历年高考专题汇编9.专题九 热学

合集下载

历年(2019-2023)高考物理真题专项(热学)练习(附答案)

历年(2019-2023)高考物理真题专项(热学)练习(附答案)

历年(2019-2023)高考物理真题专项(热学)练习 一、单选题1.(2023ꞏ北京ꞏ统考高考真题)夜间由于气温降低,汽车轮胎内的气体压强变低。

与白天相比,夜间轮胎内的气体()A.分子的平均动能更小B.单位体积内分子的个数更少C.所有分子的运动速率都更小D.分子对轮胎内壁单位面积的平均作用力更大2.(2023ꞏ海南ꞏ统考高考真题)下列关于分子力和分子势能的说法正确的是()A.分子间距离大于r0时,分子间表现为斥力B.分子从无限远靠近到距离r0处过程中分子势能变大C.分子势能在r0处最小D.分子间距离小于r0且减小时,分子势能在减小3.(2023ꞏ辽宁ꞏ统考高考真题)“空气充电宝”是一种通过压缩空气实现储能的装置,可在用电低谷时储存能量、用电高峰时释放能量。

“空气充电宝”某个工作过程中,一定质量理想气体的p-T图像如图所示。

该过程对应的p-V图像可能是( )A.B.C.D.4.(2023ꞏ江苏ꞏ统考高考真题)如图所示,密闭容器内一定质量的理想气体由状态A变化到状态B。

该过程中()A.气体分子的数密度增大B.气体分子的平均动能增大C.单位时间内气体分子对单位面积器壁的作用力减小D.单位时间内与单位面积器壁碰撞的气体分子数减小5.(2023ꞏ天津ꞏ统考高考真题)如图是爬山所带氧气瓶,氧气瓶里的气体容积质量不变,爬高过程中,温度减小,则气体( )A.对外做功B.内能减小C.吸收热量D.压强不变6.(2022ꞏ重庆ꞏ高考真题)2022年5月15日,我国自主研发的“极目一号”Ⅲ型浮空艇创造了海拔9032米的大气科学观测世界纪录。

若在浮空艇某段上升过程中,艇内气体温度降低,体积和质量视为不变,则艇内气体( )(视为理想气体)A.吸收热量B.压强增大C.内能减小D.对外做负功7.(2022ꞏ北京ꞏ高考真题)2021年5月,中国科学院全超导托卡马克核聚变实验装置(EAST)取得新突破,成功实现了可重复的1.2亿摄氏度101秒和1.6亿摄氏度20秒等离子体运行,创造托卡马克实验装置运行新的世界纪录,向核聚变能源应用迈出重要一步。

新高考化学复习专题九化学反应的热效应拓展练习含答案

新高考化学复习专题九化学反应的热效应拓展练习含答案

专题九化学反应的热效应1.下列说法正确的是( )O2(g) Na2O(s) ΔH1,2Na(s)+O2(g) Na2O2(s) ΔH2,则ΔH1>ΔH2A.2Na(s)+12B.H2的摩尔燃烧焓为-285.8 kJ·mol-1,则2H2(g)+O2(g) 2H2O(g) ΔH=-571.6 kJ·mol-1C.3O2(g) 2O3(g) ΔH>0,则完全破坏等质量的O2和O3中的化学键,O3需要的能量大D.N2(g)+3H2(g) 2NH3(g) ΔH=-92.4 kJ·mol-1,则28 g N2与足量H2反应放热92.4 kJ 答案 A2.已知:1 g C(s)燃烧生成一氧化碳放出9.2 kJ的热量;氧化亚铜与氧气反应的能量变化如图所示。

下列叙述正确的是( )A.碳[C(s)]的摩尔燃烧焓ΔH为-110.4 kJ·mol-1B.1 mol CuO分解生成Cu2O放出73 kJ的热量C.反应2Cu2O(s)+O2(g) 4CuO(s)的活化能为292 kJ·mol-1D.足量炭粉与CuO反应生成Cu2O的热化学方程式为C(s)+2CuO(s) Cu2O(s)+CO(g) ΔH=+35.6 kJ·mol-1答案 D3.如图1、图2分别表示1 mol H2O和1 mol CO2分解时的能量变化情况(单位:kJ)。

下列说法错误的是( )图1 1 mol H2O(g)分解时的能量变化图2 1 mol CO2(g)分解时的能量变化A.CO的燃烧热ΔH=-285 kJ·mol-1B.C(s)+H2O(g) CO(g)+H2(g)ΔH=+134 kJ·mol-1C.的键能为494 kJ·mol-1D.无法求得CO(g)+H2O(g) CO2(g)+H2(g)的反应热答案 D4.根据HX的水溶液能量循环图,下列说法不正确的是( )A.由于氢键的存在,ΔH1(HF)>ΔH1(HCl)B.已知HF气体溶于水放热,则ΔH1(HF)<0C.相同条件下,ΔH2(HCl)>ΔH2(HBr)D.ΔH=ΔH1+ΔH2+ΔH3+ΔH4+ΔH5+ΔH6答案 B5.某溴丁烷与乙醇反应的能量转化如图(“”表示过渡态)。

热学专题(2024高考真题及解析)

热学专题(2024高考真题及解析)

