沈阳市七年级上册数学期末试卷-百度文库

合集下载

沈阳市七年级上册数学期末试卷-百度文库

沈阳市七年级上册数学期末试卷-百度文库

沈阳市七年级上册数学期末试卷-百度文库一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( )A .0.65×108B .6.5×107C .6.5×108D .65×1062.下列判断正确的是( )A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2 C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式3.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 4.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .5.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 6.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( )A .﹣9℃B .7℃C .﹣7℃D .9℃7.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A .10050062x x += B .1005006x 2x+=C .10040062x x += D .1004006x 2x+= 8.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个9.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .6cmB .3cmC .3cm 或6cmD .4cm 10.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 11.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >012.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥 13.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )A .﹣4B .﹣2C .4D .2 14.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上 D .AD 上15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程3x •a= 2x ﹣ 16 (x ﹣6)无解,则a 的值是( ) A .1B .﹣1C .±1D .a≠1二、填空题16.已知x=5是方程ax ﹣8=20+a 的解,则a= ________17.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.18.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.19.把53°30′用度表示为_____.20.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.21.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 22.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.23.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.24.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.25.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;26.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.27.已知二元一次方程2x-3y=5的一组解为x a y b =⎧⎨=⎩,则2a-3b+3=______. 28.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.29.方程x +5=12(x +3)的解是________. 30.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.32.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.33.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.34.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.35.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.36.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.37.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.38.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】根据同类项的定义,单项式和多项式的定义解答.【详解】A .3d 2bc 与bca 2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B .225m n 的系数是25,故本选项错误. C .单项式﹣x 3yz 的次数是5,故本选项正确.D .3x 2﹣y +5xy 5是六次三项式,故本选项错误.故选C .【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.3.D解析:D【解析】【分析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y =,交叉相乘得到34x y =,故D 对. 故答案为:D.【点睛】 本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.4.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o ;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 5.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.6.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.7.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.8.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.9.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.10.C【解析】【分析】根据题意可以用代数式表示m的2倍与n平方的差.【详解】用代数式表示“m的2倍与n平方的差”是:2m-n2,故选:C.【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.11.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.12.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.13.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式14.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.15.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题16.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.17.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.18.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.19.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.20.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90解析:141︒【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.21.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020,解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.22.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解 解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 23.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键24.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.25.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.26.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 27.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.28.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.29.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.30.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、压轴题31.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.32.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.33.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.34.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+;如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏. 35.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有 -3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-,解得:2t 3=;。

辽宁省沈阳市 七年级(上)期末数学试卷

辽宁省沈阳市 七年级(上)期末数学试卷

七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1. -2019的相反数是()A.−2019B.2019C.−12019D.120192.下列算式中,运算结果为负数的是()A.−(−2)B.|−2|C.−22D.(−2)23.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()A.3.12×106B.3.12×105C.31.2×105D.0.312×1074.下面合并同类项正确的是()A.3x+2x2=5x3B.2a2b−a2b=1C.−ab−ab=0D.−y2x+xy2=05. 6.7. 8.一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A.x2−5x+3B.−x2+x−1C.−x2+5x−3下列调查中,调查方式选择合理的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查市场上某品牌电脑的使用寿命,采用普查的方式C.调查嘉陵江的水质情况,采用抽样调查的方式D.要了解全国初中学生的业余爱好,采用普查的方式某商品打七折后价格为a元,则原价为()A.a元B.107a 元C.30%a 元在与国际友好学校交流活动中,小敏打算制做一个D.D.x2−5x−13710a 元正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是()A.B.C.D.义仁智信9.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱10. 如图,钟面上的时间是8:30,再经过t次重合,则t为()分钟,时针、分针第一A. B. C. D.756 15011 15013 18011二、填空题(本大题共 6 小题,共 18.0 分) 11. 计算:15°37′+42°51′=______.12. 如果关于 x 的一元一次方程 2x +a =x-1 的解是 x =-4,那么 a 的值为______. 13. 把一张长方形纸条按图的方式折叠后,量得∠AOB ′ ∠B ′OC =______.=110°,则14. 如果一个零件的实际长度为 a ,测量结果是 b ,则称|b -a |为绝对误差,|b −a|a 为相对误差.现有一零件实际长度为 5.0cm ,测量结果是 4.8cm ,则本次测量的相对误 差是______.15. 如图,找出其变化的规律,则第 1345 个图形中黑色正方形的数量是______.16. 当整数 m =______时,代数式 63m−1 的值是整数. 三、计算题(本大题共 1 小题,共 6.0 分)17. 计算:-1 -8÷(-2)×(-12)四、解答题(本大题共 8 小题,共 64.0 分)18. 解方程:x -x −25=2x+53-119. 先化简,再求值:(4a -3a )-(1-4a+4a ),其中 a =-2.4 2 220. 补全下列解题过程如图,OD是∠AOC的平分线,且∠BOC-∠AOB=40°,若∠AOC=120°,求∠BOD的度数.解:∵OD是∠AOC的平分线,∠AOC=120°,∴∠DOC=12∠______=______°.∵∠BOC+∠______=120°,∠BOC-∠AOB=40°,∴∠BOC=80°.∴∠BOD=∠BOC-∠______=______°.21. (1)如图是由10个同样大小的小正方体搭成的几何体,请分别画出它的主视图和俯视图.(2)在主视图和俯视图不变的情况下,你认为最多还可以添加______个小正方体.22. 某校共有900名学生,学校准备调查他们对“沈阳创建卫生城”知识的了解程度,团委对部分学生采用了随机抽样调查的方式,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示):(1)根据图中信息,学校决定对“不了解”和“了解一点”的同学进行培训,估计该校约有多少名学生参加培训?(2)请你直接将两个统计图补充完整.23. 公园门票价格规定如下表:购票张数每张票的价格1~50张13元51~100张11元100张以上9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:①两班各有多少学生?②如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?24.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2 的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=n(n+1)2.如果图中的圆圈共有13层,请解决下列问题:(1)若自上往下,在图1每个圆圈中填上一串连续的正整数1,2,3,4,…,得到图3,则第11层最左边这个圆圈中的数是______;(2)若自上往下,在图1每个圆圈中填上一串连续的整数-23,-22,-21,20,…,得到图4,则第10层最右边圆圈内的数是______;(3)根据以上规律,求图4中第1层到第10层所有圆圈中各数之和(写出计算过程).25.如图,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为______;(2)将长方形OABC沿数轴向右水平移动,移动后的长方形记为O A B C:1111①若移动后的长方形O A B C与原长方形OABC重叠部分的面积恰好等于原长方1111形OABC面积的14 时,则数轴上点A表示的数为______;②长方形OOBC在移动的过程中,点D为线段AA1点,当DO+EO=3时,AA=______.1的中点,点E为线段AO的中11答案和解析1.【答案】B【解析】解:-2019 的相反数是:2019.故选:B .直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】C【解析】解:A 、-(-2)=2,错误;B 、|-2|=2,错误;C 、-2 =-4,正确;D 、(-2) =4,错误;故选:C .本题涉及相反数、绝对值、乘方等知识点.在计算时,需要针对每个知识点分 别进行计算.此题考查了相反数、绝对值、乘方等知识点.注意-2 和(-2) 的区别是关键. 3.【答案】A【解析】解:3120000 用科学记数法表示为 3.12×10 ,故选:A .科学记数法的表示形式为 a×10 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10 的形式,其 中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.【答案】D【解析】2 2 2 26 nn解:3x+2x不是同类项不能合并,2a b-a b=a b ,-ab-ab=-2ab ,-y x+x y=0.故选:D .本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,几个常数项也是同类项,合并时系数相加减,字母与字母的指数不变.本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不 变.注意当同类项的系数互为相反数时,合并的结果为 0.5.【答案】C【解析】解:由题意得:这个多项式=3x-2-(x -2x+1),=3x-2-x +2x-1,=-x +5x-3.故选:C .由题意可得被减式为 3x-2,减式为 x -2x+1,根据差=被减式-减式可得出这个 多项式.本题考查整式的加减,难度不大,注意在合并同类项时要细心.6.【答案】C【解析】解:A 、调查你所在班级同学的身高,应采用全面调查方式,故方法不合理,故 此选项错误;B 、调查市场上某品牌电脑的使用寿命,采用普查的方式,方法不合理,故此 选项错误;C 、查嘉陵江的水质情况,采用抽样调查的方式,方法合理,故此选项正确;D 、要了解全国初中学生的业余爱好,采用普查的方式,方法不合理,故此选2 2 2 2 2 2 2 22 2项错误;故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题主要考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查,普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【答案】B【解析】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.直接利用打折的意义表示出价格进而得出答案.此题主要考查了列代数式,正确表示出打折后价格是解题关键.8.【答案】A【解析】解:这是一个正方体的平面展开图,共有六个面,其中“礼”字对面的字是义.故选:A.利用正方体及其表面展开图的特点解题.本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.【答案】B【解析】解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.10.【答案】B【解析】解:设从8:30点开始,经过x分钟,时针和分针第一次重合,由题意得:6x-0.5x=755.5x=75x=,答:至少再经过分钟时针和分针第一次重合.故选:B.解决这个问题就要弄清楚时针与分针转动速度的关系:每一小时,分针转动360°,而时针转动30°,即分针每分钟转动6°,时针每分钟转动0.5°.此题考查一元一次方程的应用,钟表上的分钟与时针的转动问题本质上与行程问题中的两人追及问题非常相似,行程问题中的距离相当于这里的角度,行程问题中的速度相当于这里时(分)针的转动速度.11.【答案】58°28′【解析】解:∵37+51=88,.∴15°37′+42°51′=58°28′故答案为:58°28′.把分相加,超过60的部分进为1度即可得解.本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.12.【答案】3【解析】解:把x=-4代入方程2x+a=x-1得:-8+a=-5,解得:a=3,故答案为:3.把x=-4代入方程即可得出一个关于a的方程,求出方程的解即可.本题考查了解一元一次方程和一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.13.【答案】35°【解析】解:∵沿OC折叠,B和B′重合,∴△BOC≌△B△′OC,∴∠BOC=∠B′OC,∵∠AOB′=110°,∴∠BOB′=180°-110°=70°,∴∠B′OC=×70°=35°,故答案为:35°.首先根据折叠得出全等三角形,然后根据全等三角形的性质得出∠BOC=∠B′OC,最后求出∠BOB′即可求出答案.本题考查了角的计算、折叠的性质和全等三角形的性质等知识点,关键是求出∠B′OC=∠BOC和求出∠BOB′的度数.14.【答案】0.04【解析】解:若实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差为=0.04,故答案为:0.04.根据相对误差的计算公式代入计算即可.本题考查了有理数的减法和绝对值,正确理解绝对误差,相对误差的意义是解题的关键.15.【答案】2018【解析】解:第(1)个图形中黑色正方形的数量为:2,第(2)个图形中黑色正方形的数量为:2+1=3,第(3)个图形中黑色正方形的数量为:2+1+2=2×2+1=5,第(4)个图形中黑色正方形的数量为:2+1+2+1=2×2+1×2=6,第(5)个图形中黑色正方形的数量为:2+1+2+1+2=2×3+1×2=8,∵1345是奇数,∴第1345个图形中黑色正方形的数量是:2×[(1345+1)÷2]+1×[(1345-1)÷2]=2018,故答案为:2018.根据题目中的图形,可以发现黑色正方形的数量的变化规律,从而可以求得第1345个图形中黑色正方形的数量.本题考查图形的变化类,解答本题的关键是明确题意,发现题目中的黑色正方形个数的变化规律,利用数形结合的思想解答.16.【答案】0或1【解析】解:∵要使代数式的值是整数,∴3m-1只能在±1、±2、±3、±6这四个数中取值,∵当3m-1=1时,∴m=,当3m-1=-1时,m=0,当3m-1=2时,m=1,当3m-1=-2时,m=-,当3m-1=3时,m=,当3m-1=-3时,m=- ,当3m-1=6时,m=,当3m-1=-6时,m=- ,又∵m也是整数,∴可得m=0或1,故答案为0或1.由题可分析知要使代数式的值是整数,3m-1只能在±1、±2、±3、±6这四个数中取值,由此可依次求出m的值,再由m为整数知,只能为0或1.本题主要考查代数式求值问题,结合整数的简单知识,认真分析,也易得出 结果,注意不要漏掉可能的结果.17.【答案】解:原式=-1-8÷2×12=-1-2=-3.【解析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 18.【答案】解:15x -3(x -2)=5(2x +5)-1515x -3x +6=10x +25-1515x -3x -10x =25-15-62x =4x =2【解析】去分母、去括号、移项、合并同类项,系数化成 1 即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、 移项、合并同类项、化系数为 1.注意移项要变号.19.【答案】解:(4a -3a)-(1-4a +4a ) =4a-3a -1+4a -4a =a -1, 当 a =-2 时,a -1=-2-1=-3.【解析】本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把 a 的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要 变号;合并同类项时,只把系数相加减,字母与字母的指数不变.考查了整式的混合运算,主要考查了整式的加减法、去括号、合并同类项的 知识点.注意运算顺序以及符号的处理.20.【答案】AOC 60 AOB DOC 20【解析】解:∵OD 是∠AOC 的平分线,∠AOC=120°,∴∠DOC= ∠AOC=60°.∵∠BOC+∠AOB=120°,∠BOC-∠AOB=40°,2 2 2 2∴∠BOC=80°.∴∠BOD=∠BOC-∠D OC=20°故答案是:AOC,60,AOB,DOC,20.根据角平分线的定义,以及角的和差即可求解.本题考查了角度的计算,理解角平分线的定义,正确结合图形,理解角度的和差关系是关键.21.【答案】3【解析】解:(1)如图所示:(2)最多还可以添加3个小正方体.故答案为:3.(1)主视图有3列,每列小正方形数目分别为3,1,2;俯视图有3列,每列小正方形数目分别为3,2,1;(2)根据保持这个几何体的主视图和俯视图不变,可在左边最前面可添加2个,左边中间可添加1个,依此即可求解.此题主要考查了作图-三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.22.【答案】解:(1)∵被调查的学生人数为6÷10%=60(人),∴了解一点的人数为60-(6+18)=36(人),则估计该校约参加培训的学生约有900×6+3660=630(名);(2)了解一点的人数所占百分比为3660×100%=60%,比较了解的人数所占百分比为1860×100%=30%,补全图形如下:【解析】(1)先由“不了解”人数及其所占百分比求得总人数,再根据各了解程度人数之和等于总人数求得了解一点的人数,继而用总人数乘以样本中“不了解”和“了解一点”的人数之和占总人数的比例可得;(2)用了解一点和比较了解的人数除以总人数,分别求得其对应百分比,据此可补全图形.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.23.【答案】①解:设初一(1)班有x人,则有13x+11(104-x)=1240,解得:x=48.即初一(1)班48人,初一(2)班56人;②解:要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561,∴48人买51人的票可以更省钱.【解析】①由已知设初一(1)班有x人,则(2)班为(104-x)人,其相等关系为两个班购票款数为1240元,列方程求解.②根据公园门票价格规定,通过计算得出应尽量设计的能够享受优惠的购票方案.此题考查的知识点是一元一次方程的应用,关键在优惠类一类问题中,注意认真理解优惠政策,审题要细心.24.【答案】5631【解析】解:(1)∵1+2+3+…+10=55,∴第11层最左边这个圆圈中的数是56,故答案为56.(2)∵1+2+3+…+10=55,-23+(55-1)=31,∴第10层最右边圆圈内的数是31,故答案为31.(3)-23-22-21-20-…-1+1+2+3+…+31=220.(1)第一层1个数,第二层2个数,第三层3个数,求出1+2+3+4+…10的值即可判断;(2)由1+2+3+…+10=55,-23+(55-1)=31,可得结论;(3)求出-23-22-21-20-…-1+1+2+3+…+31的和即可解决问题;本题考查规律型问题,解题的关键是理解题意,学会探究规律利用规律解决问题,属于中考常考题型.25.【答案】473【解析】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=4,∴点A表示的数为4,故答案为:4;(2)长方形向右移动时,长方形O A B C与原长方形OABC重叠部分的面积1111是3,∴OA=1,1∴AA=3,1∴点A表示的数为7,1故答案为7;,EO=,②设移动x个单位,DO=4+∵DO+EO=3,∴4+解得x=-3,即左移3个单位时DO+EO=3时,AA=3,1故答案为:3.(1)根据长方形的面积公式求出另一边的边长即可;(2)①根据面积关系,计算出移动距离,再确定点A 表示的数;1②设移动AA=x个单位,根据DO+EO=3列方程求解x.1本题考查数轴的相关知识,解题的关键是理解运动轨迹,数字和线段的灵活转换.。

