中考数学基础训练13

合集下载

人教版九年级数学 中考数学 基础训练

人教版九年级数学 中考数学 基础训练

人教版九年级数学中考数学 基础训练(卷面分值:150分;考试时间:120分钟)一、 选择题(本大题共10小题,每小题4分,共40分)每题的选项中只有一项符合题目要求. 1. 一个几何体的三视图如图所示,则该几何体是( )2. 9的平方根是( ) A .±3 B .﹣3C .3D .±3.下列运算正确的是( )A. 22122a a-= B. ()32628a a -=- C. ()2224a a +=+ D. 2a a a ÷=4. 等腰三角形的两边长为方程x 2-7x +10=0的两根,则它的周长为( )A .12B .12或9C .9D .75. 某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( )A. 33603624120x y x y +=⎧⎨+=⎩B. 33602436120x y x y +=⎧⎨+=⎩C. 12036243360x y x y +=⎧⎨+=⎩D. 12024363360x y x y +=⎧⎨+=⎩6.一个三角形三边的长分别为15,20和25,则这个三角形最长边上的高为( ) A.12 B.15 C.20 D.25 7.用配方法解方程0522=--x x 时,配方后得到的方程为( ) A .9)1(2=+x B. 9)1(2=-x C. 6)1(2=+x D. 6)1(2=-x8.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB平行,另一条与AD 平行,其余部分种草,若草坪部分总面积为112m2,设小路宽为xm ,那么x 满足的方程是( )A 、x 2-25x+32=0 B 、x 2-17+16=0 C 、2x 2-25x+16=0 D 、x 2-17x-16=09.当1x =时,代数式334ax bx -+的值是7,则当1x =-时,这个代数式的值是( ) A.7 B.3 C.1 D.7-10.如图,在矩形ABCD 中,对角线BD AC ,交于点 O ,DB CE ⊥于E ,1:31:=∠∠DCE ,则OCE ∠=( ) A.︒30 B.︒45 C.︒60 D.︒5.67二、填空题(本大题共5小题,每小题4分,共20分)把答案直接填在答题卷的相应位置处.11. 若2ab =,1a b -=-,则代数式22a b ab -的值等于 .12. 关于x 的方程3kx 2+12x +2=0有实数根,则k 的取值范围是________.13. 据统计,今年“国庆”节某市接待游客共14900000人次,用科学记数法表示为 .14.如果代数式有意义,那么字母x 的取值范围是 .15.如图,CF 是ABC ∆的外角ACM ∠的平分线,且CF ∥AB ,︒=∠100ACM ,则B ∠的度数为 .三、解答题(本大题Ⅰ—Ⅴ题,共9小题,共90分)解答时应在答题卷的相应位置处写出文字说明、证明过程或演算过程.Ⅰ. (本题满分15分,第16题5分,第17题10分) 16.计算:()()0332015422---+÷-17. (1) 2(3)2(3)0x x x -+-=; (2)x 2-5x +2=0 Ⅱ. (本题满分30分,第18题、第19题、第20题每题10分) 18.化简:xx x x x x x x 4)44122(22-÷+----+,然后从3,2,1,0中选择一个你喜欢的x 的值代入求值.19.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC ∥AB . 求证:AE CE =20.中秋、国庆假日期间,某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

2011年福建省漳州市中考数学基础训练试卷及解析

2011年福建省漳州市中考数学基础训练试卷及解析

2011年福建省漳州市中考数学基础训练试卷及解析时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.计算:3--=________.2.2006年5月20 日,世界上规模最大的混凝土重力坝三峡大坝浇筑完成.建成后,三峡水库库容总量为39 300 000 000立方米.用科学计数法表示库容总量为_____________立方米.3.如图,将矩形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的F 点处.若AFD △的周长为9,ECF △的周长为3,则矩形ABCD 的周长为________. 4.为考察甲、乙两种小麦的长势,分别从中抽取50株小麦,测得苗高,经过数据处理,它们的平均数相同,方差分别为 2215.412S S ==甲乙,,由此可以估计______种小麦长的比较整齐. 5.“平阳府有座大鼓楼,半截子插在天里头”.如图,为测量临汾市区鼓楼的高AB ,在距B 点50m 的C 处安装测倾器,测得鼓楼顶端A 的仰角为4012',测倾器的高CD 为 1.3m ,则鼓楼高AB 约为________m(tan 40120.85' ≈).6.写出一个图象位于第一、三象限内的反比例函数表达式__________________. 7.如图,AB 为O ⊙的直径,C D ,是O ⊙上两点,若50ABC = ∠,则D ∠的度数为________.8.为庆祝“六一”儿童节,幼儿园要用彩纸包裹底圆直径..为1m ,高为2m 的一根圆柱的侧面.若每平方米彩纸10元,则包裹这根圆柱侧面的彩纸共需________元(接缝忽略不计, 3.14π≈). 9.将图中线段AB 绕点A 按顺时针方向旋转90后,得到线段AB ',则点B '的坐标是______________.10.如图,依次连结第一个...正方形各边的中点得到第二个正方形,再依次连结第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个...正方形边长为1,则第.n 个.正方形的面积是_________________.二、细心填一填AD……11.下列运算正确的是( ) A= B= C .632a a a ÷=D .2336(2)8ab a b -=-12.不等式组2112x x -<⎧⎨-⎩,≤的解集在数轴上表示为( )13.半径分别为5和8的两个圆的圆心距为d ,若313d <≤,则这两个圆的位置关系一定是( )A .相交B .相切C . 内切或相交D .外切或相交 14.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为( )A .180元B . 202.5元C .180元或202.5元 D .180元或200元15.如图,在Rt ABC △中,904cm 6cm C AC BC ===,,∠,动点P 从点C 沿CA ,以1cm/s 的速度向点A 运动,同时动点Q 从点C 沿CB ,以2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的CPQ △的面积2(cm )y 与运动时间(s)x之间的函数图象大致是( )16.一个质地均匀的小正方体的六个面上分别标有数字1,2,3,4,5,6.如果任意抛掷小正方体两次,那么下列说法正确的是( ) A .得到的数字和必然是4 B .得到的数字和可能是3 C .得到的数字和不可能是2 D .得到的数字和有可能是1 17.某展览厅内要用相同的正方体木块搭成一个三视图如下的展台,则此展台共需这样的正方体( ) D .A .B .C . (s)x A. (s) B. (s)x C. (s)x D.正 视 图左 视 图俯视图A .3块B .4块C .5块D .6块三、开心用一用19.(1)计算:1221(1)sin 302-⎛⎫-++- ⎪⎝⎭(2)化简:22362444x x x x x -+÷-++答案:一、填空题:1.3-; 2.103.9310⨯; 3.12; 4.乙; 5.43.8; 6.(略); 7.40;8.62.8; 9.(30),; 10.112n -⎛⎫⎪⎝⎭.三、解答题18.解:(1)原式1124=++-4=. (2)原式23(2)2(2)(2)(2)x x x x x -+=÷+-+ 3(2)2x x =++ 3=.。

初三中考数学复习 全等三角形 专项基础训练题 含答案

初三中考数学复习   全等三角形  专项基础训练题 含答案

初三中考数学复习全等三角形专项基础训练题含答案2019 初三中考数学复习全等三角形专项基础训练题1.如图,下列图形中被虚线分成的两部分不是全等图形的是( )2. 如图,△AOC≌△BOD,点C,D是对应点,下列结论错误的是( )A.∠A与∠B是对应角 B.∠AOC与∠BOD是对应角C.OC与OB是对应边 D.OC与OD是对应边3. 如图,图中的两个三角形全等,则∠α的度数是()A.72° B.60° C.58° D.50°4. 如图,点 D,E 分别在线段 AB,AC上,CD 与 BE 相交于点 O.已知 AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD5. 如图,△ABD≌△CDB,且AB,CD是对应边,下面四个结论中不正确的是( ) A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AB=CD且AD=BC6. 如图,四边形ABCD中,AC垂直平分BD,垂足为点E,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7. 如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连结CD.下列结论错误的是( )A.AD=CD B.∠A=∠DCEC.∠ADE=∠D CB D.∠A=2∠DCB8. 如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,添加下列哪一个条件无法13. DC=BC(或∠DAC=∠BAC,或∠D=∠B=90°)14. 证明:(1) ∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°.又∵BC=EF,AC=DF,∴△ABC≌△DEF (SAS).(2) 由(1)得△ABC≌△DEF.∴∠B=∠DEF.∴AB∥DE.15. 证明:先用“SAS”证△ACF≌△ADF,得∠ACF=∠ADF,再证∠B=∠ACF,∴∠ADF=∠B.。

2022年中考数学人教版基础训练:全等三角形

2022年中考数学人教版基础训练:全等三角形

2022年中考数学人教版基础训练:全等三角形一、选择题(本大题共10道小题)1. AD是△ABC的角平分线,自D点向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( )A.DE = DFB. AE = AFC.BD = CDD. ∠ADE =∠ADF2. 两个三角形有两个角对应相等,正确说法是()A.两个三角形全等B.两个三角形一定不全等C.如果还有一角相等,两三角形就全等D.如果一对等角的角平分线相等,两三角形全等3. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等4. 如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是( )A.∠B=∠EB.∠BAD=∠EACC.∠BAC=∠EADD.BC=ED5. 如图,在△ABC中,AB=AC,AD⊥BC于点D,下列结论不正确的是( )A.∠B=∠C B.BD=CDC.AB=2BD D.AD平分∠BAC6. 已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角 B.∠A=∠2 C.△ABC≌△CED D.∠1=∠27. 如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40° B.50° C.60° D.75°8. 如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是( ).A.PD=PE B.OD=OE C.∠DPO=∠EPO D.PD=OD9. 平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°10. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60二、填空题11. 杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是12. 如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.13. 如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=______14. 如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”.15.如图,△ABC是三边均不等的三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画个.16. 如图所示,∠AOB=60°,CD⊥OA于点D,CE⊥OB于点E,且CD=CE,则∠DCO=________.17. 如图,已知△ABC(AC>AB),DE=BC,以D,E为顶点作三角形,使所作的三角形与△ABC全等,则这样的三角形最多可以作出________个.AA BB的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳), 18. 把两根钢条','如图,若测得AB=5厘米,则槽宽为厘米.三、解答题19. 如图,已知AB DC AC DB==,.求证:12∠=∠.20. 已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E=∠C.21. 如图,木工师傅常用角尺来作任意一个角的平分线,请你设计一个方案,只用角尺来作∠AOB的平分线,并说明理由.22. 已知:如图所示,BF与CE相交于点D,BD=CD,BF⊥AC于点F,CE⊥AB于点E,求证:点D 在∠BAC的平分线上.23.如图,两根旗杆AC、BD间相距12m,某人从A点沿AB走向B,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90,且CM=DM,已知旗杆AC的高为3m,该人的运动速度为1/m s,求这个人运动了多长时间?24. 在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC 的平分线交BC于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.25.如图①,点A,E,F,C在一条直线上,AE=CF,过点E,F分别作ED⊥AC,FB⊥AC,AB=CD.(1)若BD与EF交于点G,试证明BD平分EF;(2)若将△DEC沿AC方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.26. 在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明.。

