Using Terrestrial Laser Scanning for the 3D Reconstruction of Petra Jordan

合集下载

《南京林业大学学报(自然科学版)》2021 年论文题录(作者)索引

《南京林业大学学报(自然科学版)》2021 年论文题录(作者)索引

第45卷㊀第6期2021年11月南京林业大学学报(自然科学版)JournalofNanjingForestryUniversity(NaturalScienceEdition)Vol.45,No.6Nov.,2021‘南京林业大学学报(自然科学版)“2021年论文题录(作者)索引AUTHORANDSUBJECTINDEXES2021著录格式:作者.文题(外文文题).刊名,出版年,卷(期):起止页码.(作者以姓氏汉语拼音为序)白文玉,冯茂松,铁烈华,汪亚琳,高嘉翔,赖㊀娟,戴晓康.不同无性系四川桤木嫁接苗生物量及其分配特征(Biomassanditsallocationcharacteristicsofone⁃year⁃oldgraftedseedlingsofdifferentclonesofAlnusledgeriana).南京林业大学学报(自然科学版),2021,45(2):87-95.蔡龙涛,邢㊀涛,邢艳秋,丁建华,黄佳鹏,崔㊀阳,秦㊀磊.基于ICESat⁃GLAS数据和模糊模式识别算法识别森林类型(IdentificationofforesttypesbasedonICESat⁃GLASdataandfuzzypatternrecognitionalgorithm).南京林业大学学报(自然科学版),2021,45(4):33-41.曹桥荣,董京京,钟文峰,彭智奇,董㊀鹏,陈㊀洁,伊贤贵.樱花新品种 胭脂绯 (Cerasusdielsiana Yanzhifei :anewcultivaroforientalcher⁃ry).南京林业大学学报(自然科学版),2021,45(1):242-244.陈㊀佳,缑晶毅,赵㊀祺,韩庆庆,李慧萍,姚㊀丹,张金林.梭梭根际根瘤菌对紫花苜蓿生长及耐盐性的影响(InducedgrowthandsalttoleranceofalfalfabyrhizobiumstrainsfromtherhizosphereofHaloxylonammodendron).南京林业大学学报(自然科学版),2021,45(6):99-110.陈㊀黎,刘成功,钱莹莹,唐晓蝶,王生树,李志东,李㊀燕,崔㊀珺.南方红豆杉人工林针叶C㊁N㊁P化学计量特征(StoichiometriccharacteristicsofC,N,PofTaxuschinensisvar.maireiplantationneedles).南京林业大学学报(自然科学版),2021,45(5):53-61.陈㊀林,潘婷婷,吕笑冬,汪章沛,程㊀林.江西省种子植物分布新资料(NewrecordsofseedplantsfromJiangxiProvince).南京林业大学学报(自然科学版),2021,45(5):232-234.陈宏健,郝德君,田㊀敏,周㊀杨,夏小洪,赵欣怡,乔㊀恒,谈家金.室内饲养松墨天牛幼虫不同肠段细菌的群落结构及功能分析(Thecom⁃munitystructureandfunctionalanalysisofintestinalbacteriainMonochamusalternatuslarvaerearedindoors).南京林业大学学报(自然科学版),2021,45(3):143-151.陈隆升,梅㊀莉,陈永忠,赵泽尧,许彦明,张㊀震,胡亚军,刘彩霞,苏以荣.油茶林生草栽培对地表径流及氮磷流失特征的影响(EffectsofinterplantingherbageonsurfacerunoffassociatedwithnitrogenandphosphoruslossesinCamelliaoleiferaplantations).南京林业大学学报(自然科学版),2021,45(6):127-134.陈兴彬,徐海宁,肖复明,孙世武,娄永峰,邹元熹,徐小强.陈山红心杉1.5代种子园遗传多样性和子代父本分析(Geneticdiversityandpaternityanalysesina1.5thgenerationseedorchardofChenshanred⁃heartChinesefir).南京林业大学学报(自然科学版),2021,45(3):87-92.陈秀波,段文标,陈立新,朱德全,赵晨晨,刘东旭.小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征(CommunitystructureanddiversityofsoilnirK⁃typedenitrifyingmicroorganismsinthreeforesttypesofprimitivePinuskoraiensismixedforestinLiangshuiNationalNatureReserve,LesserKhinganMountains).南京林业大学学报(自然科学版),2021,45(2):77-86.陈玉华,姚㊀丹,吴海楠,陶申童,吴吉妍,杨文国,童春发.美洲黑杨与小叶杨杂交F1代扦插无性系苗生长性状动态分析(AnalysesofdynamicgrowthtraitsofthestecklingsfromtheF1hybridprogenyofPopulusdeltoidesˑP.simonii).南京林业大学学报(自然科学版),2021,45(1):45-52.程㊀娟,丁访军,谭正洪,廖立国,周㊀汀,崔迎春.贵州茂兰喀斯特森林两树种叶片气孔形态特征及其对蒸腾的影响(Leafstomatalmorpho⁃logicalcharacteristicsandtheireffectsontranspirationfortwotreespeciesinMaolanKarstarea,GuizhouProvince).南京林业大学学报(自然科学版),2021,45(5):125-132.崔㊀阳,狄海廷,邢艳秋,常晓晴,单㊀炜.基于MODIS数据的2001 2018年黑龙江省林火时空分布(SpatialandtemporaldistributionsofforestfiresinHeilongjiangProvincefrom2001to2018basedonMODISdata).南京林业大学学报(自然科学版),2021,45(1):205-211.崔令军,刘瑜霞,林㊀健,石开明.丛枝菌根真菌对盐胁迫下桢楠光合生理的影响(EffectsofAMFonphotosyntheticcharacteristicsofPhoebezhennanundersaltstress).南京林业大学学报(自然科学版),2021,45(1):101-106.邓㊀平,赵㊀英,王㊀霞,陈秋佑,吴㊀敏.水杨酸对NaHCO3胁迫下桂西北喀斯特地区青冈栎种子萌发的影响(Effectsofsalicylicacidonger⁃minationofCyclobalanopsisglaucaseedsunderNaHCO3stressinKarstareaofnorthwestGuangxi).南京林业大学学报(自然科学版),2021,45. All Rights Reserved.南京林业大学学报(自然科学版)第45卷(4):114-122.邓㊀睿,张梅丽,周㊀明,郑宝江.中国茶藨子属1新记录种(AnewlyrecordedplantofthegenusRibesfromChina).南京林业大学学报(自然科学版),2021,45(2):231-233.丁㊀胜,李㊀颂,梁钰坤,赵庆建,曹福亮,吕㊀柳.经济林产业上市公司融资影响因素分析(Factorsinfluencingthefinancingoflistedcompaniesinnon⁃timberforestindustry).南京林业大学学报(自然科学版),2021,45(3):224-232.董灵波,刘兆刚.森林健康评价及其多尺度转换方法(Foresthealthassessmentsandmulti⁃scaleconversionmethods).南京林业大学学报(自然科学版),2021,45(3):206-216.杜晋城,李欣欣,邓小兵,慕长龙.9个油橄榄品种叶片功能性状特征比较(Comparisonsofleaffunctionalcharacteristicsofnineolivevarieties).南京林业大学学报(自然科学版),2021,45(2):159-164.段一凡,李㊀岚,杨欣欣,王贤荣,张㊀敏,张㊀成,柴子涵.桂花及其近缘种倍性和基因组大小分析(StudyonploidyandgenomesizesofOs⁃manthusfragransanditsrelatedspecies).南京林业大学学报(自然科学版),2021,45(5):47-52.范佳辉,张亚丽,李明诗.基于空间光谱信息协同的城市不透水层提取方法比较研究(Comparingfourmethodsforextractingimpervioussurfacesusingspectralinformationinsynergywithspatialheterogeneityofremotelysensedimagery).南京林业大学学报(自然科学版),2021,45(1):212-218.费宜玲,侯森林,唐松泽.近三年江苏省非法被猎两栖爬行动物分析(AnalysisofillegalhuntingcasesofamphibiansandreptilesinJiangsuProvinceoverthepastthreeyears).南京林业大学学报(自然科学版),2021,45(2):225-230.冯园园,李清莹,黄均华,胡绍庆.25个彩叶桂无性系(品种)的数量分类研究(Numericalclassificationof25color⁃leafedOsmanthusfragransclones(cultivars)).南京林业大学学报(自然科学版),2021,45(1):107-115.高㊀芳,陈士刚,秦彩云,才巨锋,王聪慧,董环宇,陶㊀晶.红皮云杉体胚发生体系优化和超低温保存技术研究(OptimizationofsomaticembryogenesissystemandcryopreservationofPiceakoraiensis).南京林业大学学报(自然科学版),2021,45(3):100-108.高㊀燕,莫建彬,付艳茹,奉树成.铁线莲 朱卡 组织培养技术及再生体系的建立(TissuecultureandplantregenerationofClematis Julka ).南京林业大学学报(自然科学版),2021,45(3):109-114.高景斌,徐六一,叶建仁.马尾松松材线虫病抗性无性系的筛选和遗传多样性分析(GrowthandgeneticdiversityanalysisofclonesscreenedbyphenotypicalresistanttopinewiltdiseaseinPinusmassoniana).南京林业大学学报(自然科学版),2021,45(5):109-118.高沁怡,潘春霞,刘㊀强,顾光同,祝雅璐,吴伟光.基于贝叶斯网络的林业碳汇项目风险评价(RiskassessmentsofforestrycarbonsequestrationprojectsbasedonBayesiannetwork).南京林业大学学报(自然科学版),2021,45(4):210-218.葛宝柱,徐㊀强,陈赢男.山新杨蔗糖合酶基因PCR介导的重组现象研究(ThephenomenonofPCR⁃mediatedrecombinationbyusingSUSgenesofPopulusdavidianaˑP.bolleana).南京林业大学学报(自然科学版),2021,45(3):79-86.郭㊀亮,丁九敏,徐㊀侠.树干甲烷的研究进展(Advancesinresearchonmethanefromtreestems).南京林业大学学报(自然科学版),2021,45(5):235-241.郭㊀雯,漆良华,雷㊀刚,胡㊀璇,张㊀建,舒㊀琪,商泽安.毛竹及其变种叶片化学计量与养分重吸收效率(Leafstoichiometryandnutrientre⁃absorptionefficiencyofPhyllostachysedulisanditsvarieties).南京林业大学学报(自然科学版),2021,45(1):79-85.郭佳惠,教忠意,何旭东,诸葛强,周㊀洁.基于层次分析法对柳树观赏性及适应性的综合评价(Acomprehensiveevaluationofornamentalcharacteristicsandadaptabilityofwillowsbasedonanalytichierarchyprocesses).南京林业大学学报(自然科学版),2021,45(6):169-176.郭天威,陆春锋,王君櫹,刘瑞程,周生路.基于三生空间耦合的生态安全格局构建与优化 以扬州市为例(Constructionandoptimizationofecologicalsecuritypatternbasedonthecouplingofecological⁃production⁃livingspaces:takingYangzhouCityasanexample).南京林业大学学报(自然科学版),2021,45(5):133-142.何旭东,郑纪伟,孙㊀冲,何开跃,王保松.33个杨柳品种指纹图谱构建(Constructionoffingerprintsfor33varietiesinSalicaceae).南京林业大学学报(自然科学版),2021,45(2):35-42.贺梦莹,董利虎,李凤日.长白落叶松-水曲柳混交林不同混交方式单木冠长预测模型(TreecrownlengthpredictionmodelsforLarixolgensisandFraxinusmandshuricainmixedplantationswithdifferentmixingmethods).南京林业大学学报(自然科学版),2021,45(4):13-22.洪㊀震,刘术新,洪琮浩,雷小华.5种造林树种对干旱胁迫的抗性应答(Resistanceresponseoffiveafforestationtreespeciesunderdroughtstress).南京林业大学学报(自然科学版),2021,45(2):111-119.侯㊀静,毛金燕,翟㊀惠,王㊀洁,尹佟明.CRISPR/Cas技术在木本植物改良中的应用(ApplicationofCRISPR/Castechniqueinwoodyplantimprovement).南京林业大学学报(自然科学版),2021,45(6):24-30.胡丁猛,许景伟,王立辉,囤兴建,朱升祥,杨㊀健. 蕊沁 等7个海棠新品种(Sevennewcrabapplecultivarssuchas RuiQin ).南京林业大学学报(自然科学版),2021,45(4):238-242.胡海波,贾西川.我国平原农区林带胁地效应及其控制措施研究进展(Reviewonnegativeeffectsanditscontrolmeasuresofforestbeltinplain242. All Rights Reserved.㊀第6期‘南京林业大学学报(自然科学版)“2021年论文题录(作者)索引agriculturalareasofChina).南京林业大学学报(自然科学版),2021,45(2):234-240.花伟成,田佳榕,孙心雨,徐雁南.基于TLS数据的杨树削度方程建立及材积估算(Assessingthestemtaperfunctionandvolumeestimationofpoplar(Populus)byterrestriallaserscanning).南京林业大学学报(自然科学版),2021,45(4):41-48.惠㊀昊,关庆伟,王亚茹,林鑫宇,陈㊀斌,王㊀刚,胡㊀月,胡敬东.不同森林经营模式对土壤氮含量及酶活性的影响(Effectsofdifferentforestmanagementmodesonsoilnitrogencontentandenzymeactivity).南京林业大学学报(自然科学版),2021,45(4):151-158.火㊀艳,张慧会,祝遵凌.欧洲鹅耳枥水培营养液适用效果比较研究(ComparativestudyontheeffectsofnutrientsolutiontreatmentinhydroponiccultivationofCarpinusbetulus).南京林业大学学报(自然科学版),2021,45(2):17-24.嵇保中,张㊀磊,刘曙雯,姜宏健,金明霞.白蚁品级分化研究进展(Researchprogressoftermitecastedifferentiation).南京林业大学学报(自然科学版),2021,45(5):1-9.季㊀淮,韩建刚,李萍萍,朱咏莉,郭俨辉,郝达平,崔㊀皓.洪泽湖湿地植被类型对土壤有机碳粒径分布及微生物群落结构特征的影响(EffectsofdifferentvegetationtypesonsoilorganiccarbonparticlesizedistributionandmicrobialcommunitystructureinHongzeLakeWetland).南京林业大学学报(自然科学版),2021,45(1):141-150.季艳红,汤文华,窦全琴,谢寅峰.施肥对薄壳山核桃容器苗生长及养分积累的影响(EffectsoffertilizerapplicationonseedlinggrowthandnutrientaccumulationinCaryaillinoinensiscontainerseedlings).南京林业大学学报(自然科学版),2021,45(6):47-56.贾㊀婷,宋武云,关新贤,魏智文,陈㊀涵,易㊀敏,熊启慧,张㊀露.湿地松针叶功能性状及其对磷添加的响应(ResponsesofneedlefunctionaltraitsofPinuselliottiitophosphorusaddition).南京林业大学学报(自然科学版),2021,45(6):65-71.江杏香,陈玉凯,吴石松,陈㊀庆.海南濒危植物蕉木种群结构与动态特征(PopulationstructureanddynamicsoftheendangeredplantChienio⁃dendronhainanenseinHainan).南京林业大学学报(自然科学版),2021,45(1):116-122.蒋㊀瑶,魏海林,高昌虎,王大故,冯楠可,李㊀睿,刘榕榕,吕芳德.湖南低山丘陵区薄壳山核桃的开花物候期观测及品种配置(ObservationonfloweringphenologyandvarietycombinationofCaryaillinoinensisinlowmountainsandhillsofHunanProvince).南京林业大学学报(自然科学版),2021,45(1):53-62.荆㊀烁,孙慧珍.东北东部山区主要树种枝条及其组分水力特征(ThehydrauliccharacteristicsofthewholebranchanditscomponentsofthemajortreespeciesintheeasternregionofnortheastChina).南京林业大学学报(自然科学版),2021,45(4):159-166.赖国桢,汪雁楠,黄宝祥,周㊀光,莫晓勇,刘丽婷.林分空间结构优化栅格间伐模型(Agridthinningmodelbasedonforestspatialstructureopti⁃mization).南京林业大学学报(自然科学版),2021,45(3):199-205.黎梦娟,朱礼明,霍俊男,张景波,施季森,成铁龙.唐古特白刺NtCBL1㊁NtCBL2基因克隆及表达分析(CloningandexpressionanalysesofNtCBL1,NtCBL2geneofNitrariatangutorum).南京林业大学学报(自然科学版),2021,45(3):93-99.李㊀磊,蒋㊀敬,陈云霞.DNA宏条形码技术在动植物法医鉴定中的应用进展(RecentadvancesintheapplicationofDNAmetabarcodingtech⁃nologyinforensicidentificationofanimalsandplants).南京林业大学学报(自然科学版),2021,45(1):235-241.李㊀蒙,董京京,丁明贵,王贤荣,伊贤贵.樱花新品种 名贵红 (Cerasusserrulatavar.lannesiana MingguiHong :anewcultivarofcherry).南京林业大学学报(自然科学版),2021,45(6):239-240.李㊀娜,朱培林,丰㊀采,温敏学,方升佐,尚旭岚.青钱柳嫁接愈合过程中砧穗生理特性及其与亲和性的关系(Variationsinphysiologicalcharacteristicsofrootstock⁃scionanditsrelationshiptograftcompatibilityduringthegraftingunionprocessofCyclocaryapaliurus).