 + x - 12。
单项式乘多项式练习题(含答案)
整式的乘法一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:1. ﹣6a•(﹣﹣a+2)2.﹣3x•(2x2﹣x+4)3.(3x+2y)(9x2﹣6xy+4y2);4.(2x﹣3)(4x2+6xy+9);5.(m﹣)(m2+m+);6(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2).参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.abc,;a5.计算:﹣6a•(﹣﹣a+2)﹣6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.计算:(﹣a2b)(b2﹣a+)(﹣(﹣a+a b(﹣a(﹣,a a a9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?[a+× aaba aba+10.2ab(5ab+3a2b)11.计算:.(﹣x12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.①∴有方程组.,得到方程组。
单项式乘多项式练习题(含标准答案)
单项式乘多项式练习题(含答案)————————————————————————————————作者:————————————————————————————————日期:2单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。
(完整word版)单项式乘多项式练习题(含),文档
单项式乘多项式练习题一.解答题〔共 18 小题〕1.先化简,再求值: 2〔 a 2b+ab 2〕﹣ 2〔 a 2b ﹣ 1〕﹣ ab 2﹣2,其中 a=﹣ 2, b=2.2.计算:〔 1〕 6x 2 2〕〔﹣ 2b 〕?3xy 〔2〕〔 4a ﹣ b 3.〔 3x 2y ﹣2x+1 〕〔﹣ 2xy 〕4.计算:2 222_________ ;〔 1〕〔﹣ 12a b c 〕 ?〔﹣ abc 〕 = ( 2〕〔 3a 2b ﹣4ab 2﹣ 5ab ﹣1〕 ?〔﹣ 2ab 2〕 = _________ .5.计算:﹣ 6a?〔﹣﹣ a+2〕6.﹣ 3x?〔2x 2﹣ x+4〕7.先化简,再求值2 2 8.〔﹣ 2 2〕3a 〔 2a ﹣ 4a+3〕﹣ 2a 〔 3a+4〕,其中 a=﹣ 2 a b 〕〔 b ﹣ a+ 9.一条防洪堤坝,其横断面是梯形,上底宽 a 米,下底宽〔 a+2b 〕米,坝高 米.〔 1〕求防洪堤坝的横断面积;〔 2〕若是防洪堤坝长 100 米,那么这段防洪堤坝的体积是多少立方米?2.10. 2ab 〔 5ab+3a b 〕11.计算:12.计算: 2x 〔 x 2﹣ x+3〕13.〔﹣ 4a 3+12a 2b ﹣ 7a 3b 3〕〔﹣ 4a 2〕 =_________ .14.计算: xy 2〔 3x 2y ﹣ xy 2+y 〕15.〔﹣ 2ab 〕〔 3a 2﹣ 2ab ﹣ 4b 2〕16.计算:〔﹣ 2a 2b 〕3 〔3b 2﹣ 4a+6〕17.某同学在计算一个多项式乘以﹣3x 2时,因抄错运算符号,算成了加上﹣ 3x 2,获取的结果是 x 2﹣ 4x+1 ,那么正确的计算结果是多少?18.对任意有理数 x 、 y 定义运算以下: x △ y=ax+by+cxy ,这里 a 、 b 、c 是给定的数,等式右边是平时数的加法及乘法运算,如当 a=1, b=2,c=3 时, l △ 3=1×l+2 ×3+3×1×3=16 ,现所定义的新运算满足条件,1△ 2=3,2△ 3=4 ,并且有一个不为零的数 d 使得对任意有理数 x △ d=x ,求 a 、b 、 c 、 d 的值.参照答案与试题解析一.解答题〔共 18 小题〕1.先化简,再求值: 2〔 a 2b+ab 2〕﹣ 2〔 a 2b ﹣ 1〕﹣ ab 2﹣2,其中 a=﹣ 2, b=2.考点 : 整式的加减 —化简求值;整式的加减;单项式乘多项式.解析: 先依照整式相乘的法那么进行计算,尔后合并同类项,最后将字母的值代入求出原代数式的值.解答: 解:原式 =2a 2b+2ab 2﹣ 2a 2b+2 ﹣ ab 2﹣22 2 2 2=〔 2a b ﹣ 2a b 〕 +〔 2ab ﹣ ab 〕 +〔 2﹣ 2〕2=0+ab2当 a=﹣ 2,b=2 时,原式 =〔﹣ 2〕 ×22=﹣2×4 =﹣ 8.议论: 此题是一道整式的加减化简求值的题,观察了单项式乘以多项式的法那么,合并同类项的法那么和方法.2.计算:( 1〕 6x 2?3xy( 2〕〔 4a ﹣b 2〕〔﹣ 2b 〕考点 : 单项式乘单项式;单项式乘多项式.解析: 〔 1〕依照单项式乘单项式的法那么计算;( 2〕依照单项式乘多项式的法那么计算.解答: 解:〔 1〕 6x 2?3xy=18x 3y ;( 2〕〔 4a ﹣b 2〕〔﹣ 2b 〕 =﹣ 8ab+2b 3.议论: 此题观察了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法那么是解题的要点.3.〔 3x 2y ﹣2x+1 〕〔﹣ 2xy 〕考点 : 单项式乘多项式.解析: 依照单项式乘多项式的法那么,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答: 解:〔 3x 2y ﹣ 2x+1 〕〔﹣ 2xy 〕 =﹣ 6x 3y 2+4x 2y ﹣ 2xy .