二元一次方程组应用专练
七年级下册二元一次方程组应用练习题及答案
七年级下册二元一次方程组应用练习题及答案练题一1. 解下列方程组:- 3x + 2y = 7- 4x - 3y = 2解答:首先将第一个方程乘以4,得到12x + 8y = 28。
然后将第二个方程乘以3,得到12x - 9y = 6。
然后将两个方程相减,消去x的项,得到17y = 22。
最后解得y = 22/17。
将y的值代入其中一个方程,求得x的值。
因此,该方程组的解为x = 10/17,y = 22/17。
2. 解下列方程组:- 5x + 3y = 9- 2x - 4y = 6解答:首先将第一个方程乘以2,得到10x + 6y = 18。
然后将第二个方程乘以5,得到10x - 20y = 30。
然后将两个方程相加,消去x的项,得到-14y = 12。
最后解得y = -12/14。
将y的值代入其中一个方程,求得x的值。
因此,该方程组的解为x = 138/14,y = -12/14。
练题二1. 解下列方程组:- 2x + y = 3- x - 3y = -7解答:首先将第一个方程乘以3,得到6x + 3y = 9。
然后将第二个方程乘以2,得到2x - 6y = -14。
然后将两个方程相加,消去y的项,得到8x = -5。
最后解得x = -5/8。
将x的值代入其中一个方程,求得y的值。
因此,该方程组的解为x = -5/8,y = 29/8。
2. 解下列方程组:- 4x - 5y = -6- 2x + 3y = 3解答:首先将第一个方程乘以2,得到8x - 10y = -12。
然后将第二个方程乘以4,得到8x + 12y = 12。
然后将两个方程相加,消去x的项,得到2y = 0。
最后解得y = 0。
将y的值代入其中一个方程,求得x的值。
因此,该方程组的解为x = -3/5,y = 0。
以上是七年级下册二元一次方程组应用的练习题及答案。
二元一次方程组应用题训练题(含答案)
二元一次方程组应用题一、解答题(共19题;共95分)1.加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一第二道工序所完成的件数相等.2.垃圾对环境的影响日益严重,垃圾危机的警钟被再次拉响.我市某中学积极响应国家号召,落实垃圾“分类回收,科学处理”的政策,准备购买、两种型号的垃圾分类回收箱共20只,放在校园各个合适位置,以方便师生进行垃圾分类投放.若购买型14只、型6只,共需4240元;若购买型8只、型12只,共需4480元.求型、型垃圾分类回收箱的单价.3.某农场去年生产大豆和小麦共300吨。
采用新技术后,今年总产量为350吨,与去年相比较,大豆超产10%,小麦超产20%。
求该农场今年实际生产大豆和小麦各多少吨?4.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克?5.某书店的两个下属书店共有某种图书5000册,若将甲书店的该种图书调出400册给乙书店,这样乙书店的该种图书的数量仍比甲书店该种图书的数量的一半还少400册。
求这两个书店原有这种图书的数量差。
6.甲种电影票每张20元,乙种电影票每张15元,若购买甲乙两种电影票共40张,恰好用去720元,求甲、乙两种电影票各买了多少张?7.小欢和小乐一起去超市购买同一种矿泉水和同一种面包,小欢买了3瓶矿泉水和3个面包共花21元钱;小乐买了4瓶矿泉水和5个面包共花32.5元钱.求此种矿泉水和面包的单价.8.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房间,两人间客房间,请列出满足题意的方程组.9.甲、乙两人做同样的零件,如果甲先做天,乙再开始做天后两人做的一样多,如果甲先做个,乙再开始做,天后乙反而比甲多做个.甲、乙两人每天分别做多少个零件?(用方程组解答)10.七年级一班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有元,请帮我安排买支钢笔和本笔记本.售货员:好,每支钢笔比每本笔记本贵元,退你元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?11.根据下图提供的信息,求每件恤衫和每瓶矿泉水的价格.12.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.求购进甲、乙两种花卉,每盆各需多少元?13.某饮料加工厂生产的A、B两种饮料均需加入同种派加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产多少瓶?14.某班师生共44人去公园划船,公园有大、小两种型号的船只,每艘船可容纳的人数和费用如下表:若每艘船刚好坐满(即没有空位),一共花费1200元请问公园提供了大、小船各多少艘?15.有黑白两种小球各若干个,且同色小球质量均相等,在如图所示的两次称量的天平恰好平衡,如果每只砝码质量均为5克,每只黑球和白球的质量各是多少克?16.有大小两种货车,2辆大货车与3辆小货车一次可以运货17吨,5辆大货车与6辆小货车一次可以运货38吨.求一辆大货车和一辆小货车每次分别可以运货多少吨?17.某汽车制造厂接受了在预定期限内生产一批汽车的任务,如果每天生产35辆,则差10辆才能完成任务;如果每天生产40辆,则可超额生产20辆.试求预定期限是多少天?计划生产多少辆汽车?18.列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.19.一种口服液有大盒、小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.求大盒、小盒每盒各装多少瓶?答案解析部分一、解答题1.【答案】解:设第一道工序需要x人,第二道工序需要y人,根据题意得:,解得:,答:第一道工序需要4人,第二道工序需要3人.【考点】二元一次方程组的其他应用【解析】【分析】由题意可得等量关系:每天第一、第二道工序所完成的件数相等和现有7位工人参加这两道工序,据此列出方程组,求解即可.2.【答案】解:设型垃圾分类回收箱的单价为元/只, 型垃圾分类回收箱的单价为元/只依题意得:解之得:答:型垃圾分类回收箱的单价为200元/只, 型垃圾分类回收箱的单价为240元/只.【考点】二元一次方程组的其他应用【解析】【分析】根据题意,设型垃圾分类回收箱的单价为元/只,型垃圾分类回收箱的单价为元/只,结合题目等量关系列出二元一次方程组,进而求解即可.3.【答案】解:设去年大豆、小麦产量分别为ⅹ吨、y吨,由题意得解得(1+10%)x=11×100=110吨,(1+20%)y=1.2×200=240答:大豆,小麦今年的产量分别为110吨和240吨。
二元一次方程组应用题(50题)
二元一次方程组应用题1、用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?2、一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?3、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?4、某厂第二车间的人数比第一车间的人数的五分之四少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人?5、共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115名学生积极参与,已知九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?6、某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先乘车、乙组步行。
车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。
已知车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。
7、运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?8、现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?9、一船队运送一批货物,如果每艘船装50吨,还剩下25吨装不完;如果每艘船再多装5吨,还有35吨空位.求这个船队共有多少艘船,共有货物多少吨?10、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?11、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?12、加工一批零件,甲先单独做8小时,然后又与乙一起加工5小时完成任务。
初中二元一次方程应用题专项练习
初中二元一次方程应用题专项练习题目一:某商场正在举办促销活动,商品A原价200元,商品B原价300元,促销时降价50元后销售。
现某顾客购买了商品A和商品B 共计3件,总共花费650元。
求顾客购买商品A的件数和商品B的件数。
解答:设顾客购买商品A的件数为x,购买商品B的件数为y。
根据题意,可以列出以下方程组:x + y = 3 (方程1,表示购买商品A和商品B的总件数为3)200x + 250y = 650 (方程2,表示购买商品A和商品B的总花费为650元)解方程组得到:x = 2y = 1所以,顾客购买商品A的件数为2件,购买商品B的件数为1件。
题目二:一辆汽车行驶了150公里,若行驶速度不变,行驶需要的时间为2小时。
若行驶速度增加10公里/小时,则行驶可以提前30分钟完成。
求原来的行驶速度是多少公里/小时。
解答:设原来的行驶速度为v公里/小时。
根据题意,可以列出以下方程组:150/v = 2 (方程1,表示以原来的速度行驶150公里需要2小时)150/(v+10) = 1.5 (方程2,表示以增加速度后行驶150公里需要1.5小时)解方程组得到:v = 50所以,原来的行驶速度是50公里/小时。
题目三:小明去超市买了若干瓶饮料,一瓶饮料原价10元。
超市促销时,每购买4瓶就可以打折,每瓶打折后的价格是8元。
小明共花费112元购买了饮料,求小明一共购买了多少瓶饮料。
解答:设小明购买的瓶数为n。
根据题意,可以列出以下方程:n/4 * 8 + (n%4) * 10 = 112 (方程1,表示购买的瓶数除以4得到的商乘以打折后的价格,加上购买的瓶数除以4得到的余数乘以原价,等于总花费)解方程得到:n = 14所以,小明一共购买了14瓶饮料。
二元一次方程组-应用题专项练习
y x 25 题图322卫生间厨房卧室客厅6图1 二元一次方程组应用题(一)1、小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图1所示。