热学专题1.[2024·安徽卷] 某人驾驶汽车,从北京到哈尔滨.在哈尔滨发现汽车的某个轮胎内气体的压强有所下降(假设轮胎内气体的体积不变,且没有漏气,可视为理想气体),于是在哈尔滨给该轮胎充入压强与大气压相同的空气,使其内部气体的压强恢复到出发时的压强(假设充气过程中,轮胎内气体的温度与环境温度相同,且保持不变).已知该轮胎内气体的体积V0=30 L,从北京出发时,该轮胎内气体的温度t1=-3 ℃,压强p1=2.7×105 Pa.哈尔滨的环境温度t2=-23 ℃,大气压强p0取1.0×105 Pa.求:(1)在哈尔滨时,充气前该轮胎内气体压强的大小;(2)充进该轮胎的空气体积.1.(1)2.5×105 Pa(2)6 L[解析] (1)在哈尔滨时,设充气前该轮胎内气体压强的大小为p2.由查理定律可得p1T1=p2 T2其中p1=2.7×105 Pa,T1=(273-3) K=270 K,T2=(273-23) K=250 K解得p2=2.5×105 Pa(2)设充进该轮胎的空气体积为V.以充进的空气和该轮胎内原有的气体整体为研究对象,由玻意耳定律可得p2V0+p0V=p1V0解得V=6 L2.[2024·北京卷] 一个气泡从恒温水槽的底部缓慢上浮,将气泡内的气体视为理想气体,且气体分子个数不变,外界大气压不变.在上浮过程中气泡内气体 ()A.内能变大B.压强变大C.体积不变D.从水中吸热2.D[解析] 上浮过程气泡内气体的温度不变,内能不变,故A错误;气泡内气体压强p=p0+ρ水gh,故上浮过程气泡内气体的压强减小,故B错误;由玻意耳定律pV=C知,气体的体积变大,故C错误;上浮过程气体体积变大,气体对外做功,由热力学第一定律ΔU=Q+W 知,气体从水中吸热,故D正确.3.[2024·甘肃卷] 如图所示,刚性容器内壁光滑、盛有一定量的气体,被隔板分成A 、B 两部分,隔板与容器右侧用一根轻质弹簧相连(忽略隔板厚度和弹簧体积).容器横截面积为S 、长为2l.开始时系统处于平衡态,A 、B 体积均为Sl ,压强均为p 0,弹簧为原长.现将B 中气体抽出一半,B 的体积变为原来的34.整个过程系统温度保持不变,气体视为理想气体.求: (1)抽气之后A 、B 的压强p A 、p B . (2)弹簧的劲度系数k.3.(1)45p 0 23p 0 (2)8p 0S15l[解析] (1)抽气前两部分的体积为V =Sl ,对A 分析,抽气后V A =2V -34V =54Sl 根据玻意耳定律得p 0V =p A ·54V 解得p A =45p 0对B 分析,若压强不变的情况下抽去一半的气体,则体积变为原来的一半,即V B =12V ,则根据玻意耳定律得p 0·12V =p B ·34V 解得p B =23p 0(2)由题意可知,弹簧的压缩量为l4,对活塞受力分析有p A S =p B S +F 根据胡克定律得F =k l4联立得k =8p 0S15l4.[2024·广东卷] 差压阀可控制气体进行单向流动,广泛应用于减震系统.如图所示,A、B 两个导热良好的汽缸通过差压阀连接,A内轻质活塞的上方与大气连通,B的体积不变.当A内气体压强减去B内气体压强大于Δp时差压阀打开,A内气体缓慢进入B中;当该差值小于或等于Δp时差压阀关闭.当环境温度T1=300 K时,A内气体体积V A1=4.0×10-2 m3;B 内气体压强p B1等于大气压强p0.已知活塞的横截面积S=0.10 m2,Δp=0.11p0,p0=1.0×105 Pa.重力加速度大小g取10 m/s2.A、B内的气体可视为理想气体,忽略活塞与汽缸间的摩擦,差压阀与连接管道内的气体体积不计.当环境温度降低到T2=270 K时:(1)求B内气体压强p B2;(2)求A内气体体积V A2;(3)在活塞上缓慢倒入铁砂,若B内气体压强回到p0并保持不变,求已倒入铁砂的质量m.4.(1)9×104 Pa(2)3.6×10-2 m3(3)110 kg[解析] (1)当环境温度降低到T2=270 K时,B内气体压强降低.若此时差压阀没打开,设p B2'为差压阀未打开时B内气体的压强,B内气体体积不变,由查理定律得p0 T1=p B2' T2解得p B2'=9×104 Pa由于A、B内气体压强差p0-p B2'<Δp,故差压阀未打开,则p B2=p B2'即p B2=9×104 Pa(2)差压阀未打开时,A内气体的压强不变,由盖-吕萨克定律得V A1 T1=V A2 T2解得V A2=3.6×10-2 m3(3)倒入铁砂后,B内气体的温度和体积都不变,但压强增加,故可知A中气体通过差压阀进入B中,当B内气体压强为p0时,A内气体压强比B内气体压强高Δp,再根据A的活塞受力平衡可知(p0+Δp)S=p0S+mg解得m=110 kg5.[2024·广西卷] 如图甲,圆柱形管内封装一定质量的理想气体,水平固定放置,横截面积S =500 mm 2的活塞与一光滑轻杆相连,活塞与管壁之间无摩擦.静止时活塞位于圆管的b 处,此时封闭气体的长度l 0=200 mm .推动轻杆先使活塞从b 处缓慢移动到离圆柱形管最右侧距离为5 mm 的a 处,再使封闭气体缓慢膨胀,直至活塞回到b 处.设活塞从a 处向左移动的距离为x ,封闭气体对活塞的压力大小为F ,膨胀过程F -15+x曲线如图乙.大气压强p 0=1×105 Pa .(1)求活塞位于b 处时,封闭气体对活塞的压力大小; (2)推导活塞从a 处到b 处封闭气体经历了等温变化;(3)画出封闭气体等温变化的p -V 图像,并通过计算标出a 、b 处坐标值.5.(1)50 N (2)见解析 (3)如图所示[解析] (1)活塞位于b 处时,根据平衡条件可知此时气体压强等于大气压强p 0,故此时封闭气体对活塞的压力大小为 F =p 0S =1×105×500×10-6 N=50 N (2)根据题意可知F -15+x 图线为一条过原点的直线,设斜率为k ,可得F =k ·15+x 根据F =pS 可得气体压强为p =k(5+x )S故可知活塞从a 处到b 处对封闭气体由玻意耳定律得 pV =k(5+x )S·S ·(x +5)×10-3=k ·10-3故可知该过程中封闭气体的pV 值恒定不变,故可知a →b 过程封闭气体做等温变化.(3)分析可知全过程中气体做等温变化,开始在b 处时,有 p b V b =p 0Sl 0在b 处时气体体积为 V b =Sl 0=10×10-5 m 3 在a 处时气体体积为 V a =Sl a =0.25×10-5 m 3 根据玻意耳定律有 p a V a =p b V b =p 0Sl 0解得p a=40×105 Pa故封闭气体等温变化的p-V图像如图6.