2021年山东省中考一轮复习数学分层练习【鲁教版(五四制)】:13. 二次函数的图象与性质

2021年山东省中考一轮复习数学分层练习【鲁教版(五四制)】:13. 二次函数的图象与性质

13. 二次函数的图象与性质基础训练1. 抛物线y =-2x 2+1的对称轴是( )A. 直线x =12B. 直线x =-12C. y 轴D. 直线x =22. 点A (1,y 1),B (-2,y 2)在函数y =-(x +1)2+2的图象上,则下列结论正确的是( )A. 2>y 1>y 2B. 2>y 2>y 1C. y 1>y 2>2D. y 2>y 1>23. (2020成都)关于二次函数y =x 2+2x -8,下列说法正确的是( )A. 图象的对称轴在y 轴的右侧B. 图象与y 轴的交点坐标为(0,8)C. 图象与x 轴的交点坐标为(-2,0)和(4,0)D. y 的最小值为-94.若抛物线y =ax 2-4x +c 的开口向下,交y 轴于正半轴,则抛物线的顶点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 在二次函数y =x 2+2x -3中,当-3≤x ≤0时,y 的最大值和最小值分别( )A. 0,-4B. 0,-3C. -3,-4D. 0,06. 抛物线y =2(x -1)2经过(m ,n )和(m +3,n )两点,则n 的值为( )A. 92B. -92C. 1D. -127. (2020温州)已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线y =-3x 2-12x +m 上的点,则( )A. y 3<y 2<y 1B. y 3<y 1<y 2C. y 2<y 3<y 1D. y 1<y 3<y 28. (2020泰安)在同一平面直角坐标系内,二次函数y =ax 2+bx +b (a ≠0)与一次函数y =ax +b 的图象可能是( )9. (2020枣庄)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2-4ac>0;③2a-b=0;④a-b+c=0.其中,正确的结论有()A.1个B.2个C.3个D. 4个第9题图10.(2020遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=-1,下列结论不正确的是()A. b2>4acB. abc>0C. a-c<0D. am2+bm≥a-b(m为任意实数)第10题图11. (2020哈尔滨)抛物线y=3(x-1)2+8的顶点坐标为________.12.把二次函数y=x2+4x-1变形为y=a(x+h)2+k的形式为__________.13. (2020黔东南州)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(-3,0),对称轴为x=-1,则当y<0时,x的取值范围是________.第13题图14.若二次函数y=x2-4x-m图象与x轴有两个不同的交点,则实数m的取值范围是________.15.(2019泰安)若二次函数y=x2+bx-5的对称轴为直线x=2,则关于x的方程x2+bx-5=2x-13的解为________.16. (2020温州)已知抛物线y=ax2+bx+1经过点(1, -2),(-2,13).(1)求a,b的值;(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12-y1,求m的值.巩固训练17.(2020眉山)已知二次函数y=x2-2ax+a2-2a-4(a为常数)的图象与x轴有交点,且当x>3时,y 随x的增大而增大,则a的取值范围是()A. a≥-2B. a<3C. -2≤a<3D. -2≤a≤318.(2020滨州)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<-1时,y随x的增大而增大,其中结论正确的个数为()A. 3B. 4C. 5D. 6第18题图19.(2020遵义)抛物线y=ax2+bx+c的对称轴是直线x=-2,抛物线与x轴的一个交点在点(-4,0)和点(-3,0)之间,其部分图象如图所示,下列结论中正确的个数有:()①4a-b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b>4ac.A.1个B.2个C.3个D. 4个第19题图20.(2020宜宾)函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(-1,n),其中n>0.以下结论正确的是()①abc>0;②函数y=ax2+bx+c(a≠0)在x=1和x=-2处的函数值相等;③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;④函数y=ax2+bx+c(a≠0)在-3≤x≤3内既有最大值又有最小值.A. ①③B. ①②③C. ①④D. ②③④21. (2020南充)如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是()A. 19≤a≤3 B.19≤a≤1 C.13≤a≤3 D.13≤a≤ 1第21题图能力提升22. (2020河北)如图,现要在抛物线y=x(4-x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A. 乙错,丙对B. 甲和乙都错C. 乙对,丙错D. 甲错,丙对第22题图23.(2020北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t.若对于x1+x2>3,都有y1<y2,求t的取值范围.参考答案1. C 【解析】∵抛物线y =-2x 2+1的顶点坐标为(0,1),∴对称轴是直线x =0,即y 轴.2. B 【解析】该二次函数的最大值为2,对称轴为直线x =-1,∵-1<0,∴在对称轴左侧,y 随x 的增大而增大,在对称轴右侧,y 随x 的增大而减小,|1-(-1)|=2,|-2-(-1)|=1,2>1,∴y 2>y 1,∴2>y 2>y 1.3. D 【解析】∵y =x 2+2x -8=(x +1)2-9,∴对称轴为x =-1,在y 轴的左侧,故选项A 错误;∵当x =0时,y =-8,∴图象与y 轴的交点坐标为(0,-8),故选项B 错误;∵当y =0时,(x +1)2-9=0,解得x =2或-4,∴图象与x 轴的交点坐标为(2,0)和(-4,0),故选项C 错误;∵y =x 2+2x -8=(x +1)2-9,a =1>0,∴图象开口向上,当x =-1时,y 有最小值,最小值为-9,故选项D 正确.4. B 【解析】∵二次函数y =ax 2-4x +c 的图象开口向下,交y 轴于正半轴,∴a <0,c >0,∵-b 2a=--42a =2a<0,∴抛物线的顶点位于第二象限. 5. A 【解析】抛物线开口向上,对称轴是x =-1,则当x =-1时,y =1-2-3=-4,是最小值;当x =-3时,y =9-6-3=0是最大值.6. A 【解析】抛物线y =2(x -1)2经过(m ,n )和(m +3,n )两点,可知函数的对称轴x =m +m +32=1,∴m =-12.将点(-12,n )代入函数解析式,可得n =2(-12-1)2=92. 7. B 【解析】∵y =-3x 2-12x +m =-3(x +2)2+12+m ,∴对称轴为x =-2,∴点(-2,y 2)为抛物线的顶点,(-3,y 1)关于对称轴的对称点为(-1,y 1),∵a =-3<0,∴抛物线的顶点为最高点,即y 2最大.在对称轴的右侧y 随x 的增大而减小,∵-1<1,∴y 1>y 3,∴y 3<y 1<y 2.8. C 【解析】A.由一次函数图象可知,a >0,b >0,由二次函数图象可知,a >0,b <0,不符合题意;B.由一次函数图象可知,a >0,b <0,由二次函数图象可知,a <0,b <0,不符合题意;C.由一次函数图象可知,a >0,b <0,由二次函数图象可知,a >0,b <0,符合题意;D.由一次函数图象可知,a <0,b =0,由二次函数图象可知,a >0,b <0,不符合题意.9. C 【解析】∵抛物线开口向下,∴a <0,∵抛物线交于y 轴的正半轴,则c >0,∴ac <0,故①正确;∵抛物线与x 轴有两个交点,∴b 2-4ac >0,故②正确;∵抛物线的对称轴为直线x =1,则-b 2a=1,即2a =-b ,∴2a +b =0,故③错误;∵抛物线经过点(3,0),且对称轴为直线x =1,∴抛物线经过点(-1,0),则a -b +c =0,故④正确,∴正确的结论有①②④,共3个.10. C 【解析】∵二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴有两个交点,∴方程ax 2+bx +c =0有两个不相等的实数根,∴b 2-4ac >0,即b 2>4ac ,∴选项A 正确;∵二次函数y =ax 2+bx +c (a ≠0)的图象的开口向上,∴a >0,∵二次函数y =ax 2+bx +c (a ≠0)的图象的对称轴为直线x =-1,∴-b 2a=-1,∴b >0,∵二次函数y =ax 2+bx +c (a ≠0)的图象与y 轴交于正半轴,∴c >0,∴abc >0,∴选项B 正确;∵二次函数y =ax 2+bx +c (a ≠0)的图象的开口向上,对称轴为直线x =-1,∴二次函数y =ax 2+bx +c (a ≠0)当x =-1时有最小值a -b +c ,∴am 2+bm +c ≥a -b +c (m 为任意实数),∴am 2+bm ≥a -b (m 为任意实数),∴选项D 正确.综上所述,选项A ,B ,D 均正确,故选C.11. (1,8)12. y =(x +2)2-513. -3<x <1 【解析】根据抛物线对称性质可得,抛物线交x 轴另一点坐标为(1,0),故根据图象判断可知,当y <0时,x 的取值范围为-3<x <1.14. m >-4 【解析】b 2-4ac =(-4)2+4×m >0,解得m >-4.15. x =2或4 【解析】∵二次函数y =x 2+bx -5的对称轴是x =2,∴-b 2=2,即b =-4.∴关于x 的方程x 2+bx -5=2x -13为x 2 -4x -5=2x -13,解得x 1=2,x 2=4.16. 解:(1)把(1,-2),(-2,13)代入y =ax 2+bx +1,得⎩⎪⎨⎪⎧-2=a +b +1,13=4a -2b +1,解得⎩⎪⎨⎪⎧a =1,b =-4; (2)由(1)得函数表达式为y =x 2-4x +1,把x =5代入y =x 2-4x +1,得y 1=6,∴y 2=12-y 1=6,∵y 1=y 2,对称轴为直线x =2,∴m +52=2,解得m =-1. 17. D 【解析】令y =0,即x 2-2ax +a 2-2a -4=0,∴b 2-4ac =(-2a )2-4(a 2-2a -4)=4a 2-4a 2+8a +16=8a +16≥0.∴a ≥-2,∵对称轴x =--2a 2=a ,抛物线开口向上,且当x >3时,y 随x 的增大而增大,∴a ≤3,∴a 的取值范围的是-2≤a ≤3.18. A 【解析】19. C 【解析】由对称轴x =-b 2a=-2,得b =4a ,∴4a -b =0,∴①正确;由函数图象可知,当x =-1时,y =a -b +c >0,即a -4a +c >0,∴c >3a ,∴②错误;由函数图象可知抛物线与直线y =2有两个交点,∴ax 2+bx +c =2有两个不相等的实数根,∴③正确;由函数图象可知抛物线顶点的纵坐标为3,即4ac -b 24a =3,∴4ac -b 2b=3,∴b 2+3b =4ac .∵a <0,∴b =4a <0,∴3b <2b ,∴b 2+3b <b 2+2b ,∴b 2+2b >4ac ,∴④正确.20. C 【解析】∵图象与x 轴交于点(2,0),顶点坐标为(-1,n ),且n >0,∴图象开口向下,抛物线与y 轴的交点在y 轴正半轴上,且对称轴为x =-1,∴a <0, -b 2a=-1,c >0,∴b <0,∴①正确;∵抛物线的对称轴是x =-1, 1-(-1)=2,-1-(-2)=1,∴两个自变量不是关于x =-1对称,∴函数值不相等,故②错误;y =kx +1经过(0,1)点,无法确定与抛物线的交点个数,故③错误;∵抛物线的开口向下,对称轴为x =-1,∴在-3≤x ≤3的范围内,当x =-1时取得最大值,当x =3时取得最小值,故④正确.故正确结论为①④.21. A 【解析】根据题图可得,抛物线y =ax 2的图象经过点(1,3)时,a 取得最大值,此时a =3;抛物线y =ax 2的图象经过点(3,1)时,a 取得最小值,此时9a =1,解得a =19.∴实数a 的取值范围为19≤a ≤3. 22. C 【解析】∵y =x (4-x )=-x 2+4x =-(x -2)2+4,∴抛物线的顶点坐标为(2,4).∴当b =5时,点P 的个数为0;当b =4时,点P 是抛物线的顶点,即点P 的个数为1;当b =3时,点P 的个数为2.故丙判断错误,甲和乙判断正确.23. 解:(1)若抛物线的对称轴为x =1,则b =-2a ,故抛物线解析式为y =ax 2-2ax +c ,令y =c ,则ax 2-2x +c =c ,即x (ax -2)=0,∵a >0,x 1<x 2,∴x 1=0,x 2=2;(2)∵a >0且y 1<y 2,∴x 2到对称轴x =t 的距离大于x 1到对称轴x =t 的距离.∴|x 2-t |>|x 1-t |.①当x 1,x 2在对称轴左侧,不成立;②当x 1,x 2在对称轴右侧,则必有y 1<y 2成立;③当x 1,x 2在对称轴异侧时,x 2-t >t -x 1,∴x 1+x 2>2t ,∵x 1+x 2>3,∴2t ≤3,∴t ≤32.。