议论: 此题观察单项式乘多项式的法那么,熟练掌握运算法那么是解题的要点,此题必然要注意符号的运算.4.计算:〔 1〕〔﹣ 12a 2b 2c 〕 ?〔﹣abc 2 〕2=﹣a 4b 4c 5;( 2〕〔 3a 2b ﹣4ab 2﹣ 5ab ﹣1〕 ?〔﹣ 2ab 2〕 = ﹣6a 3b 3+8a 2b 4+10a 2b 3+2ab 2.考点 : 单项式乘多项式;单项式乘单项式.解析: 〔 1〕先依照积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法那么计算;〔 2〕依照单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法那么计算即可.解答:2 22 2,解:〔 1〕〔﹣ 12a b c 〕 ?〔﹣ abc 〕=〔﹣ 12a 2b 2c 〕 ?,=﹣;故答案为:﹣a 4b 4c 5;2 2 2〕,〔 2〕〔 3a b ﹣4ab ﹣ 5ab ﹣1〕 ?〔﹣ 2ab 2222 2 2 =3a b?〔﹣ 2ab 〕﹣ 4ab ?〔﹣ 2ab 〕﹣ 5ab?〔﹣ 2ab 〕﹣ 1?〔﹣ 2ab 〕,故答案为:﹣ 3 3 2 4 2 3 2.6a b +8a b +10a b +2ab 议论: 此题观察了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意运算符号的办理.5.计算:﹣ 6a?〔﹣﹣ a+2〕考点 : 单项式乘多项式.解析: 依照单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣ 6a?〔﹣﹣ a+2〕=3a 3+2a 2﹣ 12a .议论: 此题主要观察单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意运算符号.6.﹣ 3x?〔2x 2﹣ x+4〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答: 解:﹣ 3x?〔 2x 2﹣ x+4〕,2=﹣ 3x?2x ﹣ 3x?〔﹣ x 〕﹣ 3x?4,议论: 此题主要观察单项式与多项式相乘的运算法那么,熟练掌握运算法那么是解题的要点,计算时要注意运算符号.7.先化简,再求值3a 〔 2a 2﹣ 4a+3〕﹣ 2a 2〔 3a+4〕,其中 a=﹣ 2考点 : 单项式乘多项式.解析: 第一依照单项式与多项式相乘的法那么去掉括号,尔后合并同类项,最后代入的数值计算即可.解答: 解: 3a 〔 2a 2﹣ 4a+3〕﹣ 2a 2〔 3a+4〕32322=6a ﹣ 12a +9a ﹣6a ﹣ 8a =﹣20a +9a ,当 a=﹣ 2 时,原式 =﹣20×4﹣9×2=﹣ 98.议论: 此题观察了整式的化简.整式的加减运算实质上就是去括号、合并同类项,这是各地中考的常考点.8.计算:〔﹣ a 2b 〕〔 b 2﹣ a+ 〕考点 : 单项式乘多项式.专题 : 计算题.解析: 此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法那么计算即可.解答:解:〔﹣ a 2b 〕〔 b 2﹣ a+ 〕,=〔﹣a 2b 〕 ? b 2+〔﹣ a 2b 〕〔﹣ a 〕 +〔﹣ a 2b 〕? ,=﹣ a 2 b 3+ a 3b ﹣ a 2 b .议论: 此题观察单项式乘以多项式的运算,熟练掌握运算法那么是解题的要点.9.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽〔 a+2b 〕米,坝高 米.( 1〕求防洪堤坝的横断面积;( 2〕若是防洪堤坝长 100 米,那么这段防洪堤坝的体积是多少立方米?考点 : 单项式乘多项式.专题 : 应用题.解析: 〔 1〕依照梯形的面积公式,尔后利用单项式乘多项式的法那么计算;〔 2〕防洪堤坝的体积 =梯形面积 ×坝长.解答:解:〔 1〕防洪堤坝的横断面积 S= [a+〔 a+2b 〕 ]× a= a 〔2a+2b 〕= a 2+ ab .故防洪堤坝的横断面积为〔2a + ab 〕平方米;〔 2〕堤坝的体积 V=Sh= 〔2 2.a + ab 〕×100=50a +50ab 故这段防洪堤坝的体积是〔 50a 2+50ab 〕立方米.议论: 此题主要观察了梯形的面积公式及堤坝的体积=梯形面积 ×长度,熟练掌握单项式乘多项式的运算法那么是解 题的要点.10. 2ab 〔 5ab+3a 2b 〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解: 2ab 〔 5ab+3a 2b 〕 =10a 2b 2+6a 3b 2;2232故答案为: 10a b +6a b .议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.11.计算:.考点 : 单项式乘多项式.解析: 先依照积的乘方的性质计算乘方,再依照单项式与多项式相乘的法那么计算即可.解答:22 2解:〔﹣ xy 〕 〔 3xy ﹣4xy +1〕= x 3y 5﹣ x 3y 6+ x 2y 4.议论: 此题观察了积的乘方的性质,单项式与多项式相乘的法那么,熟练掌握运算法那么是解题的要点,计算时要注意运算序次及符号的办理.12.计算: 2x 〔 x 2﹣ x+3〕考点 : 单项式乘多项式.专题 : 计算题.