[2024·海南卷] 用铝制易拉罐制作温度计,一透明薄吸管里有一段油柱(长度不计)粗细均匀,吸管与罐密封性良好,罐内气体可视为理想气体,已知罐体积为330 cm3,薄吸管底面积为0.5 cm2,罐外吸管总长度为20 cm,当温度为27 ℃时,油柱离罐口10 cm,不考虑大气压强变化,下列说法正确的是()A.若在吸管上标注等差温度值,则刻度左密右疏B.该装置所测温度不高于31.5 ℃C.该装置所测温度不低于23.5 ℃D.其他条件不变,缓慢把吸管拉出来一点,则油柱离罐口距离增大6.B[解析] 设油柱离罐口的距离为x,由盖-吕萨克定律得V1T1=VT,其中V1=V0+Sl1=335cm3,T1=(273+27)K=300 K,V=V0+Sl=(330+0.5x)cm3,代入解得T=(3067x+1980067)K,根据T=(t+273) K可知t=(3067x+150967)℃,故若在吸管上标注等差温度值,则刻度均匀,故A错误;当x=20 cm时,该装置所测的温度最高,代入解得t max≈31.5 ℃,故该装置所测温度不高于31.5 ℃,当x=0时,该装置所测的温度最低,代入解得t min≈22.5 ℃,故该装置所测温度不低于22.5 ℃,故B正确,C错误;其他条件不变,缓慢把吸管拉出来一点,由盖-吕萨克定律可知,油柱离罐口距离不变,故D错误.7.(多选)[2024·海南卷] 一定质量的理想气体从状态a 开始经ab 、bc 、ca 三个过程回到原状态,已知ab 垂直于T 轴,bc 延长线过O 点,下列说法正确的是 ( )A .bc 过程外界对气体做功B .ca 过程气体压强不变C .ab 过程气体放出热量D .ca 过程气体内能减小7.AC [解析] 由理想气体状态方程pVT =C ,化简可得V =Cp ·T ,V -T 图线中,各点与原点连线的斜率的倒数表示气体的压强,则图线的斜率越大,压强越小,故p a <p b =p c ,bc 过程为等压变化,气体体积减小,外界对气体做功,故A 正确;由A 选项可知,ca 过程气体压强减小,故B 错误;ab 过程为等温变化,故气体内能不变,即ΔU =0,气体体积减小,外界对气体做功,故W >0,根据热力学第一定律ΔU =Q +W ,解得Q <0,故ab 过程气体放出热量,故C 正确;ca 过程,气体温度升高,内能增大,故D 错误.8.(多选)[2024·河北卷] 如图所示,水平放置的密闭绝热汽缸被导热活塞分成左右两部分,左侧封闭一定质量的理想气体,右侧为真空,活塞与汽缸右壁中央用一根轻质弹簧水平连接.汽缸内壁光滑且水平长度大于弹簧自然长度,弹簧的形变始终在弹性限度内且体积忽略不计.活塞初始时静止在汽缸正中间,后因活塞密封不严发生缓慢移动,活塞重新静止后 ( )A .弹簧恢复至自然长度B .活塞两侧气体质量相等C .与初始时相比,汽缸内气体的内能增加D .与初始时相比,活塞左侧单位体积内气体分子数减少8.ACD [解析] 初始状态活塞受到左侧气体向右的压力和弹簧向左的弹力而处于平衡状态,弹簧处于压缩状态.因活塞密封不严,可知左侧气体向右侧真空散逸,左侧气体压强变小,右侧出现气体,对活塞有向左的压力,由于最终左、右两侧气体相通,故两侧气体压强相等,因此弹簧恢复原长,A 正确;由于活塞向左移动,最终两侧气体压强相等,左侧气体体积小于右侧气体体积,所以左侧气体质量小于右侧气体质量,B 错误;密闭的汽缸绝热,与外界没有能量交换,与初始时相比,弹簧弹性势能减少了,所以气缸内气体的内能增加,C 正确;初始时气体都在活塞左侧,最终气体充满整个汽缸,所以初始时活塞左侧单位体积内气体分子数应该是最终的两倍,D 正确.9.[2024·湖北卷] 如图所示,在竖直放置、开口向上的圆柱形容器内用质量为m 的活塞密封一部分理想气体,活塞横截面积为S ,能无摩擦地滑动.初始时容器内气体的温度为T 0,气柱的高度为h.当容器内气体从外界吸收一定热量后,活塞缓慢上升15h 再次平衡.已知容器内气体内能变化量ΔU 与温度变化量ΔT 的关系式为ΔU =C ΔT ,C 为已知常数,大气压强恒为p 0,重力加速度大小为g ,所有温度都为热力学温度.求: (1)再次平衡时容器内气体的温度. (2)此过程中容器内气体吸收的热量.9.(1)65T 0 (2)15h (p 0S +mg )+15CT 0[解析] (1)容器内气体进行等压变化,则由盖-吕萨克定律得V 0T 0=V1T 1即ℎS T 0=(ℎ+15ℎ)S T 1解得T 1=65T 0(2)此过程中容器内气体内能增加量ΔU =C (T 1-T 0) 容器内气体压强p =p 0+mgS气体体积增大,则气体对外做功,W =-pS ·15h 根据热力学第一定律得ΔU =W +Q 联立解得Q =15h (p 0S +mg )+15CT 010.[2024·湖南卷] 一个充有空气的薄壁气球,气球内气体压强为p 、体积为V.气球内空气可视为理想气体.(1)若将气球内气体等温膨胀至大气压强p 0,求此时气体的体积V 0(用p 0、p 和V 表示); (2)小赞同学想测量该气球内气体体积V 的大小,但身边仅有一个电子天平.将气球置于电子天平上,示数为m =8.66×10-3 kg(此时须考虑空气浮力对该示数的影响).小赞同学查阅资料发现,此时气球内气体压强p 和体积V 还满足:(p -p 0)(V -V B 0)=C ,其中p 0=1.0×105 Pa 为大气压强,V B 0=0.5×10-3 m 3为气球无张力时的最大容积,C =18 J 为常数.已知该气球自身质量为m 0=8.40×10-3 kg,外界空气密度为ρ0=1.3 kg/m 3,g 取10 m/s 2.求气球内气体体积V 的大小.10.(1)pVp0(2)5×10-3 m3[解析] (1)理想气体做等温变化,根据玻意耳定律有pV=p0V0解得V0=pVp0(2)设气球内气体质量为m气,则m气=ρ0V0对气球进行受力分析如图所示根据平衡条件有mg+ρ0gV=m气g+m0g结合题中p和V满足的关系(p-p0)(V-V B0)=C联立解得V=5×10-3 m311.[2024·江苏卷] 某科研实验站有一个密闭容器,容器内有温度为300 K、压强为105 Pa 的气体,容器内有一个面积为0.06 m2的观测台.现将这个容器移动到月球,容器内的温度变成240 K.整个过程可认为气体的体积不变,月球表面为真空状态.求:(1)气体现在的压强;(2)观测台对气体的压力.11.(1)8×104 Pa(2)4.8×103 N[解析] (1)由题知,整个过程可认为气体的体积不变,则根据查理定律得p1T1=p2 T2解得p2=8×104 Pa(2)根据压强的定义,观测台对气体的压力F=p2S=4.8×103 N12.[2024·江西卷] 可逆斯特林热机的工作循环如图所示.