中考数学一轮复习 专题01 有理数(基础训练)(原卷版)

中考数学一轮复习 专题01 有理数(基础训练)(原卷版)

专题01 有理数【基础训练】一、单选题1.(2021·西宁市教育科学研究院中考真题)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-2.(2021·山东滨州市·中考真题)在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .-6B .-4C .2D .4 3.(2021·广西百色市·中考真题)﹣2022的相反数是( )A .﹣2022B .2022C .±2022D .2021 4.(2021·广西桂林市·中考真题)有理数3,1,﹣2,4中,小于0的数是( ) A .3 B .1 C .﹣2 D .4 5.(2021·湖北荆门市·中考真题)2021的相反数的倒数是( ).A .2021-B .2021C .12021-D .12021 6.(2021·内蒙古呼和浩特市·中考真题)几种气体的液化温度(标准大气压)如表:A .氦气B .氮气C .氢气D .氧气 7.(2021·湖北襄阳市·中考真题)下列各数中最大的是( )A .3-B .2-C .0D .18.(2021·山东济宁市·中考真题)若盈余2万元记作2+万元,则2-万元表示( ) A .盈余2万元 B .亏损2万元 C .亏损2-万元 D .不盈余也不亏损 9.(2021·广东深圳市·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1 10.(2021·湖北鄂州市·中考真题)实数6的相反数等于( )A .6-B .6C .6±D .1611.(2021·湖北恩施土家族苗族自治州·中考真题)-6的相反数是( )A .-6B .6C .6±D .1612.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-,115 5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .4513.(2021·广东广州市·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-14.(2021·广东广州市·中考真题)下列运算正确的是( )A .()22--=-B .3=C .()22346a b a b =D .(a -2)2=a 2-415.(2021·贵州安顺市·中考真题)如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --16.(2021·内蒙古中考真题)下列运算结果中,绝对值最大的是( )A .1(4)+-B .4(1)-C .1(5)-- D17.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-18.(2021·河北中考真题)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是( )A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<19.(2021·湖南邵阳市·中考真题)如图,若数轴上两点M ,N 所对应的实数分别为m ,n ,则m n +的值可能是( )A .2B .1C .1-D .2-20.(2021·河北中考真题)能与3645⎛⎫-- ⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 21.(2021·四川达州市·中考真题)﹣23的相反数是( ) A .﹣32 B .﹣23 C .23 D .3222.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .223.(2021·安徽中考真题)9-的绝对值是( )A .9B .9-C .19D .19- 24.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-25.(2021·山东枣庄市·中考真题)如图,数轴上有三个点A﹣B﹣C ,若点A﹣B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4二、填空题 26.(2021·辽宁盘锦市·2________27.(2021·江苏常州市·中考真题)数轴上的点A 、B 分别表示3-、2,则点__________离原点的距离较近(填“A ”或“B ”).28.(2021·湖北随州市·()012021π+-=______.29.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 30.(2021·甘肃兰州市·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .三、解答题31.(2021·广西桂林市·中考真题)计算:|﹣3|+(﹣2)2.32.(2021·河北中考真题)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.33.(2021·西宁市教育科学研究院中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 34.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:﹣以上解题过程中,第二步是依据______________(运算律)进行变形的;﹣第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.35.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.。

初中数学中考基础训练天天练(共20套含答案)15

初中数学中考基础训练天天练(共20套含答案)15

初中数学中考基础训练(15)时间:30分钟你实际使用分钟班级姓名学号成绩一、精心选一选1.下列运算正确的是()A.()11a a--=--B.()23624a a-=C.()222a b a b-=-D.3252a a a+=2.如图,由几个小正方体组成的立体图形的左视图是()3.下列事件中确定事件是()A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上4.如图,AB CD∥,下列结论中正确的是()A.B.C.D.A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为()A.112k-<<-B.102k <<C.01k <<D.112k <<6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形C.既是轴对称图形又是中心对称图形D.没有对称性7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为()A.a b c >> B.c b a >>C.b c a >>D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x =B.()211851580x -= C.()211851580x -=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条B.2条 C.3条D.4条第9题10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为()A.1小时B.0.9小时C.0.5小时D.1.5小时11.如图,I是ABC△的内切圆,D,E,F为三个切点,若52DEF∠,则A∠的度数为()A.76B.68C.52D.3812.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入12345输出122531041752620151050 0.5 1.0 1.5 2.0 时间(小人数(人)第10题第11题图当输入数据是8时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式.15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为. 16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面m .(精确到0.01m )甲乙第14题第17题三、用心用一用18.用配方法解方程:2210x x --=.答案: 一、选择题13.1m + 14.()()22a b a b a b -=+- 15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=.移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-.11x ∴=,212x =-。

考点13 平面直角坐标系—备战2021年《中考数学》(全国通用)夯实基础训练题(解析版)

考点13 平面直角坐标系—备战2021年《中考数学》(全国通用)夯实基础训练题(解析版)

考点13 平面直角坐标系真题回顾1.(2019·广东)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【考点】点的坐标【解析】【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.故选C.【分析】根据各象限内点的坐标特征解答即可.2.(2019·湘西)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是()A. (0,5)B. (5,1)C. (2,4)D. (4,2)【答案】B【考点】点的坐标,平面直角坐标系的构成,点的坐标与象限的关系【解析】【解答】将点(2,1)向右平移3个单位长度,则所得的点的坐标是(5,1).故答案为:B.【分析】将点向右移动,变化的为横坐标,根据点平移的左加右减方法,即可得到新的点的坐标。

