河北省衡水中学滁州分校2017-2018学年高二数学下学期第一次月考试题文(含答案)
2017-2018学年安徽省滁州市定远县育才学校高二(普通班)下学期第一次月考数学(理)试题 Word版

2017-2018学年安徽省滁州市定远县育才学校高二(普通班)下学期第一次月考理科数学试卷(普通班)(本卷满分:150分,时间:120分钟,)出卷人:一、选择题(共12小题,每小题5.0分,共60分)1.已知集合M∈{1,-2,3),N∈{-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是()A.18B.10C.16D.142.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种3.从6人中选4人分别到北京、哈尔滨、广州、成都四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且在这6人中甲、乙不去哈尔滨游览,则不同的选择方案共有()A.300种B.240种C.144种D.96种4.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有()A.252种B.112种C.70种D.56种5.若=6,则m=()A.9B.8C.7D.66.若(n∈N*),且,则()A.81B.16C.8D.17.已知x>0,展开式中的常数项为()A.1B.C.D.8.如果展开式中各项系数之和为128,则展开式中的系数是()A.7B.-7C.21D.-219.下列所述:①某座大桥一天经过的车辆数X;②某无线电寻呼台一天内收到寻呼次数X;③一天之内的温度X;④一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分.其中X是离散型随机变量的是()A.①②③B.①②④C.①③④D.②③④10.下列各表中可作为随机变量X的分布列的是()A.答案A B.答案B C.答案C D.答案D11.随机变量X的分布列如下:其中a,b,c成等差数列,则P(|X|=1)=()A.B.C.D.12.一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于的是()A.P(0<X≤2)B.P(X≤1)C.P(X=1)D.P(X=2)二、填空题(共4小题,每小题5.0分,共20分)13.为举办校园文化节,某班推荐2名男生、3名女生参加文艺技能培训,培训项目及人数分别为:乐器1人,舞蹈2人,演唱2人,每人只参加一个项目,并且舞蹈和演唱项目必须有女生参加,则不同的推荐方案的种数为________.(用数字作答)14.用0,1,2,3,4,5这六个数字,可以组成_______个没有重复数字且能被5整除的五位数(结果用数值表示).15.以下四个式子①;②=n;③;④.其中正确的个数是________.16.随机变量X的分布列为P(X=k)=,k=1,2,3,C为常数,则P(0.5<X<2.5)=________.三、解答题(共8小题,每小题12.0分,共96分)17一个口袋里装有7个白球和1个红球,从口袋中任取5个球.(1)共有多少种不同的取法?(2)其中恰有一个红球,共有多少种不同的取法?(3)其中不含红球,共有多少种不同的取法?18.设.求下列各式的值:(1)(2);(3);(4).19.某市A,B,C,D四所中学报名参加某高校今年自主招生的学生人数如下表所示:为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查.(1)问A,B,C,D四所中学各抽取多少名学生?(2)从参加问卷调查的50名学生中随机抽取2名学生,求这2名学生来自同一所中学的概率;(3)在参加问卷调查的50名学生中,从来自A,C两所中学的学生当中随机抽取2名学生,用表示抽得A中学的学生人数,求的分布列.20.安排四名大学生到A,B,C三所学校支教,设每名大学生去任何一所学校是等可能的.(1)求四名大学生中恰有两人去A校支教的概率;(2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.21.今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以由此计算出自己每天的碳排放量.例如:家居用电的碳排放量(千克)=耗电度数×0.785,汽车的碳排放量(千克)=油耗公升数×0.785等.某班同学利用寒假在A,B两个小区逐户进行了一次生活习惯是否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.这两族人数占各自小区总人数的比例P数据如下:(1)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;(2)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A小区中任选25个人,记ξ表示25个人中低碳族人数,求E(ξ).22随机抽取某厂的某种产品200件,经质检,其中有一等品126件,二等品50件,三等品20件,次品4件.已知生产1件一、二、三等品获得的利润分别为6万元,2万元,1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润;(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元.则三等品率最多是多少?答案1.【答案】D【解析】M中的元素作点的横坐标,N中的元素作点的纵坐标,在第一象限的点共有2×2个,在第二象限的点共有1×2个.N中的元素作点的横坐标,M中的元素作点的纵坐标,在第一象限的点共有2×2个,在第二象限的点共有2×2个.所求不同的点的个数是2×2+1×2+2×2+2×2=14(个).2.