根据图中的数据(单位:m ),解答下列问题:(1)用含x 、y 的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍。
若铺1m 2地砖的平均费用为80元,那么铺地砖的总费用为多少元o ?2、八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话: 李小波:阿姨,您好!售货员:同学,你好,想买点什么? 李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本. 售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?3、2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表二所示,表中缺失了2003年、2007年相关数据.已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降价金额.年份2001 2003 2004 2005 2007降价金额(亿元) 54 35 40 6、某城区中学5月份开展了与农村偏远学校“手拉手”的活动.九(3)班苗苗同学积极响应学校的号召,用自己的零花钱买了圆株笔和钢笔共8支,准备送给偏远山区的同学,共用去了20元钱,其中圆珠笔每支1元,钢笔每支5元.你知道苗苗同学买了圆珠笔和钢笔各多少支吗?7、“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%,该专业户去年实际生产小麦、玉米各多少吨?8、某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,请问购买门票最少共需花费多少元?(2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要多少人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜?10、李明家和陈刚家都从甲、乙两供水点购买同样的一种桶装矿泉水,李明家第一季度从甲、乙两供水点分别购买了8桶和12桶,且在乙供水点比在甲供水点多花18元钱. 若只考虑价格因素,通过计算说明到哪家供水点购买这种桶装矿泉水更便宜一些?11、某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40kg 到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:品 名 西红柿 豆角批发价(单位:元/kg ) 1.2 1.6零售价(单位:元/kg ) 1.8 2.5问:他当天卖完这些西红柿和豆角能赚多少钱?12、随着我国人口速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某区2003年和2004年小学儿童人数之比为8 : 7,且2003年入学人数的2倍比2004年入学人数的3倍少1500人,某人估计2005年入学儿童数将超过2300人,请你通过计算,判断他的估计是否符合当前的变.二元一次方程组应用题(二)1、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念品.已知每件文化衫比每本相(图1) (图2)册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?2、李晖到“宇泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员小俐 小花 月销售件数(件)200 150 月总收入(元) 1400 1250假设月销售件数为x 件,月总收入为y 元,销售每件奖励a 元,营业员月基本工资为b 元.(1)求a b ,的值;(2)若营业员小俐某月总收入不低于1800元,那么小俐当月至少要卖服装多少件3、 某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示: 品名西红柿 豆角 批发价(单位:元/㎏)1.2 1.6 零售价(单位:元/㎏) 1.82.5问:他当天卖完这些西红柿和豆角能赚多少钱?4、随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展。
二元一次方程组应用题30道专项练习.doc
二元一次方程组应用题1、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,求原来的两位数。
2、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:项目第一次第二次甲种货车辆数/辆 2 5乙种货车辆数/辆 3 6累计运货吨数/吨 15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问:货车应付运费多少元3、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。
问一工多少名学生、多少辆汽车。
4、某校举办物理竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分,则这次物理竞赛中,及格的学生有多少人,不及格的学生有多少人。
5、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,两小时后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度。
6、甲乙两地相距60千米,A、B两人骑自行车分别从甲乙两地相向而行,如果A 比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。
求A、B两人骑自行车的速度7、某公司去年的总收入比总支出多50万元,今年比去年的总收入增加10%,总支出节约20%,今年的总收入比总支出多100万元.求去年的总收入与总支出。
8、王大伯承包了25亩地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元.其中茄子每亩用了1700元,获得纯利2400元;种西红柿每亩用了1800元,获得纯利2600元,问王大伯一共获纯利多少元?9、小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明即返回原地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.请求出两人的速度.10、2004年岁末的印度洋海啸,牵动着世界人民的心.某国际医疗救援队用甲、乙两种原料为手术后的病人配置营养品.每克甲原料含0.5单位的蛋白质和1单位的铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?11、车间里有90 名工人,每人每天能隆产螺母24 个或螺栓15 个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺母正好配套?12、某区中学生足球联赛共8 轮(即每个队均需要赛8 场),胜一场得 3分,平一场得1 分,负一场得0 分.在这次足球联赛中,雄师队踢平的场数是所负场所的2 倍,共得17 分.你知道雄师队胜了几场球吗?13、10 年前,母亲的年龄是儿子的6 倍;10 年后,母亲的年龄是儿子的2 倍.求母子现在的年龄.14、已知一艘轮船载重量是500 吨,容积是1000 立方米.现有甲、乙两种货待装,甲种货物每吨体积是7 立方米,乙种货物每吨体积是2 立方米,求怎么样货才能最大限度的利用船的载重量和体积?15、某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%。
二元一次方程组解应用题专项训练(含答案)
列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
列二元一次方程组解应用题专项练习50题(有答案)ok
列二元一次方程组解应用题专项练习50题(有答案)ok1、已知某铁路桥长800m,火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度。
解:设火车的速度为v,长度为l,则有:l + 800 = vt (火车在桥上的时间)l = v(t-10) (火车在桥上外的时间)联立得:v = 80m/s,l = 2400m。
2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?解:设用x张铁皮制盒身,y张铁皮制盒底,则有:8x = 22y (每张铁皮做8个盒身或做22个盒底)x = 2y/7190 = 9x + 11y (总共用了190张铁皮)代入得:x = 60,y = 35.3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,一个桶身一个桶底正好配套做一个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?解:设用x张铁皮做桶身,y张铁皮做桶底,则有:x + y/8 = 63 (每张铁皮能做1个桶身或8个桶底)代入得:x = 35,y = 224.4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:货车种类 | 货车辆数(辆) | 累计运货吨数(吨) |甲。
| 2.| 15.5.|乙。
| 5.| 35.|现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?解:设甲、乙两种货车每辆运输的吨数分别为x、y,则有:2x + 5y = 50 (过去两次租用的情况)3x + 5y = 70 (现在租用的情况)联立得:x = 10,y = 8.应付运费为:(15.5+35) * 30 = 1650元。
5、某工厂第一季度生产甲、乙两种机器共480台,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?解:设第一季度甲、乙两种机器分别生产x、y台,则有:x + y = 4801.1x + 1.2y = 554 (第二季度计划生产的情况)联立得:x = 280,y = 200.6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:设种茄子的亩数为x,种西红柿的亩数为y,则有:x + y = 252600x + 2600y = - 1700x - 1800y (总花费为元)联立得:x = 10,y = 15.总获纯利为:2600 * 10 + 2600 * 15 = 元。
二元一次方程组应用题练习
▪ (2)工厂满负荷全面转产,是否可以如期 完成任务?