3.(2019·梧州)在平面直角坐标系中,下面的点在第一象限的是()A. (1,2)B. (﹣2,3)C. (0,0)D. (﹣3,﹣2)【答案】A【考点】点的坐标【解析】【解答】解:因为第一象限的条件是:横坐标是正数,纵坐标也是正数,而各选项中符合纵坐标为正,横坐标也正的只有A(1,2).故选:A.【分析】满足点在第一象限的条件是:横坐标是正数,纵坐标也是正数,结合选项进行判断即可.4.(2019·金华)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南偏东75°方向5km处【答案】 D【考点】用坐标表示地理位置【解析】【解答】解:依题可得:90°÷6=15°,∴ 15°×5=75°,∴目标A的位置为:南偏东75°方向5km处.故答案为:D.【分析】根据题意求出角的度数,再由图中数据和方位角的概念即可得出答案.5.(2017·邵阳)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A. Q′(2,3),R′(4,1)B. Q′(2,3),R′(2,1)C. Q′(2,2),R′(4,1)D. Q′(3,3),R′(3,1)【答案】A【考点】用坐标表示地理位置【解析】【解答】解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),故选:A.【分析】由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,据此可得.6.(2017·桂林)若点P(a,a﹣2)在第四象限,则a的取值范围是()A. ﹣2<a<0B. 0<a<2C. a>2D. a<0【答案】B【考点】点的坐标【解析】【解答】解:∵点P(a,a﹣2)在第四象限,∴a>0,a﹣2<0,0<a<2.故选B.【分析】根据第四象限点的坐标符号,得出a>0,a﹣2<0,即可得出0<a<2,选出答案即可.7.(2019·桂林)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【考点】点的坐标【解析】【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.8.(2017·贵港)在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【考点】点的坐标【解析】【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.【分析】分点P的横坐标是正数和负数两种情况讨论求解.9.(2020·钦州)在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A. (7,6)B. (7,﹣6)C. (﹣7,6)D. (﹣7,﹣6)【答案】C【考点】点的坐标【解析】【解答】解:∵f(﹣6,7)=(7,﹣6),∴ g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.【分析】由题意应先进行f方式的变换,再进行g方式的变换,注意运算顺序及坐标的符号变化.10. (2020·扬州)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C 为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A. (0,0)B. (0,2)C. (2,﹣4)D. (﹣4,2)【答案】A【考点】点的坐标【解析】【解答】设P1(x,y),∵点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,∴=1,=﹣1,解得x=2,y=﹣4,∴P1(2,﹣4).同理可得,P1(2,﹣4),P2(﹣4,2),P3(4,0),P4(﹣2,﹣2),P5(0,0),P6(0,2),P7(2,﹣4),…,…,∴每6个数循环一次.∵=335…5,∴点P2015的坐标是(0,0).故选A.【分析】设P1(x,y),再根据中点的坐标特点求出x、y的值,找出规律即可得出结论.11.(2020·成都)如图:观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是: ________【答案】(4,7)【考点】用坐标表示地理位置【解析】【解答】如图所示,B点位置的数对是(4,7).故答案为:(4,7).【分析】根据图示,写出点B的位置的数对即可.12.(2020·连云港)如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为、,则顶点的坐标为________.【答案】(15,3)【考点】坐标与图形性质【解析】【解答】解:设正方形的边长为,则由题设条件可知:解得:点A的横坐标为:,点A的纵坐标为:故点A的坐标为.故答案为:.【分析】先根据条件,算出每个正方形的边长,再根据坐标的变换计算出点A的坐标即可.13.(2019·成都)如图,在平面直角坐标系中,我们把横、纵坐标都是整数的点称为“整点”.已知点的坐标为,点在轴的上方,的面积为,则内部(不含边界)的整点的个数为________.【答案】4或5或6【考点】平面直角坐标系的构成【解析】【解答】设B(m,n)∵点A的坐标为(5,0)∴OA=5,∵△OAB的面积= ×5×n=∴n=3,结合图像可知:当2<m<3时,有6个整点;当2<m<时,有5个整数点;当m=3时,有4个整数点,故答案为4或5或6.【分析】根据三角形在直角坐标系的位置关系可写出整点的个数。

2013年中考数学复习基础训练1

2013年中考数学复习基础训练1

2013年数学中考备考资料之基础训练(一)第1章 有理数与实数班级: 学号: 姓名: 评价:一、选择题(本大题共10小题,每小题3分,共30分)1、下列各数是正整数的是A .-1B .2C .0.5D . 22、据某市统计局公布的第六次人口普查数据,某市常住人口760.57万人,其中760.57万人用科学记数法表示为A . 7.6057×105人B 、7.6057×106人C 、7.6057×107人D 、0.76057×107人3、-3的绝对值是( )A .3B .-3C .- 13D .134、一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ) (A )2011(B )2011(C )2012(D )20135、若a < c < 0 < b ,则abc 与0的大小关系是( ). A .abc < 0B .abc = 0C .abc > 0D .无法确定6、下列各数中,比0小的数是( )A .-1B .1C .2D .π7、如果60m 表示“向北走60m ”,那么“向南走40m ”可以表示为A. -20mB. -40mC. 20mD. 40m8、如果用+0.02克表示一只乒乓球质量超出标准质量0.02 克,那么一只乒乓球质量低于标准质量0.02克记作( ) .A . +0.02克 B.-0.02克 C. 0 克 D .+0.04克 9、某种细胞的直径是5×10﹣4毫米,这个数是( )A.0.05毫米B.0.005毫米C.0.0005毫米D.0.00005毫米(第4题)… …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫10、-4的倒数的相反数是( )A .-4B .4C .-41 D .41二、填空题(本大题共6小题,每小题4分,共24分)11、根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为E =10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 . 12、按下面程序计算:输入x =3,则输出的答案是__ _ .13、如图,是一个数值转换机.若输入数为3,则输出数是______.14、定义新运算:对任意实数a 、b ,都有ab=a 2-b,例如,32=32-2=7,那么21=_____________.15、已知23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”)16、对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算3★-1=三、解答题一(本大题共3小题,每小题5分,共15分) 17、计算:|-1|-128-(5-π)0+4cos45°.18、计算:0021)452+- 19、计算:()317223-÷-⨯四、解答题二(本大题共3小题,每小题8分,共24分) 20、计算:23860tan 211231-+-+︒-⎪⎭⎫ ⎝⎛---( )2-1输出数减去521、计算:()11-3cos 301.2π-︒⎛⎫+-+- ⎪⎝⎭22、计算:|-3|+(-1)2011×(π-3)0-327+(12)-2五、解答题三(本大题共3分,每小题9分,共27分) 23、设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S nn +++设...S =+S (用含n 的代数式表示,其中n 为正整数).24、观察下面的变形规律:211⨯ =1-12;321⨯=12-31;431⨯=31-41;……解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论;(3)求和:211⨯+321⨯+431⨯+…+201020091⨯ .25、同学们,我们曾经研究过n ×n 的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n 2.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n —1)×n=13n(n+1)(n—1)时,我们可以这样做: (1)观察并猜想:12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2) 12+22+32=(1+0)×1+(1+1)×2+(1+2)×3=1+0×1+2+1×2+3+2×3 =(1+2+3)+(0×1+1×2+2×3)12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+=1+0×1+2+1×2+3+2×3+ =(1+2+3+4)+( ) ……(2)归纳结论:12+22+32+…+n 2=(1+0)×1+(1+1)×2+(1+2)×3+…+n=1+0×1+2+1×2+3+2×3+…+n+(n 一1)×n =( ) += + =16×(3)实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是 .。

2012中考数学基础训练及答案

2012中考数学基础训练及答案

2012中考数学基础训练及答案时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.下列式子中与2()a -计算结果相同的是( ) A .21()a -B .24a a -C .24aa -÷ D .42()a a --2.下列图形中,能肯定12>∠∠的是( )3.已知0a <,那么|2|a 可化简为( ) A .a -B .aC .3a -D .3a4.等腰三角形的底和腰是方程2680x x -+=的两根,则这个三角形的周长为( ) A .8 B .10 C .8或10 D .不能确定5.某车间6月上旬生产零件的次品数如下(单位:个): 0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的( ) A .众数是4 B .中位数是1.5 C .平均数是2 D .方差是1.25 6.如图,矩形ABCD 中,BE AC ⊥于F , E 恰是CD 的中点,下列式子成立的是( )A .2212BF AF = B .2213BF AF =C .2212BF AF >D .2213BF AF <7.二次函数2y ax bx c =++中,2b ac =,且0x =时4y =-,则( )A .4y =-最大B .4y =-最小C .3y =-最大D .3y =-最小8.如图,在高为2m ,坡角为30的楼梯上铺地毯, 地毯的长度至少应计划( )A .4mB .6m C. D.(2+二、细心填一填9.若不等式30x n -+>的解集是2x <,则不等式30x n -+<的解集是 .12 12 2 1A .B .C .D .(第8题)ABC EF D(第6题)10.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是 .11.如图,O 的半径为3,6OA =,AB 切O 于B ,弦BC OA ∥,连结AC ,图中阴影部分的面积为 .12.老师给出一个函数,甲、乙各指出了这个函数的一个性质: 甲:第一、三象限有它的图象;乙:在每个象限内,y 随x 的增大而减小. 请你写一个满足上述性质的函数 .三、开心用一用13.计算:265222x x x x -⎛⎫÷-- ⎪--⎝⎭.14.有规律排列的一列数:2,4,6,8,10,12,… 它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?15.已知:如图,OA 平分BAC ∠,12=∠∠. 求证:ABC △是等腰三角形.16.王老师家在商场与学校之间,离学校1千米,离商场2千米.一天王老师骑车到商场买奖品后再到学校,结果比平常步行直接到校迟20分.已知骑车速度为步行速度的2.5倍,买奖品时间为10分.求骑车的速度.(第10题)(第11题)A B C答案:一、1.D 2.C 3.C 4.B 5.D 6.A 7.C 8.D 二、9.2x > 10.国 11.3π212.(略,0k >的反比例函数即可) 三、13.解:原式265(2)22x x x x -⎡⎤=÷-+⎢⎥--⎣⎦2(3)5(2)(2)222x x x x x x -+-⎡⎤=÷-⎢⎥---⎣⎦22(3)5(4)22x x x x ---=÷--22(3)922x x x x --=÷-- 2(3)22(3)(3)x x x x x --=-+- 122(3)(3)(3)3x x x x =-=--+-+ .14.解:(1)它的每一项可用式子1(1)n n +-(n 是正整数)来表示.(2)它的第100个数是100-.)(3)2006不是这列数中的数,因为这列数中的偶数全是负数.(或正数全是奇数.) 注:它的每一项也可表示为(1)nn --(n 是正整数).表示如下照样给分: 当n 为奇数时,表示为n .当n 为偶数时,表示为n -. 四、15.证明:作OE AB ⊥于E ,OF AC ⊥于F . 又34=∠∠,(注:与OA 平分BAC ∠等同,直用) OE OF ∴=. 12= ∠∠, OB OC ∴=.Rt Rt ()OBE OCF HL ∴△≌△. 56∴=∠∠.1526∴+=+∠∠∠∠, 即ABC ACB =∠∠.AB AC ∴=.(注:此步可不写.) ABC ∴△是等腰三角形.16.解:设步行的速度为x 千米/时,则骑车速度为2.5x 千米/时.C这天王老师骑车到校的行程为5km ,比平常步行多用时间10分.由题意,得51012.560x x -=. 即2116x x -=. 116x ∴=. 6x ∴=.经检验6x =是原方程的根.) 当6x =时,2.515x =.答:骑车的速度为15千米/时.。