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解: 2x 〔 x 2﹣ x+3 〕=2x ?x 2﹣ 2x?x+2x ?332议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.13.〔﹣ 4a 3+12a 2b ﹣ 7a 3b 3〕〔﹣ 4a 2〕 =16a 5﹣ 48a 4 b+28a 5b 3 .考点 : 单项式乘多项式.专题 : 计算题.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可. 解答: 解:〔﹣ 4a 3 +12a 2b ﹣ 7a 3b 3〕〔﹣ 4a 2〕 =16a 5﹣ 48a 4b+28a 5b 3.545 3议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.14.计算: xy 2〔 3x 2y ﹣ xy 2+y 〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.22222解答: 解:原式 =xy 〔 3x y 〕﹣ xy ?xy +xy ?y议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.15.〔﹣ 2ab 〕〔 3a 2﹣ 2ab ﹣ 4b 2〕考点 : 单项式乘多项式.解析: 依照单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:〔﹣ 2ab 〕〔 3a 2﹣ 2ab ﹣ 4b 2〕22〕=〔﹣ 2ab 〕?〔 3a 〕﹣〔﹣ 2ab 〕?〔 2ab 〕﹣〔﹣ 2ab 〕 ?〔 4b =﹣ 6a 3b+4a 2b 2+8ab 3.议论: 此题观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.16.计算:〔﹣ 2a 2b 〕3 〔3b 2﹣ 4a+6〕考点 : 单项式乘多项式.解析: 第一利用积的乘方求得〔﹣ 2a 2b 〕 3的值,尔后依照单项式与多项式相乘的运算法那么:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:〔﹣ 2a 2b 〕 3〔 3b 2﹣4a+6〕 =﹣ 8a 6b 3?〔 3b 2﹣4a+6〕 =﹣24a 6b 5+32a 7b 3﹣48a 6b 3.议论: 此题观察了单项式与多项式相乘.此题比较简单,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.17.某同学在计算一个多项式乘以﹣3x 2时,因抄错运算符号,算成了加上﹣ 3x 2,获取的结果是 x 2﹣ 4x+1 ,那么正确的计算结果是多少?考点 : 单项式乘多项式. 专题 : 应用题.解析: 用错误结果减去多项式,得出原式,再乘以﹣3x 2得出正确结果.解答: 解:这个多项式是〔 x 2﹣ 4x+1〕﹣〔﹣ 3x 2〕 =4x 2﹣4x+1 ,〔 3 分〕正确的计算结果是: 〔 4x 2﹣ 4x+1〕 ?〔﹣ 3x 2〕 =﹣12x 4+12x 3﹣3x 2.〔 3 分〕议论: 此题利用奇特的题目观察了单项式与多项式相乘,熟练掌握运算法那么是解题的要点,计算时要注意符号的办理.18.对任意有理数 x 、 y 定义运算以下: x △ y=ax+by+cxy ,这里 a 、 b 、c 是给定的数,等式右边是平时数的加法及乘法运算,如当 a=1, b=2,c=3 时, l △ 3=1×l+2 ×3+3×1×3=16 ,现所定义的新运算满足条件, 1△ 2=3,2△ 3=4 ,并且有一个不为零的数d 使得对任意有理数 x △ d=x ,求 a 、b 、 c 、 d 的值.考点 : 单项式乘多项式.专题 : 新定义.解析:由 x △ d=x ,得 ax+bd+cdx=x ,即〔 a+cd ﹣ 1〕x+bd=0 ,得 ① ,由 1△ 2=3,得 a+2b+2c=3 ② ,2△ 3=4 ,得 2a+3b+6c=4 ③ ,解以上方程组成的方程组即可求得a 、b 、c 、d 的值.解答: 解: ∵ x △ d=x , ∴ ax+bd+cdx=x ,∴ 〔 a+cd ﹣ 1〕 x+bd=0 ,∵ 有一个不为零的数 d 使得对任意有理数 x △ d=x ,那么有① ,∵ 1△ 2=3 ,∴ a+2b+2c=3 ② ,∵ 2△ 3=4 ,∴ 2a+3b+6c=4 ③ ,又 ∵ d ≠0, ∴ b=0 ,∴ 有方程组解得.故 a 的值为 5、 b 的值为 0、 c 的值为﹣ 1、d 的值为 4.议论: 此题是新定义题, 观察了定义新运算, 解方程组.解题要点是由一个不为零的数d 使得对任意有理数x △ d=x ,得出方程〔 a+cd ﹣ 1〕x+bd=0 ,获取方程组,求出 b 的值.。
单项式乘多项式练习题(含答案)
2014—2015年武汉重点中学单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.abc,;a5.计算:﹣6a•(﹣﹣a+2)﹣6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.计算:(﹣a2b)(b2﹣a+)(﹣(﹣a+a b(﹣a(﹣,a a a9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?[a+× aaba aba+10.2ab(5ab+3a2b)11.计算:.(﹣x12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.,得①有方程组.,得到方程组。