南京林业大学学报(自然科学版),2021,45(1):13-20.李㊀陶,李明阳,钱春花.结合冠层密度的森林净初级生产力遥感估测(Combiningcrowndensitytoestimateforestnetprimaryproductivitybyusingremotesensingdata).南京林业大学学报(自然科学版),2021,45(5):153-160.李㊀鑫,翁卫松,李明诗.太平洋西北部地区天然林景观动态及破碎化驱动力分析(AssessingnaturalforestfragmentationprocessdynamicsanditsdriversinthePacificnorthwestregion,USA).南京林业大学学报(自然科学版),2021,45(3):174-182.李佳琦,薛晓明,高捍东.桢楠种子脱水过程中的生理响应(PhysiologicalresponsesofPhoebezhennanseedsduringdehydration).南京林业大学学报(自然科学版),2021,45(3):130-136.李江荣,郭其强,郑维列.西藏东南部急尖长苞冷杉蒸腾耗水及其驱动因子分析(AnalysesoftranspirationwaterconsumptionofAbiesgeorgeivar.smithiianditsdrivingfactorsinsoutheasternTibet).南京林业大学学报(自然科学版),2021,45(6):151-158.李沁宇,刘㊀鑫,张金池.长三角区域酸雨类型转变趋势研究(ChangingtrendsofacidraintypesintheYangtzeRiverDeltaregion).南京林业大学学报(自然科学版),2021,45(1):168-174.李清顺,金万洲,王得军,孙景梅,李宏韬.利用多树种立地形指数对林地质量进行综合评价(Acomprehensiveevaluationofforestlandqualityusingmultitreesiteformindex).南京林业大学学报(自然科学版),2021,45(6):81-89.李庆杨,王树凤,吴书天,王若辉,施㊀翔,莫润宏,刘毅华.弗吉尼亚栎种子化学成分特征及其对立地土壤条件的响应(ChemicalcompositionsofQuercusvirginianaseedsandtheirresponsestosoilproperty).南京林业大学学报(自然科学版),2021,45(6):111-118.廖逸宁,郭素娟,王芳芳,马雅莉,刘亚斌.有机-无机肥配施对板栗园土壤肥力及根系功能性状的影响(Effectsofcombinedapplicationoforganicandinorganicfertilizersonsoilfertilityandrootfunctionaltraitsinchestnutorchards).南京林业大学学报(自然科学版),2021,45(5):84-92.林远锋,鲁长虎,许㊀鹏,崔㊀鹏,张文文.1976年以来丹顶鹤在我国的分布变迁及就地保护状况(Distributionchangesandinsituconservationofred⁃crownedcranes(Grusjaponensis)inChinasince1976).南京林业大学学报(自然科学版),2021,45(6):200-208.刘㊀浩,刘㊀璨,刘俊昌.中国退耕还林工程对农户收入和消费不平等的影响测度(Effectsoftheslopinglandconversionprogramimpactonthe342. All Rights Reserved.南京林业大学学报(自然科学版)第45卷ruralhouseholds incomeandconsumptioninequalitiesinChina).南京林业大学学报(自然科学版),2021,45(1):227-234.刘㊀楠,冯富娟,张秀月.原始红松林皆伐后穿透雨对凋落物淋溶过程的影响(Effectsofthelitterleachingprocessbythroughfallafterclearcut⁃tingofprimaryPinuskoraiensisforest).南京林业大学学报(自然科学版),2021,45(1):159-167.刘桂丰,张姝慧,李慧玉,姜㊀静,陈㊀肃,黄海娇,李长海.彩叶桦 紫霞1号 新品种(Betulapendula Zixia1 :anewbirchcultivar).南京林业大学学报(自然科学版),2021,45(5):245-246.刘俊涛,仲㊀静,刘济铭,罗水晶,王冕之,范嘉霖,贾黎明.无患子初果期人工林土壤和叶片C㊁N㊁P化学计量特征(StoichiometriccharacteristicsofsoilandleavesinSapindusmukorossiplantationatanearlyfruitingstage).南京林业大学学报(自然科学版),2021,45(4):67-75.刘亚静,周㊀来,张㊀博,陈丽萍,潘㊀磊,孙玉军.不同林龄杉木径向变化及其对气象因子的响应(RadialvariationofCunninghamialanceolataindifferentagedforestsanditsresponsetometeorologicalfactors).南京林业大学学报(自然科学版),2021,45(2):135-144.卢㊀军,刘宪钊,孟维亮,李红军.基于地面激光点云数据的单木三维重建方法(Methodologyofindividualtree3Dreconstructionbasedonterres⁃triallaserscanningpointclouddata).南京林业大学学报(自然科学版),2021,45(6):193-199.陆元昌,雷相东,王㊀宏,刘宪钊,孟京辉,谢阳生,国㊀红,姜㊀俊,高文强.森林作业法的历史发展与面向我国森林经营规划的三级作业法体系(Silviculturalsystem:thehistoricalreviewandnewdevelopmentofaHierarchicallyStructuredSystemformanagementplanninginChina).南京林业大学学报(自然科学版),2021,45(3):1-7.路买林,陈梦娇,张嘉嘉,赵建霞,朱景乐,杜红岩. 红叶 杜仲叶色转变过程中叶片生理指标变化(LeafphysiologicalindicatorchangesinthetransformationofleavescolorofEucommiaulmoides Hongye ).南京林业大学学报(自然科学版),2021,45(1):86-92.罗凤敏,高君亮,辛智鸣,郝玉光,李新乐,段瑞兵.乌兰布和沙漠绿洲防护林体系小气候效应研究(StudyonthemicroclimateeffectsofoasisshelterforestintheUlanBuhDesert).南京林业大学学报(自然科学版),2021,45(5):143-152.马丹丹,库伟鹏,夏国华,毛洁莹,薛建辉.珍稀濒危植物堇叶紫金牛种群结构及动态分析(StructureanddynamicsofrareandendangeredplantArdisiaviolaceanaturalpopulation).南京林业大学学报(自然科学版),2021,45(3):159-164.马秋月,李倩中,李淑顺,朱㊀璐,颜坤元,李淑娴,张㊀斌,闻㊀婧.元宝枫组织培养及快速繁殖技术研究(StudyontissuecultureandrapidpropagationofAcertruncatumBunge).南京林业大学学报(自然科学版),2021,45(2):220-224.马晓乾,葛㊀君,王㊀琪,赵红盈,孙㊀妍,高㊀宇,申国涛,于文喜.光肩星天牛对糖槭挥发物的EAG及嗅觉行为反应(EAGandolfactorybe⁃havioralresponsesofAnoplophoraglabripennis(Coleoptera:Cerambycidae)tovolatilesofAcersaccharum).南京林业大学学报(自然科学版),2021,45(1):123-130.马颖忆,刘志峰.江苏省景观生态风险评估及其与城镇化的动态响应(Assessmentoflandscapeecologicalriskanditsdynamicresponsewithur⁃banizationdevelopmentofJiangsuProvince).南京林业大学学报(自然科学版),2021,45(5):185-194.马永春,佘诚棋,方升佐.不同修枝方法对杨树人工林生长㊁光合叶面积和主干饱满度的影响(Effectsofpruningmethodsongrowth,photosyn⁃theticleafareaandplumpnessoftrunksegmentinpoplarplantations).南京林业大学学报(自然科学版),2021,45(4):137-142.蒙海勤,叶建仁,王旻嘉,曹伊扬.木腐真菌对松材线虫病疫木处理初探(Usingwoodrotfungitotreatplaguewoodcausedbypinewiltdisease).南京林业大学学报(自然科学版),2021,45(4):183-189.缪㊀菁,王㊀勇,王㊀璐,许晓岗.基于MaxEnt模型的苦槠潜在地理分布格局变迁预测(PredictionofpotentialgeographicaldistributionpatternchangeforCastanopsissclerophyllaonMaxEnt).南京林业大学学报(自然科学版),2021,45(3):193-198.倪㊀铭,高振洲,吴㊀文,张于卉,喻方圆.不同氮素施肥方法对纳塔栎容器苗生长及非结构性碳水化合物积累的影响(Effectsofdifferentni⁃trogenfertilizationmethodsongrowthandnon⁃structurecarbohydrateaccumulationofQuercusnuttalliiseedlings).南京林业大学学报(自然科学版),2021,45(4):107-113.彭智奇,董㊀鹏,朱㊀弘,朱淑霞,董京京,钟育谦,翟飞飞,郑爱春,王贤荣,伊贤贵.江苏云台山山樱花种群结构及点格局分析(AnalysesofCerasusserrulatapopulationstructureandpointpatternsinYuntaiMountain,Jiangsu).南京林业大学学报(自然科学版),2021,45(4):167-176.任世奇,朱原立,梁燕芳,陈健波,卢翠香,伍㊀琪,韦振道.基于PM模型的广西南宁尾巨桉中龄林蒸散特征(Evapotranspirationcharacteristicsofmiddle⁃agedEucalyptusurophyllaˑE.grandisplantationbasedonPenman⁃MonteithmodelinNanning,Guangxi).南京林业大学学报(自然科学版),2021,45(2):127-134.尚军烨,徐炜超,孟庆繁,赵红蕊,刘生冬,李㊀燕.栎丽虎天牛成虫触角感器的扫描电镜观察(AntennalsensillaofadultPlagionotuspulcher(Coleoptera:Cerambycidae)observedwithscanningelectronmicroscope).南京林业大学学报(自然科学版),2021,45(5):195-200.佘建炜,张㊀康,郑㊀旭,赵小军,程㊀方,唐罗忠.海水处理对沼泽小叶桦苗木生长和生理的影响(EffectsofseawaterongrowthandphysiologyofBetulamicrophyllavar.paludosacuttingseedlings).南京林业大学学报(自然科学版),2021,45(5):102-108.圣倩倩,戴安琪,宋㊀敏,唐㊀睿,祝遵凌.NO2胁迫下两种鹅耳枥的光合生理特性变化(PhotosyntheticphysiologicalcharacteristicsoftwokindsofhornbeamunderNO2stress).南京林业大学学报(自然科学版),2021,45(2):10-16.盛后财,姚月锋,蔡体久,郭㊀娜,琚存勇.物候变化对落叶松人工林降雨分配过程中钾和钠离子迁移的影响(Effectsofphenoseasonontransferofpotassiumandsodiumionsintheprocessofrainfallredistributioninlarch(Larixgmelinii)plantations).南京林业大学学报(自然科学版),2021,45(6):143-150.施季森.CRISPR:从 盲盒 基因编辑到 精准靶向 基因组编辑的未竟之旅(CIRSPR:aunfulfilledjourneyfromgeneeditingin Blindbox to Precisiontargeting genomeediting).南京林业大学学报(自然科学版),2021,45(6):12-14.石文广,李㊀靖,张玉红,雷静品,罗志斌.7种杨树铅抗性和积累能力的比较研究(Acomparativestudyonleadtoleranceandaccumulationof442. All Rights Reserved.㊀第6期‘南京林业大学学报(自然科学版)“2021年论文题录(作者)索引sevenpoplarspecies).南京林业大学学报(自然科学版),2021,45(3):61-70.石小庆,刘晓莉,李方文,朱章顺,马㊀娇,杨苑钊,曾心美.木芙蓉新品种 百日华彩 ( Bairihuacai :anewHibiscusmutabiliscultivar).南京林业大学学报(自然科学版),2021,45(5):242-244.石欣隆,杨月琴,薛㊀娴,刘㊀伟,宋程威,郭丽丽,侯小改.壳寡糖对干旱胁迫下 凤丹 幼苗生长及生理特性的影响(EffectsofchitooligosaccharideonthegrowthphysiologyofPaeoniaostii FengDan seedlingsunderdroughtstress).南京林业大学学报(自然科学版),2021,45(2):120-126.时㊀珍,邢露华,郑琳琳,穆㊀博,田国行.城市公园绿地游憩供需协同度评价及优化策略(Evaluationsandoptimizationstrategiesofsynergyde⁃greeofparkgreenspacebasedonbalanceofsupplyanddemandforrecreation).南京林业大学学报(自然科学版),2021,45(2):197-204.宋㊀爽,许大为,石梦溪,胡珊珊.挠力河流域景观生态健康时空演变(SpatialandtemporalevolutionoflandscapeecologicalhealthinNaoliheBasin).南京林业大学学报(自然科学版),2021,45(2):177-186.宋烨,彭红军,孙铭君.碳限额与交易下木质林产品供应链内部融资机制(Internalfinancingmechanismsofwoodforestproductsupplychainunderthecap⁃and⁃tradescheme).南京林业大学学报(自然科学版),2021,45(6):232-238.苏胜荣,王继山,刘腾腾,王恩翠,桑旦次仁,张小鹏,李昕宇,张天星.一种西藏藏川杨潜叶新害虫 柳潜细蛾(Areportonanewleaf⁃miningpestofPopulusszechuanicavar.tibeticainTibet:Phyllonoryoleypastorella).南京林业大学学报(自然科学版),2021,45(4):243-246.孙㊀开,江建平,丁雨龙,RAMAKRISHNAUMuthusamy,魏㊀强.毛竹竹秆秆柄形态与解剖学研究(MorphologicalandanatomicalanalysesofMosobambooculmnecks).南京林业大学学报(自然科学版),2021,45(6):40-46.孙㊀龙,窦㊀旭,胡同欣.林火对森林生态系统碳氮磷生态化学计量特征影响研究进展(ResearchprogressontheeffectsofforestfireonforestecosystemC⁃N⁃Pecologicalstoichiometrycharacteristics).南京林业大学学报(自然科学版),2021,45(2):1-9.孙海燕,李㊀强,朱铭玮,李永荣,李淑娴.油用牡丹 凤丹 种子层积过程中营养物质的代谢变化研究(DynamicchangesofnutrientsofPaeoniaostii FengDan seedduringitsdormancybreaking).南京林业大学学报(自然科学版),2021,45(1):70-78.孙佳彤,国艳娇,李㊀爽,周晨光,姜立泉,李㊀伟.基于CRISPR/Cas9的毛果杨bHLH106转录因子的功能研究(AfunctionalstudyofbHLH106transcriptionfactorbasedonCRISPR/Cas9inPopulustrichocarpa).南京林业大学学报(自然科学版),2021,45(6):15-23.田㊀力,徐骋炜,尚旭岚,洑香香.青钱柳药用优良单株评价与选择(EvaluationandselectiononsuperiorindividualsformedicinaluseofCyclo⁃caryapaliurus).南京林业大学学报(自然科学版),2021,45(1):21-28.田呈明,王笑连,余㊀璐,韩㊀珠.林木与病原菌分子互作机制研究进展(Areviewonthestudiesofmolecularinteractionbetweenforesttreesandphytopathogens).南京林业大学学报(自然科学版),2021,45(1):1-12.童㊀龙,李红艳,刘小明,李㊀彬,陈丽洁,陈桂兰,曾小英,耿养会.不同栽培基料对竹荪农艺性状和主要营养成分的影响(EffectsofdifferentcultivatedformulasontheagronomiccharacteristicsandnutritionalvalueofDictyophoraindusiata).南京林业大学学报(自然科学版),2021,45(3):30-36.万雅雯,傅华君,时培建,林树燕.变温对毛竹种子萌发及幼苗生长的影响(EffectsofvariabletemperaturesonseedgerminationandseedlinggrowthofPhyllostachysedulis).南京林业大学学报(自然科学版),2021,45(4):97-106.王㊀冰,张鹏杰,张秋良.不同林型兴安落叶松林土壤团聚体及其有机碳特征(Characteristicsofthesoilaggregateanditsorganiccarbonindif⁃ferentLarixgmeliniiforesttypes).南京林业大学学报(自然科学版),2021,45(3):15-24.王㊀瑞,王国兵,徐㊀瑾,徐㊀晓.凋落物与蚯蚓对杨树人工林土壤团聚体分布及其碳氮含量的影响(Effectsoflitterfallsandearthwormsondistributionofsoilaggregatesandcarbonandnitrogencontentinpoplarplantations).南京林业大学学报(自然科学版),2021,45(3):25-29.王㊀玄,崔㊀鹏,丁晶晶,常㊀青.江苏南部沿海越冬水鸟群落结构及多样性分析(CommunitystructureanddiversityofoverwinteringwaterfowlsinsouthcoastofJiangsuProvince).南京林业大学学报(自然科学版),2021,45(5):178-184.王㊀圳,高亚军,闫凡峰,王晓伟,李华清,姜㊀雷.海滨城市道路绿化树种综合评价体系构建(Constructionofacomprehensiveassessmentsystemforroadgreeningtreespeciesincoastalcities).南京林业大学学报(自然科学版),2021,45(2):187-196.王福根,卫星杓,赵国春,贾黎明.无患子细根形态及垂直分布特征对配方施肥措施的响应(ResponsesofmorphologyandverticaldistributionoffinerootsinSapindusmukorossitoformulafertilization).南京林业大学学报(自然科学版),2021,45(4):58-66.王国兵,徐㊀瑾,徐㊀晓,阮宏华,曹国华.蚯蚓与凋落物对杨树人工林土壤酶活性的影响(Effectsofearthwormsandlitterfallsonthesoilenzymeactivitiesofpoplarplantations).南京林业大学学报(自然科学版),2021,45(3):8-14.