2019-2020学年九年级数学中考练习:二次函数选择题基础训练(含解析)

2019-2020学年九年级数学中考练习:二次函数选择题基础训练(含解析)

2019-2020中考数学二次函数基础选择题课时练班级:姓名:评价:1.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的2.已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.3.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)4.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣255.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度6.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+37.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.18.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确9.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.2410.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A.B.C.D.12.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.413.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤14.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.515.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=016.四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁答案提示1.【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x >时,y随x值的增大而减小,选的D不正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而减小,选的D不正确.故选:C.2.【分析】根据一次函数图象经过的象限,即可,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.故选:A.得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>03.【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.4.【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.5.【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【解答】解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象.故选:D.6.【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.7.【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.8.【分析】两函数组成一个方程组,得出一个方程,求出方程中的△=﹣4+4c=0,求出即可.【解答】解:把y=x+2代入y=﹣x(x﹣3)+c得:x+2=﹣x(x﹣3)+c,即x2﹣2x+2﹣c=0,所以△=(﹣2)2﹣4×1×(2﹣c)=﹣4+4c=0,解得:c=1,所以甲的结果正确;故选:A.9.【分析】判断出A、C两点坐标,利用待定系数法求出a、b即可;【解答】解:如图,由题意A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.10.【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣1,满足条件,可得a ≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,∴a≥,∵直线MN的解析式为y=﹣x+,由,消去y得到,3ax2﹣2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a<,故选:A.11.【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴在直线x=1的右侧得到b<0,b<﹣2a,即b+2a<0,利用抛物线与y轴交点在x轴下方得到c<0,也可判断abc>0,利用抛物线与x轴有2个交点可判断b2﹣4ac>0,利用x=1可判断a+b+c<0,利用上述结论可对各选项进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在直线x=1的右侧,∴x=﹣>1,∴b<0,b<﹣2a,即b+2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,∵x=1时,y<0,∴a+b+c<0.故选:C.12.【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.13.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.14.【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.15.【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B 进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.16.【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).【解答】解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.。

中考数学专题练习:全等三角形(含答案)

中考数学专题练习:全等三角形(含答案)

中考数学专题练习:全等三角形(含答案)1.(·成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC2.(·黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙3.(·南京)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF =c,则AD的长为( )A.a+c B.b+c C.a-b+c D.a+b-c4.(·原创) 如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,当BC∥OA时,下列结论正确的是( )A.∠OAD=2∠ABOB.∠OAD=∠ABOC.∠OAD+2∠ABO=180°D.∠OAD+∠ABO=90°5.(·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E.AD=3,BE=1,则DE的长是( )A.32B.2 C.2 2 D.106.(·济宁)在△ABC中,点E、F分别是边AB、AC的中点,点D在BC边上,连接DE、DF、EF,请你添加一个条件____________________________,使△BED与△FED全等.7.(·原创)如图,已知△ABC≌△ADE,若AB=6,C为AD的中点,则AC的长为______.8.(·包河区二模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足分别为D,E,若BD=3,CE=2,则DE=______.9.(·宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.10.(·菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.11.(·泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.12.(·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=CD,求证:AG=DH.13.(·镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.14.(·温州) 如图,在四边形 ABCD 中,E 是 AB 的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当 AB=6 时,求 CD 的长.15.(·恩施)如图,点 B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交 BE于点O.求证:AD与BE互相平分.16.(·广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.1.(·阜阳模拟)如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是( )A.PD=DQB.DE=12 ACC.AE=12CQD.PQ⊥AB2.(·原创)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A.76° B.62°C.42° D.76°、62°或42°都可以3.(·原创)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )A.75° B.70° C.65° D.60°4.(·德阳)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连接AH,已知ED=2,求AH的值.5.(·合肥45中一模) 如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证:DG=BE;(2)连接FC,求∠FCN的度数;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=m,BC=n(m、n为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由点B向点C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含m、n的代数式表示tan∠FCN的值,若∠FCN的大小发生改变,请画图说明.参考答案【基础训练】1.C 2.B 3.D 4.A 5.B 6.BD =EF(答案不唯一) 7.3 8.5 9.证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠ACB=∠ACD.在△CDA 和△CBA 中,⎩⎨⎧∠B=∠D,∠ACB=∠ACD,AC =AC ,∴△CDA≌△CBA(AAS).∴CB=CD.10.解:DF =AE.证明:∵AB∥CD ,∴∠C=∠B. ∵CE=BF,∴CE-EF =BF -FE,∴CF=BE. 又∵CD=AB,∴△DCF≌△ABE(SAS), ∴DF=AE.11.证明:方法一:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴∠OBC=∠OCB ,∴BO=CO.方法二:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴AB=DC,又∵∠AOB=∠DOC , ∴△ABO≌△DCO(AAS ),∴BO =CO. 12.证明:∵AB∥CD ,∴∠A=∠D.又∵CE∥BF ,∴∠AHB=∠DGC.在△ABH 和△DCG 中,⎩⎨⎧∠A=∠D∠AHB=∠DGC AB =CD,∴△ABH≌△DCG(AAS), ∴AH=DG.又∵AH=AG +GH,DG =DH +GH,∴AG=DH. 13.(1)证明:∵AB=AC,∴∠B=∠ACF.在△ABE 和△ACF 中,⎩⎨⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)解:75.14.(1)证明:由AD∥EC 可知∠A =∠CEB, 又因为E 是 AB 的中点,所以AE =EB, 且∠AED=∠B ,所以△AED≌△EBC(ASA). (2)解:由(1)△AED≌△EBC 可知AD =EC, 又因为AD∥EC ,所以四边形AECD 为平行四边形, 又因为AB =6,则CD =AE =3. 15.证明:如解图,连接 BD ,AE . ∵AB∥ED ,∴∠ABC=∠DEF. ∵AC∥FD ,∴∠ACB=∠DFE. ∵ FB=CE, ∴BC=EF. 在△ACB 和 △DFE 中,⎩⎨⎧∠ABC=∠DEF,BC =EF ,∠ACB=∠DFE.∴△ACB ≌ △DFE(ASA). ∴ AB=DE.∵AB∥ED ,∴四边形ABDE 是平行四边形.∴AD 与BE 互相平分.16.证明:(1)∵四边形ABCD 是矩形, ∴AD=BC, AB =DC.∵△AEC 是由△ABC 折叠而成的, ∴AD=BC =EC,AB =DC = AE.在△ADE 和△CED 中,⎩⎨⎧AD =CEDE =ED AE =CD,∴△ADE≌△CED(SSS);(2)由(1)△ADE≌△CED 可得∠AED=∠CDE , ∴FD=EF,∴△DEF 是等腰三角形. 【拔高训练】 1.D 2.B 3.C 4.(1)证明:∵EF⊥EC ,∴∠CEF=90°, ∴∠AEF+∠DEC=90°, ∵四边形ABCD 是矩形,∴∠AEF+∠AFE=90°, ∠DEC+∠DCE=90°, ∴∠AEF=∠DCE ,∠AFE=∠DEC , ∵AE=DC,∴△AEF≌△DCE(AAS), ∴DE=AF,∵AE=DC =AB =2DE,∴AB=2AF, ∴F 为AB 的中点.(2)解:由(1)知AF =FB,且AE∥BH , ∴∠FBH=∠FAE=90°, ∠AEF=∠FHB , ∴△AEF≌△BHF(AAS),∴AE=HB, ∵DE=2, 且AE =2DE, ∴AE=4,∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32,∴AH=4 2.5.(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS).∴DG=BE;(2)解:如解图1,过点F作FH⊥BN于点H.∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°, ∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△AEB(AA S),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∴∠FCN=∠CFH=12(180°-∠FHC).∵∠FHC=90°, ∴∠FCN=45°.(3)解:当点E由点B向点C运动时,∠FCN的大小总保持不变,理由如下:如解图2,过点F 作FH⊥BN于点H,由已知可得∠EAG=∠BAD=∠AEF=90°, 结合(1)(2)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△AGD(AAS),△EFH∽△AEB,∴EH=AD=BC=n, ∴CH=BE,∴EHAB=FHBE=FHCH;在Rt△FCH中,tan∠FCN=FHCH=EHAB=nm.∴当点E由点B向点C运动时,∠FCN的大小总保持不变,且tan∠FCN=n m .。

中考数学专题练习:尺规作图(含答案)

中考数学专题练习:尺规作图(含答案)