辽宁省沈阳市七年级上册数学期末考试试卷

辽宁省沈阳市七年级上册数学期末考试试卷

辽宁省沈阳市七年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·大化期末) 下列四幅图案中,能通过平移图得到的是()A .B .C .D .2. (2分) (2020七上·三门峡期末) 已知,则等于().A .B .C .D .3. (2分)(2018·绥化) 下列图形中,既是中心对称图形又是轴对称图形的有A . 4个B . 3个C . 2个D . 1个4. (2分)如图所示,该几何体的俯视图是()A .B .C .D .5. (2分)下列说法不正确的是()A . 对称轴是一条直线B . 两个关于某直线对称的三角形一定全等C . 若△ABC与△A′ B′C′关于直线l对称,那么它们对应边上的高中线、对应角平分线也分别关于直线l 对称D . 两个全等的三角形一定关于某条直线对称6. (2分) (2020八上·铜陵期末) 下列计算正确的是()A .B .C .D .7. (2分)(2019·长春模拟) 如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A .B .C .D .8. (2分)若m<-1,则下列函数:①y=,②y=-mx+1,③y=m(x+1)2 ,④y=(m+1)x2(x<0)中,y的值随x的值增大而增大的函数共有()A . 1个B . 2个C . 3个D . 4个9. (2分)(2017·营口模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .10. (2分) (2019七上·乐昌期中) 在,-|-12|,-20,0,-(-5)中,负数的个数有()A . 2个B . 3个C . 4个D . 5个二、解答题 (共3题;共20分)11. (10分) (2019七上·杭州月考)(1)已知 =5, =4,且m,n异号,求m2-mn+n2的值.(2)已知,m和n互为相反数,p和q互为倒数,a是绝对值最小的有理数,求的值.12. (5分)(2017·虎丘模拟) 计算:|﹣1|+ ﹣(1﹣)0﹣()﹣1 .13. (5分) (2019八下·长丰期末) 计算:三、填空题 (共5题;共11分)14. (1分)函数 y=的自变量x的取值范围是________ .15. (1分)已知|x-y+2|+ =0,则x2-y2=________16. (1分) (2016七上·昌平期中) 已知|a﹣3|+(b+4)2=0,则(a+b)2003=________.17. (7分) (2019七上·福田期末) 一个三位数,十位数字是0,个位数字是百位数字的2倍,如果将这个三位数的个位数字与百位数字调换位置得到一个新的三位数,则这个新的三位数比原三位数的2倍少9,设原三位数的百位数字是x:(1)原三位数可表示为________,新三位数可表示为________;(2)列方程求解原三位数.18. (1分)如果2x=5,2y=10,则2x+y﹣1 = ________参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、解答题 (共3题;共20分)11-1、11-2、12-1、13-1、三、填空题 (共5题;共11分) 14-1、15-1、16-1、17-1、17-2、18-1、。

沈阳市七年级上学期期末数学试题题及答案

沈阳市七年级上学期期末数学试题题及答案
21.已知二元一次方程2x-3y=5的一组解为 ,则2a-3b+3=______.
22.如图,在平面直角坐标系中,动点P按图中箭头所示方向从原点出发,第1次运动到P1(1,1),第2次接着运动到点P2(2,0),第3次接着运动到点P3(3,-2),…,按这的运动规律,点P2019的坐标是_____.
23.材料:一般地,n个相同因数a相乘 :记为 . 如 ,此时3叫做以2为底的8的对数,记为 (即 );如 ,此时4叫做以5为底的625的对数,记为 (即 ),那么 _________.
24.已知 ,则 的补角为______°______′.
三、解答题
25.计算:
(1)
(2)
26.数学问题:计算 (其中m,n都是正整数,且m≥2,n≥1).
两边同除以2,得 + + +…+ = ﹣ .
探究三:计算 + + +…+ .
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)
解决问题:计算 + + +…+ .
(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)
根据第n次分割图可得等式:_________,
所以, + + +…+ =________.
第3次分割,把上次分割图中空白部分的面积继续二等分,…;

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为 + + +…+ ,最后空白部分的面积是 .
根据第n次分割图可得等式: + + +…+ =1﹣ .

七年级上册沈阳数学期末试卷测试题(Word版 含解析)

七年级上册沈阳数学期末试卷测试题(Word版 含解析)

七年级上册沈阳数学期末试卷测试题(Word 版 含解析)一、选择题1.如图所示的图形绕虚线旋转一周,所形成的几何体是( )A .B .C .D .2.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( ) A .5B .﹣5C .7D .﹣73.3-的倒数是( ) A .3B .13C .13-D .3-4.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65°5.如图,有一个正方体纸巾盒,它的平面展开图不可能的是( )A .B .C .D .6.下列各组中的两个单项式,属于同类项的一组是( ) A .23x y 与23xyB .3x 与3xC .22与2aD .5与-37.A 、B 两地相距550千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2.5B .2或10C .2.5或3D .38.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A.秦B.淮C.源D.头9.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是()A.赚了B.亏了C.不赚也不亏D.无法确定10.将7760000用科学记数法表示为()A.5⨯D.777.6107.7610⨯7.76107.7610⨯B.6⨯C.611.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A.B.4C.或4D.2或412.我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为()A.3⨯D.60.16710⨯1.6710⨯C.516710⨯B.416.71013.下列语句错误的是()A.两点确定一条直线B.同角的余角相等C.两点之间线段最短D.两点之间的距离是指连接这两点的线段14.如图,用一副特制的三角板可以画出一些特殊角.在下列选项中,不能画出的角度是()A.81B.63C.54D.5515.2020的相反数是()A .2020B .﹣2020C .12020D .﹣12020二、填空题16.一个几何体的主视图、左视图、俯视图都是相同的图形,这样的几何体可以是___________(写出一个符合条件的即可). 17.有下列三个生活、生产现象: ①用两个钉子就可以把木条固定在干墙上; ②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线. 其中可用“两点之间,线段最短”来解释的现象有_____(填序号). 18.若3a b -=,则代数式221b a -+的值等于________.19.把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62°,则∠DEF =_____°.20.如图,点B 是线段AC 上的点,点D 是线段BC 的中点,若4AB cm =,10AC cm =,则CD =___________cm .21.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2020次输出的结果为___________.22.已知x +y =3,xy =1,则代数式(5x +2)﹣(3xy ﹣5y )的值_____.23.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.24.如图为正方体的一种平面展开图,各面都标有数字,则数字为1的面所对的面上的数字是__________.25.216x -的系数是________ 三、解答题26.如图,直线a 上有M 、N 两点,12cm MN =,点O 是线段MN 上的一点,3OM ON =.(1)填空:OM =______cm ,ON =______cm ;(2)若点C 是线段OM 上一点,且满足MC CO CN =+,求CO 的长;(3)若动点P 、Q 分别从M 、N 两点同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s .设运动时间为s t ,当点P 与点Q 重合时,P 、Q 两点停止运动.①当t 为何值时,24cm OP OQ -=?②当点P 经过点O 时,动点D 从点O 出发,以4cm /s 的速度也向右运动,当点D 追上点Q 后立即返回,以4cm /s 的速度向点P 运动,遇到点P 后再立即返回,以4cm /s 的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点D 也停止运动.求出在此过程中点D 运动的总路程是多少?27.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.(请利用网格作图,画出的线请用铅笔描粗描黑)(1)过点C 画AB 的垂线,并标出垂线所过格点E ; (2)过点C 画AB 的平行线CF ,并标出平行线所过格点F ; (3)直线CE 与直线CF 的位置关系是 ; (4)连接AC ,BC ,则三角形ABC 的面积为 . 28.、两地相距,甲、乙两车分别沿同一条路线从地出发驶往地,已知甲车的速度为,乙车的速度为,甲车先出发后乙车再出发,乙车到达地后再原地等甲车.(1)求乙车出发多长时间追上甲车? (2)求乙车出发多长时间与甲车相距?29.计算题(1)(3)78--+--(2)2211-3--6-3()(2)32⨯-+-÷. 30.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格阶梯用户年用气量(单位:立方米)2018年单价 (单位:元/立方米)2019年单价 (单位:元/立方米)第一阶梯 0-300(含) a3 第二阶梯 300-600(含) 0.5a + 3.5 第三阶梯600以上1.5a +5(1)甲用户家2018年用气总量为280立方米,则总费用为 元(用含a 的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a 的值; (3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?31.先化简,再求值:()()22225343a b abab a b ---+,其中a=-2,b=12; 32.下图是用10块完全相同的小正方体搭成的几何体.(1)请在方格中画出它的三个视图;(2)如果只看三视图,这个几何体还有可能是用 块小正方体搭成的. 33.计算:(1)1136()33-⨯+⨯-(2)32(2)4[5(3)]-÷⨯--四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。

沈阳市人教版七年级上册数学期末试卷及答案-百度文库

沈阳市人教版七年级上册数学期末试卷及答案-百度文库

沈阳市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.下列判断正确的是()A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.2.下列每对数中,相等的一对是()A.(﹣1)3和﹣13B.﹣(﹣1)2和12C.(﹣1)4和﹣14D.﹣|﹣13|和﹣(﹣1)33.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+54.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC;其中正确的结论有()A.1个B.2个C.3个D.4个5.如果a﹣3b=2,那么2a﹣6b的值是()A.4 B.﹣4 C.1 D.﹣16.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A.(2,1) B.(3,3) C.(2,3) D.(3,2)7.不等式x﹣2>0在数轴上表示正确的是()A.B.C.D.8.下列等式的变形中,正确的有()①由5 x =3,得x = 53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得m n=1. A .1个B .2个C .3个D .4个 9.下列各数中,比73-小的数是( ) A .3- B .2- C .0 D .1-10.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<011.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB . A .1个B .2个C .3个D .4个 12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题13.|-3|=_________;14. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.15.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.16.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.17.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.18.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;19.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.20.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 21.A 学校有m 个学生,其中女生占45%,则男生人数为________.22.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.23.已知代数式235x -与233x -互为相反数,则x 的值是_______. 24.若4a +9与3a +5互为相反数,则a 的值为_____. 三、解答题25.解不等式组()355232x x x +≤⎧⎨+>-⎩,并在数轴上表示解集. 26.解下列一元一次方程()1()23x x +=-()2()113124x x --+= 27.一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元.计算每天最高价与最低价的差,以及这些差的平均值.28.先化简,再求值:2(x 2y+xy 2)﹣2(x 2y ﹣x )﹣2xy 2﹣2y ,其中x=﹣2,y=2. 29. 计算:(1)(﹣16+34﹣512)×36 (2)(﹣3)2124÷×(﹣23)+4+22×8()3- 30.如图,在数轴上有 A 、B 、C 、D 四个点,分别对应的数为 a ,b , c , d ,且满足 a ,b 是方程| x +7|=1的两个解(a < b ),且(c -12)2 与| d -16 |互为相反数.(1)填空:a =、b =、c =、d =;(2)若线段AB 以3 个单位/ 秒的速度向右匀速运动,同时线段CD 以1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C ,D 两个端点重合),若BD=2AC ,求t 的值;(3)在(2)的条件下,线段AB ,线段CD 继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使BC=3AD ?若存在,求t 的值;若不存在,说明理由.四、压轴题31.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.32.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?33.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.2.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.3.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.4.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.6.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 7.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.解析:B 【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.9.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.10.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a<b<0<c,且|a|>|c|>|b|则A. a+b<0正确,不符合题意;B. a+c<0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.11.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.12.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题13.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.14.2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.15.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解 解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键.16.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.17.-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3解析:-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.18.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大19.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC =80°,则∠AOB =∠BOC+∠AOC =110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE =40°,∴∠BOC =80°,∴∠AOB =∠BOC+∠AOC =80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.20.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算.21.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】-,乘以总人数就是男生的人数.将男生占的比例:145%【详解】-=,则男生人数为55%m,男生占的比例是145%55%故答案是55%m.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.22.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键23.【解析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.24.-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a +9+3a +5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.三、解答题25.-4<x ≤2,数轴表示见解析.【解析】【分析】先分别求出每一个不等式的解集,然后确定其公共部分,最后在数轴上表示出来即可.【详解】()355232x x x +≤⎧⎪⎨+>-⎪⎩①②, 由①得:x ≤2,由②得:x>-4,所以不等式组的解集为:-4<x ≤2,在数轴上表示如下所示:【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.26.(1)2x =-;(2)32x =-【解析】【分析】(1)根据去括号、移项、合并同类项、x 系数化为1求解即可;(2)根据去分母、去括号、移项、合并同类项、x 系数化为1求解即可.【详解】解:(1)去括号得,26x x +=-,移项得,26x x +=-,合并同类项得,36x =-,系数化为1得,2x =-;(2)去分母得,2(1)12(1)1x x --+=,去括号得,2212121x x ---=,移项、合并同类项得,-1015x =,系数化为1得,32x =-. 【点睛】本题考查了一元一次方程的解法,关键是掌握正确的步骤.27.第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【解析】【分析】设开盘价为x 元,分别表示出每天最高价与最低价,并求出差价,再求差的平均值即可.【详解】解:设开盘价为x 元,第一天:最高价为(0.3)x +元,最低价(0.2)x -元,差价为:(0.3)(0.2)0.30.20.5x x x x +--=+-+=(元); 第二天:最高价(0.2)x +元,最低价(0.1)x -元,差价为:(0.2)(0.1)0.20.10.3x x x x +--=+-+=(元);第三天:最高价x 元,最低价(0.13)x -元,差价为:(0.13)0.130.13x x x x --=-+=(元), 差的平均值为:0.50.30.130.313++=(元), 则第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【点睛】此题考查了整式的加减,以及列代数式,弄清题意,求出差价是解本题的关键. 28.﹣8.【解析】【分析】根据去括号、合并同类项,可化简整式,把未知数的值代入,可得答案.【详解】解:原式=2x 2y+2xy 2﹣2x 2y+2x ﹣2xy 2﹣2y=(2﹣2)x 2y+(2﹣2)xy 2+2x ﹣2y=2x ﹣2y ,当x=﹣2,y=2时,原式=2×(﹣2)﹣2×2=﹣8.考点:整式的加减—化简求值.29.(1)6;(2)﹣283. 【解析】【分析】第一题利用乘法分配律进行计算第二题按照混合运算的法则进行逐步计算【详解】(1)原式=1353636366271566412-⨯+⨯-⨯=-+-= (2)原式=428832289444933333⎛⎫⎛⎫⨯⨯-++⨯-=-+-=- ⎪ ⎪⎝⎭⎝⎭【点睛】关于有理数的运算,运用运算律可以简便运算,对于混合运算,要严格按照运算的先后顺序进行运算.30.(1)a = -8 , b = -6,c = 12 , d = 16;(2)316t =;(3)t =274 或t = 458时, BC = 3AD【解析】【分析】(1)根据绝对值的含义a a ±=(a 为正数) 及平方和绝对值的非负性20,0a a ≥≥ 即可求解;(2)AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,根据题意列出关于t 的等式求解即可;(3)根据题意求出t 的取值范围,用含t 的式子表示出BC 和AD ,再根据BC =3AD 即可求出t 值.【详解】(1) | x + 7 |= 1,∴ x = -8 或-6∴ a = -8 , b = -6,(c -12)2 + | d -16 |= 0 ,∴ c = 12 , d = 16(2) AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,∴ BD =|16 - t - (-6 + 3t ) |=| 22 - 4t |AC =|12 - t - (-8 + 3t ) |=| 20 - 4t |BD = 2 AC ,∴ 22 - 4t = ±2(20 - 4t )解得: 92t =或316t =当92t =时,此时点 B 对应的数为152,点C 对应的数为152,此时不满足题意, 故316t = (3)当点 B 运动到点 D 的右侧时, 此时-6 + 3t > 16 - t 112t ∴>, BC =|12 - t - (-6 + 3t ) |=|18 - 4t | ,AD =|16 - t - (-8 + 3t ) |=| 24 - 4t | ,BC = 3AD ,∴|18 - 4t |= 3 | 24 - 4t | ,解得: t =274 或t = 458经验证,t =274 或t = 458, BC = 3AD 【点睛】本题考查了有理数与数轴的综合问题,涉及字母的表示,绝对值的性质,解方程,灵活应用绝对值的性质是解题的关键.四、压轴题31.(1)107秒或10秒;(2)1413或11413. 【解析】【分析】(1)由绝对值的非负性可求出a ,c 的值,设点B 对应的数为b ,结合BC = 2 AB ,求出b 的值,当运动时间为t 秒时,分别表示出点P 、点Q 对应的数,根据“Q 到B 的距离与P 到B 的距离相等”列方程求解即可;(2)当点R 运动了x 秒时,分别表示出点P 、点Q 、点R 对应的数为,得出AQ 的长, 由中点的定义表示出点M 、点N 对应的数,求出MN 的长.根据MN +AQ =25列方程,分三种情况讨论即可.【详解】(1)∵|a -20|+|c +10|=0,∴a -20=0,c +10=0,∴a =20,c =﹣10.设点B 对应的数为b .∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ).解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .∵Q 到B 的距离与P 到B 的距离相等,∴|﹣10+5t ﹣10|=|20+2t ﹣10|,即5t ﹣20=10+2t 或20﹣5t =10+2t ,解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论: ①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)x=1;(2) x=-3或x=5;(3) 30.【解析】【分析】(1)根据题意可得4-x=x-(-2),解出x的值;(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.【详解】(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.。