王君杰,姜立春.基于线性分位数组合的兴安落叶松冠幅预测(PredictingcrownwidthforLarixgmeliniibasedonlinearquantilesgroups).南京林业大学学报(自然科学版),2021,45(5):161-170.王立超,陈凤毛,仇才楼,唐进根,丁学农,任吉星.坡面方胸材小蠹鉴定与风险分析(IdentificationandriskanalysesofEuwallaceainterjectus).南京林业大学学报(自然科学版),2021,45(5):201-208.王路君,蔡春菊,唐晓鹿,范少辉.硬头黄竹地上生物量分配特征及模型构建(AbovegroundbiomassallocationpatternsandmodelconstructionofBambusarigida).南京林业大学学报(自然科学版),2021,45(1):189-196.王明哲,崔晓阳,李斯雯,张伟波,赵华晨.大兴安岭北端地形因子对针叶林土壤黑碳储量的影响(EffectsoftopographicfactorsonsoilblackcarbonstorageinconiferousforestsatthenorthendofGreaterKhinganMountains).南京林业大学学报(自然科学版),2021,45(1):151-158.王培龙,杨㊀妮,张傲然,唐努尔㊃塞力克,李㊀爽,高彩球.刚毛柽柳ThPCS1基因克隆与镉胁迫应答分析(CloningThPCS1geneofTamarixhispidatoimprovecadmiumtolerance).南京林业大学学报(自然科学版),2021,45(3):71-78.542. All Rights Reserved.南京林业大学学报(自然科学版)第45卷王润松,孙㊀源,徐涵湄,曹国华,沈彩芹,阮宏华.施用沼液对杨树人工林细根生物量的影响(Effectsofbiogasslurryapplicationonfinerootbiomassofpoplarplantations).南京林业大学学报(自然科学版),2021,45(4):123-129.王润松,徐涵湄,曹国华,沈彩芹,阮宏华.施用沼液对杨树人工林细根形态特征的影响(Effectsofapplyingbiogasslurryonthemorphologicalcharacteristicsoffinerootsofpoplarplantations).南京林业大学学报(自然科学版),2021,45(5):119-124.王树梅,王㊀波,范少辉,肖㊀箫,夏㊀雯,官凤英.带状采伐对毛竹林土壤细菌群落结构及多样性的影响(Influenceofstripcuttingmanage⁃mentonsoilbacterialcommunitystructureanddiversityinPhyllostachysedulisstands).南京林业大学学报(自然科学版),2021,45(2):60-68.王树梅,范少辉,肖㊀箫,郑亚雄,周㊀阳,官凤英.带状采伐对毛竹地上生物量分配及异速生长的影响(Effectsofstripcuttingonabovegroundbiomassaccumulationandallocation,andallometricgrowthofPhyllostachysedulis).南京林业大学学报(自然科学版),2021,45(5):19-24.王卫卫,张应良.退耕还林农户技术禀赋对经果林换种的影响(Theimpactoffarmers technicalendowmentontheadoptingnewvarietiesoffruitforest).南京林业大学学报(自然科学版),2021,45(5):215-222.王羽尘,马健霄,刘宇航,白莹佳.基于烟气扩散特征的林区隧道火灾人群疏散模型(Theevacuationmodelofforesttunnelfirebasedonthecharacteristicsofsmokediffusion).南京林业大学学报(自然科学版),2021,45(6):177-184.王志鹏,王㊀薇,邢思懿.城市公园绿地特征和使用方式与人群健康关系研究(Astudyontherelationshipbetweenthecharacteristicsandusageofurbanparkgreenspaceandpopulationhealth).南京林业大学学报(自然科学版),2021,45(5):223-231.王竹雯,国艳娇,李㊀爽,周晨光,姜立泉,李㊀伟.基于CRISPR/Cas9的毛果杨PtrHBI1基因功能解析(FunctionalanalysesofPtrHBI1geneinPopulustrichocarpabasedonCRISPR/Cas9).南京林业大学学报(自然科学版),2021,45(6):31-39.王子芝,李㊀玥,华世明,周俊宏,刘文斗,廖声熙.基于生态保护加权的普达措国家公园功能分区研究(FunctionalzoningofPotatsoNationalParkbyecologicalprotectionweighting).南京林业大学学报(自然科学版),2021,45(6):225-231.韦庆钰,黄海龙,吴纯泽,苏嘉熙,卫㊀星.3种倍性青杨扦插苗对覆膜滴肥的生长响应(ResponseofPopuluscathayanacuttingseedlingsofthreeploidytypestofertilizerunderfilmmulchinganddripirrigation).南京林业大学学报(自然科学版),2021,45(5):93-101.魏㊀宁,李国雷,蔡梦雪,史文辉,刘㊀文,薛㊀柳,李进宇.缓释肥施氮量对4种国外栎苗木质量及移栽成活率的影响(Effectsofslow⁃releasefertilizationratesonseedlingqualityandfieldsurvivalratesoffourexoticoaks).南京林业大学学报(自然科学版),2021,45(3):53-60.魏龙鑫,章异平,李艺杰,张玉茹.栓皮栎叶片和枝条非结构性碳水化合物调配关系研究(Allocationofnon⁃structuralcarbohydrates(NSC)con⁃tentsinleavesandbranchesofQuercusvariabilisduringitsgrowthprocess).南京林业大学学报(自然科学版),2021,45(2):96-102.吴㊀红,燕丽萍,李成忠,夏㊀群,周㊀霞,赵宝元.槭树属常见树种翅果性状多样性与风传播特征分析(MorphologicalcharacteristicsandwinddispersalcharacteristicsofsamaraofcommonAcerspecies).南京林业大学学报(自然科学版),2021,45(2):103-110.吴丽君,游云飞,陈㊀达,陈文荣,李文芳. 黄樽 薄叶金花茶组培苗生根与移栽技术研究(Optimizationoftherootingandtransplantationte⁃chinquesoftissue⁃culturedshootsofCamelliachrysanthoides Huangzun ).南京林业大学学报(自然科学版),2021,45(3):117-122.吴其超,马㊀燕,李呈呈,许建军,么燕君,臧德奎.桂花新品种 冬荣 (Osmanthusfragrans Dongrong :anewcultivarofosmanthus).南京林业大学学报(自然科学版),2021,45(3):245-246.吴文清,许克福.合肥环城公园开放空间与游憩行为关系研究(RecreationalpreferencesamongdifferentopenspacesinaringcityparkofHefei).南京林业大学学报(自然科学版),2021,45(6):217-224.夏雯雯,李㊀想,王钰祺,徐㊀驰,刘茂松.互花米草与盐地碱蓬群落交错带土壤因子的梯度变化特征(DistributionofsoilfactorsacrossthehabitatgradientofSpartinaalternifloraandSuaedasalsacommunities).南京林业大学学报(自然科学版),2021,45(3):37-44.辛士冬,何㊀培,姜立春.不同矫正位置对落叶松分位数削度方程预测精度的影响(EffectsofdifferentcalibrationpositionsonpredictionprecisionofquantiletaperfunctionforLarixgmelinii).南京林业大学学报(自然科学版),2021,45(1):182-188.熊㊀瑶,严㊀妍.基于人体热舒适度的江南历史街区空间格局研究 以南京高淳老街为例(EffectsofspatialdesignandmicroclimateonhumanthermalcomfortintheregionsouthoftheYangtzeRiver:acasestudyofoldstreetinGaochun,Nanjing).南京林业大学学报(自然科学版),2021,45(1):219-226.熊光康,厉月桥,熊有强,段爱国,曹德春,孙建军,聂林芽,盛炜彤.低密度造林对杉木生长㊁形质和材种结构的影响(Effectsoflowstanddensityafforestationonthegrowth,stem⁃formandtimberassortmentstructureofCunninghamialanceolataplantations).南京林业大学学报(自然科学版),2021,45(3):165-173.徐晶园,圣倩倩,王伟希,刘聪哲,祝遵凌.南京典型城市道路植物多样性与土壤因子的耦合关系(Modelingthedegreeofcouplingandinterac⁃tionbetweenplantcommunitydiversityandsoilpropertiesontypicalurbanroadsinNanjing).南京林业大学学报(自然科学版),2021,45(6):119-126.徐圆圆,周思维,陈㊀仲,赵国春,刘济铭,王立宪,王㊀昕,贾黎明,张端光.无患子不同器官中的总皂苷和总黄酮含量(ContentsofthetotalsaponinsandtotalflavonoidsindifferentorgansofSapindusmukorossi).南京林业大学学报(自然科学版),2021,45(4):83-89.许嘉麟,谈家金,郝德君.蜡样芽孢杆菌NJSZ-13菌株对松材线虫产卵和繁殖的影响(EffectofBacilluscereusNJSZ⁃13strainonovipositionandreproductionofBursaphelenchusxylophilus).南京林业大学学报(自然科学版),2021,45(5):209-214.许中秋,隋德宗,谢寅峰,王俊毅.两个乌桕新品种苗木光合特性比较(ComparisonofphotosyntheticcharacteristicsoftwonewTriadicasebiferavarieties).南京林业大学学报(自然科学版),2021,45(1):93-100.薛蓓蓓,田国双.基于碳汇木材复合经营目标的综合效益及影响因素分析(Analysisofcomprehensivebenefitsandinfluencingfactorsbasedonthecombinedeconomicvalueofcarbonsequestrationandtimberbenefits).南京林业大学学报(自然科学版),2021,45(2):205-212.642. All Rights Reserved.㊀第6期‘南京林业大学学报(自然科学版)“2021年论文题录(作者)索引闫想想,王秋华,缪秀丽,韩永涛,龙腾腾.昆明西山林场5种可燃物的火行为研究(FirebehavioroffivekindsoffuelsinXishanForestFarm,KunmingCity).南京林业大学学报(自然科学版),2021,45(1):197-204.杨㊀南,崔允姬,王㊀茜,王曙光.木竹的花器官形态与解剖结构研究(AstudyonthemorphologyandanatomicalstructureofBambusarutilaspiklets).南京林业大学学报(自然科学版),2021,45(4):90-96.杨㊀意,刘㊀波,叶建仁,苏禄晖.水杉赤枯病综合营林生态控制技术研究(AstudyontheecologicalcontrolofredblightofMetasequoiaglyp⁃tostroboidesbyintegratedforestmanagement).南京林业大学学报(自然科学版),2021,45(6):90-98.杨红强,余智涵.全球木质林产品碳科学研究动态及未来的重点问题(Researchtrendsandfuturekeyissuesofglobalharvestedwoodproductscarbonscience).南京林业大学学报(自然科学版),2021,45(4):219-228.杨清平,陈双林,郭子武,郑㊀进.摘花和打顶措施对毛竹林下多花黄精块茎生物量积累特征的影响(ResponsesoftuberbiomassaccumulationanditsallometrytotoppingandflowerpluckingmeasuresofPolygonatumcyrtonemagrownunderPhyllostachysedulisforests).南京林业大学学报(自然科学版),2021,45(2):165-170.杨瑞珍,张焕朝,胡立煌,范之馨.接种AMF及施氮对滨海盐土氮矿化的影响(EffectsofAMFinoculationandnitrogenapplicationonnitrogenmineralizationofcoastalsalinesoil).南京林业大学学报(自然科学版),2021,45(2):145-152.姚晶晶,冯象千,肖㊀贺,郑㊀豫,张成梁.不同固废及其处理产物对黄骅港盐碱土的改良效果(Improvementeffectsofdifferentsolidwasteandtheirdisposalbyproductsonsaline⁃alkalisoilinHuanghuaPort).南京林业大学学报(自然科学版),2021,45(3):45-52.姚正明,田旭琴,蒙慧理,邓云飞.爵床科凹苞马蓝在贵州的分布新记录及其补充描述(ThenewdistributionofStrobilanthesretusa(Acanthaceae)inGuizhouwithsupplementarydescription).南京林业大学学报(自然科学版),2021,45(4):177-182.伊贤贵,董㊀鹏,谢春平,彭智奇,杨国栋,董京京,钟育谦,翟飞飞,王贤荣.江苏宜兴龙池山自然保护区固定样地物种组成分析(AnanalysisonspeciescompositionofapermanentplotontheLongchiMountain,YixingCity,JiangsuProvince).南京林业大学学报(自然科学版),2021,45(6):159-168.尹艳楠,谈家金,李梦伟,许嘉麟,郝德君.蜡样芽孢杆菌NJSZ-13菌株防治松材线虫病研究(AstudyonthebiocontrolofpinewiltdiseasebyBacilluscereusNJSZ⁃13).南京林业大学学报(自然科学版),2021,45(3):152-158.于松平,刘泽彬,郭建斌,王彦辉,于澎涛,王㊀蕾.六盘山华北落叶松林分蒸腾特征及其影响因素(StandtranspirationcharacteristicsofLarixprincipis⁃rupprechtiiplantationandtheirinfluencingfactorsinLiupanMountain).南京林业大学学报(自然科学版),2021,45(1):131-140.原雅楠,李正才,王㊀斌,张雨洁,黄盛怡.不同林龄榧树根㊁枝㊁叶的C㊁N㊁P化学计量及内稳性特征(Ecologicalstoichiometryinleaves,branchesandrootsofTorreyagrandiswithdifferentforestagesanditsstoichiometrichomoeostasis).南京林业大学学报(自然科学版),2021,45(6):135-142.袁金玲,马婧瑕,钟远标,岳晋军.基于SSR标记的丛生竹杂种鉴定㊁遗传分析和指纹图谱构建(SSR⁃basedhybrididentification,geneticanalysesandfingerprintdevelopmentofhybridizationprogeniesfromsympodialbamboo(Bambusoideae,Poaceae)).南京林业大学学报(自然科学版),2021,45(5):10-18.袁婷婷,路远峰,谢寅峰,马迎莉,吴㊀桐,倪㊀震.硼钼铜微肥配施对太子参光合特性的影响(Effectsofcombinedapplicationofboron⁃molybdenum⁃coppermicrofertilizersonphotosyntheticcharacteristicsofPseudostellariaheterophylla).南京林业大学学报(自然科学版),2021,45(4):130-136.苑兆和,陈立德,张心慧,赵玉洁.果树分子育种研究进展(Advancesinmolecularbreedingoffruittrees).南京林业大学学报(自然科学版),2021,45(4):1-12.岳晋军,朱燕琳,袁金玲.绿竹笋用林长周期母竹留养模式研究(StudyonmanagementmodeloflongperiodstockingbambooconservationinDendrocalamopsisoldhami).南京林业大学学报(自然科学版),2021,45(5):31-37.臧明月,李㊀璇,方炎明.基于SSR标记的白栎天然居群遗传多样性分析(GeneticdiversityanalysisamongnaturalpopulationsofQuercusfabribasedonSSRmarkers).南京林业大学学报(自然科学版),2021,45(1):63-69.张㊀恒,崔孟然,单延龙,王㊀飞.中蒙边境典型草原草本可燃物燃烧性研究(StudyonflammabilityofherbaceousfuelintypicalgrasslandofChina⁃Mongoliaborder).南京林业大学学报(自然科学版),2021,45(5):171-177.张㊀磊,童㊀龙,谢锦忠,李俞佳,张㊀玮.不同灌水时间下毛竹伐桩根系化学计量及生理特性变化(Changesinchemicalmetrologyandphysio⁃logicalcharacteristicsofPhyllostachysedulisstumprootsunderdifferentirrigationtimes).南京林业大学学报(自然科学版),2021,45(5):25-30.张㊀琳,程亚男,张㊀欣,杨伟婷,孔庆涛,谢东锋.两种植物生长调节剂对木槿插穗生根的影响(EffectsoftwoplantgrowthregulatorsonrootingofHibiscussyriacuscuttings).南京林业大学学报(自然科学版),2021,45(3):123-129.张㊀濛,续高山,滕志远,刘关君,张秀丽.模拟酸雨对小黑杨幼苗生长和光合特性的影响(Effectsofsimulatedacidrainongrowthandphotosyn⁃theticphysiologicalcharacteristicsofPopulussimoniiˑP.nigra).南京林业大学学报(自然科学版),2021,45(6):57-64.张㊀琪,钱㊀滕,王㊀欢,朱铭玮,李淑娴.加拿大紫荆种子硬实性解除及其吸水特性研究(HardnessbreakingandmechanismsofwaterabsorptioninCerciscanadensisseeds).南京林业大学学报(自然科学版),2021,45(3):137-142.张㊀群,及晓宇,贺子航,王智博,田增智,王㊀超.白桦BpGRAS1基因的克隆及耐盐功能分析(CloningandsalttoleranceanalysisofBpGRAS1geneinBetulaplatyphylla).南京林业大学学报(自然科学版),2021,45(5):38-46.张㊀馨,马苗苗,吕婉秋,LEEJoobin,杨静莉.大青杨PuZFP103基因的序列特征及逆境胁迫的表达分析(Sequencecharacteristicsandexpres⁃sionpatternanalysesofPuZFP103geneunderabioticstressinPopulusussuriensis).南京林业大学学报(自然科学版),2021,45(1):36-44.742. All Rights Reserved.。