一定质量的理想气体经ABCDA 完成循环过程,AB和CD均为等温过程,BC和DA均为等容过程.已知T1=1200 K,T2=300 K,气体在状态A的压强p A=8.0×105 Pa,体积V1=1.0 m3,气体在状态C的压强p C=1.0×105 Pa.求:(1)气体在状态D的压强p D;(2)气体在状态B的体积V2.12.(1)2.0×105 Pa(2)2.0 m3[解析] (1)气体从状态D到状态A的过程发生等容变化,根据查理定律有p DT2=p A T1解得p D=2.0×105 Pa(2)气体从状态C到状态D的过程发生等温变化,根据玻意耳定律有p C V2=p D V1解得V2=2.0 m3气体从状态B到状态C发生等容变化,因此气体在状态B的体积也为V2=2.0 m313.[2024·山东卷] 一定质量理想气体经历如图所示的循环过程,a→b过程是等压过程,b→c过程中气体与外界无热量交换,c→a过程是等温过程.下列说法正确的是 ()A.a→b过程,气体从外界吸收的热量全部用于对外做功B.b→c过程,气体对外做功,内能增加C.a→b→c过程,气体从外界吸收的热量全部用于对外做功D.a→b过程,气体从外界吸收的热量等于c→a过程放出的热量13.C[解析] a→b过程是等压过程且体积增大,则W ab<0,由盖-吕萨克定律可知T b>T a,则ΔU ab>0,根据热力学第一定律ΔU=Q+W可知,气体从外界吸收的热量一部分用于对外做功,另一部分用于增加内能,A错误;b→c过程中气体与外界无热量交换,即Q bc=0,由于气体体积增大,则W bc<0,由热力学第一定律ΔU=Q+W可知,ΔU bc<0,即气体内能减少,B错误;c→a过程是等温过程,即T c=T a,则ΔU ac=0,根据热力学第一定律可知a→b→c过程,气体从外界吸收的热量全部用于对外做功,C正确;由A项分析可知Q ab=ΔU ab-W ab,由B项分析可知W bc=ΔU bc,由C项分析可知0=W ca+Q ca,又ΔU ab+ΔU bc=0,联立解得Q ab-(-Q ca)=(-W ab-W bc)-W ca,根据p-V图像与坐标轴所围图形的面积表示外界与气体之间做的功,结合题图可知a→b→c过程气体对外界做的功大于c→a过程外界对气体做的功,即-W ab-W bc>W ca,则Q ab-(-Q ca)>0,即a→b过程气体从外界吸收的热量Q ab大于c→a过程放出的热量-Q ca,D错误.14.[2024·山东卷] 图甲为战国时期青铜汲酒器,根据其原理制作了由中空圆柱形长柄和储液罐组成的汲液器,如图乙所示.长柄顶部封闭,横截面积S1=1.0 cm2,长度H=100.0 cm,侧壁有一小孔A.储液罐的横截面积S2=90.0 cm2、高度h=20.0 cm,罐底有一小孔B.汲液时,将汲液器竖直浸入液体,液体从孔B进入,空气由孔A排出;当内外液面相平时,长柄浸入液面部分的长度为x;堵住孔A,缓慢地将汲液器竖直提出液面,储液罐内刚好储满液体.已知液体密度ρ=1.0×103 kg/m3,重力加速度大小g取10 m/s2,大气压p0=1.0×105 Pa.整个过程温度保持不变,空气可视为理想气体,忽略器壁厚度.(1)求x;(2)松开孔A,从外界进入压强为p0、体积为V的空气,使满储液罐中液体缓缓流出,堵住孔A,稳定后罐中恰好剩余一半的液体,求V.14.(1)2 cm(2)8.92×10-4 m3[解析] (1)在缓慢地将汲液器竖直提出液面的过程中,封闭气体发生等温变化,根据玻意耳定律有p1(H-x)S1=p2HS1根据题意可知p1=p0,p2+ρgh=p0联立解得x=2 cm(2)对新进入的气体和原有的气体整体分析,由玻意耳定律有S2)p0V+p2HS1=p3(HS1+ℎ2=p0又p3+ρg·ℎ2联立解得V=8.92×10-4 m315.(多选)[2024·新课标卷] 如图所示,一定量理想气体的循环由下面4个过程组成:1→2为绝热过程(过程中气体不与外界交换热量),2→3为等压过程,3→4为绝热过程,4→1为等容过程.上述四个过程是四冲程柴油机工作循环的主要过程.下列说法正确的是()A.1→2过程中,气体内能增加B.2→3过程中,气体向外放热C.3→4过程中,气体内能不变D.4→1过程中,气体向外放热15.AD[解析] 1→2为绝热过程,则Q=0,由于气体体积减小,则外界对气体做功,即W>0,根据热力学第一定律ΔU=Q+W可知ΔU>0,即气体内能增加,故A正确;2→3为等压过程,气体体积增大,根据盖-吕萨克定律可知,气体温度升高,则气体内能增大,即ΔU>0,由于气体体积增大,则气体对外界做功,即W<0,根据热力学第一定律ΔU=Q+W可知Q>0,即气体从外界吸热,故B错误;3→4为绝热过程,则Q=0,由于气体体积增大,则气体对外界做功,即W<0,根据热力学第一定律ΔU=Q+W可知ΔU<0,即气体内能减小,故C错误;4→1为等容过程,压强减小,根据查理定律可知,气体温度降低,则气体内能减小,即ΔU<0,由于体积不变,则W=0,根据热力学第一定律ΔU=Q+W可知Q<0,即气体向外放热,故D正确.16.[2024·浙江6月选考] 如图所示,测定一个形状不规则小块固体体积,将此小块固体放入已知容积为V0的导热效果良好的容器中,开口处竖直插入两端开口的薄玻璃管,其横截面积为S,接口用蜡密封.容器内充入一定质量的理想气体,并用质量为m的活塞封闭,活塞能无摩擦滑动,稳定后测出气柱长度为l1.将此容器放入热水中,活塞缓慢竖直向上移动,再次稳定后气柱长度为l2、温度为T2.已知S=4.0×10-4 m2,m=0.1 kg,l1=0.2 m,l2=0.3 m,T2=350 K,V0=2.0×10-4 m3.大气压强p0=1.0×105 Pa,环境温度T1=300 K,g取10 m/s2.(1)在此过程中器壁单位面积所受气体分子的平均作用力(选填“变大”“变小”或“不变”),气体分子的数密度(选填“变大”“变小”或“不变”);(2)求此不规则小块固体的体积V;(3)若此过程中气体内能增加10.3 J,求吸收的热量Q.16.(1)不变 变小 (2)4×10-5 m 3 (3)14.4 J[解析] (1)温度升高时,活塞缓慢上升,受力不变,故封闭气体压强不变,由p =F S 知器壁单位面积所受气体分子的平均作用力不变;由于气体体积变大,所以气体分子的数密度变小.(2)气体发生等压变化,有V 0-V+l 1S T 1=V 0-V+l 2S T 2 解得V =4×10-5 m 3(3)此过程中,外界对气体做功为W =-p 1S (l 2-l 1)对活塞受力分析,有p 1S =mg +p 0S由热力学第一定律得ΔU =W +Q其中ΔU =10.3 J联立解得Q =14.4 J。