沈阳市七年级上学期期末数学试题题及答案

沈阳市七年级上学期期末数学试题题及答案

沈阳市七年级上学期期末数学试题题及答案一、选择题1.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106 2.﹣3的相反数是()A.13-B.13C.3-D.33.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A.B.C.D.4.如图,C为射线AB上一点,AB=30,AC比BC的14多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论:①BC=2AC;②AB=4NQ;③当PB=12BQ时,t=12,其中正确结论的个数是()A.0 B.1 C.2 D.35.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A.1005006 2x x+=B.1005006 x2x+=C.1004006 2x x+=D .1004006x 2x+= 6.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对7.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限 8.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠29.下列等式的变形中,正确的有( )①由5 x =3,得x = 53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得m n=1. A .1个B .2个C .3个D .4个 10.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+11.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( )A .40分钟B .42分钟C .44分钟D .46分钟12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题13.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.14.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.15.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 16.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).17.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.18.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.19.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.20.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).21.化简:2x+1﹣(x+1)=_____.22.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.23.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?26.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC= ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q两点间的距离为1个单位长度.27.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.28.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.29.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x -1 -2 ... (1)可求得 x =______,第 2021 个格子中的数为______;(2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.30.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?31.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?32.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+;(2)当1-≤2x <时,原式()()123x x =+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ;(2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.A解析:A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A.【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.5.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.6.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC ,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C .【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.7.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.8.B解析:B【解析】【分析】延长EP 交CD 于点M ,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP ,继而根据平角定义以及∠BEP=∠GEP 即可求得答案.【详解】延长EP 交CD 于点M ,∵∠EPF 是△FPM 的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD ,∴∠BEP=∠FMP ,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP ,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.9.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.10.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.11.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y 分,∴6y ﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C .12.C解析:C【解析】【分析】根据MN =CM +CN =12AC +12CB =12(AC +BC )=12AB 即可求解. 【详解】解:∵M 、N 分别是AC 、BC 的中点, ∴CM =12AC ,CN =12BC , ∴MN =CM +CN =12AC +12BC =12(AC +BC )=12AB =4. 故选:C .【点睛】本题考查了线段中点的性质,找到MC 与AC ,CN 与CB 关系,是本题的关键二、填空题13.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.14.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90解析:141︒【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.15.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.16.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】324x xy -=x(x+2y)(x-2y).当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入17.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.18.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.19.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x +1)+1=131,解得x =5;若经过三次输入结果得131,则5[5(5x +1)+1]+1=131,解得x =45; 若经过四次输入结果得131,则5{5[5(5x +1)+1]+1}+1=131,解得x =−125(负数,舍去);故满足条件的正数x 值为:26,5,45. 【点睛】 本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x 的值.20.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.21.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.22.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.2【解析】【分析】根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn 是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】∵单项式-3x 2m+6y 3与2x 4y n 是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、压轴题25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.26.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t , =4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健27.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOB+∠BOD ,∠MON=∠BOM+∠BON ,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC ,∠MON=∠MOC+∠BON-∠BOC 结合三式求解.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD ,∴∠BOM=12∠AOB ,∠BON=12∠BOD , ∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD). ∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°; (2)∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=12∠AOC ,∠BON=12∠BOD , ∵∠MON=∠MOC+∠BON-∠BOC ,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC. ∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC ,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°, ∴α=140°.【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.28.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1……∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.29.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a 、x 的值,再根据第9个数是-2可得b =-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.30.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.31.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.。

沈阳市人教版七年级上册数学期末试卷及答案-百度文库

沈阳市人教版七年级上册数学期末试卷及答案-百度文库

沈阳市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元 B .(b ﹣10)元 C .(10a ﹣b )元 D .(b ﹣10a )元 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1063.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-D .()2121826x x ⨯=-4.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣25.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2B .8C .6D .06.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .7.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .8.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山 9.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==10.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=211.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………15.|-3|=_________; 16.若523m xy +与2n x y 的和仍为单项式,则n m =__________.17.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.18.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.19.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.20.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.21.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.22.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.23.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.24.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、解答题25.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按,,,A B C D 四个等级进行统计(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了________名学生;(2)在扇形统计图中,D 级所在的扇形圆心角的度数是_________; (3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A 级学生约有多少名?26.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.27.如图,已知数轴上有、、A B C 三个点,它们表示的数分别是24,10,10--.(1)填空:AB=,BC= .(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位-的值是否随着时间t的变化而改变? 长度和7个单位长度的速度向右运动.试探索:BC AB请说明理由。

沈阳市七年级上学期期末数学试题

沈阳市七年级上学期期末数学试题

沈阳市七年级上学期期末数学试题一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab +=4.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=5.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 7.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A.60°B.80°C.150°D.170°8.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+59.下列四个数中最小的数是()A.﹣1 B.0 C.2 D.﹣(﹣1)10.计算:2.5°=()A.15′B.25′C.150′D.250′11.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+112.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利60% ,另一个亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利37.5 元C.亏损25 元D.盈利12.5 元二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.14.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.15.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

沈阳市七年级上学期期末数学试题

沈阳市七年级上学期期末数学试题

沈阳市七年级上学期期末数学试题一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或734.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯ B .31.0410-⨯ C .41.0410-⨯ D .51.0410-⨯ 5.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+66.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +17.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 8.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠4 9.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米10.下列方程的变形正确的有( ) A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x =11.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°12.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个二、填空题13.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 14.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.15. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.16.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.17.化简:2x+1﹣(x+1)=_____.18.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.19.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.20.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.21.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.24.若2a ﹣b=4,则整式4a ﹣2b+3的值是______. 三、解答题25.解方程:(1)()43203x x --= (2)23211510x x -+-= 26.定义新运算“@”与“⊕”:@2a b a b +=,2a ba b -⊕= (1)计算()()()3@221---⊕-的值;(2)若()()()()()3@23,@329A b a a b B a b a b =-+⊕-=-+-⊕--,比较A 和B 的大小 27.如图,点O 是直线AE 上的一点,OC 是∠AOD 的平分线,∠BOD =13∠AOD . (1)若∠BOD =20°,求∠BOC 的度数;(2)若∠BOC =n°,用含有n 的代数式表示∠EOD 的大小.28.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克) 售价(元/千克) 甲种 5 8 乙种913(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元? 29.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,6525EOC DOC∠=︒∠=,,求AOB∠的度数.30.用白色棋子摆出下列一组图形:(1)填写下表:图形编号(1)(2)(3)(4)(5)(6)...图形中的棋子(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?四、压轴题31.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。

沈阳市人教版七年级上册数学期末试卷及答案-百度文库

沈阳市人教版七年级上册数学期末试卷及答案-百度文库

沈阳市人教版七年级上册数学期末试卷及答案-百度文库 一、选择题1.4 =( )A .1B .2C .3D .42.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1 C .2 D .3 3.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=- 4.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23 B .3 C .2- D .2275.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠6.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1127.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( )4 a b c ﹣2 3 …A .4B .3C .0D .﹣28.观察下列算式,用你所发现的规律得出22015的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A .2B .4C .6D .89.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .10.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1) B .(3,3) C .(2,3) D .(3,2)11.下列等式的变形中,正确的有( )①由5 x =3,得x = 53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得m n=1. A .1个B .2个C .3个D .4个 12.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________.14.若212-m y x 与5x 3y 2n 是同类项,则m +n =_____. 159________16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.17.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.18.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.19.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.20.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________. 21.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 22.将520000用科学记数法表示为_____.23.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.24.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.三、压轴题25.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.26.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.27.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由. ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.28.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.29.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示);(2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.30.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)31.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.32.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯,故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x的值代入进去即可.3.D解析:D【解析】【分析】设分配x名工人生产螺栓,则(26-x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【详解】解:设分配x名工人生产螺栓,则(26-x)名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,∴可得2×12x=18(26-x).故选:D.【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.4.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,22是分数,是有理数,不符合题意,7故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.5.A解析:A【解析】【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可.【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意,故选:A.【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.6.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n 个图中,有2×(2n+1)+n=5n+2(个).∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .7.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a 、c 的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c ,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b 、4、-2、b ,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.8.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.9.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.10.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 11.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.12.B解析:B【解析】【分析】利用直角和角的组成即角的和差关系计算.【详解】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选B.【点睛】本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.二、填空题13.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.15.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3=,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.16.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.17.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.18.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去,综上125 t .故填12 5.【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.19.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.20.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【解析:3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把12x y =⎧⎨=⎩代入方程组得:2722a b b a +=⎧⎨+=⎩, ①+②得:3(a +b )=9,则a +b =3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-=9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 22.2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.23.140【解析】【分析】【详解】解:∵OD 平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD 平分∠AOC ,∴∠AOC =2∠AOD =40°,∴∠COB =180°﹣∠COA =140°故答案为:14024.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C -︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.三、压轴题25.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健26.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.27.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.28.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-.解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.29.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)103或4(4)线段MN的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11②当点P 运动到点B 的左侧时:MN=MP ﹣NP=12AP ﹣12BP=12(AP ﹣BP )=12AB=11 ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.30.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=;答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】 本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.31.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.32.(1)存在满足条件的点P ,对应的数为﹣92和72;(2)正确的结论是:PM ﹣34BN 的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),。

七年级上册沈阳数学期末试卷测试题(Word版 含解析)

七年级上册沈阳数学期末试卷测试题(Word版 含解析)