三维激光扫描技术

三维激光扫描技术

激光扫描测距技术(Light Detection and Ranging LiDAR) 是一种快速直接获取地形表面模型的技术
LIDAR是一种集激光测距、GPS(全球定位系统)和 INS(惯性导航系统)三种技术与一体的空间测量系 统 。是一种新型光传感器。LIDAR并非雷达 (Radar),雷达是声波传感器。
减少误差的方法:
扫描仪定期标定,确定测距和测角的系统误差。 扫描作业合理规划,尽量减少测站次数,从而减 少因点云配准引入的配准误差 缩短扫描距离,减少大气对激光传输的影响。 尽可能进行垂直扫描,避免激光光斑形状造成的 扫描点位置不确定性 采用滤波和拟合等数据处理手段,提高点云数据 质量
点云
剔除非目标物(不相关点云)
机载激光扫描
激光扫描仪: 机载激光扫描仪部件采集三维激光点云数据, 测量地形同时记录回波强度及波形激光扫描仪,是 LiDAR的核心,一般由激光发射器、接收器、时间间 隔测量装置、传动装置、计算机和软件组成。 线激光器发出的光平面扫描物体表面,面阵CCD 采集被测物面上激光扫描线的漫反射图像,在计算 机中对激光扫描线图像进行处理,依据空间物点与 CCD面阵像素的对应关系计算物体的景深信息,得到 物体表面的三维坐标数据,快速建立原型样件的三 维模型。
坐标计算公式
• X=Scosθcosα • Y=Scosθsinα • Z=Ssinθ
仪器坐标系
点云数据误差
• 大致可分为四类:仪器误差、与目标物体 反射面有关的误差、外界环境条件、点云 配准。 • 仪器误差是仪器本身性能缺陷造成的测量 误差,包括激光测距的误差;扫描角度测 量的误差; • 与目标物体反射面有关的误差主要包括目 标物体反射面倾斜的影响和表面粗糙度的 影响; • 外界环境条件主要包括温度、气压等因素。

基于双目视觉的树木高度测量方法研究

基于双目视觉的树木高度测量方法研究

摘要随着人工智能时代的到来,计算机视觉领域被广泛应用到各个行业中。

同样的,人工智能改变着传统林业的研究方法,林业信息工程技术日渐成熟。

针对传统树高测量方法中存在的结果准确性不高、操作困难、专业知识转化为规则困难等问题,采用了一种基于双目立体视觉理论计算树高的方法,实现了树木高度的无接触测量。

以双目相机作为采集设备,基于MATLAB、VS2015开发平台,采用张正友单平面棋盘格相机标定方法进行单目标定和双目标定,从而获取双目相机2个镜头的参数。

通过SGBM算法和BM算法立体匹配后获得视差深度图像,进而获取树木关键点的三维坐标信息并以此来计算树木高度。

将深度学习与双目视觉相结合可以实现树木同时在二维和三维空间的信息提取。

在VS2015上的试验结果表明,该方法操作相对简单,并且能够较为准确地测量树木高度,SGBM算法树高测量结果的相对误差范围为0.76%~3.93%,BM算法相对误差范围为0.29%~3.41%。