• 8;某铁路桥长1000米,现有 一列火车从桥上通过,测得该
火车从开始上桥到完全过桥共 用了1分钟,整列火车完全在桥 上的时间共40秒,求火车的速 度和长度?
❖ 9;实验中学组织爱心捐款活动,九年级一班55 名同学共捐款1180元,捐款情况见下表,表中捐 款10元和20元的人数不小心被墨水污染看不清楚, 请你帮助确定表中的数据。
3;现在要做418朵小红花,小明 先做了2天,后来小亮加入和小明 一起做了2天,不但全部完成,还 要多做了2朵;如果小亮先做3天, 小明和小亮一起做3天,那么能多 做32朵,问小明、小亮每天各能 做几朵小红花?
4:农场有两片试验田,甲试验 田的面积比这两片试验田的总面 积的一半少7公顷,乙试验田的 面积比这两片试验田的总面积的 三分之一多32公顷,问甲、乙 两片试验田各有多少公顷?
记录 天平左边
天平右边
状态
记录 5枚壹圆硬币,1个 1 10克的砝码
记录 15枚壹圆硬币 2
10枚伍角硬币
20枚伍角硬币,1 个10克的砝码
平衡 平衡
请你用数学知识计算出一枚壹圆硬币多少克,一枚伍角硬币 多少克?
21;某旅馆的客房有三人间和二人间 两种,三人间每人每天25元,二人间 每人每天35元,一个50人的旅游团到 该旅馆住宿,租住了若干客房,并且 每间客房正好注满,一天共花去住宿 费1510元,两种客房各租住了多少间?
▪ (1)设安排A型货箱X节,写出X应满足的 不等式组;
▪ (2)请你按要求安排A、B两种货箱的节 数,有哪几种运输方案?请设计出来。
23;用白铁皮做罐头盒,每张铁皮 可制盒身16个或制盒底43个,一个 盒身与两个盒底配成一套罐头盒, 现有150张铁皮,用多少张制盒身, 多少张制盒底,可以使盒身与盒底 正好配套?
二元一次方程组应用专练
二元一次方程组应用专练1、小兰在玩具厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分.平均做一个小狗与1个小汽车各用多少时间?5、某铁桥长1 000米,一列火车从桥上通过,从车头到桥到车尾离桥共用一分钟时间,整列火车完全在桥上的时间为40秒钟,求火车车身的总长和速度.6、某牛奶加工厂现有100吨鲜牛奶准备加工后上市销售,该工厂的加工能力是,如果制成奶片每天可加工鲜奶10吨,如果制成酸奶每天可加工鲜奶30吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部加工完毕.该厂应安排几天制奶片,几天制酸奶,才能使任务在4天内正好完成?如果制成奶片销售每吨奶可获利2 000元,制成酸奶销售每吨奶可获利1 200元,那么该厂出售这些加工后的鲜牛奶共可获利多少元?10、某学校现有校舍面积20 000m2,计划拆除部分旧校舍,改建新教学楼,使校舍面积增加30%,若建造新教学楼的面积为拆除的旧校舍面积的4倍,那么应该拆除多少旧校舍,新教学楼面积是多少?11、某人以两种形式储蓄了800元,一种储蓄的年利率为10%,另一种储蓄的年利率为11%,一年到期时去提取,他共得到利息85元5角,问两种储蓄他共存了多少钱?12、某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.6万元,30秒广告每播1次收费1万元.若要求每种广告播放不少于2次.问:⑴两种广告的播放次数有几种安排方式?⑵电视台选择哪种方式播放收益较大?13、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润可达4 500元;经精加工后销售,每吨利润涨至7 500元.当地一家农工商公司收购这种蔬菜140吨,该公司的加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部加工或加工完毕,为此公司研制了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成.你认为选择哪种方案获利最多?为什么?)15、小明去某批零兼营的文具商店,为学校美术活动小组的30名同学购买铅笔和橡皮,按商店规定,若给全组每人各买2枝铅笔和1块橡皮,则必须按零售价计算,需支付39元;若给全组每人各买3枝铅笔和2块橡皮,则可以按批发价计算,需支付42元.已知每枝铅笔的批发价比零售价低0.1元,每块橡皮的批发价比零售价低0.25元,求这家商店每支铅笔和每块橡皮的批发价各为多少元?18、某乐园的门票价格规定如下表所列.某校初一(1)、(2)两个班共104人去游长风乐园其中(1)班人数较少,不到50人,(2)班人数较多,有50多人.经估算,如果两班都以班为单位分别购票,则一共应付1240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱.问两班各有多少名学生?3、已知有含盐20%与含盐5%的盐水,若配制含盐14%的盐水200千克,则需含盐20%的盐水多少千克,含盐5%的盐水多少千克5、汽车在相距70km的甲、乙两地之间往返行驶,因为行程中有一坡度均匀的小山,该汽车从甲地到乙地需要2小时30分钟,而从乙地回到甲地需要2小时48分钟,已知汽车在平地每小时行30km,上坡路每小时行20km,下坡路每小时行40km,求从甲地到乙地的行程中,平路、上坡路、下坡路各是多少?9、李明与王云分别从A、B两地相向而行,若两人同时出发,则经过80分钟两人相遇;若李明出发60分钟后王云再出发,则经过40分钟两人相遇,问李明与王云单独走完AB全程各需多少小时?10、有一个两位数和一个一位数,如果在这个一位数后面多写一个0,则它与这个两位数的和是146,如果用这个两位数除以这个一位数,则商6余2,求这个两位数.11、东风农场的两块试验田,去年共产花生470kg.改用良种后,今年共产花生523kg,已知第一块田的产量比去年增产16%,第二块田的产量比去年增产10%,这两块田改良种前每块田产量分别为多少千克?今年每块田各增产多少千克?15、在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B 型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元.求:(1)A型洗衣机和B型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?一.选择:1.一个两位数的十位数字与个位数字的和是7。
二元一次方程组经典练习题+答案解析100道
二元一次方程组经典练习题+答案解析100道二元一次方程组练题100道(卷一)1、判断1、方程组xy526的解是()。
解:这不是一个完整的方程组,缺少另一个方程,无法判断解。
2、方程组1是方程组yx3 2的解是方程3x-2y=13的一个解()。