七年级上册沈阳数学期末试卷测试题(Word 版 含解析)一、选择题1.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因( ) A .两点之间,线段最短 B .过一点有无数条直线 C .两点确定一条直线D .两点之间线段的长度,叫做这两点之间的距离 2.下列运算中,正确的是( ) A .325a b ab += B .325235a a a += C .22330a b ba -=D .541a a -=3.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x 的和为( )A .30B .35C .42D .394.下面计算正确的是( )A .2233x x -=B .235325a a a +=C .10.2504ab ab -+= D .33x x +=5.单项式24x y 3-的次数是( ) A .43-B .1C .2D .36.下列比较大小正确的是( ) A .12-<13- B .4π-<2-C .()32--﹤0D .2-﹤5-7.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( ) A .115×103B .11.5×104C .1.15×105D .0.115×1068.图中几何体的主视图是( )A .B .C .D .9.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小10.如图所示的几何体的左视图是( )A .B .C .D .11.27-的倒数是( ) A .72 B .72-C .27D .27-12.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .30713.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤ 14.-3的相反数为( )A .-3B .3C .0D .不能确定15.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养二、填空题16.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上由左至右第1个数是1,第2个数是13,第3个数是41,…,依此规律,第5个数是______.17.计算:3-|-5|=____________.18.已知3x =是方程35x x a -=+的解,则a 的值为__________. 19.已知A =5x +2,B =11-x ,当x =_____时,A 比B 大3. 20.下午3点30分时,钟面上时针与分针所成的角等于_____°.21.已知222x y -+的值是 5,则 22x y -的值为________.22.若623mxy -与41n x y -的和是单项式,则n m = _______.23.小颖将考试时自勉的话“冷静、细心、规范”写在一个正方体的六个面上,其平面展开图如图所示,那么在正方体中和“规”字相对的字是____.24.若王老师在一次数学过关测试中,以80分为过关线,记下了4名同学的成绩:+8,0,-8,+13,则这4名同学实际成绩最高的是__________分.25.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________.三、解答题26.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名? 27.计算:(1)35116()824⨯+- (2) 3242(2)(3)3--÷⨯- 28.如图,已知线段AB ,延长AB 到C ,点D 是线段AB 的中点,点E 是线段BC 的中点.(1)若5BD =,4BC =,求线段EC 、AC 的长; (2)试说明:2AC DE =.29.已知m 为整数,且满足关于x 的方程(2m+1)x=3mx-1, (1)当2m =时,求方程的解; (2)该方程的解能否为3,请说明理由; (3)当x 为正整数时,请求出的m 值.30.先化简,后求值:(23)2(2+2ab a a b ab )-+--,其中a=3,b=1. 31.如图所示,直线AB 、CD 相交于点O ,OM ⊥AB . (1)若∠1=∠2,判断ON 与CD 的位置关系,并说明理由; (2)若∠1=15∠BOC ,求∠MOD 的度数.32.学校艺术节要印制节目单,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而900元的制版费则六折优惠.问: (1)学校印制多少份节目单时两个印刷厂费用是相同的? (2)学校要印制1500份节目单,选哪个印刷厂所付费用少? 33.计算:(1)1136()33-⨯+⨯-(2)32(2)4[5(3)]-÷⨯--四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值. 35.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”.36.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?37.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ? 38.如图1,点A ,B ,C ,D 为直线l 上从左到右顺次的4个点.(1) ①直线l 上以A ,B ,C ,D 为端点的线段共有 条;②若AC =5cm ,BD =6cm ,BC =1cm ,点P 为直线l 上一点,则PA +PD 的最小值为 cm ;(2)若点A 在直线l 上向左运动,线段BD 在直线l 上向右运动,M ,N 分别为AC ,BD 的中点(如图2),请指出在此过程中线段AD ,BC ,MN 有何数量关系并说明理由; (3)若C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,E ,F 两点同时从C ,D 出发,分别以2cm/s ,1cm/s 的速度沿直线l 向左运动,Q 为EF 的中点,设运动时间为t ,当AQ+AE+AF=32AD 时,请直接写出t 的值. 39.如图1,在数轴上A 、B 两点对应的数分别是6,-6,∠DCE=90°(C 与O 重合,D 点在数轴的正半轴上)(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0<t<3)个单位后,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α. ①当t=1时,α=_________;②猜想∠BCE 和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.40.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .41.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.42.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.43.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据两点之间,线段最短解答即可. 【详解】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”, 其原因是两点之间,线段最短, 故选:A .本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.2.C解析:C 【解析】 【分析】根据同类项与合并同类项的知识进行选择排除即可. 【详解】A .3a 与2b 不是同类项不能合并,所以A 错误; B.32a 与23a 字母指数不同,不是同类项,所以B 错误;C.23a b 与23ba 所含字母相同且相同字母的指数相同,是同类项可以合并,计算正确;D.54a a a -=所以D 错误; 故答案为C. 【点睛】本题考查的是整式的运算,能够熟练掌握同类项与合并同类项的知识点是解题的关键.3.D解析:D 【解析】 【分析】根据题意可知第一次所得的结果≤26,第二次所得的结果>26,列不等式组并解除不等式组得解后再计算满足条件的所有整数的和即可. 【详解】 由题意得31263(31)126x x -≤⎧⎨--⎩①>②,解不等式①得,x≤9, 解不等式②得,x >103, ∴x 的取值范围是103<x≤9, ∴满足条件的所有整数x 的和为4+5+6+7+8+9=39.故答案选D . 【点睛】本题考查一元一次不等式组的应用,解题的关键是正确理解程序所表示的意义,能根据题意列出不等式组.4.C解析:C 【解析】 【分析】根据合并同类项的方法判断即可.A. 22232x x x -=,该选项错误;B. 2332a a 、不是同类项不可合并,该选项错误;C. 10.2504ab ab -+=,该选项正确; D. 3x 、不是同类项不可合并,该选项错误. 故选C. 【点睛】本题考查同类型的判断,关键在于清楚同类型的定义.5.D解析:D 【解析】 【分析】直接利用单项式的次数的定义得出答案. 【详解】 单项式43-x 2y 的次数是2+1=3. 故选D . 【点睛】本题考查了单项式的次数,正确把握定义是解题的关键.6.A解析:A 【解析】 试题分析:A.∵12>13∴12-<13-,故A 正确; B .4π-<2-;此选项错误;C .()32(8)8--=--=>0,故此选项错误; D .∵2<5∴-2>-5,故此选项错误. 故选A.考点:有理数的大小比较.7.C解析:C 【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将115000用科学记数法表示为:1.15×105.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.B解析:B【解析】【分析】根据主视图是从物体的正面去观察所得到的,根据看到的图形进行选择即可.【详解】因为球在长方体的中间,从正面看上去看到的是一个长方形和圆形,且圆在正方形的中间部位,故答案选B.【点睛】本题考查的是物体的三视图,知道主视图是从正面去观察物体是解题的关键.9.C解析:C【解析】【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m大3.【详解】解:∵3+m=m+3,m+3表示比m大3,∴3+m比m大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.10.A解析:A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.11.B解析:B【解析】【分析】根据倒数的定义即可求解.【详解】27-的倒数是72- 故选B.【点睛】此题主要考查倒数,解题的关键是熟知倒数的定义.12.B解析:B【解析】【分析】 由线段和差可得35AC BD AB +=,由6AC BD +=即可得AB 的长度,即可得CD 的长度.【详解】 解:∵75AD BC AB += 又∵AD BC AD CD BD AB CD +=++=+ ∴75AB CD AB +=∴25CD AB = ∴35AC BD AB CD AB +=-=∵6AC BD += ∴3=65AB ∴=10AB ∴22=10=455CD AB =⨯ 故选:B【点睛】本题考查了线段和差及倍数关系,掌握线段的和差及转化是解题的关键.13.C解析:C【解析】【分析】根据数轴上点的距离判断即可.【详解】由图可得: 0a b +<;0b a ->;a b ->;a b <-;0a b >>;∴②③⑤正确故选C.【点睛】本题考查数轴相关知识,关键在于熟悉数轴的定义与性质.14.B解析:B【解析】【分析】根据相反数的定义,即可得到答案.【详解】解:-3的相反数为3;故选:B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.15.D解析:D【解析】【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D.【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.二、填空题16.145【解析】【分析】观察根据排列的规律得到第一行为数轴上左边的第一个数1,第二行为1右边的第6个数13,第三行为13右边的第14个数41,第四行为41右边第22个数85,…,由此规律可得出第解析:145【解析】【分析】观察根据排列的规律得到第一行为数轴上左边的第一个数1,第二行为1右边的第6个数13,第三行为13右边的第14个数41,第四行为41右边第22个数85,…,由此规律可得出第五行的数.【详解】解:观察根据排列的规律得到:第一行为数轴上左边的第1个数1,第二行为1右边的第6个数13,第三行为13右边的第14个数41,第四行为41右边的第22个数,为2(1+6+14+22)-1=85,第五行为91右边的第30个数,为2(1+6+14+22+30)-1=145.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.17.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.18.【解析】【分析】把x=3代入方程即可得到一个关于a的方程,解得a的值.【详解】解:把x=3代入方程得:9-5=3+a,解得:a=1.故答案为:1.【点睛】本题考查方程的解的定义,解解析:1【解析】【分析】把x=3代入方程即可得到一个关于a的方程,解得a的值.【详解】解:把x=3代入方程得:9-5=3+a,解得:a=1.故答案为:1.【点睛】本题考查方程的解的定义,解题关键是理解定义.19.2【解析】分析:根据题意列出一元一次方程:5x+2=(11-x)+3,然后解出该一元一次方程的解即可.详解:由题意可得:A=B+3∴5x+2=(11-x)+3∴x=2故答案为2.点睛:解析:2【解析】分析:根据题意列出一元一次方程:5x+2=(11-x)+3,然后解出该一元一次方程的解即可.详解:由题意可得:A=B+3∴5x+2=(11-x)+3∴x=2故答案为2.点睛:本题考查的是一元一次方程的应用:根据题意列出一元一次方程:5x+2=(11-x)+3,然后解出该一元一次方程的解即可.是一道基础题,难度不大.20.75【解析】试题解析:时针指向3和4的中间,分针指向6,时针与分针之间的夹角为:故答案为.解析:75【解析】试题解析:时针指向3和4的中间,分针指向6,时针与分针之间的夹角为:302302156075.÷+⨯=+=故答案为75.21.3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,,∴.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键.解析:3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,2225x y -+=,∴223x y -=.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键. 22.8【解析】【分析】根据同类项的特点即可求解.【详解】∵与的和是单项式∴与是同类项,故6-m=4,n-1=2∴m=2,n=3∴8故答案为:8.【点睛】此题主要考查整式的运算,解解析:8【解析】【分析】根据同类项的特点即可求解.【详解】∵623m xy -与41n x y -的和是单项式 ∴623m x y -与41n x y -是同类项,故6-m=4,n-1=2∴m=2,n=3∴n m =8故答案为:8.【点睛】此题主要考查整式的运算,解题的关键是熟知同类项的特点.23.静.【解析】【分析】正方形的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“冷”与“心”是相对面,“细”与“解析:静.【解析】【分析】正方形的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“冷”与“心”是相对面,“细”与“范”是相对面,“静”与“规”是相对面,在正方体中和“规”字相对的字是静;故答案为:静.【点睛】本题主要考查了正方形相对两个面上的文字,注意正方形的空间图形,从相对面入手,分析及解答问题.24.93【解析】【分析】理解成绩的记法: +8,0,-8,+13的含义,正数表示比标准高,负数表示比标准低.根据有理数加法即可求解.【详解】解:∵∴最高分记为:+13∴最高分记为:80+解析:93【解析】【分析】理解成绩的记法: +8,0,-8,+13的含义,正数表示比标准高,负数表示比标准低.根据有理数加法即可求解.【详解】-<<+<+解:∵80813∴最高分记为:+13∴最高分记为:80+13=93(分)故答案为:93【点睛】本题考查了把实际问题转化为加法计算题,掌握有理数加法是解题的关键.25.-4 ,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x﹣1=2x+a中算出a即可. 【详解】由方程4x+3=7,解得x=1;将x=-1代入5x﹣1=2x+a,解得a解析:-4,【解析】【分析】先解出4x +3=7方程的值,将相反数算出来再代入5x ﹣1=2x +a 中算出a 即可.【详解】由方程4x +3=7,解得x =1;将x =-1代入5x ﹣1=2x +a ,解得a =-4.【点睛】本题考查方程的解及相反数的概念,关键在于掌握相关知识点.三、解答题26.分配10人生产甲种零部件,12人乙种零部件【解析】【分析】设应分配x 人生产甲种零件,(22-x)人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套,根据每人每天平均能生产甲种零件12个或乙种零件15个,可列方程求解.【详解】设分配x 人生产甲种零部件根据题意,得()312x 21522x ⨯=⨯-解之得:x 10=22x 12-=答:分配10人生产甲种零部件,12人乙种零部件.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据题意列出方程.27.(1)42;(2)56.【解析】【分析】(1)直接利用乘法分配律进行计算,即可得到答案;(2)先计算乘方,然后计算乘除法,最后计算加减法,即可得到答案.【详解】解:(1)35116()824⨯+- =6404+-=42;(2)3242(2)(3)3--÷⨯- =32(8)94--⨯⨯ =254+=56.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数混合运算的运算法则.以及利用乘法分配律进行计算.28.(1)2EC =,14AC =;(2)见解析.【解析】【分析】(1)由中点的性质可得解;(2)由图可知AC AB BC =+,利用中点的性质可知2,2AB DB BC BE ==,等量代换可得结论.【详解】解:(1)点E 是线段BC 的中点,4BC = 122EC BC ∴== 点D 是线段AB 的中点,5BD =210AB BD ∴==10414AC AB BC ∴=+=+=所以2EC =,14AC =.(2)点E 是线段BC 的中点,点D 是线段AB 的中点2,2AB DB BC BE ∴==222()2AC AB BC DB BE DB BE DE ∴=+=+=+=所以2AC DE =.【点睛】本题考查了线段的中点,灵活利用中点的性质是解题的关键.29.(1)1x =; (2)见解析; (3)m=2.【解析】【分析】(1)把2m =代入(2m+1)x=3mx-1,解关于m 的方程即可;(2)把x =3代入(2m+1)x=3mx-1,求出m 的值,结合m 为整数判断即可;(3)用含m 的代数式表示出x ,然后根据x 为正整数且m 为整数求解即可.【详解】解:(1)把2m =代入(2m+1)x=3mx-1,得561x x =-,5x-6x=-1,-x=-1,1x =;(2)当x =3时,3(21)91m m +=-,解得:43m =,∵m 为整数, ∴方程的解不可能为3; (3)∵(2n+1)x =3nx -1, ∴(m-1)x 1=, ∴x=11m -, ∵x 为正整数,∴m -1为正数且为1的约数, ∵m 为整数, ∴m-1=1, ∴m=2. 【点睛】本题考查了一元一次方程解得定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解;解一元一次方程的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1. 30.-1. 【解析】试题分析:原式去括号合并得到最简结果,把,a b 的值代入计算即可. 试题解析:原式 234222.ab a a b ab a b =-+-++=-+ 当3,1a b == 时, 原式 32 1.=-+=-31.(1)ON ⊥CD ,理由见解析;(2)157.5° 【解析】 【分析】(1)根据垂直的定义可得∠AOM=90°,进而可得∠1+∠AOC=90°,再利用等量代换可得∠2+∠AOC=90°,从而可得ON ⊥CD . (2)由题意可得∠1=15∠BOC =15(∠1+90°) ,进而可得∠MOD =90°+∠BOD =90°+∠AOC =180°-∠1,再代入∠1的度数即可的解. 【详解】(1)ON ⊥CD .理由如下: ∵OM ⊥AB ,∴∠AOM=90°, ∴∠1+∠AOC=90°,又∵∠1=∠2,∴∠2+∠AOC=90°, 即∠CON=90°,∴ON ⊥CD . (2) ∠1=15∠BOC =15(∠1+90°) , ∵∠1=22.5°,∴ ∠MOD =90°+∠BOD =90°+∠AOC =180°-∠1= 157.5°【点睛】本题考查角的计算,解题的关键是将所求角转化为已知角. 32.(1)设学校要印制x 份节目单时费用是相同的,根据题意,得0.8 1.5900 1.59000.6x x ⨯+=+⨯, 解得1200x =, 答:略(2)甲厂需:0.8×1.5×1500+900=2700(元), 乙厂需:1.5×1500+900×0.6=2790(元), 因为2700<2790, 故选甲印刷厂所付费用较少. 【解析】(1)根据两个印刷厂费用是相同的,找出关于节目单的数量等量关系,列出方程即可 (2)准确计算甲、乙两家的费用,再比较即可 33.(1)-3 ;(2)8 【解析】 【分析】(1)先计算乘法,再计算加法,即可得到答案; (2)先计算乘方和括号内的运算,然后再计算乘除法即可. 【详解】解:(1)1136()33-⨯+⨯- =12-- =3-;(2)32(2)4[5(3)]-÷⨯--=84(4)-÷⨯- =8. 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算的运算法则.四、压轴题34.(1)8;(2)4或10;(3)t 的值为167和329【解析】 【分析】(1)由数轴上点B 在点A 的右侧,故用点B 的坐标减去点A 的坐标即可得到AB 的值; (2)设点C 表示的数为x ,再根据AC=3BC ,列绝对值方程并求解即可;(3)点C 位于A ,B 两点之间,分两种情况来讨论:点C 到达B 之前,即2<t<3时;点C 到达B 之后,即t>3时,然后列方程并解方程再结合进行取舍即可. 【详解】解:(1)∵数轴上两点A ,B 表示的数分别为﹣2,6 ∴AB =6﹣(﹣2)=8 答:AB 的值为8.(2)设点C 表示的数为x ,由题意得 |x ﹣(﹣2)|=3|x ﹣6| ∴|x +2|=3|x ﹣6|∴x +2=3x ﹣18或x +2=18﹣3x ∴x =10或x =4答:点C 表示的数为4或10. (3)∵点C 位于A ,B 两点之间,∴点C 表示的数为4,点A 运动t 秒后所表示的数为﹣2+t , ①点C 到达B 之前,即2<t <3时,点C 表示的数为4+2(t ﹣2)=2t ∴AC =t +2,BC =6﹣2t ∴t +2=3(2t ﹣6) 解得t =167②点C 到达B 之后,即t >3时,点C 表示的数为6﹣2(t ﹣3)=12﹣2t ∴AC =|﹣2+t ﹣(12﹣2t )|=|3t ﹣14|,BC =6﹣(12﹣2t )=2t ﹣6 ∴|3t ﹣14|=3(2t ﹣6) 解得t =329或t =43,其中43<3不符合题意舍去答:t 的值为167和329【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.35.(1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析【解析】 【分析】(1)根据“相伴数对”的定义,将()1,b 代入2323a b a b++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. 【详解】解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫- ⎪⎝⎭(答案不唯一)(3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49mn 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭将:491,94a nb n =-+=- 代入2323a b a b++=+左边=49149942336n n n -+--+= 右边=49149942336n n n -++--=+∴左边=右边∴当(),m n 是“相伴数对”时, 91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”【点睛】本题考查定义新运算,正确理解定义是解题关键.36.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合. 【解析】 【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;(2)设P 点对应的数为x ,当P 点满足PB=2PC 时,得到方程,求解即可;(3)根据第一次点P 表示-1,第二次点P 表示2,点P 表示的数依次为-3,4,-5,6…,找出规律即可得出结论. 【详解】解:(1)∵点B 距离原点10个单位长度,且位于原点左侧, ∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A , ∴点A 表示的数为20, ∴数轴上表示如下:AB 之间的距离为:20-(-10)=30; (2)∵线段OB 上有点C 且6BC =, ∴点C 表示的数为-4, ∵2PB PC =, 设点P 表示的数为x , 则1024x x +=+, 解得:x=2或-6, ∴点P 表示的数为2或-6; (3)由题意可知:点P 第一次移动后表示的数为:-1, 点P 第二次移动后表示的数为:-1+3=2, 点P 第三次移动后表示的数为:-1+3-5=-3, …,∴点P 第n 次移动后表示的数为(-1)n •n , ∵点A 表示20,点B 表示-10, 当n=20时,(-1)n •n=20; 当n=10时,(-1)n •n=10≠-10,∴第20次P 与A 重合;点P 与点B 不重合. 【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系. 37.(1)2;(2)1cm ;(3)910秒或116秒 【解析】 【分析】(1)将x =﹣3代入原方程即可求解;(2)根据题意作出示意图,点C 为线段AB 上靠近A 点的三等分点,根据线段的和与差关系即可求解;(3)求出D 和B 表示的数,然后设经过x 秒后有PD =2QD ,用x 表示P 和Q 表示的数,然后分两种情况①当点D 在PQ 之间时,②当点Q 在PD 之间时讨论即可求解.【详解】(1)把x =﹣3代入方程(k +3)x +2=3x ﹣2k 得:﹣3(k +3)+2=﹣9﹣2k , 解得:k =2; 故k =2;(2)当C 在线段AB 上时,如图,当k =2时,BC =2AC ,AB =6cm , ∴AC =2cm ,BC =4cm , ∵D 为AC 的中点, ∴CD =12AC =1cm . 即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6, ∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时, ∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910②当点Q 在PD 之间时, ∵PD =2QD ,∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116. 答:当时间为910或116秒时,有PD =2QD . 【点睛】本题考查了方程的解,线段的和与差,数轴上的动点问题,一元一次方程与几何问题,分情况讨论是本题的关键. 38.(1) ①6条;②10;(2)1122MN AD BC =-,证明见解析;(3) 1t =. 【解析】 【分析】(1)①根据线段的定义结合图形即可得出答案;②PA +PD 最小,即P 为AD 的中点,求出AD 的长即可;(2) 根据M ,N 分别为AC ,BD 的中点,得到12MC AC =,12BN BD =,利用MN MC BN BC =+-代入化简即可;(3) 根据C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,得到3AC =,6CD =,并可得。