结果表明:采用双目视觉技术测量树木高度可以满足林业工程中对于树高测量的精度需要。

随着现代科学技术的迅速发展,林业管理工作效率需要不断提高,精准林业成为林业领域的发展趋势。

树木参数树木参数是林业调查的重要指标,其中树高是森林调查的重要指标,对于树木生长具有一定参考价值。

机器视觉可代替人眼对物体进行检测和识别,较为常见的是利用单目摄像头。

若要获取物体的深度信息,仅凭单目摄像头是不完善的,通常情况下需选择双目摄像头来获取物体三维信息。

目前,智能手机后置镜头数大多不少于2个,已达到双目视觉测量的物理环境,未来将双目视觉技术应用在智能手机上可以达到成本低、操作便捷的效果。

同样的,可以将双目视觉技术应用在无人机上,实现对地势复杂、不易拍摄的树木进行树高测量。

此外,双目视觉技术对倾斜树木的树高测量具有一定价值和意义。

目前,大多采用传统的望远测树仪来测量树木高度。

邱梓轩等利用PDA模块、远程EDM模块、长焦CCD镜头模块和云台组成望远测树仪测量立木高度。

两种高速铁路激光点云的采集拼接方法

两种高速铁路激光点云的采集拼接方法

两种高速铁路激光点云的采集拼接方法张匡宇; 李仲勤; 郭楠; 张秉红【期刊名称】《《北京测绘》》【年(卷),期】2019(033)011【总页数】4页(P1328-1331)【关键词】高速铁路; 点云拼接方法; 三维激光扫描仪; 点云拼接精度【作者】张匡宇; 李仲勤; 郭楠; 张秉红【作者单位】兰州交通大学土木工程学院甘肃兰州730070; 兰州交通大学测绘与地理信息学院甘肃兰州730070; 中国铁路太原局集团有限公司朔州工务段山西朔州036002【正文语种】中文【中图分类】P2580 引言地面三维激光扫描技术(Terrestrial Laser Scanning,TLS)是利用激光测距的原理,通过记录被测物体表面大量密集点的三维坐标信息和反射率,进而快速复建出被测目标的三维模型的一种全自动测量技术[1]。

由于TLS的工作原理,大多数情况下遇到一测站扫描不完全目标时,需要在其他测站继续扫描,但每一站的点云数据都是在以本测站扫描仪中心为原点的独立坐标系中存在的,故需要将各站的点云拼接到一个共同的坐标系下。

因此,点云拼接是点云数据处理的重要环节,点云拼接的精度直接影响了后续处理技术的质量[2-4]。

依据不同的分类标准,相应的可以得到不同的拼接方法分类。

按照数据采集原理可分为:(1)将不同视角点云进行精确对齐;(2)扫描过程中导航系统的精确定位[5]。

标靶拼接和控制点拼接是对应两种数据采集原理的具体方法。

标靶拼接是点云拼接中最常用的方法,这种方法需要在相邻的两测站放置至少3个公共标靶,每测站扫描得到公共标靶的相对三维坐标,然后采用布尔莎七参数模型(B模型)[6]相邻测站点云两两拼接;基于控制点拼接的点云数据采集需要在扫描过程中完成定位、定向,其拼接过程是将每一测站的点云数据共同解算到统一坐标系下[1,6]。

在实际工程中,由于不同的工程环境与特点,TLS不同的拼接方法呈现出不同精度与特征[7-10]。

RIEGL VZ-1000 三维激光扫描成像系统 说明书

RIEGL VZ-1000 三维激光扫描成像系统 说明书

LASER MEASUREMENT SYSTEMS®Preliminary DatasheetRIEGL VZ-1000®三维激光扫描成像系统拥有RIEGL 独一无二的全波形回波技术(waveform digitization)和实时全波形数字化处理和分析技术(on-line waveform analysis),每秒可发射高达300,000点的纤细激光束,提供高达0.0005°的角分辨率。

这种高精度高速激光测距及可同时探测到多重乃至无穷多重目标的细节信息技术优势,是传统单次回波反映单一物体技术所无法比拟的。

除此以外,基于RIEGL 独特的多棱镜快速旋转扫描技术,它能够产生完全线性、均匀分布、单一方向、完全平行的扫描激光点云线。

的高质量制作水准和密封等级使它能够在恶劣的环境条件下完成高难度的测量分析任务。

具有轻便、坚固耐用等显著优点,其安装和操作也极其简单:通过自带的控制面板即可设置参数,控制扫描,无需携带笔记本电脑,并可使用iPhone 或PDA 进行远距离的遥控操作,将全部数据都储存在设备附带的存储卡中。

操作模式:●无需笔记本即可单机获取数据,并利用内置用户界面进行基本配置及输入命令。

●通过有线或无线网络端口,在笔记本上经由RiSCAN PRO 进行远程遥控操作。

●将命令提示整合到移动激光扫描系统中。

●提供连接后处理软件接口。

使用界面:●整合人机交互界面(HMI),在设备上进行单机操作。

●使用320x 240像素、3.5寸高分辨率TFT 彩色液晶显示屏,防刮防反射并配备多语言菜单。

●防水抗污键盘,按钮设计便于控制。

●通过扩音器可获取声音信号。

RIEGL VZ-1000VZ-1000VZ-1000长距离、高精度、快速度、轻巧便携的三维激光扫描成像系统 ●超高速数据采集●广阔的扫描视场角,可控性强●能够识别多重目标●在恶劣环境下卓越的测量能力●标配高精度数码相机安装底盘●集成倾角传感器和激光铅锤●内置GPS 天线●多种端口(LAN,WLAN,USB 2.0)●设备本身具备内部数据存储能力●超长距离,高达1400米●建筑和正射影像测量●建立考古和文化遗产档案●隧道测量●土木工程应用及工程监测●城市三维建模●数字城市建模和车载激光扫描成像系统●地形和矿产测量系统构成软件包用于扫描仪的操作和数据处理数据存档:以目录树结构存储为XML 文件格式核查,智能视图和特征抽取拼接方式:提供包括全球坐标系拼接在内的全自动和半自动四种拼接方式高精度、低畸变的专业单反数码相机(4,256×2,832pixel)(4,288x 2,848pixel) ●自动生成高分辨率的贴图纹理网格●自动生成三维正射影像、数字高程图和等高曲线图●实时定位、距离、面积和体积的测量将扫描仪、软件和数码相机结合,能够实现Ø 200 mm308 m m3Preliminary Datasheet扫描仪通讯和数据接口●LAN 10/100/1000MBit/s 接口位于旋转头里●LAN 10/100MBit/s 接口位于底部●WLAN 接口位于顶部天线处●USB 2.0用于外部驱动存储(闪存●USB 2.0用于连接数码相机●GPS 天线连接器●两个用于额外电源供给的接口●GPS 脉冲同步接口(1PPS 扫描数据存储●内置32G 闪存存储●外部有USB 2.0存储驱动接口(可接/RIEGL VZ -1000®2)Laser PRR (Peak) 70 kHz100 kHz 150 kHz 300 kHz2)Effective Measurement Rate 29 000 meas./sec.42 000 meas./sec.62 000 meas./sec.122 000 meas./sec.3)Max. Measurement Range 4)for natural targets ρ ≥ 90%1200 m 1000 m 800 m 450 m for natural targets ρ ≥ 20%560 m470 m380 m270 m5)Max. Number of Targets per Pulse practically unlimited 6) 8)Accuracy 8 mm 7) 8)Precision 5 mmCLASS 1 LASER PRODUCT1)with online waveform processing4)limited by PRR 2)rounded values, selectable by measurement program 5)details on request3)Typical values for average conditions. Maximum range is 6)Accuracy is the degree of conformity of a measured quantity to its actual (true) value.specified for flat targets with size in excess of the laser7)Precision, also called reproducibility or repeatability, is the degree to beam diameter, perpendicular angle of incidence, and for which further measurements show the same result.atmospheric visibility of 23 km. In bright sunlight, 8)One sigma @ 100 m range under RIEGL test conditions.the max. range is shorter than under an overcast sky.9)0.3 mrad correspond to 30 mm increase of beamwidth per 100 m of range.Minimum Range 1.5 mLaser Wavelength near infrared 9)Beam Divergence 0.3 mrad10) frame scan can be disabled, providing 2D operation11) selectable, minimum stepwidth increasing to 0.004° @ 70 kHz PRRLASER MEASUREMENT SYSTEMS®0100200400500800Target Reflectivity [%]M a x i m u m M e a s u r e m e n t R a n g e [m ]w e t i c e , b l a c k t a r p a p e rd r y s n o wc o n i f e r o u s t r e e sd r y a s p h a l td e c i d u o u s t r e e st e r r a c o t t ac l i f f s , s a nd , m a s o n r yw h i t e p l a s t e r w o r k , l i m e s t o n e30051015202530354045505560657075801400w h i t e m a r b l e9085standard clear atmosphere: visibility 23 km light haze: visibility 8 kmc o n s t r u c t i o n c o n c r e t e9001000110012001300600700150 kHz100 kHz70 kHzrange limited by PRR300 kHz技术参数物理参数激光产品分类一级安全激光制造依照IEC60825-1:2007The following clause applies for instruments delivered into the United States:Complies with 21CFR 1040.10and 1040.11except for deviations pursuant to Laser Notice No.50,dated Jul 26,2001.温度范围:0℃~40℃(使用);-10℃~50℃(存放)保护等级:IP64,防尘,防雨水重量:9.8KG1)Range Performance 100°(+60°~-40°)旋转反射棱镜3线/秒~120线/秒0.0024°≤∆ϑ≤0.288°优于0.0005°(1.8arcsec)内置,专门用于扫描仪垂直位置的变化定位实时同步扫描数据的采集时间控制扫描仪同步旋转0°~360°旋转激光头0°/秒~60°/秒0.0024°≤∆φ≤0.5°优于0.0005°(1.8arcsec)扫描角度范围扫描机制原理扫描速度角度步频率∆ϑ(垂直),∆φ(水平)角度分辨率倾角传感器:内置同步计时器:同步扫描(可选):11)11)10)假设具备以下条件:平面目标大于激光光束;入射角垂直于目标且亮度平均。

基于背包激光雷达构建天然林蒙古栎胸径-树高模型

基于背包激光雷达构建天然林蒙古栎胸径-树高模型
目前机载激光雷达和地基激光雷达在林业方面 的应用和研究已经趋于成熟,但是这 2 种激光雷达在 进行外业活动采集数据的过程中成本十分高昂,且数 据处理较为繁琐,因此在小范围样地调查时并不是十 分适用。 背包激光雷达作为一种新型便携的激光扫 描仪十分适用于样地尺度下的调查,但在林业方面的 应用还比较少,因此,准确评估利用背包激光雷达提 取单木因子的精度是亟待解决的问题。
(1. 黑龙江省林业和草原调查规划设计院,哈尔滨 150040;2. 东北林业大学 林学院,哈尔滨 150040)
摘 要:为探究基于背包激光雷达( Backpack Laser Scanning,BLS) 点云数据提取天然林蒙古栎单木因子的精度,确定基于 BLS 点云数据构建胸径-树高模型的可行性,以 3 块天然林蒙古栎样地(30 m × 30 m) 的 BLS 点云数据为数据源,对点云数据 进行预处理、归一化和单木分割等操作,并从分割后的单木中提取胸径和树高因子。 通过对比提取数据与实测数据的相关性 来分析单木因子的提取精度。 最后利用提取出的单木因子构建天然林蒙古栎胸径-树高模型。 结果表明,蒙古栎胸径提取结 果的决定系数( R2 ) 为 0. 930 ~ 0. 957,均方根误差( RMSE) 为 0. 697 ~ 0. 897 cm;树高提取结果的 R2 为 0. 925 ~ 0. 951,RMSE 为 1. 479 ~ 1. 683 m。 基于提取数据构建的天然林蒙古栎最优胸径-树高模型为模型 1( 抛物线模型) ,模型检验指标 R2 为 0. 627, RMSE 为 2. 044 m。 由此得出,BLS 有一定能力在天然林中进行数据采集,提取的蒙古栎胸径和树高与实测数据具有很高的相 关性,结果可靠。 基于 BLS 建立的蒙古栎胸径-树高模型精度较高,为 BLS 应用于天然林中的单木生长建模提供了进一步的 理论基础。

地面三维激光扫描支持下的矿山边坡变形监测分析

地面三维激光扫描支持下的矿山边坡变形监测分析

121测绘技术M apping technology地面三维激光扫描支持下的矿山边坡变形监测分析李建师(广西壮族自治区第四地质队,广西 南宁 530031)摘 要:随着地面三维激光扫描技术(3D TLS)的发展,对矿山边坡进行高精度、非接触式的变形监测成为可能。

本研究围绕某金属矿区工作面采空区上方的边坡展开,通过详细的地面点云数据采集、特征提取、匹配分析,以及变形分析,展示了3D TLS在矿山边坡监测中的应用。

研究成果不仅揭示了边坡在不同时间尺度上的变形特征,而且提供了一个准确评估边坡稳定性和预测潜在滑坡风险的方法论基础。

关键词:地面三维激光扫描;矿山边坡;变形监测;点云数据中图分类号:P225.2 文献标识码:A 文章编号:1002-5065(2023)23-0121-3Monitoring and analysis of mine slope deformation supported by ground 3D laser scanningLI Jian-shi(The Fourth Geological Team of Guangxi Zhuang Autonomous Region,Nanning 530031,China)Abstract: With the development of ground three-dimensional laser scanning technology (3D TLS), it is possible to conduct high-precision and non-contact deformation monitoring of mine slope. This study focuses on the slope above the goaf of a metal mining face,, and demonstrated the application of 3 DTLS in mine slope monitoring through detailed ground point cloud data collection, feature extraction, matching analysis and deformation analysis. The results not only reveal the deformation characteristics of slopes at different time scales, but also provide a methodological basis for accurately assessing slope stability and predicting potential landslide risk.Keywords: ground 3D laser scanning; mine slope; deformation monitoring; point cloud data收稿日期:2023-10作者简介:李建师,生于1978年,男,壮族,本科,广西天等人,测绘工程师,研究方向:激光雷达点云数据与无人机影像,开采区地表移动变形监测。