【答案】B【解析】分两类,第一类:甲排在第一位时,丙排在最后一位,中间4个节目无限制条件,有种排法;第二类:甲排在第二位时,从甲、乙、丙之外的3个节目中选1个节目排在第一位有种排法,其他3个节目有种排法,故有种排法.依排列组合综合问题,知共有+=42(种)编排方案.3.【答案】B【解析】分三种情况考虑:(1)甲乙均不参加:;(2)甲乙恰有一人参加:;(3)甲乙均参加:;所以共有24+144+72=240种不同的方案.4.【答案】B【解析】分两类:甲、乙两个宿舍中一个住4人、另一个住3人或一个住5人、另一个住2人,所以不同的分配方案共有+=35×2+21×2=112种.5.【答案】C【解析】由已知得m(m-1)(m-2)=6×,解得m=7,选C.6.【答案】81【解析】根据题意,由于(n∈N*),所以2n+6=n+2(舍),2n+6+n+2=20,可知n=4,那么当x=-1时可知等式左边为=81,那么右边表示的为81.7.【答案】D【解析】===.设其展开式的通项为,则=,当k=10时,为常数项.8.【答案】C【解析】令x=1,则=128=,∴n=7,即求展开式中通项=.令=-3,得r=6,即系数为=21.9.【答案】B【解析】根据离散型随机变量的定义,判断一个随机变量是否是离散型随机变量,就是看这一变量的所有取值是否可以一一列出.①②④中的X可能取的值,可以一一列举出来,而③中的X可以取某一区间内的一切值,属于连续型的故选B.10.【答案】D【解析】A中0.5+0.3+0.4>1,B中-0.3<0,C中0.2+0.3+0.4<1.11.【答案】D【解析】∵a,b,c成等差数列,∴2b=a+c.又a+b+c=1,∴b=,∴P(|X|=1)=a+c=.12.【答案】B【解析】本题相当于最多取出1个白球的概率,也就是取到1个白球或没有取到白球.13.【答案】24【解析】若参加乐器培训的是女生,则各有1名男生及1名女生分别参加舞蹈和演唱培训,共有3×2×2=12种方案;若参加乐器培训的是男生,则各有1名男生、1名女生及2名女生分别参加舞蹈和演唱培训,共有2×3×2=12种方案,所以共有24中推荐方案.14.【答案】216【解析】15.【答案】4【解析】①式显然成立;②式中=n(n-1)(n-2)…(n-m+1),=(n-1)(n-2)…(n-m+1),所以=n,故②式成立;对于③式==,故③式成立;对于④式===,故④式成立.16.【答案】【解析】由P(X=1)+P(X=2)+P(X=3)=1,得=1,解得C=.∴随机变量X分布列为:∴P(0.5<X<2.5)=P(X=1)+P(X=2)=.17. 【解析】(1)从口袋里的8个球中任取5个球,不同取法的种数是.(2)从口袋里的8个球中任取5个球,其中恰有一个红球,可以分两步完成:第一步,从7个白球中任取4个白球,有种取法;第二步,把1个红球取出,有种取法.故不同取法的种数是:·===35.(8分)(3)从口袋里任取5个球,其中不含红球,只需从7个白球中任取5个白球即可,不同取法的种数是==21.(12分)18.【答案】见解析【解析】(1)因为展开式中的常数项为,即,或令x=0,则展开式可化为.(2)令x=1,可得=.①所以=-.(3)令x=-1,可得=,②与①联立相减,可得=(4)原式=[()+()][()-()]=()·()==.19.【答案】(1)应从A,B,C,D四所中学抽取的学生人数分别为15,20,10,5;(2);(3)【解析】(1)由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100,抽取的样本容量与总体个数的比值为.∴应从A,B,C,D四所中学抽取的学生人数分别为15,20,10,5.(2)设“从参加问卷调查的50名学生中随机抽取2名学生,这2名学生来自同一所中学”为事件M,从参加问卷调查的50名学生中随机抽取2名学生的取法共有(种),这2名学生来自同一所中学的取法共有=350(种).∴P(M)=.故从参加问卷调查的50名学生中随机抽取2名学生,这2名学生来自同一所中学的概率为.(3)由(1)知,在参加问卷调查的50名学生中,来自A,C两所中学的学生人数分别为15,10.依题意得,的可能取值为0,1,2,P(=0)=,P(=1)=,P(=2)=.∴的分布列为:20.【答案】见解析【解析】(1)所有可能的方式有34种,恰有2人到A校的方式有种,从而恰有2人到A校支教的概率为=.(2)ξ的所有可能值为1,2,3.又P(ξ=1)==,P(ξ=2)=,P(ξ=3)=(或P(ξ=3)=).综上可知,ξ的分布列如下表:21.【答案】见解析【解析】(1)记这4人中恰好有2人是低碳族为事件A,P(A)=.(2)设A小区有a人,2周后非低碳族的概率P1=,2周后低碳族的概率P2=1-=,依题意ξ~B,所以E(ξ)=25×=17.22【答案】见解析【解析】随机变量ξ的所有可能取值有6,2,1,-2;P(ξ=6)==0.63,P(ξ=2)==0.25,P(ξ=1)==0.1,P(ξ=-2)==0.02,故ξ的分布列为:2)E(ξ)=6×0.63+2×0.25+1×0.1+(-2)×0.02=4.34(万元).(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为E(ξ)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01=4.76-x(0≤x≤0.29).依题意,E(ξ)≥4.73,即4.76-x≥4.73,解得x≤0.03.所以三等品率最多为3%.- 11 -。
安徽省滁州市定远县育才学校2017_2018学年高二数学下学期第一次月考试题文(实验班)

安徽省滁州市定远县育才学校2017-2018学年高二数学下学期第一次月考试题 文(实验班)考生注意:1.本卷分第I 卷和第II 卷,满分150分,考试时间120分钟。
答题前,先将自己的姓名、准考证号填写在试题卷和答题卷上。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标题涂黑。
3.非选择题的作答:用签字笔直接答在答题卷上对应的答题区内。