沈阳市人教版七年级上册数学期末试卷及答案-百度文库

沈阳市人教版七年级上册数学期末试卷及答案-百度文库

沈阳市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是()A.B.C.D.2.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数, 若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.2063.﹣3的相反数是()A.13-B.13C.3-D.34.下列每对数中,相等的一对是()A.(﹣1)3和﹣13B.﹣(﹣1)2和12C.(﹣1)4和﹣14D.﹣|﹣13|和﹣(﹣1)35.下列方程是一元一次方程的是()A.213+x=5x B.x2+1=3x C.32y=y+2 D.2x﹣3y=16.已知2a﹣b=3,则代数式3b﹣6a+5的值为( )A.﹣4 B.﹣5 C.﹣6 D.﹣77.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()4a b c﹣23…A .4B .3C .0D .﹣28.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 9.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 10.计算:2.5°=( )A .15′B .25′C .150′D .250′ 11.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180°12.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .二、填空题13.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 16.|-3|=_________; 17.计算:()222a -=____;()2323x x ⋅-=_____.18.如果向东走60m 记为60m +,那么向西走80m 应记为______m. 19.16的算术平方根是 .20.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.21.若∠1=35°21′,则∠1的余角是__.22.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.23.当x= 时,多项式3(2-x )和2(3+x )的值相等.24.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.三、压轴题25.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.26.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.27.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.28.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值.29.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值30.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.31.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.32.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案. 【详解】解:A 、5+3×6+1×6×6=59(颗),故本选项错误; B 、1+3×6+2×6×6=91(颗),故本选项正确; C 、2+3×6+1×6×6=56(颗),故本选项错误; D 、1+2×6+3×6×6=121(颗),故本选项错误; 故选:B . 【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.3.D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.4.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.5.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.6.A解析:A【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.7.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.8.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.9.C解析:C【解析】【分析】根据题意可以用代数式表示m的2倍与n平方的差.【详解】用代数式表示“m的2倍与n平方的差”是:2m-n2,故选:C.【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.10.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C.【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.11.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.12.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.二、填空题13.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.14.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.15.【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数. 16.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.17.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键18.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.19.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为420.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.21.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.22.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.23.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.24.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案. 【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.三、压轴题25.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.26.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.27.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可;(4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.28.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.【解析】【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.29.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N 为PB 的三等分点且靠近于P 点, ∴BN =PB =×(n ﹣2).∴PM ﹣34BN =﹣34××(n ﹣2), =(不变).②12PM +34BN =+34××(n ﹣2)=34n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.30.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM= 12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.31.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN ﹣BN=MN .又∵AN ﹣AM=MN ,∴BN=AM=4,∴MN=AB ﹣AM ﹣BN=12﹣4﹣4=4,∴MN AB =412=13; ②当点N 在线段AB 的延长线上时,如图2.∵AN ﹣BN=MN .又∵AN ﹣BN=AB ,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.32.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.【解析】整体分析:(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM平分∠BOC,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=12∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。

辽宁省沈阳市七年级(上)期末数学试卷(含解析)

辽宁省沈阳市七年级(上)期末数学试卷(含解析)

辽宁省沈阳市七年级(上)期末数学试卷一、选择题(共10小题,每小题2,满分20)1.在﹣1,﹣2,0,1四个数中最小的数是()A.﹣1B.﹣2C.0D.12.如图是由五个相同的小立方块搭成的几何体,从左面看到几何体的形状图是()A.B.C.D.3.以下问题,适合用普查的是()A.调查某一电视节目的收视率B.调查一批冷饮的质量是否合格C.调查你们班同学是否喜欢科普类书籍D.调查我国中学生的节水意识4.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为()①正方体;②圆柱;③圆锥;④正三棱柱.A.①②③④B.①③④C.①④D.①②5.单顶式的系数与次数分别是()A.B.C.D.6.从多边形一个顶点出发向其余的顶点引对角线,将多边形分成6个三角形,则此多边形的边数为()A.6B.7C.8D.97.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°8.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市9.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8B.8C.﹣8或8D.﹣410.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()A.17B.18C.19D.20二、填空题(共10小题,每小题3分,满分30分)11.将数据32500000用科学记数法表示为.12.下列各数中:,0,﹣(﹣3),(﹣2)3,正数的个数有个.13.如图,这是一个正方体的展开图,则原正方体中与“创“字所在的面相对的面上标的字是.14.若x与3互为相反数,则|x+2|=.15.已知x=5是方程x+a=的解,则a=.16.如图所示,在一条笔直公路p的两侧,分别有甲、乙两个村庄,现要在公路p上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在处(填A或B或C),理由是.17.已知a2+2a=1,则3a2+6a+2的值为.18.如图,AB=18,点M是线段AB中点,C点将线段MB分成MC:CB=1:2,则线段AC的长度为.19.如图,小明想把一长为a,宽为b的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个边长为x的小正方形,用代数式表示纸片剩余部分的周长.20.如图,在数轴上,A1,P两点表示的数分别是1,2,若A1与A2到点O的距离相等,A2与A3到点P的距离相等,A3与A4到点O的距离相等,A4与A5到点P的距离相等……依此规律,则点A10表示的数是.三、解答题(共8小题,满分70分)21.(6分)计算:22.(6分)解方程:(x﹣1)=2﹣(x+2).23.(8分)先化简,再求值:4(a2+ab﹣1)﹣3(2a2﹣ab),其中a=﹣1,b=﹣2.24.(8分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级m名学生进行调查,从A:文学鉴赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查的每名学生必选且只能选择一门课程),并将调查结果制成如下两幅不完整的统计图:(1)m=,n=:(2)扇形统计图中,”D”所对应的扇形的圆心角度数是度;(3)请根据以上信息直接在答题卡中补全条形统计图.25.(8分)如图,分别用火柴棍连续搭建正三角形和正方形,公共边只用一根火柴棍.(1)连续搭建n个三角形需要火柴棍根,连续搭建n个正方形需要火柴棍根;(2)若搭建正三角形和正方形共用了2018根火柴棍,正三角形的个数比正方形的个数多3个,则搭建的正三角形个数是,正方形的个数是.26.(10分)如图,已知∠AOB=100°,OC,OD分别是∠AOB内部的两条射线.(1)若OC是∠AOB的角平分线,∠BOD=35°,求∠COD的度数;(2)若∠BOC=∠AOD=3∠COD,求∠COD的度数.27.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,小彬从该网店购买了3筒甲种羽毛球和2筒乙种羽毛球、一共花费270元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定购进甲、乙两种羽毛球各80筒.已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元,元旦期间该网店开展优惠促销活动,甲种羽毛球打折销售,乙种羽毛球售价不变,若所购进羽毛球均可全部售出,要使全部售出所购进的羽毛球的利润率是10%,那么甲种羽毛球是按原销售价打几折销售的.28.(12分)已知A,B,C三点在数轴上对应的位置如图如示,其中点B对应的数为2,BC=3,AB=14.(1)点A对应的数是,点C对应的数是:(2)动点P,Q分别同时从A,C两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点M为AP的中点,点N在CQ上,且CN=CQ,设运动时间为t (t>0).①请直接用含t的代数式表示点M,N对应的数;②当OM=2BN时,求t的值.参考答案与试题解析一、选择题(共10小题,每小题2,满分20)1.在﹣1,﹣2,0,1四个数中最小的数是()A.﹣1B.﹣2C.0D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得1>0>﹣1>﹣2,故选:B.【点评】本题考查了有理数大小比较,正数大于零,零大于负数,注意两个负数比较大小,绝对值大的数反而小.2.如图是由五个相同的小立方块搭成的几何体,从左面看到几何体的形状图是()A.B.C.D.【分析】找到从左面看所得到的图形即可.【解答】解:该几何体的左视图是故选:B.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.3.以下问题,适合用普查的是()A.调查某一电视节目的收视率B.调查一批冷饮的质量是否合格C.调查你们班同学是否喜欢科普类书籍D.调查我国中学生的节水意识【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、调查某一电视节目的收视率适合抽样调查;B、调查一批冷饮的质量是否合格适合抽样调查;C、调查你们班同学是否喜欢科普类书籍适合全面调查;D、调查我国中学生的节水意识适合抽样调查;故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为()①正方体;②圆柱;③圆锥;④正三棱柱.A.①②③④B.①③④C.①④D.①②【分析】用一个平面去截一个几何体,根据截面的形状即可得出结论.【解答】解:①立方体截去一个角,截面为三角形,符合题意;②圆柱体只能截出矩形或圆,不合题意;③圆锥沿着中轴线截开,截面就是三角形,符合题意;④正三棱柱从平行于底面的方向截取,截面即为三角形,符合题意;故选:B.【点评】此题主要考查了截一个几何体,根据已知得出圆柱三视图是解决问题的关键,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.5.单顶式的系数与次数分别是()A.B.C.D.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:的系数与次数分别是:﹣π,4,故选:D.【点评】本题考查了单项式.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π属于数字因数.6.从多边形一个顶点出发向其余的顶点引对角线,将多边形分成6个三角形,则此多边形的边数为()A.6B.7C.8D.9【分析】根据从一个n边形一个顶点出发的对角线可将这个多边形分成(n﹣2)个三角形进行计算即可.【解答】解:设这个多边形的边数是n,由题意得,n﹣2=6,解得,n=8.故选:C.【点评】本题考查的是n边形的对角线的知识,从n边形从一个顶点出发可引出(n﹣3)条对角线,可将这个多边形分成(n﹣2)个三角形.7.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°【分析】∠BAC等于三个角的和,求出各角的度数,相加即可.【解答】解:如图,由题意,可知:∠AOD=60°,∴∠CAE=30°,∵∠BAF=20°,∴∠BAC=∠CAE+∠EAF+∠BAF=30°+90°+20°=140°,故选:D.【点评】本题主要考查方向角,解决此题时,能准确找到方向角是解题的关键.8.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【解答】解:A、甲超市的利润逐月减少,此选项正确;B、乙超市的利润在1月至4月间逐月增加,此选项正确;C、8月份两家超市利润相同,此选项正确;D、乙超市在9月份的利润不一定超过甲超市,此选项错误;故选:D.【点评】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.9.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8B.8C.﹣8或8D.﹣4【分析】根据流程,把输出的函数值分别代入函数解析式求出输入的x的值即可.【解答】解:∵输出数值y为1,∴①当x≤1时,0.5x+5=1,解得x=﹣8,符合,②当x>1时,﹣0.5x+5=1,解得x=8,符合,所以,输入数值x为﹣8或8.故选:C.【点评】本题考查了函数值求解,比较简单,注意分两种情况代入求解.10.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()A.17B.18C.19D.20【分析】设小明答对了x,就可以列出方程,求出x的值即可.【解答】解:设小明答对了x题,根据题意可得:6x﹣2(25﹣x)=94,解得:x=18,故选:B.【点评】此题主要考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分.二、填空题(共10小题,每小题3分,满分30分)11.将数据32500000用科学记数法表示为 3.25×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:32500000=3.25×107.故答案为:3.25×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.下列各数中:,0,﹣(﹣3),(﹣2)3,正数的个数有2个.【分析】根据相反数和有理数的乘方的定义及正负数的定义判断可得.【解答】解:在所列实数中,正数有,﹣(﹣3)=3这2个,故答案为:2.【点评】本题主要考查有理数的乘方,解题的关键是掌握相反数和有理数的乘方的定义及正负数的定义.13.如图,这是一个正方体的展开图,则原正方体中与“创“字所在的面相对的面上标的字是明.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“明”与面“创”相对,故答案为:明.【点评】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.14.若x与3互为相反数,则|x+2|=1.【分析】直接利用互为相反数的定义得出x的值,进而结合绝对值的性质化简得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x+2|=1.故答案为:1.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.15.已知x=5是方程x+a=的解,则a=.【分析】把x=5代入已知方程,列出关于a的新方程,解新方程即可求得a的值.【解答】解:依题意得:×5+a=,解得a=﹣.故答案是:﹣.【点评】考查了一元一次方程的解.把方程的解代入原方程,等式左右两边相等.16.如图所示,在一条笔直公路p的两侧,分别有甲、乙两个村庄,现要在公路p上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在B处(填A 或B或C),理由是两点之间线段最短.【分析】根据两点之间线段最短可得汽车站的位置是B处.【解答】解:汽车站应该建在B处,理由是两点之间线段最短.故答案为:B;两点之间线段最短.【点评】此题主要考查了线段的性质,关键是掌握两点之间线段最短.17.已知a2+2a=1,则3a2+6a+2的值为5.【分析】将a2+2a=1整体代入原式即可求出答案.【解答】解:当a2+2a=1时,原式=3(a2+2a)+2=3+2=5,故答案为:5【点评】本题考查代数式求值,解题的关键是将a2+2a=1作为一个整体代入原式,本题属于基础题型.18.如图,AB=18,点M是线段AB中点,C点将线段MB分成MC:CB=1:2,则线段AC的长度为12.【分析】由已知条件知AM=BM=0.5AB,根据MC:CB=1:2,得出MC,CB的长,故AC=AM+MC可求.【解答】解:∵长度为18的线段AB的中点为M,∴AM=BM=9,∵C点将线段MB分成MC:CB=1:2,∴MC=3,CB=6,∴AC=9+3=12.故答案为:12.【点评】考查了两点间的距离,本题的关键是根据图形弄清线段的关系,求出AC的长.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.19.如图,小明想把一长为a,宽为b的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个边长为x的小正方形,用代数式表示纸片剩余部分的周长2a+2b.【分析】根据题意可以用相应的代数式表示出剩余部分的周长,从而可以解答本题.【解答】解:由题意可得,剩余部分的周长是:2(a﹣2x)+2(b﹣2x)+8x=2a+2b,故答案为:2a+2b.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.20.如图,在数轴上,A1,P两点表示的数分别是1,2,若A1与A2到点O的距离相等,A2与A3到点P的距离相等,A3与A4到点O的距离相等,A4与A5到点P的距离相等……依此规律,则点A10表示的数是﹣17.与A2n表示数字的绝对值相同,【分析】按照题意写出A1到A6对应数字,可发现A2n﹣1且与下一组的绝对值依次增加4.【解答】解:由题意可得,点A1表示的数为:1,点A2表示的数为:﹣1,点A3表示的数为:2×2﹣(﹣1)=5,点A4表示的数为:﹣5,点A5表示的数为:2×2﹣(﹣5)=9,点A6表示的数为:﹣9,…………∴A10=﹣[1+4(10÷2﹣1)]=﹣17,故答案为:﹣17.【点评】此题考查了数轴,熟练掌握变化规律是解本题的关键.三、解答题(共8小题,满分70分)21.(6分)计算:【分析】根据有理数的乘除法和减法可以解答本题.【解答】解:==×9+2=﹣3+2=﹣1.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.(6分)解方程:(x﹣1)=2﹣(x+2).【分析】先去括号再去分母然后解答.【解答】解:去分母得:5(x﹣1)=20﹣2(x+2),去括号得:5x﹣5=20﹣2x﹣4,移项合并得:7x=21,系数化为1得:x=3.【点评】本题考查解一元一次方程的知识,比较简单,但出错率较高,同学们要注意细心运算.23.(8分)先化简,再求值:4(a2+ab﹣1)﹣3(2a2﹣ab),其中a=﹣1,b=﹣2.【分析】原式去括号,再合并同类项化简原式,继而将a,b的值代入计算可得.【解答】解:原式=4a2+4ab﹣4﹣6a2+3ab=﹣2a2+7ab﹣4,当a=﹣1,b=﹣2时,原式=﹣2×1+7×(﹣1)×(﹣2)﹣4=﹣2+14﹣4=8.【点评】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.24.(8分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级m名学生进行调查,从A:文学鉴赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查的每名学生必选且只能选择一门课程),并将调查结果制成如下两幅不完整的统计图:(1)m=160,n=15:(2)扇形统计图中,”D”所对应的扇形的圆心角度数是108度;(3)请根据以上信息直接在答题卡中补全条形统计图.【分析】(1)根据B课程的人数和所占的百分比求出m的值,再根据A课程的人数求出n;(2)用D课程所占的百分比乘以360°求出D所对应的扇形的圆心角度数;(3)用总人数减去A、B、D的人数,求出C的人数,从而补全统计图.【解答】解:(1)m=56÷35%=160;n%=×100%=15%,则n=15;故答案为:160,15;(2)“D”所对应的扇形的圆心角度数是×360°=108°,故答案为:108;(3)最受欢迎的文史天地人数有160﹣24﹣56﹣48=32(人),补图如下:【点评】本题考查了条形图和扇形图及用样本估计总体等知识,难度不大,综合性较强.注意三个公式:①该项所占的百分比=,②圆心角=该项的百分比×360°,③欢迎某项人数=总人数×该项所占的百分比.25.(8分)如图,分别用火柴棍连续搭建正三角形和正方形,公共边只用一根火柴棍.(1)连续搭建n个三角形需要火柴棍(2n+1)根,连续搭建n个正方形需要火柴棍(3n+1)根;(2)若搭建正三角形和正方形共用了2018根火柴棍,正三角形的个数比正方形的个数多3个,则搭建的正三角形个数是405,正方形的个数是402.【分析】(1)搭建三角形的火柴数是连续的奇数,搭建正方形的火柴数是在4条基础上依次增加3根;(2)根据设三角形x个,则正方形(x﹣3)个,根据“共用了2018根”列方程求解.【解答】解:(1)搭建三角形的火柴数是连续的奇数(2n+1),根搭建正方形的火柴数是在4条基础上依次增加3根即4+3(n﹣1)=(3n+1)根,故答案为:2n+1,3n+1;(2)根据设三角形x个,则正方形(x﹣3)个,根据题意得2x+1+3(x﹣3)+1=2018,解得x=405,x﹣3=402,故答案为:405,402.【点评】本题考查一元一次方程应用.确定第n个图形边数是解答关键.26.(10分)如图,已知∠AOB=100°,OC,OD分别是∠AOB内部的两条射线.(1)若OC是∠AOB的角平分线,∠BOD=35°,求∠COD的度数;(2)若∠BOC=∠AOD=3∠COD,求∠COD的度数.【分析】(1)根据角平分线的定义和角的和差关系即可求解;(2)根据题意可知∠BOD=∠AOC=2∠COD,再根据∠AOB=100°即可求解.【解答】解:(1)∵OC是∠AOB的角平分线,∠AOB=100°,∴∠COB=50°,∵∠BOD=35°,∴∠COD=15°;(2)∵∠BOC=∠AOD=3∠COD,∴∠BOD=∠AOC=2∠COD,∴∠COD=100°×=20°.【点评】考查了角的计算,角平分线的定义,关键是熟练掌握角平分线的定义.27.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,小彬从该网店购买了3筒甲种羽毛球和2筒乙种羽毛球、一共花费270元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定购进甲、乙两种羽毛球各80筒.已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元,元旦期间该网店开展优惠促销活动,甲种羽毛球打折销售,乙种羽毛球售价不变,若所购进羽毛球均可全部售出,要使全部售出所购进的羽毛球的利润率是10%,那么甲种羽毛球是按原销售价打几折销售的.【分析】(1)设甲羽毛球每筒售价x元,则乙羽毛球每筒售价(x﹣15)元,根据“3筒甲种羽毛球和2筒乙种羽毛球、一共花费270元”列方程求解;(2)设甲种羽毛球是按原销售价打x折销售,根据“利润率是10%”列方程求解.【解答】解:(1)设甲羽毛球每筒售价x元,则乙羽毛球每筒售价(x﹣15)元,根据题意得3x+2(x﹣15)=270解得x=60,x﹣15=45,答:甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)设甲种羽毛球是按原售价打x折销售,根据题意得80(60×﹣50)+80(45﹣40)=80×(50+40)×10%解得x=9,答:甲种羽毛球是按原售价打九折销售.【点评】本题考查列一元一次方程解应用题.确定数量关系是解答关键.28.(12分)已知A,B,C三点在数轴上对应的位置如图如示,其中点B对应的数为2,BC=3,AB=14.(1)点A对应的数是﹣12,点C对应的数是5:(2)动点P,Q分别同时从A,C两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点M为AP的中点,点N在CQ上,且CN=CQ,设运动时间为t (t>0).①请直接用含t的代数式表示点M,N对应的数;②当OM=2BN时,求t的值.【分析】(1)点A对应的数是0﹣12,点C对应的数是2+3;(2)①点M表示的数是4t﹣12,点N表示的数是t+5;②分点M在原点左右两侧两种可能来考虑.【解答】解:(1)点A对应的数是0﹣12=﹣12,点C对应的数是2+3=5,故答案为﹣12,5;(2)①点M表示的数是﹣12+=4t﹣12,点N表示的数是t+5;②点M在原点左边时,∵OM=2BN∴﹣(4t﹣12)=2(t+5﹣2),解得t=1;点M在原点右边时,∵OM=2BN∴4t﹣12=2(t+5﹣2),解得t=9,所以当t=1秒或t=9秒时,OM=2BN.【点评】本题借助数轴考查一元一次方程应用.表示点对应数字以及分类讨论是解答关键.。