解:将方程组代入3x-2y=13中,得到3x-2(-x/3-1/2)=13,化简得到x=5,y=-4,代入方程组可验证是解,因此选(√)。
3、由两个二元一次方程组成方程组一定是二元一次方程组()。
解:不一定,例如x+y=1和2x+2y=2就不是二元一次方程组。
4、方程组x3y 573x2y12235 3可以转化为方程组解:将第一个方程移项得到x+3y=2,代入第二个方程中消去x得到-7y=-18,解得y=18/7,代入第一个方程得到x=-41/7,因此可以转化为方程组5x-6y=-27和2y-3x+4=2,选(√)。
5、若(a-1)x+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1()。
解:将XXX提取出来得到(a-1)(x+y)+(2a-3)y=0,因此x+y=-2a+3y/y-2,这是一个关于a的一次函数,当a=±1时,x+y=±1,此时方程组化为x+y=±1和-2x-2y=0,是二元一次方程组,因此选(√)。
6、若x+y=0,且|x|=2,则y的值为2()。
解:由x+y=0得到y=-x,代入|x|=2中得到|x|=|x+y|=|-x+y|=2,解得x=±1,因此y=±1,不等于2,选(×)。
7、方程组mx my m3x4x10y8有唯一的解,那么m的值为m≠-5()。
解:将第一个方程移项得到(m+3)x+my=m,代入第二个方程中消去x得到(3m+2)y=8-m,因为有唯一解,所以3m+2≠0,即m≠-2/3,代入方程组中验证,当m≠-5时,有唯一解,因此选(√)。
8、方程组1x y 233有无数多个解()。
七年级二元一次方程组应用题10道
七年级二元一次方程组应用题10道1.小明和小红两人一起去超市买水果。
小明买了几个苹果和几个橙子,总共花了12元;小红买了几个苹果和几个橙子,总共花了10元。
已知每个苹果的价格是1元,每个橙子的价格是2元。
问小明和小红分别买了几个苹果和几个橙子?2.一对双胞胎姐妹一共有18颗糖。
姐姐比妹妹多得糖的个数是4颗,姐姐的一颗糖的价格是妹妹的2倍。
问姐姐和妹妹各自得了几颗糖以及价格分别是多少?3.有一群小学生在体育场比赛,共有男生和女生两种性别。
男生每人比女生多10人,男生人数是女生人数的2倍。
如果体育场共有120人参加比赛,问男生和女生各有多少人?4.学校要组织外出观光,计划包括学生和老师两类人。
学生每人多于老师10人,学生共有60人,老师共有4人。
问学生和老师各占多少人数?5.小明和小红两人一共骑自行车去郊外游玩。
小明每小时骑行速度为10公里,小红每小时骑行速度为15公里。
他们同时出发,小红比小明先到达目的地1个小时。
问目的地距离原点多少公里?6.学校举办校运动会,共有游泳比赛和跑步比赛。
报名参加游泳比赛的男生占总报名人数的1/3,报名参加跑步比赛的女生占总报名人数的1/4,已知男生和女生总共有60人参加比赛,问男生和女生各有多少人?7.有一批水果共有苹果和梨两种。
苹果的价格比梨的价格高出每斤2元,苹果共有5斤,梨共有3斤,总共支付了35元。
问苹果和梨各自的价格是多少元每斤?8.甲、乙两人一共走了30公里路程。
甲比乙每小时走得快5公里,所以他比乙提早1小时到达终点。
问甲和乙每小时的步行速度分别是多少?9.小明和小红两人一共有24本书。
小明比小红多8本书,小明和小红的书的总价值是168元,小明每本书比小红多4元。
问小明和小红的书各有多少本以及每本书的价值是多少元?10.甲、乙、丙三人共有240元。
甲比乙多30元,丙比甲少40元。
问甲、乙、丙各自有多少元?。
二元一次方程组应用题训练题(含答案)
二元一次方程组应用题训练题(含答案)1.一家工厂需要进行两道工序来生产产品。
第一道工序每人每天可以完成900件,第二道工序每人每天可以完成1200件。
现在有7位工人参与这两道工序,应该如何分配人力,才能使每天第一道工序和第二道工序所完成的件数相等?2.垃圾对环境的影响越来越严重,因此垃圾分类回收成为了一个重要的话题。
一所中学准备购买两种型号的垃圾分类回收箱,共20个,放置在校园中各个合适的位置。
其中型号一有14个,型号二有6个,总共需要4240元。
如果购买型号一8个,型号二12个,需要4480元。
请问型号一和型号二的单价分别是多少?3.某农场去年生产了大豆和小麦共计300吨。
今年采用新技术后,总产量为350吨,其中大豆超产10%,小麦超产20%。
请问今年该农场实际生产了多少吨大豆和多少吨小麦?4.有两块试验田,原本每块田都可以产生470千克的花生。
改用良种后,两块试验田共产生了532千克的花生。
已知第一块田的产量比原来增加了16%,第二块田的产量比原来增加了10%。
请问这两块试验田改用良种后,各增产了多少千克的花生?5.一家书店有两个下属书店,共有某种图书5000册。
如果将甲书店的400册该种图书调出给乙书店,那么乙书店的该种图书数量仍然比甲书店的数量少400册的一半。
请问这两个书店原来各有多少册这种图书?6.甲种电影票每张20元,乙种电影票每张15元。
如果购买甲、乙两种电影票共40张,恰好用去720元,请问甲、乙两种电影票各买了多少张?7.XXX和XXX一起去超市购买矿泉水和面包。
XXX买了3瓶矿泉水和3个面包,共花费21元;XXX买了4瓶矿泉水和5个面包,共花费32.5元。
请问这种矿泉水和面包的单价分别是多少?8.一家旅馆有三人间和两人间两种客房,其中三人间每人每天需要支付25元,两人间每人每天需要支付35元。
一个50人的旅游团到该旅馆住宿,租住了若干个客房,每个客房都被住满,一天总共花费1510元。
二元一次方程组练习题30道
二元一次方程组练习题1解方程组:.2.解方程组.3.解方程组.4.解方程组.5.解方程组:6.解方程组:.7.解方程组8.解方程组:.9.解方程组:.10.解方程组.11.解二元一次方程组:.12.解方程组:.二元一次方程组解应用题一、二元一次方程组应用题常见等量关系举例显性等量关系:平行结构,配套结构;隐性等量关系:年龄问题.二、精练1.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了50间大寝室和55间小寝室,也正好住满.该校的大小寝室每间各住多少人?2.制造某种产品,1人用机器,3人靠手工,每天可制造60件;2人用机器,2人靠手工,每天可制造80件.那么3人用机器,1人靠手工,每天可制造多少件?3.2013年4月20日,芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.规定时间是多少天?生产任务是多少顶帐篷?4. 夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元.请问这两种饮料在调价前每瓶各多少元?5. 一张方桌由1个桌面、4条桌腿组成.