2019高考物理二轮复习专题九选修3_3热学学案(含答案解析)

2019高考物理二轮复习专题九选修3_3热学学案(含答案解析)

专题九 选修3-3 热学一、主干知法必记1.分子动理论与统计观点 (1)物体是由大量分子组成的 ①分子模型:a.球体,直径d=√6V 0π3;b.立方体,边长d=√V 03。

②一般分子大小的数量级为10-10m,分子质量的数量级为10-26kg,1 mol 任何物质含有的分子数为6.02×1023个。

(2)分子永不停息地做无规则运动扩散现象和布朗运动是分子无规则运动的证明。

温度越高,扩散越快;颗粒越小,温度越高,布朗运动越剧烈。

(3)分子间存在着相互作用力①分子间同时存在引力和斥力,实际表现的分子力是它们的合力。

②引力和斥力都随着距离的增大而减小,但斥力比引力变化得快。

2.气体分子运动速率的统计分布:“中间多,两头少”。

3.温度 内能(1)温度:分子平均动能的标志。

(2)内能:物体所有分子动能和分子势能的总和。

物体的内能与温度、体积及物质的量有关。

4.晶体和非晶体(1)晶体分为单晶体和多晶体。

晶体有确定的熔点。

晶体内原子排列是有规则的。

单晶体物理性质各向异性,多晶体的物理性质各向同性。

(2)非晶体无确定的熔点,外形不规则,原子排列不规则。

5.液体(1)表面张力:液体的表面张力使液面具有收缩的趋势。

(2)液晶:具有液体的流动性,具有单晶体的各向异性。

光学性质随所加电压的改变而改变。

6.气体实验定律 (1)气体实验定律①玻意耳定律(等温变化):pV=C 或p 1V 1=p 2V 2。

②查理定律(等容变化):V V =C 或V 1V 1=V2V 2。

③盖—吕萨克定律(等压变化):V V =C 或V 1V 1=V2V 2。

(2)理想气体状态方程:VVV=C 或V 1V 1V 1=V 2V 2V 2。

7.饱和汽、未饱和汽和饱和汽压 (1)饱和汽:与液体处于动态平衡的蒸汽。

(2)未饱和汽:没有达到饱和状态的蒸汽。

(3)饱和汽压:饱和汽所具有的压强。

特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。

9年高考物理试题分类汇编热学

9年高考物理试题分类汇编热学

高中物理学习材料金戈铁骑整理制作2009年高考物理试题分类汇编——热学(09年全国卷Ⅰ)14.下列说法正确的是A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量C. 气体分子热运动的平均动能减少,气体的压强一定减小D. 单位面积的气体分子数增加,气体的压强一定增大答案:A解析:本题考查气体部分的知识.根据压强的定义A正确,B错.气体分子热运动的平均动能减小,说明温度降低,但不能说明压强也一定减小,C错.单位体积的气体分子增加,但温度降低有可能气体的压强减小,D错。

(09年全国卷Ⅱ)16. 如图,水平放置的密封气缸内的气体被一竖直隔板分隔为左右两部分,隔板可在气缸内无摩擦滑动,右侧气体内有一电热丝。

气缸壁和隔板均绝热。

初始时隔板静止,左右两边气体温度相等。

现给电热丝提供一微弱电流,通电一段时间后切断电源。

当缸内气体再次达到平衡时,与初始状态相比A.右边气体温度升高,左边气体温度不变B.左右两边气体温度都升高C.左边气体压强增大D.右边气体内能的增加量等于电热丝放出的热量答案:BC解析:本题考查气体.当电热丝通电后,右的气体温度升高气体膨胀,将隔板向左推,对左边的气体做功,根据热力学第一定律,内能增加,气体的温度升高.根据气体定律左边的气体压强增大.BC 正确,右边气体内能的增加值为电热丝发出的热量减去对左边的气体所做的功,D 错。

(09年北京卷)13.做布朗运动实验,得到某个观测记录如图。

图中记录的是A .分子无规则运动的情况B .某个微粒做布朗运动的轨迹C .某个微粒做布朗运动的速度——时间图线D .按等时间间隔依次记录的某个运动微粒位置的连线 答案:D解析:布朗运动是悬浮在液体中的固体小颗粒的无规则运动,而非分子的运动,故A 项错误;既然无规则所以微粒没有固定的运动轨迹,故B 项错误,对于某个微粒而言在不同时刻的速度大小和方向均是不确定的,所以无法确定其在某一个时刻的速度,故也就无法描绘其速度-时间图线,故C 项错误;故只有D 项正确。

高考化学专题复习-专题九化学反应的热效应-综合篇-模拟练习题(附答案)

高考化学专题复习-专题九化学反应的热效应-综合篇-模拟练习题(附答案)