中考数学专题练习:尺规作图(含答案)1.(·随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧2.(·河北) 尺规作图要求,Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.做线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线.Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ3.(·潍坊) 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是( ) A. ∠CBD=30°B. S △BDC =34AB 2 C. 点C 是△ABD 的外心 D. sin 2A +cos 2D =14. (·湖州) 尺规作图特有魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A 、B 、C 、D 、E 、F 六个分点; ②分别以A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG.问:OG 的长是多少?大臣给出的正确答案应是( ) 3rB. (1+22)r C. (1+32)rD. 2r5. (·河南) 如图,已知▱AOBC 的顶点O(0,0),A(-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G.则点G 的坐标为( )A.(5-1,2) B. (5,2)C.(3-5,-2) D. (5-2,2)6.(·南通) 如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图.步骤1:分别以点C和点D为圆心,大于12CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为( )A. 53B.32C. 2D.437.(·南京) 如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10 cm,则DE=________cm.8.(·山西) 如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NA B内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为______.9.(·创新) 下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是__________________________________________________________________________________________________________.10.(·广东) 如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.11.(·福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A).以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得:△A′B′C′∽△ABC.不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.12.(·北京) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ∥l.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.∴直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(____________________________________)(填推理的依据).13.(·绥化) 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是斜边AB、直角边BC上的点,把△ABC沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE (不写作法和证明,保留作图痕迹).(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.参考答案【基础训练】1.D 2.D 3.D 4.D 5.A 6.D7.5 8.2 39.直径所对的圆周角是直角,等边三角形的每个内角为60°,直角三角形两锐角互余等10.解:(1)如解图所示;(2)∵菱形ABCD,∠CBD=75°,∴CD=CB,∠CBD=∠CDB=75°,∴∠C=180°-∠CBD-∠CDB=180°-75°-75°=30°,∴∠A=∠C=30°,∵EF是AB的垂直平分线,∴∠A=∠FBA=30°,∵∠ABD=∠CBD=75°,∴∠DBF=∠ABD-∠FBA=75°-30°=45°.11.解:①如解图,△A′B′C′即为所求作的三角形.②已知:△A′B′C′∽△ABC,CD和C′E分别为AB和A′B′边上的中线,求证:CDC′E=BCB′C′.证明:∵C D和C′E分别为AB和A′B′边上的中线,∴BD=12AB,B′E=12A′B′,∴BDAB=B′EA′B′=12,∴BDB′E=ABA′B′,∵△A′B′C′∽△ABC,∴∠CBA=∠C′B′A′,BCB′C′=ABA′B′,∴BDB′E=BCB′C′,∴△B′C′E∽△BCD,∴CDC′E=BCB′C′.12.解:(1)尺规作图如解图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.13.解:(1)如解图1,DE为所求作的直线.(2)如解图2,连接BP,∵四边形PEBD是菱形,∴PE=BE,设CE=x,则BE=PE=4-x,∵PE∥AB,∴△PCE∽△ACB,∴CECB=PEAB,∴x4=4-x5,∴x=169,∴CE=169,∴BE=PE=209,在Rt△PCE中,∵PE=209,CE=169,∴PC=43在Rt△PCB中,∵PC=43,BC=4,∴BP=4310,又∵S菱形PEBD =BE·PC=12DE·BP,∴12×4310DE=209×43,∴DE=4910.。

中考数学基础训练试题汇编

中考数学基础训练试题汇编

中考数学基础训练(1)一、选择题1.下列实数中,是无理数的为( )A 、0B 、722C 、3.14D 、22.2011年4月28日,国家统计局发布2010年第六次全国人口普查主要数据公报,数据显示,大陆31个省、自治区、直辖市和现役军人的人口共1339724852人,大陆总人口这个数据用科学记数法表示(保留3个有效数字)为( )A .1.33×109人 B .1.34×109人 C .13.4×108人D.1.34×1010人 .3.下列计算正确的是( )A .246x x x +=B .235x y xy +=C .632x x x ÷=D .326()x x =4.下列因式分解错误的是( ) A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+5.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A.0x =B.3x =C.3x =-D.2x =6.将方程2x 432x 1x 1-=-++去分母并化简后得到的方程是( ) (A )2x 2x 30--= (B )2x 2x 50--= (C )2x 30-= (D )2x 50-= 二、填空题7.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 m ;8. 下列实数227、sin60°、3π)0、3.14159、-2中无理数有 .9.单项式3x 2y 3的系数是 ;次数是 . 10.当x 时,分式x-31有意义.11.有意义,则x 的取值范围是.12.若aa 的取值范围为 . 13.若22=-b a ,则b a 486-+=; 14.已知()0232=-++-y y x ,则y x +的值.15.已知关于x 的一元二次方程x 2--k =0有两个相等的实数根,则k 的值为 。

2025年中考数学总复习前17题基础训练 (23)

2025年中考数学总复习前17题基础训练 (23)
正确,符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
8. (2023·永州)如图,在Rt△ABC中,∠C=90°,以点B为圆心,任意
长为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,
1
大于 MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D,作
2
DE⊥AB,垂足为E.下列结论中,不一定正确的是( C )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
− 2 > 1,
4. (2023·广东)不等式组ቊ
的解集为( D )
<4
A. -1<x<4
B. x<4
C. x<3
D. 3<x<4
解析:解不等式x-2>1,得x>3.又∵ x<4,∴ 不等式组的解集为3<
x<4.
1
2
3
4
5
6
7
8
9
10
11
12





即(m-6)2+ −

.






∴ m2-12m+36+m2-2(12m-36)+
= ,
(0,6),M(m,m)代入,得ቊ
+=,
1
2
3
4
5
6
7
8
9
10
11
12

中考数学训练(6-10)

中考数学训练(6-10)