测绘工程专业英语翻译(中文版)

测绘工程专业英语翻译(中文版)

Song et al. / J g) 2014 15(1):68-82
69
and hardware resource, especially, time, is called for. In recent years, with the development of methods allowing for the accurate calibration of non-metric cameras and the increasingly reliable automation of the process, photogrammetry is becoming accessible to a wide user base (Butler et al., 2001; Chandler et al., 2002; Lohry and Zhang, 2012; Feng et al., 2013; Zwick et al., 2013). Using an online structure-from-motion (SfM) program, Fonstad et al. (2013) created high-resolution digital elevation models of a river environment from ordinary photographs produced from a workflow that takes advantage of free and open source software. Bouratsis et al. (2013) used a pair of commercial cameras to record the evolution of the bed, and a computational approach that consisted of a set of computer-vision and image-processing algorithms was employed to analyze the videos and reconstruct the instantaneous 3D surface of the bed. James and Robson (2012) integrated SfM and multiview-stereo (MVS) algorithms to study topographic measurements in a method requiring little expertise and enabling automated processing. Astruc et al. (2012) studied a stereoscopic technique to measure sand-bed elevation in the swash zone at the wave time-scale. This method is non-intrusive, leading to an accuracy of height estimation of the order of a sand grain size whilst temporal resolution allows the wave cycle to be captured. In addition, Lu et al. (2008) made some related research about thematic mapper imagery of plain and highland terrains. Image data are simply 2D. However, many clues might be found in single images or multiple images through 3D reconstruction of the image scene. Typical reconstruction methods under sunlight conditions include the shape from shading method (Zhang et al., 1999), the shape from texture method (Forsyth and Ponce, 2002), and the manual interaction method (Shashua, 1997). There are also some methods based on multiple images, such as the stereo vision method, the motion image sequence method, and the photometric stereo method (Li, 1991; Zhang Y.J., 2000; Pollefeys and Gool, 2002). It is also worth noting that the 3D reconstruction application is widespread as well as the topographic survey. There are some significant applications in other fields. Gomez et al. (2013) carried out a new method for reconstructing a 3D+t velocity field from multiple 3D+t color Doppler

如何进行精确的地面形变测量

如何进行精确的地面形变测量

如何进行精确的地面形变测量地面形变测量是现代地质研究中非常重要的一项工作。

它可以帮助我们了解地壳运动的规律,以及地震、火山喷发等地质灾害的发生机制。

本文将介绍如何进行精确的地面形变测量。

一、简介地面形变是指地壳表面发生的各种变动,包括水平位移、垂直位移、倾斜等。

为了测量地面形变,我们通常会使用全球定位系统(GPS)、高精度地形测量仪(TSP)、地面控制测量仪(CGMT)等现代科学仪器。

二、GPS技术GPS是全球定位系统的缩写,是目前最常用的地面形变测量技术之一。

它通过接收卫星发送的信号,来测量接收站与卫星之间的距离。

根据多普勒效应,我们可以计算出接收站的三维坐标。

通过多次测量,我们就能获得地面形变的信息。

然而,GPS有一定的局限性。

由于信号的传播速度很快,接收站与卫星之间的距离测量误差可能达到几米。

此外,地球上的地壳运动非常缓慢,通常需要数年才能测得一个明显的形变信号。

因此,在进行GPS测量时,需要采取多站位观测,以确保数据的准确性。

另外,由于GPS接收机的价格较高,测量成本也相对较高。

三、TSP技术TSP是高精度地形测量仪(Terrestrial Laser Scanning Photogrammetry)的缩写,是地面形变测量中一种新兴的技术。

它通过使用激光扫描器扫描地形,并使用摄影测量技术进行图像处理,最终获得地面形变的精确信息。

与GPS相比,TSP技术具有以下优点。

首先,TSP可以实现高精度的地面形变测量,其精度可以达到亚米级。

其次,TSP测量速度快,可以在数小时内完成大范围的测量工作。

此外,TSP测量成本较低,仪器的价格相对较便宜,对一些预算有限的研究项目来说是一个很好的选择。

然而,TSP技术也存在一些局限性。

首先,激光扫描仪的高精度要求使得其定位需求非常高,任何定位误差都会导致测量结果的不准确。

其次,TSP技术在测量范围上存在一定的限制,通常适用于几百米到几千米的尺度范围。

对于更大范围的地面形变测量,需要采用其他技术手段。

TLS_技术在地铁隧道断面测量中的应用

TLS_技术在地铁隧道断面测量中的应用

Geomatics Science and Technology 测绘科学技术, 2023, 11(2), 67-75 Published Online April 2023 in Hans. https:///journal/gst https:///10.12677/gst.2023.112008TLS 技术在地铁隧道断面测量中的应用李志超,闫阳阳,王双雨机械工业勘察设计研究院有限公司,陕西 西安收稿日期:2023年2月21日;录用日期:2023年4月3日;发布日期:2023年4月7日摘要针对传统测量方法在地铁隧道断面测量中存在的过程复杂、效率低下等问题,本文采用地面三维激光扫描(TLS)技术,使用标靶联系测量法和导线测量法进行外业数据采集。

以设计线路为基准提取隧道的连续断面,采用最小二乘法对提取的断面进行拟合,获取断面的中心坐标,与隧道设计中心进行比较,获取隧道的断面尺寸。

以合肥地铁某区间为例进行试验,结果表明本文技术方法较传统监测方法能够快速实现隧道断面测量,有效提升工作效率。

关键词TLS ,地铁隧道,断面测量Application of TLS Technology in Metro Tunnel Boundary MeasurementZhichao Li, Yangyang Yan, Shuangyu WangChina Jikan Research Institute of Engineering Investigations and Design Co., Ltd., Xi’an ShaanxiReceived: Feb. 21st , 2023; accepted: Apr. 3rd , 2023; published: Apr. 7th, 2023AbstractIn view of the problems of complex process and low efficiency of traditional survey methods in metro tunnel section survey, this paper uses ground three-dimensional laser scanning (TLS) technology, target contact survey and traverse survey to collect field data. The continuous section of the tunnel is extracted based on the design line, and the least square method is used to fit the extracted section to obtain the center coordinates of the section, and the section size of the tunnel is obtained by comparing it with the tunnel design center. Taking a section of Hefei Metro as an example, the test results show that the technical method in this paper can achieve tunnel section measurement faster than the traditional monitoring method, and effectively improve the work ef-ficiency.李志超 等KeywordsTerrestrial Laser Scanning, Subway Tunnel, Section SurveyCopyright © 2023 by author(s) and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言三维激光扫描技术又称“实景复制技术”,是一种高效率、高精度、非接触式的主动测量技术[1],地面三维激光扫描系统主要由三维激光扫描仪、软件控制平台、电源及其他附属设备组成,它可以在多种观测条件下进行外业扫描,快速获取目标物体的表面三维坐标数据,同时可以通过激光扫描仪内置或外接的同轴数码相机拍摄的影像将点云赋上真彩色,建立数字表面模型,实景呈现扫描物体的真实场景。

天津市测绘院召开新型基础测绘体系建设工作会议

天津市测绘院召开新型基础测绘体系建设工作会议
必须把握好接下来一年半的战略机遇期ꎬ充分发挥专业优势推动“ 主业发展” ꎮ 加快推进新型基础测绘建设已迫在眉睫ꎬ而天津院
新型基础测绘体系建设的重点是生产模式和技术体系的变革ꎮ 通过优化数据采集、细化数据处理、强化成果管理、拓展成果应用、
[8]
秦红艳. 三维激光扫描技术检测测绘成果精度的应用 Nhomakorabea[9]
王二民ꎬ郭际明ꎬ杨飞等. 利用三维激光扫描技术检测建
[ J] . 测绘工程ꎬ2018ꎬ27(10) :37 ~ 41+45.
69
筑物平整度及垂直度[ J] . 测绘通报ꎬ2019(6) :85 ~ 88.
[10] 白殿有. 三维激光扫描技术在地铁结构现状调查中的应
initiativeꎬworking around the clockꎬrich information includedin the point cloudsꎬetc. It can well overcome the shortcom ̄
ings of difficulty and low efficiency of the conventional measurement means when collecting the information of crane rails.
资源ꎬ构建全市一个库、一张图ꎮ 二是业务流程“ 新” ꎮ 突出事前发现变化ꎬ通过构建多途径变化信息获取、分析、核实、推送和应用
的变化发现业务流ꎬ达成“ 按需施测” 的目标ꎬ实现“ 以变化发现为核心ꎬ驱动其他业务开展” 的生产业务流程ꎮ 三是技术手段“ 新” ꎮ
将架构智能化处理基础设施环境ꎬ研发自动变化发现技术、动态分布式增量更新技术、影像自动化处理关键技术纳入技术支撑体
The advantages of detecting crane rails by using terrestrial three dimensional laser scanning technology are increasingly

地面激光扫描仪技术流程

地面激光扫描仪技术流程

地面激光扫描仪技术流程English Answer:Terrestrial Laser Scanning Workflow.Terrestrial Laser Scanning (TLS) is a widely used technology for capturing detailed 3D data of built environments, infrastructure, and natural landscapes. The workflow for TLS involves several key steps:1. Planning and Setup:Determine the project objectives and data requirements.Select appropriate scanning equipment and define scanning parameters.Establish control points to ensure accurateregistration of scans.Plan the scanning strategy to optimize coverage and minimize data gaps.2. Data Acquisition:Position the scanner at designated locations and capture 3D point cloud data.Adjust scanning parameters based on现场conditions to ensure optimal data quality.Document scanning locations and orientations for post-processing.3. Data Registration:Align multiple scans into a single coordinate system using control points or registration algorithms.Remove noise and outliers from the point cloud data.Georeference the point cloud to a known coordinatesystem.4. Data Processing:Segment the point cloud into meaningful objects or features using classification algorithms.Extract geometric measurements, such as distances, areas, and volumes.Generate 2D plans, 3D models, and virtual reality visualizations from the processed data.5. Data Analysis and Interpretation:Analyze the processed data to identify patterns, trends, and anomalies.Make informed decisions based on the data insights.Communicate findings to stakeholders through reports, presentations, and interactive models.中文回答:地面激光扫描仪技术流程。

TLS技术在岩体结构面识别中的应用研究

TLS技术在岩体结构面识别中的应用研究

TLS技术在岩体结构面识别中的应用研究侯宇徽,宋德坤,李建宇,郭秋志(吉林建筑大学测绘与勘查工程学院,吉林长春130118)摘要:岩体结构面对岩体的力学性质和工程稳定性起着重要的控制作用,获取岩体结构面几何信息是研究结构面的分布组合规律以及岩体结构的基础。

传统的结构面测量方法具有工作效率低等缺点,尝试利用三维激光扫描技术获取岩体表面点云数据,然后基于点云数据提取岩体结构面几何信息。

介绍了操作步骤,提取了部分区域的岩体结构面产状信息,与现场调查结果对比后,验证了此方法的可靠性。

利用三维激光扫描技术获取岩体结构面几何信息具有广阔的应用前景。

关键词:三维激光扫描;岩体结构面;产状中图分类号:TU45文献标志码:A文章编号:1672-4011(2020)12-0077-02DOI:10.3969/j.issn.1672-4011.2020.12.038Study on application of terrestrial laser scanning technology for rock mass discontinuities identification HOU Yuhui,SONG Dekun,LI Jianyu,GUO Qiuzhi(Jilin Jianzhu University School of Geo Matics&Prospecting Engineering,Changchun130118,China) Abstract:The rock mass discontinuities plays an i mportant role in controlling the mechanical properties and engineering stability of rock mass.Obtaining geo metric infbr mation of rock mass discontinuities is the basis of studying the distribution and co mbination law of rock mass discontinuities and rock structure. The traditional method of discontinuities measure ment has the disadvantage of low efficiency.It atte mpts to use3D laser scanning technology to obtain the point cloud data of rock surface, and then extract the geo metric infbr mation of rock mass discontinuities.This paper introduces the operation steps,extracts the occurrence infor mation of rock mass discontinuities in so me areas,and verifies the reliability of this method after co mparing with the field investigation results.It has a broad application prospect to obtain the geo metric infor mation of rock mass discontinuities by3D laser scanning technology.Key words:3D laser scanning;rock mass discontinuity;occurrence 0前言岩体内部广泛分布的节理裂隙等不连续面使其物理力学性质表现出明显的结构效应,采集岩体结构面几何信息并分析结构面的分布组合规律是研究岩体结构的基础。

关于纳米医学扫描仪的作文

关于纳米医学扫描仪的作文

关于纳米医学扫描仪的作文英文回答:Nanomedicine scanners are revolutionary devices that have the potential to greatly impact the field of medicine. These scanners use nanotechnology, which involves manipulating matter at the atomic and molecular scale, to detect and diagnose diseases at an early stage.One of the main advantages of nanomedicine scanners is their ability to provide highly detailed and accurate images of the human body. By using tiny nanoparticles that can be injected into the body, these scanners can detect abnormalities and visualize them in real-time. This allows doctors to identify and treat diseases such as cancer,heart disease, and neurological disorders at an early stage, increasing the chances of successful treatment.Furthermore, nanomedicine scanners have the potentialto revolutionize drug delivery. By using nanoparticles ascarriers, medications can be targeted directly to the affected cells or tissues, minimizing side effects and improving efficacy. For example, in the treatment of cancer, nanoparticles can be loaded with chemotherapy drugs and delivered specifically to tumor cells, reducing damage to healthy cells and improving the overall effectiveness ofthe treatment.In addition to their diagnostic and therapeutic capabilities, nanomedicine scanners also have the potential to monitor the progression of diseases over time. By repeatedly scanning the body, doctors can track the growthor regression of tumors, evaluate the effectiveness of treatments, and make informed decisions regarding patient care.Overall, nanomedicine scanners have the potential to revolutionize the field of medicine by providing highly accurate diagnostic images, targeted drug delivery, and disease monitoring. With further advancements in nanotechnology, these scanners could become a standard tool in medical practice, improving patient outcomes andrevolutionizing healthcare.中文回答:纳米医学扫描仪是一种具有革命性潜力的设备,可以极大地影响医学领域。