第I 卷(选择题 60分)一、选择题(本大题共12个小题,每小题5分,共60分。
)1. 设a , R b ∈, i 是虚数单位,则“a = 1b =”是“12bi a i+=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件2.某中学男生1250名中有420名近视,女生1210名中有370名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A.期望与方差 B.排列与组合 C.独立性检验 D.概率3.若复数z 满足z (1+i )=2i ,则复数z 等于( ) A.1+i B.-i C.2+i D.24.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A.2日和5日 B.5日和6日 C.6日和11日 D.2日和11日 5.已知i 为虚数单位,复数z 满足(1+i )z=(1﹣i )2, 则|z|为( )A. B.1 C. D.6. 已知f (x +y )=f (x )+f (y )且f (1)=2,则f (1)+f (2)+…+f (n )不能等于( )A .f (1)+2f (1)+…+nf (1)B .]2)1([+n n f C .n (n +1) D .n (n +1)f (1)7.对具有线性相关关系的两个变量x 和y ,测得一组数据如下表所示:根据上表,利用最小二乘法得到他们的回归直线方程为10.5 1.5y x =+,则m = ( ) A. 85.5 B. 80 C. 85 D. 90 8.若,则( )A. 2B.C. D.9.根据如下样本数据:得到的回归方程为,则( )A. 0a > ,B. 0a > ,C. 0a < ,D. 0a < ,10.如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则表上数字标签:原点处标0点处标1,点处标2,点处标3,点处标4,点点标5,点处标6,点处标7,以此类推,则标签的格点的坐标为( )A. B. C. D.11.某种商品的广告费支出 与销售额 (单位:万元)之间有如下对应数据,根据表中提供的全部数据,用最小二乘法得出 与 的线性回归方程为 ,则表中的的值为( )A.45B.50C.55D.6012.血药浓度(Plasma Concentration )是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是( ) A.首次服用该药物1单位约10分钟后,药物发挥治疗作用B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒第II 卷(非选择题 90分)二、填空题(本大题共4个小题,每小题5分,共20分。
2017-2018学年高二下学期第一次月考理数试题含答案

2017-2018学年⾼⼆下学期第⼀次⽉考理数试题含答案长沙市第⼀中学2017-2018学年度⾼⼆第⼆学期第⼀次阶段性检测理科数学⼀、选择题:本⼤题共12个⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的•1. 下列数据中,拟合效果最好的回归直线⽅程,其对应的相关指数R2为( )A. 0.27 B . 0.85 C . 0.96 D . 0.5Z +12. 已知复数Z满⾜i,则复数Z的虚数为( )1-iA. -i B . i C . 1 D . -13. 已知U B(n,0.3) , D『:=:2.1,则n 的值为( )A. 10 B . 7 C . 3 D . 6e 14. 积分1 ( 2x)dx的值为( )XA. 1 B . e C. e 1 D . e25. 已知对任意实数x,有f(-x) - -f(x) , g(-x)=g(x),且x ::: 0时,导函数分别满⾜f'(x) 0, g'(x) ::0,则x 0 时,成⽴的是( )A f (x) :>0,g (x) cO B.f (x) >0,g (x) >0C. f (x) :: 0,g (x) :: 0D.f (x) :: 0, g (x) 06.以下命题的说法错误的是( )2A.命题“若x -3x • 2 = 0,则2x =1 ”的逆否命题为“若X = 1,则x - 3x • 2 = 0B. “ x = 1 ”是“ X2 -3x • 2 = 0 ”的充分不必要条件C. 若p q为假命题,则p, q均为假命题D. 对于命题p : -k R 使得x2 x V : 0,则—p : ⼀x • R,均有x2• x T ⼀07. 已知随机变量XLN(3,;「2),若P(X :a)龙4 ,则P(aA. 0.4 B . 0.2 C. 0.1 D . 0.68. 对于不等式n2■ n ::: n 1(^ N*),某同学应⽤数学归纳法的证明过程如下:上⼀页下⼀页。
2017-2018学年河北省衡水中学滁州分校高一数学下学期第一次月考试题【有答案】

河北省衡水中学滁州分校2017-2018学年下学期第一次月考高一数学注意事项:1.你现在拿到的这份试卷是满分150分,作答时间为120分钟2.答题前请在答题卷上填写好自己的姓名、班级、考号等信息3.请将答案正确填写在答题卡上第I卷(选择题 60分)一、选择题(本大题共12个小题,共60分。