中考数学基础训练(6)时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.2的倒数是( )A.2- B.12 C.12- D.12.反比例函数()0ky k x=≠的图像经过点()13-,,则k 的值为( )A.3- B.3 C.13 D.13-3.数据24457,,,,的众数是( ) A.2 B.4 C.5 D.74.不等式组1030x x ->⎧⎨-<⎩的解集是( )A.1x > B.3x < C.13x <<D.无解5.下列图形中,不是..轴对称图形的是( )6.随着新农村建设的进一步加快,湖州市农村居民人均纯收入增长迅速.据统计,2005年本市农村居民人均纯收入比上一年增长14.2%.若2004年湖州市农村居民人均纯收入为a 元,则2005年本市农村居民人均纯收入可表示为( ) A.14.2a 元 B.1.42a 元 C.1.142a 元 D.0.142a 元 7.如图,在O 中,AB 是弦,OC AB ⊥,垂足为C ,若16AB =,6OC =,则O 的半径OA 等于( )A.16 B.12 C.10 D.8 8.如图是一个正方体纸盒的展开图,每个面内都标注了字母或数字,则面a 在展开前所对的面的数字是( ) A.2 B.3 C.4 D.5 9.下列各式从左到右的变形正确的是( )A.122122x yx yx yx y --=++B.0.220.22a b a ba b a b ++=++C.11x x x y x y+--=-- D.a b a ba b a b+-=-+ 10.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的A. B. C. D.(第7题)(第8题)概率等于( ) A.1B.12C.13D.2311.已知一次函数y kx b =+(k b ,是常数,0k ≠),x 与y 的部分对应值如下表所示:那么不等式kx b +<的解集是( ) A.0x < B.0x > C.1x <D.1x >12.已知二次函数()2111y x bx b =-+-≤≤,当b 从1-逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( ) A.先往左上方移动,再往左下方移动 B.先往左下方移动,再往左上方移动 C.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动二、细心填一填13.请你写出一个..比0.1小的有理数 . 14.分解因式:322________a a a -+=.15.分式方程121x x =+的解是______x =.16.如图,O 的半径为4cm ,直线l OA ⊥,垂足为O ,则直线l 沿射线OA 方向平移 cm 时与O 相切.17.为了测量校园内水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底()8.4B 米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得 2.4DE =米,观察者目高 1.6CD =米,则树()AB 的高度约为 米.(精确到0.1米)(第10题 图1) (第10题 图2)(第17题)ABC DE(第18题)(第16题) l18.一青蛙在如图88⨯的正方形(每个小正方形的边长为1)网格的格点(小正方形的顶点)上跳跃,青蛙从点A 开始连续跳六次正好跳回到点A ,则所构成的封闭图形的面积的最大值是 .三、开心用一用19.计算:()2122-+-.答案:一、选择题二、填空题13.略(答案不唯一) 14.()21a a - 15.1 16.4 17.5.6 18.12 三、解答题(共60分) 19.(本小题8分)解:原式1312=-+122=.中考数学基础训练(7)二、细心填一填11.不等式组211841x x x x ->+⎧⎨+<-⎩,的解集是 .12.已知x =1x x -的值等于 .13.已知一次函数(0)y kx bk =+≠的图象经过点(01),,且y 随x 的增大而增大,请你写出一个..符合上述条件的函数关系式 .14.如图,P Q ,是ABC △的边BC 上的两点,且BP PQ QC AP AQ ====,则BAC ∠的大小等于(度).15.如图,已知直线CD 与O 相切于点C AB ,为直径,若40BCD = ∠,则ABC ∠的大小等于 (度).16.已知O 中,两弦AB 与CD 相交于点P ,若:2:3A P P B =,2cm 12cm CP DP ==,,则弦AB 的长 为 cm .17.已知关于x 的方程2(2)20x a x a b -++-=的判别式等于0,且12x =是方程的根,则a b +的值为 .三、开心用一用18.已知正比例函数(0)y kx k =≠的图象与反比例函数(0)my m x=≠的图 象都经过点(42)A ,. (I )求这两个函数的解析式;(II )这两个函数的图象还有其他交点吗?若有,请求出交点的坐标; 若没有,请说明理由.答案:一、选择题:1.C 2.D 3.B 4.A 5.C 6.D 7.A 8.C 9.B 10.D 二、填空题:11.3x > 12.4 13.如:21y x =+ 14.12015.5016.10 17.138-三、解答题:PQC(第14题)ADO (第15题)18.解:(I ) 点(42)A ,在正比例函数y kx =的图象上, 有24k =,即12k =. ∴正比例函数的解析式为12y x =. 又 点(42)A ,在反比例函数my x=的图象上, 有24m=,即8m =.∴反比例函数的解析式为8y x=.II )这两个函数的图象还有一个交点.由答案:一、选择题:1.C 2.D 3.B 4.A 5.C 6.D 7.A 8.C 9.B 10.D 二、填空题:11.3x > 12.4 13.如:21y x =+ 14.12015.5016.10 17.138-三、解答题:18.解:(I ) 点(42)A ,在正比例函数y kx =的图象上, 有24k =,即12k =. ∴正比例函数的解析式为12y x =. 又 点(42)A ,在反比例函数my x=的图象上, 有24m=,即8m =.∴反比例函数的解析式为8y x=.II )这两个函数的图象还有一个交点.由128y x y x ⎧=⎪⎪⎨⎪=⎪⎩, 解得1142x y =⎧⎨=⎩,或2242x y =-⎧⎨=-⎩,.中考数学基础训练(8)时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.下列式子中与2()a -计算结果相同的是( ) A .21()a -B .24a a -C .24aa -÷ D .42()a a --2.下列图形中,能肯定12>∠∠的是( )3.已知0a <,那么|2|a 可化简为( ) A .a -B .aC .3a -D .3a4.等腰三角形的底和腰是方程2680x x -+=的两根,则这个三角形的周长为( ) A .8 B .10 C .8或10 D .不能确定5.某车间6月上旬生产零件的次品数如下(单位:个): 0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的( ) A .众数是4 B .中位数是1.5 C .平均数是2 D .方差是1.25 6.如图,矩形ABCD 中,BE AC ⊥于F , E 恰是CD 的中点,下列式子成立的是( )A .2212BF AF = B .2213BF AF =C .2212BF AF >D .2213BF AF <7.二次函数2y ax bx c =++中,2b ac =,且0x =时4y =-,则( )A .4y =-最大B .4y =-最小C .3y =-最大D .3y =-最小8.如图,在高为2m ,坡角为30的楼梯上铺地毯, 地毯的长度至少应计划( )A .4mB .6m C. D.(2+二、细心填一填9.若不等式30x n -+>的解集是2x <,则不等式30x n -+<的解集是 .10.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是 .12 12 2 1A .B .C .D .(第8题)ABC EF D(第6题)11.如图,O 的半径为3,6OA =,AB 切O 于B ,弦BC OA ∥,连结AC ,图中阴影部分的面积为 .12.老师给出一个函数,甲、乙各指出了这个函数的一个性质: 甲:第一、三象限有它的图象;乙:在每个象限内,y 随x 的增大而减小. 请你写一个满足上述性质的函数 .三、开心用一用13.计算:265222x x x x -⎛⎫÷-- ⎪--⎝⎭.14.有规律排列的一列数:2,4,6,8,10,12,… 它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?15.已知:如图,OA 平分BAC ∠,12=∠∠. 求证:ABC △是等腰三角形.16.王老师家在商场与学校之间,离学校1千米,离商场2千米.一天王老师骑车到商场买奖品后再到学校,结果比平常步行直接到校迟20分.已知骑车速度为步行速度的2.5倍,买奖品时间为10分.求骑车的速度.A B答案:一、1.D 2.C 3.C 4.B 5.D 6.A 7.C 8.D 二、9.2x > 10.国 11.3π212.(略,0k >的反比例函数即可) 三、13.解:原式265(2)22x x x x -⎡⎤=÷-+⎢⎥--⎣⎦2(3)5(2)(2)222x x x x x x -+-⎡⎤=÷-⎢⎥---⎣⎦22(3)5(4)22x x x x ---=÷--22(3)922x x x x --=÷-- 2(3)22(3)(3)x x x x x --=-+- 122(3)(3)(3)3x x x x =-=--+-+ .14.解:(1)它的每一项可用式子1(1)n n +-(n 是正整数)来表示.(2)它的第100个数是100-.)(3)2006不是这列数中的数,因为这列数中的偶数全是负数.(或正数全是奇数.) 注:它的每一项也可表示为(1)nn --(n 是正整数).表示如下照样给分: 当n 为奇数时,表示为n .当n 为偶数时,表示为n -. 四、15.证明:作OE AB ⊥于E ,OF AC ⊥于F . 又34=∠∠,(注:与OA 平分BAC ∠等同,直用) OE OF ∴=. 12= ∠∠, OB OC ∴=.Rt Rt ()OBE OCF HL ∴△≌△. 56∴=∠∠.1526∴+=+∠∠∠∠, 即ABC ACB =∠∠.AB AC ∴=.(注:此步可不写.) ABC ∴△是等腰三角形.16.解:设步行的速度为x 千米/时,则骑车速度为2.5x 千米/时.这天王老师骑车到校的行程为5km ,比平常步行多用时间10分.由题意,得51012.560x x -=. 即2116x x -=. 116x ∴=. 6x ∴=.经检验6x =是原方程的根.) 当6x =时,2.515x =.答:骑车的速度为15千米/时.中考数学基础训练(9)时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.4的算术平方根是( ) A.2B.2±D.2.计算23()a a b --的结果是( )A.3a b -- B.3a b - C.3a b +D.3a b -+3.数据1,2,4,2,3,3,2的众数( ) A.1 B.2 C.3 D.4 4.正方形、矩形、菱形都具有的特征是( ) A.对角线互相平分 B.对角线相等 C.对角线互相垂直 D.对角线平分一组对角5.已知数据122-6-1.π,,,,其中负数出现的频率是( )A.20%B.40%C.60%D.80%6.如果4张扑克按图11-的形式摆放在桌面上,将其中一张旋转180后,扑克的放置情况如图12-所示,那么旋转的扑克从左起是( ) A.第一张 B.第二张 C.第三张D.第四张7.同时抛掷两枚质地均匀的正方体骰子(骰子每一面的点数分别是从1到6这六个数字中的一个),以下说法正确的是( ) A.掷出两个1点是不可能事件 B.掷出两个骰子的点数和为6是必然事件C.掷出两个6点是随机事件D.掷出两个骰子的点数和为14是随机事件8.若方程240x x c -+=有两个不相等的实数根,则实数c 的值可以是( ) A.6 B.5 C.4 D.3 9.已知一个物体由x 个相同的正方体堆成,它的正视图和左视图如图2所示,那么x 的最大值是( ) A.13 B.12 C.11 D.1010.已知函数222y x x =--的图象如图3所示,根据其中提供的信息,可求得使1y ≥成立的x 的取值范围是( )A.13x -≤≤ B.31x -≤≤ C.3x -≥D.1x -≤或3x ≥二、细心填一填11.绝对值为3的所有实数为 . 12.方程2650x x -+=的解是. 13.数据8,9,10,11,12的方差2S 为.14.若方程3x y +=,1x y -=和20x my -=有公共解,则m 的取值为 .15.如图4,已知点E 在面积为4的平行四边形ABCD 的边上运动,使ABE △的面积为1的点E 共有 个.三、开心用一用16.计算:21211a a ++-.答案:一、选择题:每小题3分,共10个小题,满分30分. 1-5. ADBAC; 6-10.BCDCD二、填空题:每小题3分,共6个小题,满分18分.图2正视图左视图图411.33-,; 12.1215x x ==, 13.2;14.1; 15.2;指.三、解答题: 16.原式121(1)(1)a a a =+++-12(1)(1)a a a -+=+-11a =-.中考数学基础训练(10)时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.|2|--的倒数是( ) A .2B .12C .12-D .2-2.2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( ) A .43.8410⨯千米B .53.8410⨯千米C .63.8410⨯千米D .438.410⨯千米3.右图是由一些完全相同的小立方块 搭成的几何体的三种视图,那么搭成 这个几何体所用的小立方块的个数 是( ) A .5个 B .6个 C .7个 D .8个4.下列运算正确的是( ) A .2224(2)2a a a -= B .236()a a a -= C .236(2)8x x -=-D .2()x x x -÷=-5.下列事件中,不可能事件是( )A .掷一枚六个面分别刻有1~6数码的均匀正方体骰子,向上一面的点数是“5”B .任意选择某个电视频道,正在播放动画片C .肥皂泡会破碎D .在平面内,度量一个三角形的内角度数,其和为3606.已知代数式1312a x y -与23b a b x y -+-是同类项,那么a b ,的值分别是( ) A .21a b =⎧⎨=-⎩,B .21a b =⎧⎨=⎩,C .21a b =-⎧⎨=-⎩,D .21a b =-⎧⎨=⎩,主(正)视图 左视图俯视图7.把一张长方形的纸片按如图所示的方式折叠, EM FM ,为折痕,折叠后的C 点落在B M '或B M '的延长线上,那么EMF ∠的度数是( )A .85B .90C .95D .1008.如图,在Rt ABC △中,90ACB CD AB =⊥,∠ 于点D.已知AC =2BC =,那么sin ACD ∠=( )AB .23CD9.为了了解汽车司机遵守交通法规的意识,小明的学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:千米/小时)情况如图所示.根据统计图分析,这组车速数据的众数和中位数分别是( )A .60千米/小时,60千米/小时B .58千米/小时,60千米/小时C .60千米/小时,58千米/小时D .58千米/小时,58千米/小时 10.如图,小丽要制作一个圆锥模型,要求圆锥的母线长为9cm ,底面圆的直径为10cm ,那么小丽要制作的这个圆锥模型的侧面展开扇形的纸片的圆心角度数是( ) A .150B .200C .180D .240二、细心填一填11.把3222a ab a b +-分解因式的结果是 . 12.函数1y x =-的自变量x 的取值范围是 . 13.如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为 米.14.如图,在等腰梯形ABCD 中,AD BCAB AD ≠,∥,对角线AC BD ,相交于点O .如下四个结论:①梯形ABCD 是轴对称图形; ②DAC DCA =∠∠; ③AOB DOC △≌△; ④AOD BOC △∽△.D请把其中正确结论的序号填在横线上: .15.右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A 地到B 地时,行驶的路程y (千米)与经过的时间x (小时)之间的函数关系.请根据这个行驶过程中的图象填空:汽车出发 小时与电动自行车相遇;电动自行车的速度为 千米/小时;汽车的速度为千米/小时;汽车比电动自行车早 小时到达B 地.三、开心用一用16.(1)计算:12012tan 60(2)(1)|3-⎛⎫-+-⨯-- ⎪⎝⎭.17.(鲜花简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-.18.(解方程:11262213x x=---.答案:一、选择题: 1.C 2.B 3.D 4.C 5.D 6.A 7.B 8.A 9.C 10.B二、填空题:11.()2a ab -; 12.0x ≥且1x ≠; 13.48; 14.①,③,④; 15.0.5,9,45,2. 三、16.(1)解:原式341=+⨯--34=+-1=.17、解:原式()()2229455441x x x x x =-----+2229455441x x x x x =--+-+- 95x =-.(小时)当13x =-时,原式195953x ⎛⎫=-=⨯-- ⎪⎝⎭35=--8=-.18、解:去分母,得1314x =-+.32x =-,解这个方程,得23x =-. 经检验,23x =-是原方程的解.。