仿真模拟视角下校园历史建筑的光环境提升改造——以南京工业大学弘正楼为例

仿真模拟视角下校园历史建筑的光环境提升改造——以南京工业大学弘正楼为例

Key words historical campus buildings; simulation and modeling; light environment; improvement and renovation1 研究缘起目前,我国城市区域更新的重点在于能否活化现有建筑,增强内在驱动力。

在城市更新中,老城区校园历史建筑性能提升与改造有助于促进学校内在记忆与文化延续,丰富城市的历史和文化传统,确保校园历史建筑与城市区域发展规划一致。

活化历史建筑有助于提高城市空间利用效率,提升城市活力,提高城市核心地区的吸引力[1]。

校园历史建筑的保护和再利用对历史信息、校园文化及城市更新发展都具有重要意义。

校园历史建筑性能提升在维护和提升建筑性能的同时,能够保护其历史文化特征。

随着科技的发展,聚焦于建筑信息建模的PKPM、Grasshopper、Revit、Etabs 等仿真软件已经应用在历史建筑保护研究的各个领域,包括基于历史建筑信息模型的行为研究、地震载荷,以及室内环境质量评估和能源改造规划等。

在建筑信息建模与结构分析方面,Alfredo Cali 等[2]以巴西安哈托米林岛(SC)旧堡垒中的部队营房为例,采用知识路径和建筑信息模型BIM 技术来识别和评估历史建筑的结构问题,从而制定有效的保护策略。

在室内环境质量评估方面,史立刚等[3]基于数字模拟平台,结合拓扑理论与图解静力学理论,探索空间与结构的关系,以及建筑体量生成方法,并针对其风热环境进行环境性能模拟及评估优化。

Frasca 等[4]也基于环境监测和建筑动态模拟的方法,评估历史建筑预防性保护中的室内气候控制策略,采取有效的能源改善措施,为历史建筑的能源改造规划提供支持。

在这个过程中,仿真模拟技术可以发挥关键作用。

摘要 现阶段,我国城市老城区更新研究呈现多维度、多视角趋势,城区中原有高校园区基于现有发展契机和制约元素,在校园近代历史建筑保护与利用研究中,仿真应用技术因其模拟参数可重复与模型实时可视化展示的优势大有可为之地。

地面三维激光扫描数据缺失分类及成因分析

地面三维激光扫描数据缺失分类及成因分析

地面三维激光扫描数据缺失分类及成因分析陆旻丰;吴杭彬;刘春;李楠【摘要】针对地面三维激光扫描点云数据缺失现象,以FARO Focus3D激光扫描仪采集的上海市某建筑群落及其附属设施点云数据为例,系统总结了地面激光扫描数据的6种缺失类型即镜面反射缺失、外物遮挡缺失、自遮挡缺失、细节缺失、扫描盲区缺失、激光吸收缺失,分析造成数据缺失的成因及数据特征.本研究可为激光扫描外业工作方案设计及优化、激光扫描仪选择、缺失点云数据修复等提供依据.【期刊名称】《遥感信息》【年(卷),期】2013(028)006【总页数】5页(P82-86)【关键词】地面三维激光扫描;点云;数据缺失【作者】陆旻丰;吴杭彬;刘春;李楠【作者单位】同济大学测绘与地理信息学院,上海200092;同济大学测绘与地理信息学院,上海200092;现代工程测量国家测绘地理信息局重点实验室,上海200092;同济大学测绘与地理信息学院,上海200092;现代工程测量国家测绘地理信息局重点实验室,上海200092;同济大学测绘与地理信息学院,上海200092【正文语种】中文【中图分类】TP791 引言地面三维激光扫描技术(Terrestrial Laser Scanning,TLS)是近十余年来迅速发展的一种空间数据获取新方法。

这一技术利用一定规律发射的激光束,采集地球的表面及其环境的几何(空间)信息、纹理等数据,实现地面物体精细化建模、特征提取等目的。

经过近十几年的发展,这一技术从单纯提供测量数据和资料发展成为实时/准实时地提供随时空变化的地球空间信息,其应用也已扩展到与空间信息有关的诸多领域[1]。

与传统数据采集方法相比,这一技术拥有许多独特的优势,如扫描速度快,非接触式测量,数据高精度、高密度等。

地面激光扫描系统采集的空间数据包括建筑表面、树木、道路等地面物体及附属设施的位置信息。

然而,由于搭载平台、设备仪器的限制或待扫描物体本身的特点,获取的数据常常存在不完整现象。

三维激光扫描技术

三维激光扫描技术
第四十七页,编辑于星期六:十四点 十九分。
LiDAR在电力行业应用
对于规划电网线路,通过机载激光扫描测量技术 采集和处理的规划沿线数据,为电力线路优化,外业 勘测,设计施工提供数据支持与指导。
对于已建设电网线路,利用机载激光扫描测 量技术采集和处理的电网沿线数据,可以恢复电 线实际形状,自动测量电线到地面的距离和相邻 电线间距,计算垂曲度、跨度等,实现危险点预 警,以便及时调整与维修线路。
第三十四页,编辑于星期六:十四点 十九分。
机载激光扫描
激光测距原理
激光扫描最基本的工作原理与无线电扫描没有区别, 即由扫描发射系统发送一个信号,经目标反射后被接 收系统收集,通过测量反射光的运行时间而确定目标 的距离。
激光器到反射物体的距离(d)=光速(c)×时间(t)/2 激光束发射的频率能从每秒几个脉冲到每秒几万个 脉冲,接收器将会在一分钟内记录六十万个点。结合 GPS得到的激光器位置坐标信息,INS得到的激光方向信 息,可以准确地计算出每一个激光点的大地坐标X、Y、Z, 大量的激光点聚集成激光点云,组成点云图像。
DOM分辨率DOMDOM Nhomakorabea DLG
&DDLDOGEMM,
DEM
&
DOM+Laser 点云+DEM
0.2m)
Laser 点云数

第三十三页,编辑于星期六:十四点 十九分。
机载激光扫描
机载 LIDAR (机载激光扫描系统)
全称:激光探测及测距系统 机载激光扫描测量系统是一种主动航空遥感装置,是实现地 面三维坐标和影像数据同步、快速、高精确获取,并快速、 智能化实现地物三维实时、变化、真实形态特性再现的一种 国际领先的测绘高新技术。

叶面积指数间接测量方法分析

叶面积指数间接测量方法分析

叶面积指数间接测量方法分析熊万彩;邱权;陈天华;郑文刚【摘要】Leaf area index (LAI) is defined as the ratio of the total blade surface area of the plant and the area occupied by the plant.It is an important parameter for describing the growth situation of plants.Two dominating branches of the indirect LAI measuring methods were summarized:remote sensing quantitative analysis and LIDAR measurements,and three methods under the two branches were introduced in detail:statistical model method,optical model method and LIDAR measurement,the principle and research progress were elaborated.On the basis of this,the advantages and disadvantages and development trends of LAI measurement methods were discussed.%叶面积指数(LAI)被定义为植物所有叶片表面积总和与植株所占的土地面积的比值,是表征植物生长趋势的重要参数.总结了当前LAI间接测量研究中的2个重要分支:遥感定量法和LIDAR测量法;详细地介绍了这2个分支下的3种方法:统计模型法、光学模型法、LIDAR测量法,阐述了各自的原理和研究进展;在此基础上,讨论了3种方法的优缺点及未来的发展趋势.【期刊名称】《安徽农业科学》【年(卷),期】2013(041)015【总页数】3页(P7022-7024)【关键词】LAI;统计模型;光学模型;LIDAR【作者】熊万彩;邱权;陈天华;郑文刚【作者单位】北京工商大学,北京100048;北京农业智能装备技术研究中心,北京100097;北京农业智能装备技术研究中心,北京100097;北京工商大学,北京100048;北京农业智能装备技术研究中心,北京100097【正文语种】中文【中图分类】S126;Q945生物学研究表明,叶面积指数(Leaf Area Index,LAI)是衡量植物生长状态的一个重要因素。

基于极限学习机的单木枝叶点云分类

基于极限学习机的单木枝叶点云分类

基于极限学习机的单木枝叶点云分类章又文; 邢艳秋【期刊名称】《《安徽农业科学》》【年(卷),期】2019(047)005【总页数】5页(P237-240,246)【关键词】激光点云; 枝叶点云分类; 空间特征; 色彩特征; 随机森林; 极限学习机【作者】章又文; 邢艳秋【作者单位】东北林业大学森林作业与环境研究中心黑龙江哈尔滨150040【正文语种】中文【中图分类】S126在林业测量中,三维激光雷达能够准确、快速地提取树木表面三维信息,因此被广泛运用在林木的垂直结构[1-2]、叶面积指数提取[3-4]以及单木三维建模可视化[5-6]中。

林木枝叶分类识别的研究是林木参数提取及三维重建的重要内容。

Li等[7]利用单木树叶与枝干点云的法向分布特征的不同,采用法线差分算子进行单木枝叶点云的分类识别,以达到分割树叶点云的目的,从而减小了枝干点云对叶面积密度提取精度的影响。

LU等[8]直接利用林木样方点云数据,作径向半球点云切片计算有效叶面积指数。

王洪蜀等[9]将激光雷达设备与CCD相机同步采集林木样方数据,利用监督学习将CCD相机拍摄的彩色影像中的枝叶分类,再将枝叶中的像素信息赋给点云数据,从而达到枝叶点云分类识别的效果。

上述文献中,在冠层部分的叶面积信息提取上,没有综合利用局部枝叶点云的形状、法向分布、反射强度等特征研究枝叶点云的分类识别。

喻垚慎等[10]利用点云的局部切平面分布特征,融合多种空间结构特征分离枝干与树叶点云,然而细小的枝干与树叶点云数据冗杂在一起,空间特征不突出。

颜色是区分枝干与树叶的重要自然属性,在枝干与树叶的空间结构特征的基础上,增加色彩特征进行研究,能够使分类更为准确。

三维点云数据信息量大,因此在分类算法的选择上,笔者采用极限学习机(extreme learning machine,ELM)来进行枝叶点云的分类识别。

2004年有研究人员提出,ELM算法主要应用于回归以及分类问题当中。

基于误差椭球的激光测量系统的不确定度分析

基于误差椭球的激光测量系统的不确定度分析

基于误差椭球的激光测量系统的不确定度分析吴兆勇;杜正春【摘要】为了对3维激光扫描技术的测量精度做出评估,以激光雷达测量系统为研究对象,基于误差椭球理论建立了测量系统的点位误差模型;依据点云平面误差椭球的分布特性,提出了点云拟合平面的不确定度模型,用于评估与拟合平面关联的尺寸测量精度;通过对箱体类物体高度的测量实验,获得了实际测量不确定度,并与模型仿真结果进行了对比.结果表明,该模型可较准确地估算出高度的测量不确定度,从而验证了其有效性及实际意义.%In order to provide measurement accuracy evaluation for 3-D laser scanning devices, a laser radar measurement system ( LRMS) was choosed as the research object and uncertainty model of point cloud fitting plane was proposed. After experimental verification, a single-point error ellipsoid model for the LRMS based on error ellipsoid theory was established. According to the distribution characteristics of plane error ellipsoid of point cloud, uncertainty model of point cloud fitting plane was proposed to evaluate and fit the dimension measurement accuracy associated with plane. Verification experiments were performed by using the LRMS to measure the height of a cubic object, and the measurement accuracy results were evaluated and compared with the simulated results using the proposed uncertainty model. The results show that the model can accurately estimate the uncertainty of height measurement. The research has the validity and practical significance.【期刊名称】《激光技术》【年(卷),期】2017(041)001【总页数】5页(P29-33)【关键词】测量与计量;不确定度;误差椭球理论;激光雷达;点云【作者】吴兆勇;杜正春【作者单位】上海交通大学机械与动力工程学院,上海200240;上海交通大学机械与动力工程学院,上海200240【正文语种】中文【中图分类】TN247;TP3913维激光扫描技术利用激光测距原理获取被测物体表面密集的3维坐标点云,通过分析处理点云数据可提取被测物体的几何信息,从而实现3维重建或非接触式测量[1-2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