)1.将正整数按如图所示的规律排列下去,且用表示位于从上到下第行,从左到右n列的数,比如,若,则有()A. B.C. D.2.设数列都是等差数列,若则( )A.35B.38C.40D.423.数列{a n}为等比数列,则下列结论中不正确的是()A.是等比数列B.{a n•a n+1}是等比数列C.是等比数列D.{lga n}是等差数列4.在△ABC中,如果,且B为锐角,试判断此三角形的形状()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形5.等差数列的前n 项和为S n , 而且 , 则常数k 的值为( )A.1B.-1C.1D.06.已知数列{}n a 的前n 项和为n S ,且满足111,2n n n a a a +==,则20S =( ) A .3066 B .3063 C .3060 D .30697.设是等差数列的前项和,若,则( )A. B.C. D.8.已知各项均为正数的数列{}n a ,其前n 项和为n S ,且1,,2n n S a 成等差数列,则数列{}n a 的通项公式为( ) A .32n - B .22n - C .12n - D .22n -+19.在数列}{n a 中,11=a ,2)1(sin 1π+=-+n a a n n ,记n S 为数列}{n a 的前n 项和,则2016S =( )A .0B .2016C .1008D .1009 10.等比数列{}n a 中,13a =,424a =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( ) A .1925 B .2536 C .3148 D .496411.设ABC ∆的内角,,A B C 所对边的长分别为,,a b c .若sin 2sinB A =, 4,3c C π==,则ABC ∆的面积为( )A.83 B. 163 12.定义在上的函数f(x),如果对于任意给定的等比数列仍是等比数列,则称f(x)为“保等比数列函数”。
河北省衡水市桃城中学2017-2018学年年高二上学期第一次月考数学(文)试题含答案

2017—-—2018学年第一学期高二年级第一次月考数学文科试题(总分:150分考试时间:120分)一、选择题:(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知等差数列{a n}满足:a3=13,a13=33,则数列{a n}的公差为( )A.1 B.2 C.3 D.42.在等比数列{a n}中,若a3a5a7=-3错误!,则a2a8=( )A.3 B。
错误!C.9 D.133。
若三角形三边的长分别为3,5,7,(0)a a a a>这个三角形一定是()A 锐角三角形B 直角三角形C钝角三角形 D 等腰三角形4.在等差数列错误!中,a1+a2+a3=3,a18+a19+a20=87,则此数列前20项的和等于( )A.290 B.300 C.580 D.6005.在△ABC中,A=135°,C=30°,c=20,则边a的长为( )A.10错误!B.20错误!C.20错误!D。
错误!6已知等比数列{a n}的前三项依次为a-1,a+1,a+4,则a n=( )A.4×错误!n B.4×错误!n-1C.4×错误!n D.4×错误!n-17. 在△ABC中,::1:2:3A B C=,则::a b c等于()A1:2:3 B 3:2:1 C 2 D8在各项均为正数的等比数列{a n }中,a 1=3, a 9=a 2a 3a 4,则公比q 的值为( )A 。
错误!B 。
错误!C .2D .39.已知点(n ,a n )(n ∈N *)都在直线3x -y -24=0上,那么在数列{a n }中有( )A .a 7+a 9〉0B .a 7+a 9<0C .a 7+a 9=0D .a 7·a 9=010.nS 等差数列{}n a 的前n 项和为,若371112a a a ++=,则13S 等于 ( )A.52 B 。
安徽省滁州市定远县育才学校2017_2018学年高二数学下学期第一次月考试题文实验班20180428

安徽省滁州市定远县育才学校2017-2018学年高二数学下学期第一次月考试题文(实验班)考生注意:1.本卷分第I卷和第II卷,满分150分,考试时间120分钟。
答题前,先将自己的姓名、准考证号填写在试题卷和答题卷上。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标题涂黑。
3.非选择题的作答:用签字笔直接答在答题卷上对应的答题区内。
第I卷(选择题60分)一、选择题(本大题共12个小题,每小题5分,共60分。
)1. 设a,b R,i是虚数单位,则“a 3,b 1”是“1 bi 2a i2”的()A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.某中学男生1250名中有420名近视,女生1210名中有370名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.期望与方差B.排列与组合C.独立性检验D.概率3.若复数z满足z(1+i)=2i,则复数z等于()A.1+iB.-iC.2+ iD.24.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.2日和5日B.5日和6日C.6日和11日D.2日和11日5.已知i为虚数单位,复数z满足(1+i)z=(1﹣i)2 ,则|z|为()A. B.1 C. D.6.已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不能等于()A.f(1)+2f(1)+…+nf(1)- 1 -n(n 1)B.f[]2C.n(n+1)D.n(n+1)f(1)7.对具有线性相关关系的两个变量x和y,测得一组数据如下表所示:x24568y20406070m根据上表,利用最小二乘法得到他们的回归直线方程为y 10.5x 1.5,则m ()A. 85.5B. 80C. 85D. 908.若,则()A. 2B.C.D.9.根据如下样本数据:3 4 5 6 7 84.0 2.5 0.5得到的回归方程为,则()A. a 0,B. a 0,C. a 0,D. a 0,10.如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则表上数字标签:原点处标0点处标1,点处标2,点处标3,点处标4,点点标5,点处标6,点处标7,以此类推,则标签的格点的坐标为()- 2 -A. B. C. D.11.某种商品的广告费支出与销售额(单位:万元)之间有如下对应数据,根据表中提供的全部数据,用最小二乘法得出与的线性回归方程为,则表中的的值为()A.45B.50C.55D.6012.血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是()A.首次服用该药物1单位约10分钟后,药物发挥治疗作用B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒第II卷(非选择题90分)二、填空题(本大题共4个小题,每小题5分,共20分。