专题九化学反应的热效应综合篇综合反应热的计算方法与大小比较1.(2021浙江1月选考,20,2分)已知共价键的键能与热化学方程式信息如下表:共价键H—H H—O键能/436463(kJ·mol-1)热化学方程式2H2(g)+O2(g)2H2O(g)ΔH=-482kJ·mol-1则2O(g)O2(g)的ΔH为() A.428kJ·mol-1 B.-428kJ·mol-1 C.498kJ·mol-1 D.-498kJ·mol-1答案D2.(2022重庆南开中学第九次质检,11)Δf mθ为标准摩尔生成焓,其定义为标准状况下,由稳定相态的单质生成1mol该物质的焓变,而稳定相态单质的Δf mθ为零。

根据下表数据计算CH4(g)+2H2O(g)CO2(g)+4H2(g)的反应热(ΔH)为()物质CH4(g)H2O(g)CO2(g)Δf mθ/(kJ/mol)-74.8-241.8-393.5A.+76.9kJ/molB.+164.9kJ/molC.-76.9kJ/molD.-164.9kJ/mol答案B3.(2021重庆,10,3分)“天朗气清,惠风和畅。

”研究表明,利用Ir+可催化消除大气污染物N2O 和CO,简化中间反应进程后,相对能量变化如图所示。

已知CO(g)的燃烧热ΔH=-283 kJ·mol-1,则2N2O(g)2N2(g)+O2(g)的反应热ΔH(kJ·mol-1)为()A.-152B.-76C.+76D.+152答案A4.(2023届安徽江淮十校联考一,9)下列关于反应热的说法正确的是()A.a.A(g)+B(g)C(g)ΔH1;b.A(s)+B(g)C(g)ΔH2,若a、b反应均放热,则ΔH1<ΔH2B.已知2CH4(g)+4O2(g)2CO2(g)+4H2O(g)ΔH=-1780.6kJ·mol-1,则甲烷的燃烧热为890.3kJ·mol-1C.A4(s)4A(s)ΔH=-29.2kJ·mol-1,则常温下A4(s)比A(s)更稳定D.2X(g)+Y(g)3Z(g)ΔH>0,恒温恒压下达平衡后加入X,上述反应ΔH增大答案A5.(2019江苏单科,11,4分)氢气与氧气生成水的反应是氢能源应用的重要途径。

高中物理高考教案全集(经典实用)第9章《热学》

高中物理高考教案全集(经典实用)第9章《热学》

第九章热学考纲要求1、物质是由大量分子组成的,分子的热运动、布朗运动,分子间的相互作用力Ⅰ2、分子热运动的动能。

温度是物体分子热运动平均动能的标志,物体分子间的相互作用势能,物体的内能Ⅰ3、做功和热传递是改变物体内能的两种方式,热量,能量守恒定律Ⅰ4、热力学第一定律Ⅰ5、热力学第二定律Ⅰ6、永动机不可能Ⅰ7、绝对零度不可达到Ⅰ8、能原的开发和利用。

能源的利用与环境保护Ⅰ9、气体的状态和状态参量。

热力学温度Ⅰ10、气体的体积、温度、压强之间的关系Ⅰ11、气体分子运动的特点Ⅰ12、气体压强的微观意义Ⅰ知识网络:单元切块:按照考纲的要求,本章内容均为Ⅰ级要求,在复习过程中,不再细分为几个单元。

本章重点是分子动理论、热和功、物体的内能。

难点是对热力学第一定律、第二定律的理解。

教学目标:1、透彻理解分子运动论的三要素。

2、掌握阿伏加德罗常数NA=6.02×1023mo1-1的含义,并能应用NA将物质的宏观量和微观量联系起来。

3、熟练掌握热力学第一定律△E=Q+W及其应用。

这要求深刻理解分子动能、分子势能、物体内能等基本概念及影响它们的因素。

4、知道热力学第二定律,能够对一些简单的热现象作出判断5、知道气体的体积、温度、压强之间的关系,知道气体分子运动的特点和气体压强的微观意义教学重点、难点:从能量角度分析具体热学问题,熟练掌握热力学第一定律△E=Q+W及其应用。

这要求深刻理解分子动能、分子势能、物体内能等基本概念及影响它们的因素。

教学过程一、分子动理论热学是物理学的一个组成部分,它研究的是热现象的规律。

描述热现象的一个基本概念是温度。

凡是跟温度有关的现象都叫做热现象。

分子动理论是从物质微观结构的观点来研究热现象的理论。

它的基本内容是:物体是由大量分子组成的;分子永不停息地做无规则运动;分子间存在着相互作用力。

1.物体是由大量分子组成的这里的分子是指构成物质的单元,可以是原子、离子,也可以是分子。

最新-近十年高考物理热学试题汇编 精品

最新-近十年高考物理热学试题汇编 精品

热学高考专题一、单项选择题1、(92年)一定质量的理想气体,在压强不变的条件下,体积增大。

则( )(A)气体分子的平均动能增大(B)气体分子的平均动能减少(C)气体分子的平均动能不变(D)条件不够,无法判定气体分子平均动能的变化2、(93年)图中容器A、B各有一个可自由移动的轻活塞,活塞下面是水,上面是大气,大气压恒定。

A、B的底部由带有阀门K的管道相连。

整个装置与外界绝热。

原先,A中水面比B中的高。

打开阀门,使A 中的水逐渐向B中流,最后达到平衡。

在这个过程中,()(A)大气压力对水做功,水的内能增加(B)水克服大气压力做功,水的内能减少(C)大气压力对水不做功,水的内能不变(D)大气压力对水不做功,水的内能增加3、(94年)图19-2中A、B两点代表一定质量理想气体的两个不同的状态,状态A的温度为T A,状态B的温度为T B;由图可知( )。

(A)T B=2T A;(B)T B=4T A(C)T B=6T A;(D)T B=8T A。

4、(94年)金属制成的气缸中装有柴油与空气的混合物。

有可能使气缸中柴油达到燃点的过程是( )(A)迅速向里推活塞;(B)迅速向外拉活塞;(C)缓慢向里推活塞;(D)缓慢向外拉活塞。

5、(94年)如图19-4所示,一个横截面积为S的圆筒形容器竖直放置。

金属圆板A的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M。

不计圆板与容器内壁之间的摩擦。

若大气压强为p0,则被圆板封闭在容器中的气体的压强p等于( )(A)p0+(Mgcosθ)/s(B)(p0/cosθ)+[Mg/(scosθ)](C)p0+(Mgcos2θ)/s(D)p0+(Mg/s)6、(95年)已知铜的密度为8、9×118千克/米3,原子量为64、通过估算可知铜中每个铜原子所占的体积为( )A、7×10-6米3;B、1×10-29米3;C、1×10-26米3;D、8×10-24米3;7、(2000年)对于一定量的理想气体,下列四个论述中正确的是(A)当分子热运动变剧烈时,压强必变大(B)当分子热运动变剧烈时,压强可以不变(C)当分子间的平均距离变大时,压强必变小(D)当分子间的平均距离变大时,压强必变大8、(2000年)图中活塞将气缸分成甲、乙两气室,气缸、活塞(连同拉杆)是绝热的,且不漏气。