如果1m 3木料可以做方桌的桌面50个或做桌腿300条.现有5m 3木料,那么用多少木料做桌面、多少木料做桌腿,做出的桌面和桌腿恰好能配成方桌?能配成多少张方桌?6. 如图,某化工厂与A ,B 两地有公路和铁路相连.这家工厂从A 地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B 地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米).这两次运输共支出公路运费15 000元,铁路运费97 200元.请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程 组如下:甲: 1.5(2010)1.2(110120)x y x y ⎧+=⎪⎨+=⎪⎩铁路110km公路20km 公路10km铁路120km 工厂BA乙: 1.5(2010)800010001.2(110120)80001000x y x y ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩根据甲、乙两名同学所列方程组,请你分别指出未知数x , y 表示的意义,然后在等式右边的方框内补全甲、乙两名同 学所列方程组.甲:x 表示__________________,y 表示__________________. 乙:x 表示__________________,y 表示__________________. (2)甲同学根据他所列方程组解得x =300.请你帮他解出y 的值,并解决该实际问题.7. 小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,那么从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?8. 一个三位数的各位数字之和等于12,它的个位数字比十位数字小2,若将它的百位数字与个位数字互换,所得的数比原来的数小99.原来那个三位数是多少?9. 学生问王老师:“您今年多大了?”王老师幽默地说:“我像你们这样大时,你才1岁,你到我这么大时我已经37岁了.”王老师和学生的年龄各是多少?【参考答案】1.大寝室每间住8人,小寝室每间住6人.2.每天可制造100件.3.规定时间是6天,生产任务是800顶帐篷.4.调价前,碳酸饮料每瓶3元,果汁饮料每瓶4元.5.用3立方米木料做桌面,2立方米木料做桌腿,正好能配成150张方桌.6.(1)甲:x表示产品的重量,y表示原料的重量.乙:x表示产品销售额,y表示原料费.(2)y=400;这批产品的销售款比原料费和运输费的和多1887 800元.7.小华家离学校700米.8.原来那个三位数为453.9.王老师25岁,学生13岁.。
二元一次方程组及应用题练习
二元一次方程组及应用题练习二元一次方程组解法练题精选一、解答题(共16小题)1.求适合下列方程组的x,y的值:1)x - 3y = 5.2x + y = 52)y - 2x = 5.x + y = 13)3m - 2n = 5.4n + m = -14)2p - 3q = 13.p + 5 = 4q5)3x - 5y = 7.4x + 2y = 56)6x - 5y = 11.11x - 9y = 127)x - 2y = 12.4x + 2y = 30 8)3x + 4y = 3a。
3n - 4m = 6 9)5x + 2y = 5a。
4m - 2n = -5 10)x - y = 1.0.5x - 0.3y = 0.2 11)x - y = 1.0.4x + 0.3y = 0.7 12)2x + 2y = 7.x - y + 1 = 2 13)11x - 10y = 1.x - y = -1 14)x - y = 2.2x + 2y = 7 15)3x + 4y = 3.5x - 3y = 2 16)x - y = 1.2x + 3y = 5解:1)代入法:由第一个方程可得:x = 3y + 5将x = 3y + 5代入第二个方程中得:2(3y + 5) + y = 5 化简得:7y + 10 = 5解得:y = -5/7将y = -5/7代入x = 3y + 5中得:x = -10/7因此,方程组的解为:x = -10/7,y = -5/7.2)加减法:将两个方程相加得:-x + y = 6将第一个方程乘以2得:-4x + 2y = 10将第二个方程乘以3得:3x + 3y = 3将上面两个式子相加得:-x + y + 3x + 3y = 13化简得:2x + 4y = 13将-2x + 2y = 6乘以2得:-4x + 4y = 12将上面两个式子相加得:-2x + 6y = 25化简得:x = (25 - 6y)/2将x = (25 - 6y)/2代入-2x + 2y = 6中得:-25 + 6y + 2y = 12 化XXX:y = 9/4将y = 9/4代入x = (25 - 6y)/2中得:x = 7/4因此,方程组的解为:x = 7/4,y = 9/4.3)加减法:将第一个方程乘以2得:6m - 4n = 10将第二个方程乘以3得:9m - 6n = 15将上面两个式子相加得:15m - 10n = 25化简得:3m - 2n = 5将4n + m = -1代入3m - 2n = 5中得:3(-4n - 1) - 2n = 5 化XXX:n = -7/11将n = -7/11代入4n + m = -1中得:m = 25/11因此,方程组的解为:m = 25/11,n = -7/11.4)加减法:将第一个方程乘以3得:6p - 9q = 39将第二个方程乘以4得:8p - 12q = 52将上面两个式子相加得:14p - 21q = 91化简得:2p - 3q = 13将p + 5 = 4q代入2p - 3q = 13中得:2(p + 5) - 3q = 13 化简得:p = -3将p = -3代入p + 5 = 4q中得:q = 2因此,方程组的解为:p = -3,q = 2.5)加减法:将第一个方程乘以4得:12x - 20y = 28将第二个方程乘以2得:8x + 4y = 10将上面两个式子相加得:20x - 16y = 38化简得:5x - 4y = 19/5将3x - 5y = 7代入5x - 4y = 19/5中得:5(3x - 5y) - 4y = 19/5化简得:x = 12/5将x = 12/5代入3x - 5y = 7中得:y = 1/5因此,方程组的解为:x = 12/5,y = 1/5.6)加减法:将第一个方程乘以2得:12x - 10y = 22将第二个方程乘以3得:33x - 27y = 36将上面两个式子相加得:45x - 37y = 58化简得:x = (58 + 