衡水金卷河北衡水中学2017-2018年高二下学期期中考试数学(理)试卷(含精品解析)

理数试卷第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 与极坐标表示的不是同一点的极坐标是()A. B. C. D.【答案】B【解析】分析:利用极坐标的表示方法,即可得出结果.详解:点在直角坐标系中表示点,而点在直角坐标系中表示点,所以点和点表示不同的点,故选B.点睛:本题主要考查了极坐标的表示方法,着重考查了推理与计算能力,属于基础题.2. 给出下列表述:①综合法是由因导果法;②综合法是顺推证法;③分析法是执果索因法;④分析法是间接证明法;⑤分析法是逆推证法.其中正确的表述有()A. 个B. 个C. 个D. 个【答案】C【解析】结合综合法和分析法的定义可知①②③⑤均正确,分析法和综合法均为直接证明法,故④不正确.考点:综合法和分析法的特征.3. 设复数满足(为虚数单位),则的共轭复数()A. B. C. D.【答案】D【解析】,所以,的共轭复数为,故选D.4. 用反证法证明命题“若,则且”时,下列假设的结论正确的是()A. 或B. 且C. 或D. 且【答案】A【解析】试题分析:反证法要假设所要证明的结论的反面成立,本题中要反设成立考点:反证法5. 方程(为参数)表示的曲线是()A. 双曲线B. 双曲线的上支C. 双曲线的下支D. 圆【答案】B【解析】由题意得,方程,两式相减,可得,由,所以曲线的方程为,表示双曲线的上支,故选B.考点:曲线的参数方程.6. 若,,,则,,的大小关系是()A. B. C. D.【答案】A【解析】分析:利用定积分,将已知化简,即可比较大小.详解:由题意,可得,,,则,所以,故选A.点睛:本题主要考查了定积分的运算,其中根据微积分基本定理,求解的值是解答的关键,着重考查了推理与运算能力.7. 老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”:有甲、乙、丙个柱子,在甲柱上现有个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这个盘子从甲柱全部移到乙柱游戏即结束.在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且个柱子上的盘子始终保持小的盘子不能放在大的盘子之下.设游戏结束需要移动的最少次数为,则()A. B. C. D.【答案】C【解析】由题意得,根据甲乙丙三图可知最上面的两个是一样大小的,所以比三个操作的此时要多,此四个操作的此时要少,相当与操作三个的时候,最上面的那衣蛾动了几次,就会增加几次,故选C. 考点:归纳推理.8. 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下一个三条侧棱两两垂直的三棱锥,如果用,,表示三个侧面面积,表示截面面积,那么类比得到的结论是()A. B.C. D.【答案】B【解析】分析:利用从平面图形到空间图形的类比推理,即可得到结论.详解:建立从平面图形到空间图形的类比,与可得类比得到,故选B.点睛:本题主要考查了从平面图形到空间的类比推理,着重考查了学生的知识量和知识的迁移,类比的基本能力,解答的关键是掌握好类比推理的概念与应用.9. 设函数,则函数的所有极大值之和为()A. B. C. D.【答案】D【解析】∵函数,∴,∵时,时,,∴时原函数递增,时,函数递减,故当时,取极大值,其极大值为,又,∴函数的各极大值之和.故选D.10. 已知在平面直角坐标系中,曲线的参数方程为(为参数),是曲线上的动点.以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,若曲线的极坐标方程为,则点到的距离的最大值为()A. B. C. D.【答案】B【解析】分析:把曲线的极坐标方程,可得曲线的直角坐标方程为,设曲线上点的坐标为,由点到直线的距离公式,即可求得最大值.详解:由曲线的极坐标方程为,可得曲线的直角坐标方程为,由曲线的参数方程,设曲线上点的坐标为,由点到直线的距离公式可得,当时,取得最大值,此时最大值为,故选B.点睛:本题主要考查了极坐标方程与直角坐标方程的互化,以及曲线的参数方程的应用,着重考查了推理与运算能力.11. 已知函数与的图象如图所示,则函数(其中为自然对数的底数)的单调递减区间为()A. B. , C. D. ,【答案】D【解析】分析:结合函数的图象求出成立的的取值范围,即可得到结论.详解:结合函数的图象可知:和时,,又由,则,令,解得,所以函数的递减区间为,故选D.点睛:本题主要考查了导数的四则运算,以及利用导数研究函数的单调性,求解单调区间,其中结合图象,得到,进而得到的解集是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.12. 已知函数,若关于的方程有个不同的实数解,则实数的取值范围是()A. B. C. D.【答案】C【解析】分析:利用导数得函数的单调性并求得最值,求解方程得到或,画出函数的图象,结合图象即可求解.详解:设,则,令,得,当时,,函数为增函数,当时,,函数为减函数,所以当时,函数取得极大值也是函数的最大值,由方程,可得或,画出函数的图象,如图所示,结合图象可得实数的取值范围是,故选C.