辽宁省沈阳市 七年级(上)期末数学试卷 卷

辽宁省沈阳市 七年级(上)期末数学试卷 卷

题号七年级(上)期末数学试卷一二三四总分得分一、选择题(本大题共10小题,共20.0分)1.-2的相反数是()A.2B.C.D.2.在-4,,0,,3.14159,1.,0.1010010001…有理数的个数有()A.2个B.3个C.4个D.5个3.一条信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A. B. C.4.下面不是同类项的是()D.A.与5C.与5.下列方程中,解为x=2的方程是()A. B.B.与D.2m与2nC. D.6.下列运用等式的性质,变形正确的是()A.若,则B.若,则C.若,则D.若,则7.下列调查中,不适宜采用全面调查(普查)的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员面试C.了解全班同学期末考试的成绩情况D.了解一批灯泡的使用寿命8.如图,∠AOB的角平分线是()A.射线OBB.射线OEC.射线ODD.射线OC9.按如图所示的运算程序,能使输出的结果为12的是()A.,C.,B.,D.,10.如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司C.甲乙公司一样快B.乙公司D.不能确定二、填空题(本大题共6小题,共18.0分)11.一个棱柱共有21条棱,则这个棱柱共有______个面.12.用一个平面去截下列几何体,截面可能是圆的是______(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体13.如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=______;=______.14.从十边形的一个顶点画这个多边形的对角线,最多可画______条.15.6000″=______′=______°.16.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如表:时间(秒)057A点位置B点位置19a-117b27A、B两点相距9个单位长度时,时间t的值为______.三、计算题(本大题共4小题,共32.0分)17.计算(1)-10-(-16)+(-24)(2)-14-18.(1)化简:-a2b+(3ab2-a2b)-2(2ab2-a2b)(2)先化简,再求值:(-3xy-7y)+[4x-3(xy+y-2x)],其中xy=-2,x-y=3.19.解方程(1)3x-2=-5x+6(2)-=120.一元一次方程的应用:某商场开展优惠促销活动,将甲种商品六折岀售,乙种商品八折出售.已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,请直接写出商场销售甲、乙两种商品各一件时是赢利还是亏损了?具体金额是多少?四、解答题(本大题共5小题,共50.0分)21.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.22.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将从正面、左面、上面看这堆货物得到的平面图形画了出来.你能根据这三个图形帮他清点一下箱子的数量吗?23.观察下面一行数:2,-4,8,-16,32,-64,…;①4,-2,10,-14,34,-62,…;②1,-2,4,-8,16,-32,….③如图,在上面的数据中,用一个长方形圈出同一列的三个数,这列的第一个数表示为a,其余各数分别用b,c表示(1)若这三个数分别在这三行数的第n列,请用含n的式子分别表示a、b、c的值.a=______,b=______,c=______;(2)若a记为x,求a、b、c这三个数的和(结果用含x的式子表示并化简)24.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别节目类型人数A新闻12B体育30C动画mD娱乐54E戏曲9请你根据以上的信息,回答下列问题:(1)被调查的学生中,最喜爱体育节目的有____人,这些学生数占被调查总人数的百分比为____%.(2)被调查学生的总数为____人,统计表中m的值为____,统计图中n的值为____.(3)在统计图中,E类所对应扇形圆心角的度数为____.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.25.如图,数轴上两点A,B所表示的数分别为-3,1.(1)写出线段AB的中点M所对应的数;(2)若点P从B出发以每秒2个单位长度的速度向左运动,运动时间为x秒.①用含x的代数式表示点P所对应的数;②当BP=2AP时,求x值.答案和解析1.【答案】A【解析】解:-2的相反数是2,故选:A.根据一个数的相反数就是在这个数前面添上“-”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】D【解析】解:-4,,0,3.14159,1.,是有理数,其它的是无理数.故选:D.有理数就是整数与实数的统称,即整数,有限小数以及无限循环小数都是有理数,据此即可作出判断.本题主要考查了实数中的基本概念和相关计算.实数是有理数和无理数统称.要求掌握这些基本概念并迅速做出判断.3.【答案】B【解析】解:2180000=2.18×106,故选:B.根据科学记数法的形式选择即可.本题考查了科学记数法,掌握科学记数法的形式a×10n是解题的关键.4.【答案】D【解析】解:A、-2与5,是同类项,不合题意;B、-2a2b与a2b,是同类项,不合题意;C、-x2y2与6x2y2,是同类项,不合题意;D、2m与2n,所含字母不同,不是同类项,故此选项正确.故选:D.直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而判断得出答案.此题主要考查了同类项,正确把握定义是解题关键.5.【答案】B【解析】解:A、当x=2时,左边=3×2-2=4≠右边,即x=2不是该方程的解.故本选项错误;B、当x=2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x=2是该方程的解.故本选项正确;C、当x=2时,左边=4-2(2-1)=2≠右边,即x=2不是该方程的解.故本选项错误;D、x+1不是方程.故本选项错误;故选:B.把x=2代入选项中的方程进行一一验证.本题考查了一元一次方程的解.把方程的解代入原方程,等式左右两边相等.6.【答案】C【解析】解:A、x=0时,两边都除以x无意义,故A错误;B、两边都除以2,得x=a-,故B错误;D、两边都除以3,得x=,故D错误;故选:C.根据等式的性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立,可得答案.本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.7.【答案】D【解析】解:旅客上飞机前的安检适宜采用全面调查;学校招聘教师,对应聘人员面试适宜采用全面调查;了解全班同学期末考试的成绩情况适宜采用全面调查;了解一批灯泡的使用寿命适宜采用抽样调查;故选:D.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.【答案】B【解析】解:∵∠AOB=70°,∠AOE=35°,∴∠AOB=2∠AOE,∴∠AOB的角平分线是射线OE.故选:B.由∠AOB=70°、∠AOE=35°,利用角平分线的定义即可找出∠AOB的角平分线是射线OE,此题得解.本题考查了角平分线的定义,牢记角平分线的定义是解题的关键.9.【答案】B【解析】解:当x=2,y=4时,x2+2y=4+8=12,故选:B.把x与y的值代入计算即可做出判断.此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.10.【答案】A【解析】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90-50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70-50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是11.【答案】9【解析】解:21÷3=7,∴一个棱柱共有21条棱,那么它是七棱柱,∴这个棱柱共有9个面.故答案为:9.根据棱柱的概念和定义,可知有21条棱的棱柱是七棱柱.本题主要考查了认识立体图形,解决问题的关键是掌握棱柱的结构特征.12.【答案】②③⑤【解析】解:用一个平面去截球,截面是圆,用一个平面去截圆锥或圆柱,截面可能是圆,但用一个平面去截棱柱,截面不可能是圆.故答案为:②③⑤根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.13.【答案】1-【解析】解:=1-;=1-;故答案为:;1-.分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.本题主要考查了学生的分析、总结、归纳能力,通过数形结合看出前面所有小长方形的面积等于总面积减去最后一个空白的小长方形的面积是解答此题的关键.14.【答案】7【解析】解:从十边形一个顶点画对角线能画10-3=7(条),故答案为:7.根据n边形从一个顶点出发可引出(n-3)条对角线.进行计算即可.此题主要考查了多边形对角线,关键是掌握计算公式.15.【答案】100【解析】解:6000″÷60=100′,100′÷60=,即6000″=100′=;36″÷60=0.6′,15.6′÷60=0.26°,即12°15′36″=12.26°.一度等于60分,一分等于60秒,先将秒转化为分,再进一步将分转化为度.度、分、秒的相互换算规律是:度是大单位,秒是小单位,从大化小就乘以进率,从小到大就除以进率.16.【答案】2或4秒【解析】解:由题意可得:A点运动的速度为[19-(-1)]÷(5-0)=4,方向向左,则b=19-4×7=-9;B点运动的速度为(27-17)÷(7-5)=5,方向向右,则a=17-5×5=-8.A、B两点相距9个单位长度时,分两种情况:①相遇前,4t+5t=27-9,解得t=2;②相遇后,4t+5t=27+9,解得t=4.即A、B两点相距9个单位长度时,时间t的值为2或4秒.故答案是:2或4秒.根据表格中的数据分别求出A、B两个动点运动的速度及方向,得到a、b的值.A、B两点相距9个单位长度时,分两种情况进行讨论:①相遇前;②相遇后.分别利用行程问题的相等关系列出方程求解即可.本题考查了一元一次方程的应用,数轴,解答本题的关键是表示出时间和位置的关系,注意分类讨论.17.【答案】解:(1)原式=-10+16-24=-34+16=-18;(2)原式=-1-×(3-9)=-1-×(-6)=-1+1=0.【解析】(1)将减法转化为加法,再根据法则计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.【答案】解:(1)原式=-a2b+3ab2-a2b-4ab2+2a2b=-ab2;(2)原式=-3xy-7y+[4x-3xy-3y+6x]=-3xy-7y+4x-3xy-3y+6x=-6xy-10y+10x,当xy=-2,x-y=3时,原式=-6xy-10y+10x=-6×(-2)-10×(-3)=42.【解析】(1)原式去括号合并得到最简结果;(2)原式去括号合并得到最简结果,将xy与x-y的值代入计算即可求出值.此题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)3x+5x=6+2,8x=8,x=1;(2)4(2x-1)-3(x-2)=12,8x-4-3x+6=12,8x-3x=12+4-6,5x=10,x=2.【解析】(1)方程移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.【答案】解:(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(1400-x)元,根据题意得:0.6x+0.8(1400-x)=1000,解得:x=600,∴1400-x=800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据题意得:(1-25%)a=(1-40%)×600,(1+25%)b=(1-20%)×800,解得:a=480,b=512,∴1000-a-b=1000-480-512=8.答:商场在这次促销活动中盈利,盈利了8元.【解析】(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(1400-x)元,根据优惠后购买甲、乙各一件共需1000元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b的一元一次方程,解之即可求出a、b的值,再代入1000-a-b中即可找出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【答案】解:(1)如图所示:;(2)如图所示,(3)如图所示,.【解析】分别根据直线、射线、线段的定义作出图形即可.本题考查了直线、射线、线段,是基础题,主要是对语言文字转化为图形语言的能力的考查.22.【答案】解:从图可得箱子的个数有8个,如图:.【解析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.23.【答案】(-1)n+1×2n(-1)n+1×2n+2(-1)n+1×2n-1【解析】解:(1)①中分解可知2=(-1)1+1×21;-4=(-1)2+1×22;8=(-1)3+1×23;-16=(-1)4+1×24;……由此可以推导出①中第n个数为(-1)n+1×2n(n>0);②中观察可知:每个数是①中相应位置上的数+2,由此可以推导出②中第n 个数为(-1)n+1×2n+2(n>0);③中观察可知:每个数是①中相应位置上的数÷2,由此可以推导出③中第n 个数为(-1)n+1×2n÷2=(-1)n+1×2n-1(n>0);故a=(-1)n+1×2n;b=(-1)n+1×2n+2;c=(-1)n+1×2n-1;(2)∵a=x,a+b+c=(-1)n+1×2n+(-1)n+1×2n+2+(-1)n+1×2n-1=x+x+2+=(1)中第①题的数据的数值符合2n规律,符合正负相间,可以利用(-1)n来调节符号的正负性;第②题中的数据与第①题的相同位置的数据相比,相差2;第③题中的数据与第①题的相同位置的数据相比,缩小了一半,所以可以参照第①题的规律来表示第②题和第③题的规律;(2)中用x表示a、b、c的和,a=x,通过观察,可以发现b=x+2;c=,代入整理即可.本题需要注意的是利用(-1)的n次方来调节数的正负性;在观察三行数的特征时,需要横向观察同一行的数字之间的联系,纵向观察不同行的数字之间的联系.24.【答案】(1)30,20;(2)150,45,36;(3)21.6°;(4)2000×=160人.答:估计该校最喜爱新闻节目的学生数为160人.【解析】解:(1)最喜爱体育节目的有30人,这些学生数占被调查总人数的百分比为20%.故答案为30,20.(2)总人数=30÷20%=150人,m=150-12-30-54-9=45,n%=×100%=36%,即n=36,故答案为150,45,36.=21.6°.(3)E类所对应扇形的圆心角的度数=360°×故答案为21.6°=160人.(4)估计该校最喜爱新闻节目的学生数为2000×答:估计该校最喜爱新闻节目的学生数为160人.(1)观察图表体育类型即可解决问题;(2)根据“总数=B类型的人数÷B所占百分比”可得总数;用总数减去其他类型的人数,可得m的值;根据百分比=所占人数/总人数可得n的值;(3)根据圆心角度数=360°×所占百分比,计算即可;(4)用学生数乘以最喜爱新闻节目所占百分比可估计最喜爱新闻节目的学生数.本题考查统计表、扇形统计图、样本估计总体等知识没解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【答案】解:(1)线段AB的中点M所对应的数为=-1;(2)①点P对应的数为1-2x;②若P运动到A、B之间,则1-(1-2x)=2[1-2x-(-3)],解得x=;若P运动到BA的延长线上时,则1-(1-2x)=2[-3-(1-2x)],解得x=4.综上,当BP=2AP时,x=或x=4.【解析】(1)根据中点的公式计算可得;(2)①根据两点间的距离公式求解可得;②分P运动到A、B之间和运动到BA的延长线上两种情况,根据“BP=2AP”列出方程,解之可得.本题主要考查数轴,掌握数轴上两点的距离公式:若点A表示a,点B表示b 时,AB=|x b-x a|.。