重庆市第二十八中学中考数学基础训练

重庆市第二十八中学中考数学基础训练

重庆市第二十八中学中考数学基础训练时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.tan 30的值等于( )A .12B.2C.3D2.下列判断中正确的是( ) A .四边相等的四边形是正方形 B .四角相等的四边形是正方形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分且相等的四边形是正方形 3.下列图形中,为轴对称图形的是( )A . B. C. D. 4.已知114a b-=,则2227a ab b a b ab---+的值等于( )A .6B .6-C .215D .27-5.若01x <<,则23x x x ,,的大小关系是( ) A .23x x x <<B .32x x x <<C .32x x x <<D .23x x x <<6.如图,在梯形A B C D 中,AB C D ∥,中位线EF 与对角线AC BD ,交于M N ,两点,若18cm EF =,8cm M N =,则AB 的长等于( )A .10cmB .13cmC .20cmD .26cm7.若同一个圆的内接正三角形、正方形、正六边形的边心距分别为346r r r ,,,则346r r r ::等于( )A.1 B. C .1:2:3 D .3:2:18.如图,AB CD AE FD AE FD ,,,∥∥分别交B C 于点G H ,,则图中共有相似三角形( )A .4对B .5对C .6对D .7对9.如图,D AC △和E B C △均是等边三角形,AE BD ,分别与CD CE ,交于点M N ,,有如下结论:①AC E D C B △≌△;②C M C N =;③A C D N =.其中,正确结论的个数是( ) A .3个B .2个C .1个D .0个10.已知实数a b c ,,满足222222122a b b c c a +=+=+=,,,则ab bc ca ++的最小值为( )A .52B.12+ C .12-D.12-二、细心填一填11.不等式组211841x x x x ->+⎧⎨+<-⎩,的解集是 .12.已知x =,则1x x-的值等于 .13.已知一次函数(0)y kx b k =+≠的图象经过点(01),,且y 随x 的增大而增大,请你写出一个..符合上述条件的函数关系式 .14.如图,P Q ,是A B C △的边B C 上的两点,且B P P Q Q C A P A Q ====,则B AC ∠的大小等于 (度).BE(第9题)CDANMADM (第6题) NBFC E(第8题)DPQC(第14题)15.如图,已知直线C D 与O 相切于点C AB ,为直径,若40BCD =∠,则A B C ∠的大小等于 (度). 16.已知O 中,两弦AB 与C D 相交于点P ,若:2:3A P P B =,2cm 12cm CP DP ==,,则弦AB 的长 为 cm .17.已知关于x 的方程2(2)20x a x a b -++-=的判别式等于0,且12x =是方程的根,则a b +的值为 .三、开心用一用18.已知正比例函数(0)y kx k =≠的图象与反比例函数(0)m y m x=≠的图象都经过点(42)A ,.(I )求这两个函数的解析式;(II )这两个函数的图象还有其他交点吗?若有,请求出交点的坐标; 若没有,请说明理由.答案:一、选择题:1.C 2.D 3.B 4.A 5.C 6.D 7.A 8.C 9.B 10.D二、填空题:11.3x > 12.4 13.如:21y x =+ 14.120 15.5016.10 17.138-三、解答题:18.解:(I ) 点(42)A ,在正比例函数y kx =的图象上, 有24k =,即12k =.∴正比例函数的解析式为12y x =.又 点(42)A ,在反比例函数m y x=的图象上,有24m =,即8m =.∴反比例函数的解析式为8y x=.II )这两个函数的图象还有一个交点.由128y x y x ⎧=⎪⎪⎨⎪=⎪⎩, 解得1142x y =⎧⎨=⎩,或2242x y =-⎧⎨=-⎩,.AD O (第15题)。

考点40 尺规作图—备战2021年《中考数学》(全国通用)夯实基础训练题(解析版)

考点40  尺规作图—备战2021年《中考数学》(全国通用)夯实基础训练题(解析版)

考点40 尺规作图真题回顾1.(2020·深圳)如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=()A. 2B. 3C. 4D. 5【答案】B【考点】尺规作图的定义【解析】【解答】由作图痕迹可知AD为∠BAC的角平分线,而AB=AC,由等腰三角形的三线合一知D为BC重点,BD=3,故答案为:B【分析】根据尺规作图的方法步骤判断即可.2.(2019·烟台)要作∠A′O′B′等于已知角∠AOB,应先作一条射线O′B′,再以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.然后( )A. 以点O′为圆心,任意长为半径画弧B. 以点O′为圆心,OB长为半径画弧C. 以点O′为圆心,CD长为半径画弧D. 以点O′为圆心,OD长为半径画弧【答案】D【考点】作图-角【解析】【解答】要作∠A′O′B′等于已知角∠AOB,应先作一条射线O′B′,再以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.然后以点O′为圆心,OD长为半径画弧,再进行画图,故答案为:D.【分析】根据尺规作图画角.3.(2018·河北)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A. ①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB. ①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC. ①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD. ①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【考点】作图-垂线,作图-角的平分线,作图-线段垂直平分线【解析】【解答】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故答案为:D.【分析】根据角平分线的作法、垂线的作法、线段垂直平分线的作法,进行判断,即可解答。

考点23 直角三角形与勾股定理—备战2021年《中考数学》(全国通用)夯实基础训练题(原卷版)

考点23  直角三角形与勾股定理—备战2021年《中考数学》(全国通用)夯实基础训练题(原卷版)

考点23直角三角形与勾股定理真题回顾1.(2020·大连)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为( )A. 100mB. 100 mC. 100 mD. m2.(2020·盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是尺.根据题意,可列方程为()A. B. C. D.3.(2017·眉山)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A. 1.25尺B. 57.5尺C. 6.25尺D. 56.5尺4.(2020·河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A. 1,4,5B. 2,3,5C. 3,4,5D. 2,2,45.(2019·淮安)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A. 5B. 6C. 7D. 256.(2018·淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4B. 6C.D. 87.(2018·南通)如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于()A. 8()mB. 8()mC. 16()mD. 16()m8.(2017·陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A. 3B. 6C. 3D.9.(2019·威海)把一块含有角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若,则________ .10.(2020·黔西南州)如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=,则BD的长度为________.11.(2019·葫芦岛)如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠PAB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为________米.(≈1.73,结果精确到0.1米)12.(2020·绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(片在结合部分不重叠无缝隙),则图2中阴影部分面积为________。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考基础训练(13)
时间:30分钟 你实际使用 分钟
班级 姓名 学号 成绩
一、精心选一选
1.计算:3--=________.
2.2006年5月20 日,世界上规模最大的混凝土重力坝三峡大坝浇筑完成.建成后,三峡水库库容总量为39 300 000 000立方米.用科学计数法表示库容总量为_____________立方米.
3.如图,将矩形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边
上的F 点处.若AFD △的周长为9,ECF △的周长为3,则矩形ABCD 的周长为________. 4.为考察甲、乙两种小麦的长势,分别从中抽取50株小麦,测得
苗高,经过数据处理,它们的平均数相同,方差分别为 22
15.412S S ==甲乙,,
由此可以估计______种小麦长的比较整齐. 5.“平阳府有座大鼓楼,半截子插在天里头”.如图,为测量临
汾市区鼓楼的高AB ,在距B 点50m 的C 处安装测倾器,测得鼓楼顶端A 的仰角为4012'
,测倾器的高CD 为 1.3m ,则鼓楼高
AB 约为________m(tan 40120.85' ≈).
6.写出一个图象位于第一、三象限内的反比例函数表达式__________________. 7.如图,AB 为O ⊙的直径,C D ,是O ⊙上两点,若
50ABC = ∠,则D ∠的度数为________.
8.为庆祝“六一”儿童节,幼儿园要用彩纸包裹底圆直径..为1m ,高为2m 的一根圆柱的侧面.若每平方米彩纸10元,则包裹这根圆柱侧面的彩纸共需________元(接缝忽略不计, 3.14π≈). 9.将图中线段AB 绕点A 按顺时针方向旋转90
后,得到线段
AB ',则点B '的坐标是______________.
10.如图,依次连结第一个...正方形各边的中点得到第二个正方形,再依次连结第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个...正方形边长为1,则第.n 个.正方形的面积是_________________.
A
D
……
二、细心填一填
11.下列运算正确的是( ) A
= B
= C .6
3
2
a a a ÷=
D .2336(2)8ab a b -=-
12.不等式组211
2x x -<⎧⎨-⎩
,≤的解集在数轴上表示为( )
13.半径分别为5和8的两个圆的圆心距为d ,若313d <≤,则这两个圆的位置关系一定是( )
A .相交
B .相切
C . 内切或相交
D .外切或相交
14.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一
次性购书付款162元,那么王明所购书的原价一定为(

A .180元 B
. 202.5元 C . 180元或202.5
元 D .180元或200元
15.如图,在Rt ABC △
中,
904cm 6cm C AC BC ===
,,∠,动点
P 从点C 沿CA ,以1cm/s 的速度向点A 运动,同时动点Q 从点C 沿
CB ,以2cm/s 的速度向点B 运动,其中一个动点到达终点
时,另一个动点也停止运动.则运动过程中所构成的CPQ △的面
积2
(cm )y 与运动时间(s)x 之间的函数图象大致是(

16.一个质地均匀的小正方体的六个面上分别标有数字1
,2,3,4,5,6.如果任意抛掷小正方体两次,那么下列说法正确的是( ) A .得到的数字和必然是4 B .得到的数字和可能是3 C .得到的数字和不可能是2 D .得到的数字和有可能是1 17.某展览厅内要用相同的正方体木块搭成一个三视图如下的展台,则此展台共需这样的正方体( )
D .
A .
B .
C . (s)x A. (s) B. (s)x C. (s)x D.
正 视 图 左 视 图
俯视图
A .3块
B .4块
C .5块
D .6块
三、开心用一用
19.(1
)计算:1
2
2
1(1)sin 302-⎛⎫
-++- ⎪⎝⎭
(2)化简:22362
444
x x x x x -+÷-++
答案:
一、填空题:
1.3-; 2.10
3.9310⨯; 3.12; 4.乙; 5.43.8; 6.(略); 7.40

8.62.8; 9.(30),
; 10.1
12n -⎛⎫
⎪⎝⎭

三、解答题18.解:(1)原式1124=++-4
=. (2)原式2
3(2)2
(2)(2)(2)
x x x x x -+=
÷+-+ 3
(2)2
x x =
++ 3=.。

相关文档
最新文档