初二单项式乘多项式练习题含答案
初二单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)2222(1)6x2•3xy2(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;2223324232abc,;a5.计算:﹣6a•(﹣﹣a+2)﹣8.计算:(﹣a2b)(b2﹣a+)(﹣(﹣a+a b(﹣a(﹣,a a a9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;[a+× aaba aba+11.计算:.(﹣x17.某同学在计算一个多项式乘以﹣3x时,因抄错运算符号,算成了加上﹣3x,得到的结果是x﹣4x+1,那么正乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,①∴有方程组.,得到方程组。
初二单项式乘多项式练习题含答案
初二单项式乘多项式练习题含答案原式=2(2*(-2)*2+(-2)*2*2)-2(2*(-2)*1-1)-(-2)*2-22(-8+(-8))-2(-4)-(-4)16-(-8)+420所以答案为-20.2.计算:1)6x^2*3xy2)(4a-b^2)(-2b)考点:单项式乘多项式;整式的乘法.分析:先将单项式和多项式相乘,再将结果进行合并同类项,最后化简.解答:(1)6x^2*3xy=18x^3y2)(4a-b^2)(-2b)=-8ab+2b^33.(3x^2y-2x+1)(-2xy)考点:整式的乘法.分析:将两个多项式进行乘法,然后合并同类项,最后化简.解答:(3x^2y-2x+1)(-2xy)=-6x^3y^2+4x^2y-2xy4.计算:1)(-12a^2b^2c)*(-abc^2)^22)(3a^2b-4ab^2-5ab-1)*(-2ab^2)考点:单项式乘单项式;整式的乘法.分析:(1)将两个单项式相乘,然后将结果进行乘方运算,最后化简;(2)将整式和单项式相乘,然后合并同类项,最后化简.解答:(1) (-12a^2b^2c)*(-abc^2)^2=-12a^3b^5c^52) (3a^2b-4ab^2-5ab-1)*(-2ab^2)=-6a^3b^3+8a^2b^4+10ab^3+2ab^25.计算:-6a*(-(-a+2))考点:单项式乘单项式.分析:先将两个单项式相乘,然后化简.解答:-6a*(-(-a+2))=6a^2-12a6.计算:-3x*(2x^2-x+4)考点:单项式乘多项式.分析:将单项式和多项式相乘,然后合并同类项,最后化简.解答:-3x*(2x^2-x+4)=-6x^3+3x^2-12x7.先化简,再求值3a(2a^2-4a+3)-2a^2(3a+4),其中a=-28.考点:整式的加减;整式的乘法;化简求值.分析:先将两个整式相乘,然后合并同类项,再将字母的值代入求出原代数式的值.解答:3a(2a^2-4a+3)-2a^2(3a+4)=6a^3-12a^2+9a+(-6a^3-8a^2)20a^2+9a当a=-28时,答案为:-.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高2米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-- -单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2= _________ ;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= _________ .5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽aM,下底宽(a+2b)M,坝高M.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100M,那么这段防洪堤坝的体积是多少立方M?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________ .14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试卷解读一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2= ﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= ﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽aM,下底宽(a+2b)M,坝高M.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100M,那么这段防洪堤坝的体积是多少立方M?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方M;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方M.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。