辽宁省沈阳市七年级上学期数学期末考试试卷

辽宁省沈阳市七年级上学期数学期末考试试卷

辽宁省沈阳市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果零上5℃记做+5℃,那么零下7℃可记作()A . -7℃B . +7℃C . +12℃D . -12℃2. (2分)(2019·黄冈模拟) -25的相反数是()A .B .C . -25D . 253. (2分)的倒数是()A . 5B . -5C .D . -4. (2分) (2018七上·从化期末) 已知和是同类项,那么2m+n的值()A . 3B . 4C . 5D . 65. (2分)如果x=y,a为有理数,那么下列等式不一定成立的是()A . 1﹣y=1﹣xB . x2=y2C . =D . ax=ay6. (2分) (2019七上·琼中期末) 下列图形属于圆锥的是()A .B .C .D .7. (2分) (2019八上·台州开学考) 如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F= (∠BAC﹣∠C);④∠BGH=∠ABE+∠C.其中正确的是()A . ①②③B . ①③④C . ①②④D . ①②③④8. (2分) (2018七上·阜阳期末) 下列各式中是一元一次方程的是()A . x+ =x+1B . ﹣5﹣3=﹣8C . x+3D . x﹣1= ﹣y9. (2分)如图,AB∥CD,∠A=50°,则∠1的大小是()A . 50°B . 120°C . 130°D . 150°10. (2分)如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是()A . ∠AOD>∠BOCB . ∠AOD<∠BOCC . ∠AOD=∠BOCD . 无法确定二、填空题 (共8题;共8分)11. (1分)计算:2﹣|﹣3|=________.12. (1分) (2018七上·乌鲁木齐期末) 已知是数轴上的三个点,且在的右侧.点表示的数分别是,若,则点表示的数是________.13. (1分) 2015中国﹣东盟博览会旅游展5月29日在桂林国际会展中心开馆,展览规模约达23000平方米,将23000平方米用科学记数法表示为________平方米.14. (1分)单项式﹣的次数是________.15. (1分)在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________16. (1分) (2017七下·东营期末) 一个两位数,十位上的数字是2,个位上的数字是x,这个两位数是________;17. (1分)如图所示,∠AOE=90°,∠BOD=45°,那么不大于90°的所有角的度数之和是________度.18. (1分)(2019·遵义模拟) 如图所示,是一个运算程序示意图,若第一次输人k的值为216,则第2019次输出的结果是________.三、解答题 (共8题;共70分)19. (15分) (2017七上·和平期中) 司机小王沿东西大街跑出租车,约定向东为正,向西为负,某天自A 地出发到收工时,行走记录为(单位:千米):+8、﹣9、+7、﹣2、+5、﹣10、+7、﹣3,回答下列问题:(1)记录中“+8”表示什么意思?(2)收工时小王在A地的哪边?距A地多少千米?(3)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?20. (5分) (2016七上·九台期中) 计算:(﹣ + ﹣)×(﹣12).21. (5分) (2017七上·孝南期中) 化简求值:(4a+3a2)﹣1﹣3a3﹣(a﹣3a3),其中a=﹣2.22. (5分) (2015七下·南山期中) 如图,已知∠AOB,以O为圆心,以任意长为半径画弧,分别交OA、OB 于D,E两点,再分别以D,E为圆心,大于 DE长为半径画弧,两条弧交于点C,作射线OC,则OC是∠AOB的角平分线吗?说明理由.23. (5分) (2019七上·武昌期末) 甲组的4工人12月份完成的总工作量比这个月人均额定工作量的3倍少1件,乙组的6名工人12月份完成的总工作量比这个月人均额定工作量的5倍多7件.如果甲组工人这个月实际完成的人均工作量比乙组这个月实际完成的人均工作量少2件,那么这个月人均额定工作量是多少件?24. (15分)如图,A、B、C是一条公路上的三个村庄.A、B间的路程为100千米,A、C间的路程为40千米.在A、B之间设一个车站P,设P、C间的路程为x米.(1)用含x的代数式表示车站到三个村庄的路程之和;(2)若车站到三个村庄的路程的和为102千米,车站设在何处?(3)要使车站到三个村庄的路程总和最小,车站应设在何处?25. (10分)已知某水库的正常水位是25m,下表是该水库9月第一周的水位记录情况(高于正常水位记为正,低于正常水位记为负).星期一二三四五六日水位变化(1)本周三的水位是多少米?(2)本周的最高水位、最低水位分别出现在哪一天,分别是多少米?26. (10分) (2018七上·皇姑期末) 某儿童游乐园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校七年级(1)、(2)两个班共102人今年6.1儿童节去游该游乐园,其中(1)班人数较少,不足50人。

辽宁省沈阳市七年级(上)期末数学试卷

辽宁省沈阳市七年级(上)期末数学试卷

七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共20.0分)1.若a与1互为相反数,则a+1=()A. −1B. 0C. 2D. 12.下列图形中,不可以作为一个正方体的表面展开图的是()A. B. C. D.3.如图,下列表示角的方法中,不正确的是()A. ∠AB. ∠EC. ∠αD. ∠14.某地要反映2008年至2018年降水量的上升或下降的情况,应绘制()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上都不对5.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A. 6B. 7C. 8D. 96.我市某楼盘进行促销活动,决定将原价为a元/平方米的商品房价降价10%销售,降价后的销售价为()A. a−10%B. a⋅10%C. (1−10%)aD. (1+10%)a7.下列说法正确的是()A. 棱柱的每条棱长都相等B. 棱柱侧面的形状可能是一个三角形C. 长方体的截面形状一定是长方形D. 经过一点可以画无数条直线8.下列各等式一定成立的是()A. a2=(−a)2B. a3=(−a)3C. −a2=|−a2|D. a3=−a39.小明从一批乒乓球中随机摸出了三个,经检查全部合格,因此小明断定这批乒乓球全部合格.在这个问题中,小明()A. 忽略了抽样调查的随机性B. 忽略了抽样调查的随机性和广泛性C. 忽略了抽样调查的随机性和代表性D. 忽略了样本的广泛性10.下面每个表格中的四个数都是按相同规律填写的,根据此规律确定x的值为()264224864461087410x0428A. 148B. 158C. 168D. 178二、填空题(本大题共6小题,共18.0分)11.单项式-3ab4的系数是______.12.我国最新研制的巨型计算机“曙光3000超级服务器”,它的运算峰值可以达到每秒403200000000次,403200000000用科学记数法来表示为______.13.将弯曲的河道改直,可以缩短航程,其中道理是______14.已知∠AOC=60°,OB是过点O的一条射线,∠AOB:∠AOC=2:3,则∠BOC的度数是______.15.若规定一种运算:a*b=ab+a-b,则1*(-2)=______.16.一列火车正在匀速行驶,它先用26秒的时间通过了一条长256米的隧道(即从车头进入入口到车尾离开出口),又用16秒的时间通过了一条96米的隧道,求这列火车的长度.设火车长度为x米,根据题意可列方程______.三、计算题(本大题共3小题,共26.0分)17.(1)计算:(−23)×278÷(−32)3(2)先化简,再求值.14(−4x2+2x−8)−(12x−1),其中x=12.18.解方程(1)4x-3(20-x)=-4(2)15(x+15)=12−x−7319.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(2)若射线OD平分∠COE,求∠AOD的度数.四、解答题(本大题共6小题,共56.0分)20.如图是由几个小立方块所搭几何体从上面看到的形状图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体从正面和左面看到的形状图.21.分别用a,b,c,d表示有理数,a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是数轴上到原点距离为3的点表示的数,求4a+3b+2c+d的倒数.22.如图:图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点得到图③.(1)图①中有______个三角形,图②中有______个三角形,图③中有______个三角形;(2)按上面的方法继续下去,第n个图形中有______个三角形;(3)当n=2018时,图形中有多少个三角形?23.某公司销售甲,乙两种球鞋,去年共卖出12200双.今年甲种球鞋卖出的数量比去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双.去年甲,乙两种球鞋各卖出多少双?24.“小组合作学习”成为我县推动课堂教学改革、打造自主学习课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“小组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:请结合图中信息解答下列问题:(1)求分组前学生学习兴趣为“高”的所占的百分比为______;(2)补全分组后学生学习兴趣的统计图;(3)通过“小组合作学习“前后对比,100名学生中学习兴趣获得提高的学生共有多少人?(4)请你估计全校3000名学生中学习兴趣获得提高的学生有多少人?25.已知二项式-m3n2-2中,含字母的项的系数为a,多项式的次数为b,常数项为c.且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出A、B、C.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是12、2、14(单位长度/秒),当乙追上丙时,乙与甲相距多远?(3)在数轴上是否存在一点P,使P到A、B、C的距离之和等于10?若存在,请直接指出点P对应的数;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:∵a与1互为相反数,∴a=-1,∴a+1=-1+1=0.故选:B.直接利用相反数的定义得出a的值,进而得出答案.此题主要考查了相反数,正确得出a的值是解题关键.2.【答案】B【解析】解:A.可以作为一个正方体的展开图,B.不能围成正方体,故不可以作为一个正方体的展开图,C.可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:B.利用正方体的展开图的特征,即可得到不可以作为一个正方体的表面展开图的选项.本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,正方体展开图不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况.3.【答案】B【解析】解:图中的角有∠A、∠1、∠α、∠AEC,即表示方法不正确的有∠E,故选:B.先表示出各个角,再根据角的表示方法选出即可.本题考查了对角的表示方法的应用,主要考查学生对角的表示方法的理解和掌握.解:由统计图的特点可知,某地要反映出1999年至2002年降水量的上升和下降的情况,应绘制折线统计图.故选:A.条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;据此解答即可.此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.5.【答案】C【解析】解:设这个多边形是n边形.依题意,得n-3=5,解得n=8.故这个多边形的边数是8.故选:C.根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.本题考查了多边形的对角线,如果一个多边形有n条边,那么经过多边形的一个顶点所有的对角线有(n-3)条,经过多边形的一个顶点的所有对角线把多边形分成(n-2)个三角形.6.【答案】C【解析】解:由题意可得,降价后的销售价为:a(1-10%),故选:C.根据题意可以求得降价后的销售价格,本题得以解决.本题考查列代数式,解题的关键是明确题意,列出相应的代数式.解:A.棱柱的每条棱长不一定都相等,故本选项错误;B.棱柱侧面的形状不可能是一个三角形,故本选项错误;C.长方体的截面形状不一定是长方形,故本选项错误;D.经过一点可以画无数条直线,故本选项正确;故选:D.依据棱柱的特征以及棱柱的截面的形状,即可得到正确结论.本题主要考查柱体的结构特征,主要涉及了侧面,底面,顶点等特征.8.【答案】A【解析】解:A、a2=(-a)2,故A正确;B、a3=(-a)3,故B错误;C、-a2=|-a2|,故C错误;D、a3=-a3,故D错误;故选:A.根据有理数的乘方,绝对值进行计算即可.本题考查了有理数的乘方,乘方的运算可以利用乘法的运算来进行,负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.9.【答案】D【解析】解:小明从一批乒乓球中随机摸出了三个,经检查全部合格,因此小明断定这批乒乓球全部合格.在这个问题中,小明忽略了样本的广泛性.故选:D.抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.此题主要考查了抽样调查的可靠性,注意样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.10.【答案】B【解析】解:观察可知:2n=10,解得:n=5,∴x=12×14-10=158.故选:B.首先根据图示,可得第n个表格的左上角的数等于2n,左下角的数等于2n+2;右上角的数分别为2n+4,由此求出n;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积减去左上角的数,求出x的值是多少即可.此题主要考查了探寻数字规律问题,注意观察总结出规律,并能正确的应用规律.11.【答案】-34【解析】解:单项式-的系数是:-.故答案为:-.直接利用单项式中的数字因数叫做单项式的系数,得出答案.此题主要考查了单项式,正确掌握单项式的系数确定方法是解题关键.12.【答案】4.032×1011【解析】解:4032 00000000=4.032×1011,故答案为:4.032×1011.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】两点之间,线段最短【解析】解:将弯曲的河道改直,可以缩短航程,其中道理是:两点之间,线段最短.故答案为:两点之间,线段最短.根据线段的性质,两点之间,线段最短解答.此题为数学知识的应用,考查知识点两点之间,线段最短.14.【答案】100°或20°【解析】解:①OB在OA左边,如右图,∵∠AOC=60°,∠AOB:∠AOC=2:3,∴∠AOB=40°,∴∠BOC=40°+60°=100°;②OB在OA右边,如右图,∵∠AOC=60°,∠AOB:∠AOC=2:3,∴∠AOB=40°,∴∠BOC=60°-40°=20.故答案是100°或20°.通过分析,可知有两种情况:①OB在OA左边;②OB在OA右边,画图后分别计算即可.本题考查了角的计算.解题的关键是注意画图,并分情况讨论.15.【答案】1【解析】解:∵a*b=ab+a-b,∴1*(-2)=1×(-2)+1-(-2)=(-2)+1+2=1,故答案为:1.根据a*b=ab+a-b,可以求得所求式子的值,本题得以解决.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.【答案】x+25626=x+9616【解析】解:设火车长度为x米,根据题意得:=.故答案为:=.设火车长度为x米,根据速度=路程÷时间结合火车匀速行驶,即可得出关于x 的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.【答案】解:(1)原式=23×278×827=23;(2)原式=-x2+12x-2-12x+1=-x2-1,当x=12时,原式=-114.【解析】(1)原式先计算乘方运算,再计算乘除运算即可即可求出值;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)去括号得:4x-60+3x=-4,移项合并得:7x=56,解得:x=8;(2)去分母得:6(x+15)=15-10(x-7),去括号得:6x+90=15-10x+70,移项合并得:16x=-5,解得:x=-516.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)由已知可得∠AOB=15°+40°=55°,∵AOC=∠AOB,∴∠AOC=55°.∵55°+15°=70°,∴射线OC的方向角为北偏东70°.(2)∵∠BOC=2∠AOB=110°,∴∠COE=180°-∠BOC=180°-110°=70°.∴∠COD=12∠COE=12×70°=35°.∴∠AOD=∠AOC+∠COD=55°+∠35°=90°.【解析】(1)根据∠AOB=∠AOC,求出∠AOC度数,再加上15°即可;(2先求出∠BOC度数,再利用∠COE与∠BOC互补关系可求解问题;(3)根据角平分线定义求解∠COD度数,再根据∠AOD=∠COD+∠AOC进行求解即可.本题主要考查了方向角概念、角平分线定义以及角之间的互化.对方向角的理解以及灵活运用角的和差是解题的关键.20.【答案】解:如图:.【解析】由已知条件可知,主视图有3列,每列小正方形数目分别为3,2,3;左视图有3列,每列小正方数形数目分别为3,3,2.据此可画出图形.本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.21.【答案】解:因为最小的正整数是1,最大的负整数是-1,绝对值最小的有理数是0,数轴上到原点距离为3的点表示的数是±3,所以a=1,b=-1,c=0,d=±3.当d=3时,4a+3b+2c+d=4×1+3×(-1)+2×0+3=4,所以4a+3b+2c+d的倒数是14;当d=-3时,4a+3b+2c+d=4×1+3×(-1)+2×0-3=-2,所以4a+3b+2c+d的倒数是-12.根据关于a、b、c、d的叙述,先确定a、b、c、d的具体数值,计算代数式4a+3b+2c+d的值,最后求出其倒数.本题考查了有理数、绝对值、倒数的相关知识及有理数的混合运算,题目综合性较强.解决本题的关键是确定a、b、c、d的值.注意:最小的正整数是1,没有最小的正数;最大的负整数是-1,没有最大的负数;绝对值最小的有理数是0,绝对值是它本身的数是正数和0;倒数是它本身的数是±1.22.【答案】1 5 9 4n-3【解析】解:(1)图①中有1个三角形,图②中有5个三角形,图③中有9个三角形;故答案为:1,5,9;(2)∵发现每个图形都比起前一个图形依次多4个三角形,∴第n个图形中有1+4(n-1)=4n-3个三角形.故答案为:4n-3.(3)当n=2018时,4n-3=4×2018-3=8069答:当n=2018时,图形中有8069个三角形.(1)首先根据所给的图形,正确数出三角形的个数;(2)根据(1)中数的过程中,就能够发现在前一个图的基础上依次多4个.(3)代入n=2018求得答案即可.本题考查了图形的变化类问题,在找规律的时候,主要应发现前后图形中的个数之间的联系.23.【答案】解:设去年甲种球鞋卖了x双,则乙种球鞋卖了(12200-x)双,由题意,得(1+6%)x+(12200-x)(1-5%)=12200+50,解得:x=6000,∵12200-6000=6200,∴乙种球鞋卖了6200双.答:去年甲种球鞋卖了6000双,则乙种球鞋卖了6200双.设去年甲种球鞋卖了x双,则乙种球鞋卖了(12200-x)双,根据条件建立方程(1+6%)x+(12200-x)(1-5%)=12200+50,求出其解即可.本题考查了列一元一次方程解关于增长率问题的实际问题的运用,一元一次方程的解法的运用,解答时根据变化后的相等数量关系建立方程是关键.24.【答案】30%【解析】解:(1)分组前学生学习兴趣为“高”的所占的百分比为1-(25%+20%+25%)=30%,故答案为:30%;(2)分组后学习兴趣为“中”的人数为100-(30+35+5)=30(人),补全条形图如下:(3)分组前学习兴趣“中”的有100×25%=25(人),分组后兴趣提高的有30-25=5(人),分组前学生学习兴趣“高”的有100×30%=30(人),分组后兴趣提高的有35-30=5(人),分组前学习兴趣为“极高”的有100×25%=25(人),分组后兴趣提高的有30-25=5(人),5+5+5=15(人),答:随机抽取100名学生中分组后学习兴趣获得提高的共有15人.(4)3000×=450(人),答:估计全校3000名学生中学习兴趣获得提高的学生有450人.(1)用整体1减去极高、低、中所占的百分比,即可求出分组前学生学习兴趣为“高”的所占的百分比;(2)用抽查的总人数减去学习兴趣极高、高和低的人数,求出学习兴趣“中”的人数,从而补全统计图;(3)根据题意先分别求出小组合作学习后学习兴趣提高的人数;(4)用全校的总人数乘以学习兴趣获得提高的学生所占的百分比即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【答案】解:(1)a=-1,b=5,c=-2,点A、B、C如图所示,(2)设t秒后当乙追上丙,由题意(2-14)t=7,解得t=4,此时乙与甲相距(4×12+6)-2×4=0,所以当乙追上丙时,乙与甲也相遇,甲、乙之间距离为0.(3)设点P对应的数为m,①当点P在点C左边时,由题意,(5-m)+(-1-m)+(-2-m)=10,解得m=-83,②当点P在A、C之间时,PA+PB+PC<10,不存在.③当点P在A、B之间时,(5-m)+(m+1)+(m+2)=10,解得m=2,④当点P在点B右侧时,(m-5)+(m+1)+(m+2)=10,解得m=4(不合题意舍弃),综上所述,当P对应的数是-83或2时,PA+PB+PC=10.【解析】(1)根据多项式的系数、次数、常数项的对应求出a、b、c的值,在数轴上画出点A、B、C即可.(2)设t秒后当乙追上丙,列出方程即可解决问题.(3)分四种情形讨论①当点P在点C左边时,②当点P在A、C之间时,PA+PB+PC<10,不存在.③当点P在A、B之间时④当点P在点B右侧时,列出方程即可解决问题.本题考查一元一次方程的应用、数轴、行程问题等知识,解题的关键是学会利用方程解决问题,属于中考常考题型.。