2024年新高考版化学专题九化学反应的热效应讲解部分

2024年新高考版化学专题九化学反应的热效应讲解部分

a)CH4(g)+CO2(g) 2CO(g)+2H2(g) ΔH1
b)CO2(g)+H2(g) CO(g)+H2O(g) ΔH2
c)CH4(g) C(s)+2H2(g) ΔH3
d)2CO(g) CO2(g)+C(s) ΔH4
e)CO(g)+H2(g) H2O(g)+C(s) ΔH5
(1)根据盖斯定律,反应a的ΔH1=
2H2(g)+O2(g) 2H2O(l) ΔH6
④CaCO3(s) CaO(s)+CO2(g) ΔH7
CaO(s)+H2O(l) A.① B.④
Ca(OH)2(s) ΔH8 C.②③④ D.①②③
解题导引 相同条件下,同种物质不同状态时的能量:固态<液态<气态。 解析 ①中两个反应都为放热反应,前者为完全燃烧,放出的热量更多,则 ΔH1<ΔH2。②中两个反应都为放热反应,固态S的能量低于气态S,则前者 放出的热量较少,ΔH3>ΔH4。③中两个反应都是放热反应,前者的化学计 量数较小,则前者放出的热量较少,ΔH5>ΔH6。④中前者为吸热反应,ΔH7> 0,后者为放热反应,ΔH8<0,则ΔH7>ΔH8。根据分析可知,ΔH前者大于后者 的是②③④。 答案 C
中生成,则CH3OH是反应的催化剂,C项错误;反应②③④中有极性键的断 裂和生成,反应②④中还有非极性键(H—H)的断裂,D项正确。 答案 C
方法总结 分析循环图题时,重点在于判断各物质的类型。一般来说,通 过一个箭头进入循环的是反应物;通过一个箭头离开循环的是生成物;先 参加反应,又在后续反应中生成的是催化剂;先生成后又消耗掉的是中间 产物。

高三物理二轮复习专题课件精编:专题九 第1课时 热 学

高三物理二轮复习专题课件精编:专题九 第1课时 热 学

热点题型例析
专题九 第1课时
(2)如图 2 所示,两端开口的 U 形玻璃管两边粗细 不同,粗管横截面积是细管的 2 倍.管中装入水
本 课 时 栏 目 开 关
银, 两管中水银面与管口距离均为 12 cm, 大气压 强为 p0=75 cmHg.现将粗管管口封闭,然后将细 管管口用一活塞封闭并将活塞缓慢推入管中,直至 温度不变) 图2 两管中水银面高度差达 6 cm 为止,求活塞下移的距离.(环境
知识方法聚焦
专题九 第1课时
3.气体实验定律
本 课 时 栏 目 开 关
(1)等温变化:pV=C或p1V1=p2V2; p p1 p2 (2)等容变化:T=C或 = ; T1 T2 V V1 V2 (3)等压变化: T=C或 = ; T1 T2 pV p1V1 p2V2 (4)理想气体状态方程: T =C或 = . T1 T2
答案 (1)C
(2)6.625 cm
热点题型例析
专题九 第1课时
题型 2 例2
本 课 时 栏 目 开 关
热力学基本规律与气体实验定律的组合 (2013· 新课标Ⅱ· 33)(1)(5 分)关于一定量的气体,下列说
法正确的是________. A .气体的体积指的是该气体的分子所能到达的空间的体 积,而不是该气体所有分子体积之和 B.只要能减弱气体分子热运动的剧烈程度,气体的温度就 可以降低 C.在完全失重的情况下,气体对容器壁的压强为零 D.气体从外界吸收热量,其内能一定增加 E.气体在等压膨胀过程中温度一定升高
知识方法聚焦
专题九 第1课时
两种微观模型
本 课 时 栏 目 开 关
4 d3 (1)球体模型(适用于固体、液体):一个分子的体积 V0= π( ) 3 2 1 3 = πd ,d 为分子的 直径 . 6 (2)立方体模型(适用于气体):一个分子占据的平均空间 V0= d3,d 为分子间的 距离 .

2025新高考版高考总复习化学考点清单模型清单9专题九化学反应的热效应含答案

2025新高考版高考总复习化学考点清单模型清单9专题九化学反应的热效应含答案

ΔH 1=+41kJ·mo
l-1
Ⅱ.
CO2(
+3H2(
+H2O(

CH3OH(
g)
g)
g)
g)
ΔH 2=-58kJ·mo
l-1
Ⅲ.
CO(
CH3OH(
g)+2H2(
g)
g) ΔH 3
已知:反应 Ⅲ 中相关化学键的数据如下表。
化学键
键能/kJ· mo
l
-1
H— H C—O C O H—O C— H
C.
g)+Cl2 (
g)
l-1
2HCl(
g) ΔH =-862kJ·mo
25 ℃ 、
101kPa下,
8gN2H4(
g)完全燃烧生成
N2(
l)时,放 出 133.
5kJ 热 量。写
g)和 H2O(
出表 示 N2H4 (
g)燃 烧 热 的 热 化 学 方 程 式:

N2H4(
g)+O2 (
g) N2 (

解;③Ba(
OH)
l的 反 应;
2 ·8H2O 与 NH4C
④C 和水蒸气、
C 和 CO2 的反应等。
放热反 应 :① 可 燃 物 的 燃 烧;② 中 和 反 应;

③ 大多数 化 合 反 应;④ 金 属 与 酸 的 置 换 反
应;⑤ 缓慢氧化等。
燃烧热与中和反应反应热的比较
3.
比较项目
吸热反应
放热反应


ΔH
E1 表示正反应活化能,
E2 表示逆反应活化能
ΔH = 生成物总能量 - 反应物总能量

秘籍09 热学综合应用-备战2023年高考物理抢分秘籍(全国通用)(解析版)

秘籍09 热学综合应用-备战2023年高考物理抢分秘籍(全国通用)(解析版)