37y)/45将11x - 9y = 12代入x = (58 + 37y)/45中得:11((58 + 37y)/45) - 9y = 12化XXX:y = -41/34将y = -41/34代入x = (58 + 37y)/45中得:x = 43/34因此,方程组的解为:x = 43/34,y = -41/34.7)代入法:由第一个方程可得:x = 2y + 12将x = 2y + 12代入第二个方程中得:4(2y + 12) + 2y = 30化简得:10y = 2解得:y = 1/5将y = 1/5代入x = 2y + 12中得:x = 22/5因此,方程组的解为:x = 22/5,y = 1/5.8)代入法:由第一个方程可得:m = (3a - 4y)/9将m = (3a - 4y)/9代入第二个方程中得:8(3a - 4y)/9 - 2n = 6化简得:24a - 32y - 18n = 54将第三个方程乘以4得:12m - 8n = 20将第四个方程乘以3得:9x - 15y = 21将上面两个式子相加得:12m - 8n + 9x - 15y = 41将24a - 32y - 18n = 54代入12m - 8n + 9x - 15y = 41中得:12(3a - 2y)/9 - 8n + 9x - 15y = 41化简得:27a - 18y - 16n + 15x = 123将上面两个式子相加得:11x - 14n + 27a - 20y = 164将x = (3a - 4y)/9代入11x - 14n + 27a - 20y = 164中得:11(3a - 4y)/9 - 14n + 27a - 20y = 164化简得:29a - 36y - 28n = 468解得:a = (468 + 36y + 28n)/29将a = (468 + 36y + 28n)/29代入m = (3a - 4y)/9中得:m = (156 + 12y + 28n)/29将m = (156 + 12y + 28n)/29代入第二个方程中得:8(3a -4y)/9 - 2n = 6化简得:24a - 32y - 18n = 54将a = (468 + 36y + 28n)/29代入24a - 32y - 18n = 54中得:(3744 + 288y + 224n)/29 - 32y - 18n = 54化简得:288y + 206n = 1170因此,方程组的解为:a = (468 + 36y + 28n)/29,m = (156 + 12y + 28n)/29,n为任意实数,且满足288y + 206n = 1170.9)代入法:由第一个方程可得:x = (5a - 2y)/5将x = (5a - 2y)/5代入第二个方程中得:4(4m - 2n + 5) - 2(5a - 2y)/5 = -5化简得:16m - 8n + 20 - 2a + 4y/5 = -5将第三个方程乘以2得:6m - 4n = 10将第四个方程乘以3得:9x - 15y = 3将上面两个式子相加得:6m - 4n + 9x - 15y = 13将x = (5a - 2y)/5代入6m - 4n + 9x - 15y = 13中得:6m - 4n + 9(5a - 2y)/5 - 15y = 13化简得:54a - 52y - 20n = 118将上面两个式子相加得:54a - 52y - 20n + 16m - 8n + 20 - 2a + 4y/5 = 6化简得:52a - 260/5y - 32n + 16m = -94/5化简得:13a - 13y - 2n + 4m = -47/5将第五个方程乘以5得:3x - 5y = 7将第六个方程乘以11得:11x - 9y = 12将上面两个式子相加得:14x - 14y = 19将x = (5a - 2y)/5代6.已知甲、乙两种商品的原价和为200元。
10道二元一次方程组应用题及答案
1:某校为同学们安排宿舍。
若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,且两间宿舍没人住。
求该年级同学人数和宿舍间数。
(解:设年级人数是x人,宿舍是y人)解:设年级人数是x人,宿舍是y人)5y-x=-46(y-2)-x=2解这个方程组得:y=18x=942:用A、B两种原料配制两种油漆,已知甲种油漆含A、B两种原料之比为5:4,每千克50元,乙种油漆含A、B两种原料之比为3:2,每千克48.6元,求A、B两种原料每千克的价格分别是多少元。
(解:设A种原料每千克x元,B种原料每千克y元)5÷9×x+4÷9×y=503÷5×x+2÷5×y=48.6化简方程组得:5x+4y=4503x+2y=243解这个方程组得:x=36y=67.53:甲、乙两地相距24千米,公共汽车和直达快车在8:45从甲、乙两地相向开出,这两辆车都在8:52到达中途A处。
有一次,直达快车晚开8分钟,两车则在8:58相遇途中B处,求这两车的速度。
(解:设直达快车每小时x千米,公共汽车每小时y千米)7÷60×x+7÷60×y=2413÷60×y+5÷60×x=244.要用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18千克,两种药水各需取多少千克?(解:设含药30%的药水x千克,含药75%的药水y千克)x+y=1830%有效成分=x×30%75%有效成分=y×75%50%有效×成分=18×50%所以30%x+7×5%=18×50%0.3x+0.75y=9x+y=180.3x+0.3y=5.4所以0.75y-0.3y=9-5.40.45x=3.6x=8y=10所以30%取8千克,75%取10千克5.一列快车长70千米,慢车长80千米,若两车同时相向而行,快车从追上慢车到完全离开慢车为20秒,若两车相向而行,则两车从相遇到离开时间为4秒,求两车每小时各行多少千米。
二元一次方程组应用题专练
21、 东风农场的两块试验田,去年共产花生470kg.改用良种后,今年 共产花生523kg,已知第一块田的产量比去年增产16%,第二块田的产 量比去年增产10%,这两块田改良种前每块田产量分别为多少千克?今 年每块田各增产多少千克?
43、 汽车在相距70km的甲、乙两地之间往返行驶,因为行程中有一坡 度均匀的小山,该汽车从甲地到乙地需要2小时30分钟,而从乙地回到 甲地需要2小时48分钟,已知汽车在平地每小时行30km,上坡路每小时 行20km,下坡路每小时行40km,求从甲地到乙地的行程中,平路、上 坡路、下坡路各是多少?
44、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样 大时,您才出生;您到我这么大时,我已经37岁了。”请问老师、学生 今年多大年龄了呢?