沈阳市初一上学期数学期末试卷带答案

沈阳市初一上学期数学期末试卷带答案

2
3
26.柯桥区某企业因为发展需要,从外地调运来一批 94 吨的原材料,现有甲、乙、丙三种
车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
车型



汽车运载量(吨/
5
8
10
辆)
汽车运费(元/辆) 400
500
600
(1)若全部物资都用甲、乙两种车型来运送,需运费 6400 元,问分别需甲、乙两种车型
(1)若 AOC 50 ,求 COE 和 BOE 的度数; (2)猜想: OE 是否平分 BOC ?请直接写出你猜想的结论;
(3)与 COD 互余的角有:______.
四、压轴题
31.(1)探究:哪些特殊的角可以用一副三角板画出?
在①135 ,②120 ,③ 75 ,④ 25中,小明同学利用一副三角板画不出来的特殊角是
11.A、B 两地相距 450 千米,甲乙两车分别从 A、B 两地同时出发,相向而行,已知甲车
的速度为 120 千米/小时,乙车的速度为 80 千米/小时,经过 t 小时,两车相距 50 千米,
则 t 的值为( )
A.2 或 2.5
B.2 或 10
C.2.5
D.2
12.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨
9.如图是一个美”字一面相对面上的
字是( )
A.设
B.和
C.中
D.山
10.某商店有两个进价不同的计算器都卖了 135 元,其中一个盈利 25%,另一个亏本
25%,在这次买卖中,这家商店( )
A.不赔不赚
B.赚了 9 元
C.赚了 18 元
D.赔了 18 元

沈阳市七年级上学期期末数学试题题及答案

沈阳市七年级上学期期末数学试题题及答案
7.如图,∠AOD=84°,∠AOB=18°,OB平分∠AOC,则∠COD的度数是( )
A.48°B.42°C.36°D.33°
8.计算:2.5°=( )
A.15′B.25′C.150′D.250′
9.已知a=b,则下列等式不成立的是( )
A.a+1=b+1B.1﹣a=1﹣bC.3a=3bD.2﹣3a=3b﹣2
29.若4a+9与3a+5互为相反数,则a的值为_____.
30.a※b是新规定的这样一种运算法则:a※b=a﹣b+2ab,若(﹣2)※3=_____.
三、压轴题
31.已知 , 、Байду номын сангаас、 、 是 内的射线.
(1)如图1,当 ,若 平分 , 平分 ,求 的大小;
(2)如图2,若 平分 , 平分 , , ,求 .
(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;
(3)若点E在数轴上(不与A、B重合),满足BE= AE,且此时点E为点A、B的“n节点”,求n的值.
34.如图1,线段AB的长为a.
(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)
12.已知∠A=60°,则∠A的补角是( )
A.30°B.60°C.120°D.180°
13.将方程 去分母,得( )
A. B.
C. D.
14.如图的几何体,从上向下看,看到的是()
A. B. C. D.
15.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为( )cm.
(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M是BC的中点,点N是AD的中点,请求线段MN的长.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沈阳市七年级上册数学期末试卷-百度文库一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 2.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( )A .1B .2C .3D .4 3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( ) A . B .C .D .4.下列说法中正确的有( )A .连接两点的线段叫做两点间的距离B .过一点有且只有一条直线与已知直线垂直C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线5.计算32a a ⋅的结果是( )A .5a ;B .4a ;C .6a ;D .8a . 6.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( )A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm 7.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个8.方程3x +2=8的解是( )A .3B .103C .2D .129.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°10.﹣3的相反数是( )A .13- B .13 C .3- D .311.已知一个多项式是三次二项式,则这个多项式可以是( )A .221x x -+B .321x +C .22x x -D .3221x x -+ 12.已知a =b ,则下列等式不成立的是( )A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣2 13.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 14.下列计算正确的是( ) A .-1+2=1 B .-1-1=0 C .(-1)2=-1 D .-12=115.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题16.一个角的余角等于这个角的13,这个角的度数为________.17.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.18.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.19.把53°24′用度表示为_____.20.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________. 21.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.22.|-3|=_________;23.若3750'A ∠=︒,则A ∠的补角的度数为__________.24.﹣30×(1223-+45)=_____. 25.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.26.若a 、b 是互为倒数,则2ab ﹣5=_____.27.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.28.4是_____的算术平方根.29.已知代数式235x -与233x -互为相反数,则x 的值是_______. 30.当12点20分时,钟表上时针和分针所成的角度是___________.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.32.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.33.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.34.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

已知:点C 在直线AB 上,AC a =,BC b =,且ab ,点M 是AB 的中点,请按照下面步骤探究线段MC 的长度。

(1)特值尝试若10a =,6b =,且点C 在线段AB 上,求线段MC 的长度.(2)周密思考:若10a=,6b=,则线段MC的长度只能是(1)中的结果吗?请说明理由.(3)问题解决类比(1)、(2)的解答思路,试探究线段MC的长度(用含a、b的代数式表示). 35.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?36.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x -++.37.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?38.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.B解析:B【解析】【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案.【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键. 3.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o ;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.4.C解析:C【解析】【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可.【详解】A .连接两点的线段的长度叫做两点间的距离,错误;B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C .对顶角相等,正确;D .线段AB 的延长线与射线BA 不是同一条射线,错误.故选C .【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.5.A解析:A【解析】此题考查同底数幂的乘法运算,即(0)m n m n a a aa +⋅=>,所以此题结果等于325a a +=,选A ; 6.C解析:C【解析】【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C 在点A 与B 之间时,∵线段AB=10cm ,BC=4cm ,∴AC=10-4=6cm .∵M 是线段AC 的中点,∴AM=12AC=3cm , ②如图2,当点C 在点B 的右侧时,∵BC=4cm ,∴AC=14cmM 是线段AC 的中点,∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm .故选C .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA ⊥OC ,OB ⊥OD ,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD ,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD 不一定等于90°,故③错误;图中小于平角的角有∠AOB ,∠AOC ,∠AOD ,∠BOC ,∠BOD ,∠COD 一共6个,故④正确;综上所述,说法正确的是①②④.故选C .【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.8.C解析:C【解析】【分析】移项、合并后,化系数为1,即可解方程.【详解】解:移项、合并得,36x =,化系数为1得:2x =,故选:C .【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.9.A解析:A【解析】【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果.【详解】解:OB 平分AOC ∠,18AOB ∠=︒,236AOC AOB ∴∠=∠=︒,又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.10.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.11.B解析:B【解析】A. 2x 2x 1-+是二次三项式,故此选项错误;B. 32x 1+是三次二项式,故此选项正确;C. 2x 2x -是二次二项式,故此选项错误;D. 32x 2x 1-+是三次三项式,故此选项错误;故选B.12.D解析:D【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A 、∵a =b ,∴a+1=b+1,故本选项正确;B 、∵a =b ,∴﹣a =﹣b ,∴1﹣a =1﹣b ,故本选项正确;C 、∵a =b ,∴3a =3b ,故本选项正确;D 、∵a =b ,∴﹣a =﹣b ,∴﹣3a =﹣3b ,∴2﹣3a =2﹣3b ,故本选项错误.故选:D .【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.13.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 14.A解析:A【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .15.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x 秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB 上;设乙再走y 秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC 上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD 上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA 上;乙在第5次追上甲时的位置又回到AB 上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题16.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.17.【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.18.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.19.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.20.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键21.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.23.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.24.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45) =﹣30×12+(﹣30)×(23-)+(﹣30)×45 =﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键.【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元.26.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b 是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.27.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.29.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.30.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=- =1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠, ∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.33.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43,此时满足条件的点C即为Q点,所表示的数为43 ,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想. 34.(1)2(2)8或2;(3)见解析.【解析】【分析】(1)根据线段之间的和差关系求解即可;(2)由于B点的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况进行分类讨论;(3)由(1)(2)可知MC=12(a+b)或12(a-b).【详解】解:解:(1)∵AC=10,BC=6,∴AB=AC+BC=16,∵点M是AB的中点,∴AM=12AB∴MC=AC-AM=10-8=2.(2)线段MC的长度不只是(1)中的结果,由于点B的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况:①当B点在线段AC上时,∵AC=10,BC=6,∴AB=AC-BC=4,∵点M是AB的中点,∴AM=12AB=2,∴MC=AC-AM=10-2=8.②当B点在线段AC的延长线上,此时MC=AC-AM=10-8=2.(3)由(1)(2)可知MC=AC-AM=AC-12AB 因为当B点在线段AC的上,AB=AC-BC,故MC=AC-12(AC-BC)=12AC+12BC=12(a+b)当B点在线段AC的延长线上,AB=AC+BC,故MC=AC-12(AC+BC)=12AC-12BC=12(a-b)【点睛】主要考察两点之间的距离,但是要注意题目中的点不确定性,需要分情况讨论. 35.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.【点睛】本题考查了一元一次方程的应用.解题的关键是分类讨论.36.(1) 2x=-和4x= ;(2)35(4)11(43)35(3)x xx xx x--<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x+2=0和x-4=0,求出x的值即可得出|x+2|和|x-4|的零点值,(2)零点值x=3和x=-4可将全体实数分成不重复且不遗漏的如下3种情况:x<-4、-4≤x<3。

相关文档
最新文档