点睛:本题主要考查了根的存在性与根的个数的判断,考查了利用导数求解函数的单调性与函数的最值,其中把根的存在性与根的个数问题转化为函数的图象的交点问题是解答的关键,着重考查了转化思想方法,以及数形结合思想的应用,试题属于中档试题.第Ⅱ卷二、填空题:本题共4小题,每小题5分.13. 复数(为虚数单位)的虚部为__________.【答案】【解析】分析:利用复数的运算,化简得,即可得到复数的虚部.详解:由题意,复数,所以复数的虚部为.点睛:本题主要考查了复数的运算法则和复数的基本概念,其中熟记复数的四则运算法则和复数的基本概念是解答的关键,着重考查了推理与运算能力.14. 在极坐标系中,直线的方程为,则点到直线的距离为__________.【答案】【解析】分析:把直线的极坐标方程化为直角坐标方程,把的极坐标化为直角坐标,再利用点到直线的距离公式求得它到直线的距离即可.详解:把直线的方程化为直角坐标方程得,点的直角坐标为,由点到直线的距离公式,可得.点睛:本题主要考查了极坐标与直角坐标的互化,以及点到直线的距离公式的应用,着重考查了推理与运算能力,属于基础题.15. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是__________.【答案】甲【解析】试题分析:若负主要责任的是甲,则甲乙丙都在说假话,只有丁说真话,符合题意.若负主要责任的是乙,则甲丙丁都在说真话,不合题意.若负主要责任的是丙,则乙丁都在说真话,不合题意.若负主要责任的是丁,则甲乙丙丁都在说假话,不合题意.考点:逻辑推理.16. 已知实数,满足,,则的最小值为__________.【答案】【解析】分析:分别设,则表曲线上的点到直线的距离,则最小值表示与直线平行的切线之间的距离,求出曲线的切线方程,根据平行线之间的距离公式,即可求解.详解:分别设,则表曲线上的点到直线的距离,所以最小值表示与直线平行的切线之间的距离,因为,所以,令,解得,所以,所以曲线过点的切线方程为,即,所以直线与直线间的距离为,即最小值.点睛:本题主要考查了利用导数研究曲线在某点处的切线方程,以及两条平行线之间的距离公式的应用,其中解答中把最小值转化为直线平行的切线之间的距离上解答的关键,着重考查了转化与化归思想,以及推理与计算能力,试题属于中档试题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 设复数,其中为虚数单位,当实数取何值时,复数对应的点:(1)位于虚轴上;(2)位于一、三象限;(3)位于以原点为圆心,以为半径的圆上.【答案】(1)(2)(3)或【解析】分析:(1)根据题设条件得到复数对应点坐标,当复数位于虚轴上时,实部为零,虚部不为零,即可求解;(2)当复数位于一、三象限时,复数满足实部和虚部之积大于零,即可求解;(3)位于以原点为圆心,以为半径的圆上时,满足,即可求解.详解:(1)复数对应的点位于虚轴上,则.∴时,复数对应的点位于虚轴上.(2)复数对应的点位于一、三象限,则或.∴当时,复数对应的点位于一、三象限.(3)复数对应的点位于以原点为圆心,以为半径的圆上,则或.∴或时,复数对应的点位于以原点为圆心,以为半径的圆上.点睛:本题主要考查了复数表示,解答中根据题设条件求出复数对应点的坐标,结合点的位置列出不等式组或关系式是解答的关键,着重考查了推理与计算能力.18. 已知数列的前项和为,且满足,.(1)写出,,,并推测数列的表达式;(2)用数字归纳法证明(1)中所得的结论.【答案】(1),,.(2)见解析【解析】分析:(1)利用,代入计算,即可得到的值,猜想;(2)利用数学归纳法进行证明,检验当时等式成立,假设是命题成立,证明当时,命题也成立即可.详解:(1)将,,分别代入,可得,,.猜想.(2)①由(1),得时,命题成立;②假设时,命题成立,即,那么当时,,且,所以,所以,即当时,命题也成立.根据①②,得对一切,都成立.点睛:本题主要考查了数列的递推公式的应用,以及数列归纳、猜想、证明,对于数学归纳法的证明,一般分三步:(1)验证成立;(2)假设是命题成立,证明当时,命题也成立,从而得证,这是数列通项的一种求解方法,着重考查了推理与论证能力.19. 在平面直角坐标系中,曲线过点,其参数方程为(为参数,),以为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)已知曲线与曲线交于,两点,且,求实数的值.【答案】(1),(2)或.【解析】试题分析: (Ⅰ)根据加减相消法将曲线参数方程化为普通方程,利用将曲线(Ⅱ)先将直线参数方程转化为(为参数,),再根据直线参数方程几何意义由得,最后将直线参数方程代入,利用韦达定理得关于的方程,解得的值.试题解析: (Ⅰ)曲线参数方程为,∴其普通方程,由曲线的极坐标方程为,∴∴,即曲线的直角坐标方程.(Ⅱ)设、两点所对应参数分别为,联解得要有两个不同的交点,则,即,由韦达定理有根据参数方程的几何意义可知,又由可得,即或∴当时,有,符合题意.当时,有,符合题意.综上所述,实数的值为或.20. 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级的对应关系,如下表所示(假设该区域空气质量指数不会超过):级优级良级轻度污染级中度污染级重度污染级严重污染该社团将该校区在年某天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.(1)请估算年(以天计算)全年空气质量优良的天数(未满一天按一天计算);(2)该校年月、、日将作为高考考场,若这三天中某天出现级重度污染,需要净化空气费用元,出现级严重污染,需要净化空气费用元,记这三天净化空气总费用为元,求的分布列及数学期望.【答案】(1)110(2)见解析【解析】试题分析: (Ⅰ)根据频率分布直方图知小长方形面积为对应区间概率,先计算空气质量优良区间对应的概率,再根据频数等于总数乘以概率得空气质量优良的天数,(Ⅱ)先确定随机变量取法,再分别求对应概率,列表得分布列,最后根据期望公式求数学期望.