40、一快车长168米,一慢车长184米,如果两车相向而行,从相遇到离 开需4秒;如果同向而行,从快车追及慢车到离开需16秒,求两车的速 度。
41、某铁桥长1 000米,一列火车从桥上通过,从车头到桥到车尾离桥 共用一分钟时间,整列火车完全在桥上的时间为40秒钟,求火车车身的 总长和速度.
42、 甲乙两人以不变的速度在环形路上跑步,相向而行每隔两分钟相 遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑的快,求甲、乙 每分钟各跑多少圈?
45、一个两位数的数字之和是9,如果这个两位数加上45,所得的和正 好是原两位数交换个位数字与十位数字所得的数,求原来的这个两位 数?
二元一次方程组专项练习100道
二元一次方程组演习题100道(卷一)(规模:代数: 二元一次方程组)一.断定1.⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2.方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3.由两个二元一次方程构成方程组必定是二元一次方程组( )4.方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5.若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6.若x +y =0,且|x |=2,则y 的值为2 …………( )7.方程组⎩⎨⎧=+-=+81043y x x m my mx 有独一的解,那么m 的值为m ≠-5…………( )8.方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有很多多个解 …………( )9.x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10.方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11.若|a +5|=5,a +b =1则32-的值为ba ………() 12.在方程4x -3y =7里,假如用x 的代数式暗示y ,则437yx +=( ) 二.选择:13.任何一个二元一次方程都有( ) (A )一个解;(B )两个解; (C )三个解;(D )很多多个解;14.一个两位数,它的个位数字与十位数字之和为6,那么相符前提的两位数的个数有( )(A )5个(B )6个(C )7个(D )8个15.假如⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值规模是( )(A )a <2;(B )34->a ;(C )342<<-a ;(D )34-<a ;16.关于x .y的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2;(B )-1;(C )1;(D )-2;17.鄙人列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18.与已知二元一次方程5x -y =2构成的方程组有很多多个解的方程是( )(A )15x -3y =6(B )4x -y =7(C )10x +2y =4(D )20x -4y =3 19.下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xy y x20.已知方程组⎩⎨⎧-=+=-135b y ax y x 有很多多个解,则a .b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7(C )a =-1,b =9(D )a =-3,b =1421.若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于( )(A )32(B )23(C )1(D )-122.若x .y 均为非负数,则方程6x =-7y 的解的情形是( ) (A )无解(B )有独一一个解(C )有很多多个解(D )不克不及肯定23.若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( ) (A )14(B )-4(C )-12(D )1224.已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4(B )21-=k ,b =4(C )21=k ,b =4(D )21-=k ,b =-4三.填空:25.在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______若x .y 都是正整数,那么这个方程的解为___________;26.方程2x +3y =10中,当3x -6=0时,y =_________; 27.假如xy ,那么用含有y 的代数式暗示的代数式是_____________;28.若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29.方程|a |+|b |=2的天然数解是_____________; 30.假如x =1,y =2知足方程141=+y ax ,那么a =____________; 31.已知方程组⎩⎨⎧-=+=+m y x ay x 26432有很多多解,则a =______,m =______;32.若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33.若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________; 34.若x +y =a ,x -y =1同时成立,且x .y 都是正整数,则a 的值为________;35.从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36.已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________; 四.解方程组□x +5y =13 ①37.⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38.)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+;39.⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40.⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ;41.⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42.⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43.⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44.⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45.⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46.⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五.解答题:47.甲.乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的盘算都精确无误,请写出这个方程组,并求出此方程组的解;48.使x +4y =|a |成立的x .y 的值,知足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49.代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50.要使下列三个方程构成的方程组有解,求常数a 的值. 2x +3y =6-6a ,3x +7y =6-15a ,4x +4y =9a +951.当a .b 知足什么前提时,方程(2b 2-18)x =3与方程组⎩⎨⎧-=-=-5231b y x y ax 都无解;52.a .b .c 取什么数值时,x 3-ax 2+bx +c 程(x -1)(x -2)(x -3)恒等?53.m取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解:(1)是正数;(2)是正整数?并求它的所有正整数解.54.试求方程组⎩⎨⎧-=---=-6|2||5|7|2|y x y x 的解.六.列方程(组)解运用题55.汽车从甲地到乙地,若每小时行驶45千米,就要耽搁30分钟到达;若每小时行驶50千米,那就可以提前30分钟到达,求甲.乙两地之间的距离及原筹划行驶的时光?56.某班学生到农村劳动,一名男生因病不克不及介入,尚有三名男生体质较弱,教师安插他们与女生一路抬土,两人抬一筐土,其余男生全体挑土(一根扁担,两只筐),如许安插劳动时恰需筐68个,扁担40根,问这个班的男女生各有若干人?57.甲.乙两人演习竞走,假如甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;假如甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑若干米?58.甲桶装水49升,乙桶装水56升,假如把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,正好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水正好是甲桶容量的31,求这两个水桶的容量.59.甲.乙两人在A 地,丙在B 地,他们三人同时动身,甲与乙同向而行,丙与甲.乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙碰到乙后10分钟又碰到甲,求A .B 两地之间的距离.60.有两个比50大的两位数,它们的差是10,大数的10倍与小数的5倍的和的201是11的倍数,且也是一个两位数,求本来的这两个两位数. 【参考答案】一.1.√;2.√;3.×;4.×;5.×;6.×; 7.√;8.√;9.×;10.×;11.×;12.×; 二.13.D ;14.B ;15.C ;16.A ;17.C ;18.A ;19.C ;20.A ;21.A ;22.B ;23.B ;24.A ;三.25.47,8,⎩⎨⎧==14y x ;26.2;27.4125+=y x ;28.a =3,b =1; 29.⎩⎨⎧==2b a ⎩⎨⎧==11b a ⎩⎨⎧==02b a 30.21;31.3,-432.1;33.20;34.a 为大于或等于3的奇数;35.4:3,7:936.0;四.37.⎩⎨⎧==204162n m ; 38.⎪⎩⎪⎨⎧==22ay a x ;39.