'Photogrammetric Week 05'Dieter Fritsch, Ed.Wichmann Verlag, Heidelberg 2005.Alshawabkeh 39 Using Terrestrial Laser Scanning for the 3D Reconstruction of Petra /JordanYAHYA ALSHAWABKEH , StuttgartABSTRACTThe use of 3D laser scanner in documenting heritage sites has increased significantely over the past few years. This ismaily due to advances of such systems which allow for the fast and reliable generation of millions of 3D points. Despitethe considerable progress of these approaches, the highest possible degree in efficiency and flexibility of data collectionwill be possible, if other techniques are combined during data processing. Within the paper the potential of combiningterrestrial laser scanning and close range photogrammetry for the documentation of heritage sites is discussed. Besidesimproving the geometry of the model, the integration aims on supporting the visual quality of the linear features likeedges and cracks in the historical scenes. Additionally, we present an effective approach for projective texture mappingfrom photographs onto triangulated surfaces from 3D laser scanning. By these means, the effort to generate photo-realistic models of complex shaped objects can be reduced considerably. In order to handle the resulting problem ofocclusions, the visibility of the model areas in the respective images has to be established. For this purpose an efficientalgorithm addressing the image fusion and visibility is used. The investigations and implementation of the experimentsare based on data from Al-Khasneh, a well-known monument in Petra, Jordan.1. INTRODUCTIONThe generation of 3D models of historical buildings is frequently required during the documentationof heritage sites i.e. for tourism purposes or to provide education resources for students andresearchers. During the generation of these models, requirements such as high geometric accuracy,availability of all details, efficiency in the model size and photo realism have to be met by thedifferent approaches used for data collection [EL-Hakim et al 2002]. One well-accepted techniquefrequently applied in the context of heritage site documentation is close range photogrammetry[Gruen et al 2002, and Debevec 1996]. In the past decade, these traditional terrestrial approacheshave also benefited from the fact that digital image collection is now feasible with of-the-shelfcameras. Thus the efficiency of photogrammetric data collection could be improved considerablyby the integration of semi-automatic tools based on digital image processing. Recently, laserscanning has become a standard tool for 3D data collection for the generation of high quality 3Dmodels of cultural heritage sites and historical buildings [Boehler and Marbs 2002]. These systemsallow for the fast and reliable generation of millions of 3D points based on the run-time of reflectedlight pulses. This results in a very effective and dense measurement of surface geometry.Despite the considerable progress of these approaches, there are still some limitations, which havean effect on the quality of the final 3D model. Even though current laser scanners can produce largepoint clouds fast and reliably, the resolution of this data can still be insufficient, especially if edgesand linear surface features have to be collected. In addition to geometric data collection, texturemapping is particular important in the area of cultural heritage to have more completedocumentation.Some commercial 3D systems already provide model-registered color texture bycapturing the RGB values of each LIDAR point using a camera already integrated in the system.However, these images frequently are not sufficient for high quality texturing, since the idealconditions for taking the images may not coincide with those for laser scanning. This may disturbthe appearance of the resulting textured model.In the contrary, the digital photogrammetry is more accurate in outline rendition, especially if theyare clearly defined in the reality. Additionally, high-resolution color images collected at optimal40 Alshawabkeh position and time can be precisely mapped into the geometric model provided that the camera position and orientation is known in the coordinate system of the geometric model. On the other hand, image based modeling alone is difficult or even impractical for parts of surfaces, which contain irregular and unmarked geometrics details.In our approach the combination of both techniques is applied to improve the geometry and visual quality of the collected 3D model. During data collection the information on edges and linear surface features like cracks is based on the analysis of the images, whereas information on object geometry is provided from the laser data. Additionally, we presented a new automatic technique to enhance the 3D geometric model of real world objects with texture reconstructed from separate sets of photographs. The purpose is to generate photo-realistic models of complex shaped objects with minimal effort. Within the paper the presented approaches are demonstrated in the framework of a project aiming at the generation of a 3D virtual model of the Al-Khasneh, a well-known monument in Petra, Jordan.2. DATA COLLECTION AND PREPROCESSINGThe collection of the data, which has been used for our investigations, was performed in cooperation with the Hashemite University of Jordan. One of the project goals is the generation of a 3D documentation of the Al-Khasneh monument in Petra city, Jordan, which is depicted in Figure1.2.1. Al-Kasneh MonumentThe ancient Nabataean city of Petra has often been called the eighth wonder of the ancient world. Petra city in southwestern Jordan prospered as the capital of the Nabataean empire from 400 B.C. to A.D. 106. Petra's temples, tombs, theaters and other buildings are scattered over 400 square miles, these architectures are carved into rose-colored sandstone cliffs. After a visitor enters Petra via Al-Siq, a two-kilometer impressive crack in the mountain, the first facade to be seen is Al-Khasneh, which is considered as the best-known monuments in Petra city. The Al-Khasneh facade is 40m high and remarkably well preserved, probably because the confined space in which it was built has protected it from the effects of erosion. The name Al-Khasneh, as the Arabs call it, means treasury or tax house for passing camel caravans, while others have proposed that the Al-Khasneh Monument was a tomb. Behind the impressive facade of Al-Khasneh, large square rooms have been carved out of the rock (Sedlaczek, 2000).2.2. Sensors Applied And Measurement ConfigurationDepending on the application and the complexity of the environment, achieving high geometric and realism 3D model may require a large number of 3D and 2D images. In our project, the 3D laser scanning system GS100, manufactured by Mensi S.A., France was applied. The scanner features a field of view of 360° in the horizontal and 60° in the vertical direction, enabling the collection of full panoramic views. The distance measurement is realized by the time of flight measurement principle based on a green laser at 532 nm. The scanning range of the system allows distance measurements between 2 and 100 meters. The scanner’s spot size is 3 mm at a distance of 50 meters; the standard deviation of the distance measurement is 6 mm for a single shot. The system is able to measure 5000 points per second. During data collection a calibrated video snapshot of 768x576 pixel resolution is additionally captured, which is automatically mapped to the corresponding point measurements. Because it is not possible to have a complete 3D coverage forAlshawabkeh 41 outdoor complex structured sites based on data collected from a single station, different viewpointshave to be done to resolve the occlusion. As it can be seen in the top row of figure 1, the differentacquisition time of the images results in considerable differences in brightness and colour. This willdefinitely disturb the appearance of the textured 3D model. For this reason, additional images werecollected by a Fuji S1 Pro camera, which provides a resolution of 1536x2034 pixel with a focallength of 20 mm. These images depicted in the bottom row of figure 1 were collected at almost thesame time.Figure 1. Alkasneh, Petra. In the first row Mensi laser scanner images (768x576), second row shows images collectedusing Fuji camera (2304x1536).2.3. Data PreprocessingDuring the data collection of Al-Khasneh three different viewpoints with five scans were done toresolve the occlusions. The problem to choose the viewpoint positions represents an importantphase of the survey for such a monument since the mountainous environment surrounding Al-Khasneh restricts potential sensor stations. All the acquired 3D models have been processed usingInnovmetric Software, PolyWorks. The model of Al-Khasneh facade resulted from merging the fivescans in an independent coordinate system into an absolute coordinate system. After registration ofthe scans using corresponding points, the software constructs a non-redundant surfacerepresentation, where each part of the measured object is only described once. The produced modelhas an average resolution of 2 cm with more than 10 million triangles, depicted in figure 2. Inadditional to the outer survey, a 360-degree scanning from a station in the interior of the Al-Khasneh had been taken, which resulted in 19 million points. This scan depicted in figure 2 withcolor information overlaid.42 Alshawabkeh 3. AUTOMATIC EXTRACTION OF LINAR SURFACE FEATURESAlthough the 3D model produced by laser scanner contains a large number of triangles, which are representing the surfaces, it can still difficult to recognize and localize the outlines of the surface features. An example for this type of features, which are clearly visible in an image is depicted in figure 3. This data was collected from the left door of Al-Khasneh. As it can be seen from the corresponding 3D meshed model that depicted in figure 4, these cracks and the edges outlines are lost beyond the resolution in the available laser data. In order to support the visual quality of such details, a hybrid approach combining data from the laser scanner and the digital imagery was developed. Additionally, the approach applies a semi-automated feature extraction from images to bridge gaps in the laser scanner data.Figure 2. The left image shows 3D model of Al-Khasneh created from 5 scans, the right image shows 360 degreescanning for the inner part of Al-Khasneh.3.1. Data Coregistration and Distance Image GenerationThe quality of the registration process, which aligns the laser scanner data with the imagery, is a crucial factor for the aspired combined processing. Since the accurate detection and measurement of point correspondences can be difficult especially for the point clouds from laser scanning, straight lines are measured in the image and the laser data as corresponding elements. These lines are then used by a shape matching followed by a modified spatial resection. After the image coordinates are co-registered to the laser scanner coordinate system, the collinearity equations are applied to generate a distance image based on the available point clouds. For our exemplary scene, the point cloud was collected from a close viewpoint resulting in 1 cm average resolution. Three distance images were generated for the three images available from different camera stations as it can be depicted in figure 5.Alshawabkeh 43Figure 3. The left door of Al-Khasneh.Figure 4. Meshed model for the left doorFigure 5. The distance image of the left door projected on the corresponding image.44Alshawabkeh 3.2. 3D Feature ExractionThe segmentation process is used to automatically extract the 2D coordinates of the linear features from three different digital images. For this purpose, an edge detection based on the Lanser filter has been applied on the 3 imagery images. The third dimension of the segmented outlines is provided from the distance images. Figure 6, depicts the final 3D features extracted for the left door of Al-Khasneh. It can be seen that the data contains all of the edges and linear surface features in a clearly outlines. In total the feature-based representation contains 143.6 thousand points, whereas the original point cloud of the same portion has 1.1 million points. It can be seen from the 3D features presented in figure 4 that due to the position of the laser scanner, the inner edge of the right column of the door could not be captured. The occluded edge can be added based on semiautomatic evaluation of digital imagery to have a complete data set for the scene. The occluded edge is added to the 3D features as it can be shown in the right part of figure 6.4. TEXTURE MAPPINGThe purpose of texture processing is to integrate the 3D measurements from the laser scanner with 2D information taken with external or internal camera. Our approach allows taking the images at different time from laser scanning and at whatever locations that will be the best for texturing. Since the triangles are relatively small, no perspective correction was applied, and the original high-resolution 2D images are used for processing. In order to guarantee high quality texture mapping, preprocessing steps for generating geometric and radiometric distortion free images is necessary. Otherwise artefacts such as line discontinuity will be visible at common edges of adjacent trianglesmapped from different images. Before performing projective texture mapping, we need to compute Figure 6. 3D features extracted for the left door of Al-Khasneh, the inner edge of the column is added from imagebased measurements.Alshawabkeh 45 visibility information to map the image only onto the portions of the scene that are visible from itscamera viewpoint. In this section an overview of the procedure will be presented, Alkasneh modelwill be used to demonstrate the steps of the approach.4.1. Camera Calibration and Colour CorrectionDistortion free images and the homogenous illumination between the photographs are crucial factorfor getting a realistic looking nature of the model. This requires an accurate determination of thecameras interior and exterior orientation parameters. For our investigations the interior orientationparameters were computed using a calibration computed by the Australis software. Theseparameters were used to creating zero distortion images as intermediate step. For high realistic 3Dtexture mapping the artifacts due to illumination changes between photographs have to be removed.We use ENVI 4.1 software to perform the histogram equalization for all three channels in alltextured images in order to diffuse the texture.Figure 7. Double projection problem4.2. Summary of the Overall Procedure:During texture mapping every point on the surface of the object (in x, y, z coordinates) must bemapped to some point (in u, v coordinates) on the texture image. If no special care is taken, thenerroneous pixel values are extracted for the occluded parts of the scene as it can be seen in figure 7.In order to handle the resulting problem of occlusions, the visibility of the model areas in therespective images has to be established. For this purpose an efficient algorithm addressing the46 Alshawabkeh image fusion and visibility is used. The algorithm works in both image and object space and efficiently detects ambient, back-face and view frustum occlusions. Invalid pixels that belong to theshadow polygons will be identified and marked as can be depicted in figure. Then the occluding parts are masked out with their connectivity, and they are used as input model for the second selected textured image. The process for checking visibility and separating will be repeated automatically until the model is textured from all the available images. The separated parts merge with the master image part to have the final model, which is depicted in figure 9. For Alkasneh texture mapping, we have used five coloured images 2304 x 1536 pixels for texturing 2 millions triangles. The performance analysis has been conducted on a standard PC with an Intel 4, 3GHz Processor, and 1GB RAM. In our approach VRML modelling language is used.Figure 9. Final textured model of Alkasneh using 5 images Figure 8. 3D textured model using master image afterseparating of the occluding parts5. CONCLUSIONThe work described in this paper was developed as a part of an ongoing project which aims to underline the necessity to integrate image based measurements and laser scanner techniques in order to optimize the geometric accuracy and the visual quality of 3D data capture for historical scenes. In our approach, the segmentation process is used as an intermediate step to extract information on edges and linear surface features. Whereas the 3D information of theses details is provided from the laser scanner data. Additionally, we present an effective automatic approach toAlshawabkeh 47 the problem of high-resolution photo-realistic texture mapping onto 3D complex model generatedfrom range images. Our approach allows taking the images at different time from laser scanning andat whatever locations that will be the best for texturing. For this purpose an efficient algorithmaddressing the image fusion and visibility is used. One advantage of our algorithm that it is easilyallows the visibility detection of different resolution of 3D geometric models and 2D images. Theapproach has been demonstrated for texture mapping Alkasneh monument and other heritage sitesin Jordan, the results are extremely realistic 3D models.6. REFERENCESBoehler, W., and A. Marbs (2002): 3D Scanning Instruments. In: ISPRS/CIPA InternationalWorkshop on Scanning for Cultural Heritage Recording, Corfu, Greece, pp.9-12.Debevec, E. (1996): Modelling and Rendering Architecture from Photographs. Ph.D. Thesis,University of California at Berkeley.El-Hakim, S., A. Beraldin and M. Picard (2002): Detailed 3D Reconstruction of Monuments usingMultiple Techniques. In: ISPRS/CIPA International Workshop on Scanning for CulturalHeritage Recording, Corfu, Greece, pp.58-64.Gruen, A., F. Remondino and L. Zhang (2002): Reconstruction of the Great Buddha of Bamiyan,Afghanistan. In: International Archives of Photogrammetry and Remote Sensing, Vol.XXXIV, part 5, Corfu, Greece, pp. 363-368.Sedlaczek, B. (2000): Petra, Art and Legend. MP Graphic Formula, Roma, Italy, pp.4-20.。

相关文档
最新文档