试题解析: (Ⅰ)由直方图可估算年(以天计算)全年空气质量优良的天数为(天).(Ⅱ)由题可知,的所有可能取值为:,,,,,,,则:,.的分布列为(元).21. 已知抛物线的焦点为椭圆:的右焦点,点为此抛物线与椭圆在第一象限的交点,且.(1)求椭圆的方程;(2)过点作两条互相垂直的直线,,直线与椭圆交于,两点,直线与直线交于点,求的取值范围.【答案】(1)(2)【解析】【试题分析】(1)依据题设条件建立方程组求解;(2)借助题设条件,运用直线与椭圆的位置关系,通过研究坐标之间的关系进行分析探求:(1)由已知可得的焦点坐标为,设,则,解得,所以,由点在椭圆上,得,即,又,解得,所以椭圆的方程为.(2)设直线的方程为,由,得,则,,当时,直线的方程为,由,得.即,所以,所以,设,则,则,由于,在上为增函数,,则,当时,的中点为,则,,综上,,故的取值范围是.点睛:椭圆是重要的圆锥曲线代表之一,也是高中数学的重要知识点与高考的必考考点。
(解析版)河北省衡水中学滁州分校2017-2018学年高二6月

2017-2018学年第二学期6月调研考试卷高二理科数学试题注意事项:1.你现在拿到的这份试卷是满分150分,作答时间为120分钟2.答题前请在答题卷上填写好自己的姓名、班级、考号等信息3.请将答案正确填写在答题卷上,写在其它地方无效.第I卷(选择题60分)一、选择题(本大题共12个小题,每小题5分,共60分。
)1.1.若,,则等于( )A. B. C. D.【答案】B【解析】由条件概率公式可得:故答案选2. 三边长均为正整数,且最大边长为11的三角形的个数为()A. 25B. 26C. 36D. 37【答案】C【解析】设三角形另外两边为X,Yx+y>11x-y<11x<11,y<11且均为整数所以x,y中有个数最大为11最小的整数为1,最大边为11x=1的时候1个x=2的时候2个x=3的时候3个x=4的时候4个x=5的时候5个x=6的时候6个x=7的时候5个x=8的时候4个x=9的时候3个x=10的时候2个x=11的时候1个所以共有1+2+3+4+5+6+5+4+3+2+1=36.故选C。
考点:本题主要考查三角形构成条件、分类计数原理的应用。
点评:结合三角形知识,将符合条件的三角形分成11类,运用分类计数原理得解。
视频3.3.已知(2-x)10=a0+a1x+a2x2+…+a10x10,则a8等于( )A. 180B. -180C. 45D. -45【答案】A【解析】根据二项式定理知,故选A.4.4.若复数满足,其中为虚数单位,则().A. B. C. D.【答案】B【解析】【分析】利用复数的乘法运算计算即可.【详解】故选B.【点睛】本题考查复数的乘法运算,属基础题.5.5.已知x,y的取值如表所示,若y与x线性相关,且线性回归方程为,则的值为()A. B. C. D.【答案】D【解析】【分析】根据所给的三组数据,求出这组数据的平均数,得到这组数据的样本中心点,根据线性回归直线一定过样本中心点,把样本中心点代入所给的方程,得到的值.【详解】根据所给的三对数据,得到∴这组数据的样本中心点是∵线性回归直线的方程一定过样本中心点,线性回归方程为,故选:D.【点睛】本题考查线性回归方程,考查数据的样本中心点,考查样本中心点和线性回归直线的关系,属基础题.6.6.设随机变量服从二项分布,且期望,,则方差等于( )A. B. C. D.【答案】C【解析】由于二项分布的数学期望,所以二项分布的方差,应填选答案C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 河北省衡水中学滁州分校2017-2018学年下学期第一次月考试卷 高二数学(文科) 注意事项: 1.你现在拿到的这份试卷是满分150分,作答时间为120分钟 2.答题前请在答题卷上填写好自己的姓名、班级、考号等信息 3.请将答案正确填写在答题卡上
第I卷(选择题 60分) 一、选择题(本大题共12个小题,共60分。)
1.已知复数 z=(1-i)(1+2i),其中 i 为虚数单位,则 的实部为( ) A.-3 B.1 C.-1 D.3
2.设是虚数单位,则等于( ) A.1 B.4 C.2 D. 3.某车间加工零件的数量x与加工时间y的统计数据如下表:
现已求得上表数据的回归方程=x+中的的值为0.9,则据此回归模型可以预测,加工90个零件所需要的加工时间约为( ) A.93分钟 B.94分钟 C.95分钟 D.96分钟 4.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出( ) - 2 -
A.性别与喜欢理科无关 B.女生中喜欢理科的比为80% C.男生比女生喜欢理科的可能性大些 D.男生不喜欢理科的比为60% 5.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A. 充分条件 B. 必要条件 C. 充要条件 D. 等价条件
6.设复数z的共轭复数为 , 若z=1-i(i为虚数单位),则的值为( ) A.-3i B.-2i C.i D.-i 7.设复数2zi,则复数1zz的共轭复数为( ) A.13i B.13i C.13i D.13i 8.用反证法证明命题:“若整系数一元二次方程 有有理数根,那么 、 、 中至少有一个是偶数”时,下列假设中正确的是( ) A.假设 、 、 都是偶数 B.假设 、 、 都不是偶数 C.假设 、 、 中至多有一个是偶数 D.加速 、 、 中至多有两个是偶数 9.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )
A. B. C. D. 10.对具有线性相关关系的变量x, y有一组观测数据,iixy(1,2,,8i),其回归直线- 3 -
方程是1ˆ8ˆybx,且1238xxxx 123826yyyy,则实数ˆb的值是( ) A. 116 B. 14 C. 13 D. 12 11.下列命题中: ①线性回归方程ˆˆˆybxa
必过点,xy;