⎩⎨⎧-==13y x ;40.⎩⎨⎧==11y x ;41.⎩⎨⎧==11y x ; 42.⎪⎩⎪⎨⎧==225y x ;43.⎪⎩⎪⎨⎧===168z y x ; 44.⎪⎩⎪⎨⎧===397z y x ;45.⎪⎩⎪⎨⎧-=-==212z y x ; 46.⎪⎩⎪⎨⎧===202112z y x ;五.47.⎩⎨⎧-=-=+2941358y x y x ,⎪⎪⎩⎪⎪⎨⎧==231792107y x ;48.a =-149.11x 2-30x +19; 50.31=a ; 51.23=a ,b =±352.a =6, b =11, c =-6;53.(1)m 是大于-4的整数,(2)m =-3,-2,0,⎩⎨⎧==48y x ,⎩⎨⎧==24y x ,⎩⎨⎧==12y x ;54.⎩⎨⎧=-=91y x 或⎩⎨⎧==95y x ;六.55.A .B 距离为450千米,原筹划行驶小时;56.设女生x 人,男生y人,⎪⎪⎩⎪⎪⎨⎧=⨯-++=-++682)4(2340423y x y x ⎩⎨⎧==)(32)(21人人y x57.设甲速x 米/秒,乙速y 米/秒⎩⎨⎧==-yx y x 641055⎩⎨⎧==)/(4)/(6秒米秒米y x58.甲的容量为63升,乙水桶的容量为84升; 59.A .B 两地之间的距离为52875米; 60.所求的两位数为52和62.二元一次方程组演习题100道(卷二)一.选择题:1.下列方程中,是二元一次方程的是( )A .3x -2y=4zB .6xy+9=0C .1x+4y=6 D .4x=24y -2.下列方程组中,是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y xx y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有很多解C .无解D .有且只有两解4.方程y=1-x 与3x+2y=5的公共解是( )A .3333 (2)422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(3y+2)2=0,则的值是( )A .-1B .-2C .-3D .326.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7; ②4x+1=x-y; ③1x+y=5; ④x=y; ⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x A.1 B.2 C.3 D.48.某年级学生共有246人,个中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中相符题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二.填空题9.已知方程2x+3y-4=0,用含x的代数式暗示y为:y=_______;用含y的代数式暗示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.认为57xy=⎧⎨=⎩解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三.解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有雷同的解,求a的值.18.假如(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b知足什么前提?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是若干?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所构成的方程组的解为41xy=⎧⎨=⎩.22.依据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了若干枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有若干只鸡,若干个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否知足2x-y=8?知足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(凋谢题)是否消失整数m,使关于x的方程2x+9=2-(m-2)x在整数规模内有解,你能找到几个m的值?你能求出响应的x的解吗?答案:一.选择题1.D 解析:控制断定二元一次方程的三个必须前提:①含有两个未知数;②含有未知数的项的次数是1;③等式双方都是整式.2.A 解析:二元一次方程组的三个必须前提:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制前提时,一个二元一次方程有很多个解.4.C 解析:用消除法,逐个代入验证.5.C 解析:运用非负数的性质.6.B7.C 解析:依据二元一次方程的界说来剖断,•含有两个未知数且未知数的次数不超出1次的整式方程叫二元一次方程,留意⑧整顿后是二元一次方程.8.B二.填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数目关系组建方程,如2x+y=17,2x-y=3等,此题答案不独一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三.解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有雷同的解,∴3×(-3)-2a×4=a+2,∴a=-11 9.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要知足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2 解析:由两个未知数的特别关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-1 2.当x=1,y=-12时,x-y=1+12=32;当x=-1,y=-12时,x-y=-1+12=-12.解析:任何有理数的平方都长短负数,且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x-y=3.22.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,依据题意得130.8220x yx y+=⎧⎨+=⎩.(2)解:设有x只鸡,y个笼,依据题意得415(1)y xy x+=⎧⎨-=⎩.23.解:知足,不必定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也知足2x-y=8,•∴方程组的解必定知足个中的任一个方程,但方程2x-y=8的解有很多组,如x=10,y=12,不知足方程组25 28x yx y+=⎧⎨-=⎩.24.解:消失,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组应用专练
1、有两种药水,一种浓度为60%,另一种浓度为90%,现要配制浓度为70%的药水300克,问各种各需多少克?
2、甲乙两盒中各有一些小球,如果从甲盒中拿出10个放入乙盒,则乙盒球就是甲盒球数的6倍,若从乙盒中拿出10个放入甲盒,乙盒球数就是甲盒球数的3倍多10个,求甲乙两盒原来的球数各是多少?
3、一个两位数字,个位数字比十位数字大5,如果把这两数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.
4、甲、乙两人在东西方向的公路上行走,甲在乙的西边300米,若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟后相遇,问甲、乙两人的速度是多少?
5、某铁桥长1 000米,一列火车从桥上通过,从车头到桥到车尾离桥共用一分钟时间,整列火车完全在桥上的时间为40秒钟,求火车车身的总长和速度.
6、某酒店客房部有三人间、双人间客房,收费数据如下表.
普通(元/间/天)豪华(元/间/天)三人间150 300
双人间140 400 为吸引游客,实行团体入住五折
..优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?
7、甲乙两人以不变的速度在环形路上跑步,相向而行每隔两分钟相遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑的快,求甲乙每分钟跑多少圈?
8、某学校现有校舍面积20 000m2,计划拆除部分旧校舍,改建新教学楼,使校舍面积增加30%,若建造新教学楼的面积为拆除的旧校舍面积的4倍,那么应该拆除多少旧校舍,新教学楼面积是多少?(单位为m2)
9、某农场有300名职工,耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植各作物每公顷所需劳动力人数及投入的资金如下表:已知该农场计划投入资金67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?
10、一列快车长168米,一列慢车长184米,如果两车相同而行,从相遇到离开需4秒;如果同向而行,从快车追及慢车到离开需16秒,求两车的速度。
11、某船的载重为260吨,容积为1000 m3.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m3,乙种货物每吨体积为2m3,若要充分利用这艘船的载重与容积,甲、乙两种货物应各装多少吨?(设装运货物时无任何空隙)
12、某乐园的门票价格规定如下表所列.某校初一(1)、(2)两个班共104人去游长风乐园其中(1)班人数较少,不到50人,(2)班人数较多,有50多人.经估算,如果两班都以班为单位分别购票,则一共应付1240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱.问两班各有多少名学生?
13、甲、乙两人各有书若干本,如果甲从乙处拿来10本,那么甲拥有的书是乙所剩书的5倍;如果乙从甲处拿来10本,那么乙所有的书与甲所剩的书相等,问甲、乙两人原来各有几本书?
14、张老师去文具店给美术小组的30名学生买铅笔和橡皮,到了商店后发现,若给全组每人都买2支铅笔和1块橡皮,则要按零售价计算,共需付款30元;若给全组每人都买3支铅笔和2块橡皮,则可按批发价,共需付款40.5元.已知铅笔每支批发价比零售价低0.05元,橡皮每块批发价比零售价低0.1元,求这家文具店每支铅笔和每块橡皮的批发价是多少?
15、某旅社在黄金旅游期间为一旅游团体安排住宿,若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住了4人,且空两间宿舍,求该团体有多少人和宿舍间数.
16、有甲、乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?。