②在回归方程ˆ35yx中,当变量增加一个单位时, y平均增加5个单位; ③在回归分析中,相关指数2R为0.80的模型比相关指数2R为0.98的模型拟合的效果要好; ④在回归直线0.58ˆyx中,变量2x时,变量y的值一定是-7. 其中假命题的个数是 ( ) A. 1 B. 2 C. 3 D. 4 12.某班主任对全班50名学生进行了作业量多少的调查,数据如下表: 认为作业多 认为作业不多 总数 喜欢玩电脑游戏 18 9 27 不喜欢玩电脑游戏 8 15 23 总数 26 24 50
根据表中数据得到25018158927232426k5.059,因为p(K≥5.024)=0.025,则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( ) A. 97.5% B. 95% C. 90% D. 无充分根据 第II卷(非选择题 90分) 二、填空题(本大题共4个小题,共20分。) 13.已知复数z满足z2=﹣4,若z的虚部大于0,则z= . - 4 -
14.某校在对学生是否喜欢数学的抽样调查中,随机抽取了300名学生,相关的数据如表所示: 由表中数据直观分析,该校学生的性别与是否喜欢数学之间 关系(填“有”或“无”). 15.已知 1535522CC
1597399922CCC
159131151313131322CCCC
1591317157171717171722CCCCC
…… 按以上述规律,则154141nnCC…+4141nnC_______________. 16.下列说法中正确的有 . ①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法 三、解答题(本大题共6个小题,共70分。) 17.解答下面两个问题:
(Ⅰ)已知复数 ,其共轭复数为 ,求 ; (Ⅱ)复数z1=2a+1+(1+a2)i,z2=1﹣a+(3﹣a)i,a∈R,若 是实数,求a的值. 18.阅读材料:根据两角和与差的正弦公式,有: sin(α+β)=sinαcosβ+cosαsinβ﹣﹣﹣﹣﹣﹣① sin(α﹣β)=sinαcosβ﹣cosαsinβ﹣﹣﹣﹣﹣﹣② 由①+②得sin(α+β)+sin(α﹣β)=2sinαcosβ﹣﹣﹣﹣﹣﹣③
令α+β=A,α﹣β=β 有α= ,β= 代入③得 sinA+sinB=2sin cos - 5 -
. (1)利用上述结论,试求sin15°+sin75°的值;
(2)类比上述推证方法,根据两角和与差的余弦公式,证明:cosA﹣cosB=﹣2sin cos . 19.电视传媒公司为了了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”. (1)根据已知条件完成下面2×2列联表,并据此资料你是否认为“体育迷”与性别有关? 非体育迷 体育迷 合计 男 女 10 55 合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X) P( K2≥k) 0.05 0.01 k 3.841 6.635 20.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示: - 6 -
积极参加班级工作 不太主动参加班级工作 合计 学习积极性一般 6 19 25 合计 24 26 50
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少? (2)判断是否有99.9%的把握认为学生的学习积极性与对待班级工作的态度有关系?
附: 22nadbcKabcdacbd , n=a+b+c+d. P(K2≥k) 0.100 0.050 0.010 0.001
k 2.706 3.841 6.635 10.828
21.设Sn=111122334+++…+11nn+,写出S1,S2,S3,S4的值,归纳并猜想出结果,并给出证明. 22.数列na满足2(nnSnan *N). (1)计算1234,,,aaaa,并由此猜想通项公式na; (2)用数学归纳法证明(1)中的猜想. - 7 -
高二文科数学 参考答案 一、选择题(本大题共12个小题,共60分。) 1 2 3 4 5 6 7 8 9 10 11 12 D D A C A D B B C C C A 二、填空题(本大题共4个小题,共20分。) 13.2i 14.有
15.412122nn 16.①②④ 三、解答题(本大题共6个小题,共70分。)
17.解:(Ⅰ)∵ ,∴ .
∴ . , ∴ = ; (Ⅱ) ∵ 是实数,∴a2+a﹣2=0,解得a=1,或a=﹣2, 故a=1,或a=﹣2.
18.(1)解:∵sinA+sinB=2sin cos , ∴sin15°+cos75°=2sin cos , =2sin45°•cos(﹣30°)= , - 8 -
∴sin15°+cos75°= (2)证明:因为cos(α+β)=cosαcosβ﹣sinαsinβ,﹣﹣﹣﹣﹣﹣① cos(α﹣β)=cosαcosβ+sinαsinβ﹣﹣﹣﹣﹣﹣② ①+②得cos(α+β)+cos(α﹣β)=2cosαcosβ,③
令α+β=A,α﹣β=B 有α= ,β= , 代入③得:cosA﹣cosB=﹣2sin cos . ∴cosA﹣cosB=﹣2sin cos 19. 解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下: 非体育迷 体育迷 合计 男 30 15 45 女 45 10 55 合计 75 25 100 将2×2列联表中的数据代入公式计算,得:
K2= = ≈3.03, 因为3.03<3.841,所以没有理由认为“体育迷”与性别有关.
(2)由频率分布直方图知抽到“体育迷”的频率是0.25,将频率视为概率,即从观众中抽取到一名“体育迷”的概率是 , 由题意X∽B(3, ),从而分布列为 X 0 1 2 3
P
所以E(X)=np=3× = .D(X)=npq=3× × = .