秘籍09 热学综合应用概率预测☆☆☆☆☆题型预测选择题、计算题☆☆☆☆☆考向预测热学综合热学是经典物理学的重要组成部分,高考中理想气体的实验规律和热力学定律的应用考查分量比较重。

高考中,熟练掌握热学知识的基础上,注重在实际问题中的应用。

1.从考点频率看,分子动理论、固体、液体、气体的性质,热力学定律是高频考点、必考点,所以必须完全掌握。

2.从题型角度看,可以是选择题、计算题其中小问,分值10分左右,着实不少!一、分子动理论内能1.分子的大小(1)分子直径的数量级为10-10 m。

(2)分子质量的数量级一般为1026 kg。

2.阿伏加德罗常数的意义阿伏加德罗常数是一个重要常数。

它把摩尔质量、摩尔体积这些宏观物理量与分子质量、分子的大小等微观物理量联系起来,即阿伏加德罗常数N A是联系宏观世界与微观世界的桥梁。

3.宏观物理量、微观物理量与阿伏加德罗常数间的关系(1)已知固体和液体(气体不适用)的摩尔体积V mol和一个分子的体积V0,则N A=V molV0,也可估算分子体积的大小。

(2)已知物质的摩尔质量M和一个分子的质量m0,则N A=Mm0(所有物质,无论液体、固体还是气体均适用);也可估算分子的质量。

(3)已知物体的体积V和摩尔体积V mol,则物体含有的分子数n=VV mol N A=mρV molN A(无论固体、液体还是气体均适用)。

其中ρ是物体的密度,m是物体的质量。

(4)已知物体的质量m和摩尔质量M,则物体含有的分子数n=mM N A(无论液体、固体还是气体均适用)。

(5)分子体积V0=V molN A=MρN A(一般适用于固体和液体),如果把分子简化成球体,可进一步求出分子的直径d=36Vπ=36MρN Aπ。

(6)估算气体分子间的距离气体分子间的间隙不能忽略,设想气体分子均匀分布,且每个气体分子平均占有的空间为一个小立方体,气体分子间的距离就等于小立方体的边长。

每个气体分子平均占有的空间体积V0′=V molN A=MρN A,分子间的距离d=3V0′。

高考专题热学综合

高考专题热学综合

高考专题:热学综合【考纲要求】1.了解分子运动论的基本内容,掌握温度的微观解释。

2.了解改变物体内能的两种方式,掌握能量转化和守恒定律内容及在一定条件下的具体表达形式。

3.熟练掌握描述气体状态的状态参量,了解气体三大实验定律和理想气体状态方程。

4.了解p-V 、p-T 、V-T 图像物理意义并能灵活应用。

知识结构热点导析1.微观量的估算微观量指因物体很小而不易直接测量的量,如分子质量、分子体积(或占有空间)、分子平均间距等。

与微观量对应的量分别是摩尔质量、摩尔体积等,而两类量之间联系的桥梁为阿伏加德罗常数,如:v=0N V mol ,m 分=0N V mol 等。

2.易错的几个概念温度和内能只有宏观物体(大量分子组成整体)才具有,对个别分子而言,温度和内能无意义。

吸热和物体温度升高二者无必然联系,改变物体温度热传递和做功两种形式均能达到目的。

求解热力学问题只通过分析气体的初末状态而忽视状态变化的实际过程是不妥的。

典型例析例1 设某人的肺活动量为400mL ,试计算在此人一次吸气过程中,有多少分子是他在一年前的一次呼气过程中呼出的?解析 大气压是由大气重量产生的,地球上大气层的总质量: m=g G =P 0g R 24π=105×4π×(6.4×106)2×101=5.14×1018kg 标准状态下,大气压占据的总体积: V=029.0104.221014.523180⨯⨯⨯=μmV =4×1024ml 人呼出的一口气经一年时间在大气层中占据的比率为n=vv 1=1×10-22 一年后吸一口气中有n ′=4.221002.64.01012322⨯⨯⨯⨯-=1 说明 初看本题,似乎根本无从下手,但仔细揣摩题意,可知一年时间内可认为原来呼出的那口气已充分混合于大气层中,算出这口气在整个大气层中所占的比例,即可求出问题的结果,解本题的关键是要合理地模型,将实际问题理想化。

高考物理二轮复习专题九热学选修

高考物理二轮复习专题九热学选修

专题九热学(选修3-3模块)(建议用时:40分钟满分:90分)1.(2020·河南洛阳一模)(1)(5分)下列说法中正确的是(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分).A.能量守恒定律是普遍规律,能量耗散不违反能量守恒定律B.扩散现象可以在液体、气体中进行,不能在固体中发生C.有规则外形的物体是晶体,没有确定的几何外形的物体是非晶体D.由于液体表面分子间距离大于液体内部分子间的距离,所以存在表面张力E.一切自发过程总是沿着分子热运动的无序性增大的方向进行(2)(10分)某次测量中在地面释放一体积为8 L的氢气球,发现当气球升高到1 600 m时破裂.实验表明氢气球内外压强近似相等,当氢气球体积膨胀到8.4 L时即破裂.已知地面附近大气的温度为27 ℃,常温下当地大气压随高度的变化如图所示.求高度为1 600 m处大气的摄氏温度.解析:(1)能量守恒定律是普遍规律,能量耗散是能量的形式发生了转化,能量的利用品质下降,但总能量仍守恒,所以不违反能量守恒定律,故A正确;扩散现象可以在液体、气体中进行,也能在固体中发生,故B错误;有规则外形的物体是单晶体,没有确定的几何外形的物体是非晶体和多晶体,故C错误;由于液体表面分子间距离大于液体内部分子间的距离,分子间作用力表现为引力,所以存在表面张力,故D正确;由热力学第二定律的微观解释可知,E正确.(2)由题图可知,在地面附近球内压强p1=76 cmHg,1 600 m处球内气体压强p2=70 cmHg由理想气体状态方程得,=,T2=·T1=×300 K=290 K,t2=(290-273)℃=17 ℃.答案:(1)ADE (2)17 ℃2.(2020·山东潍坊一模)(1)(5分)下列说法正确的是(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分).A.空气的绝对湿度大,相对湿度一定大B.同一温度下,氮气分子的平均动能一定大于氧气分子的平均动能C.荷叶上的小水滴呈球形,这是表面张力使液面收缩的结果D.有一分子a从无穷远处靠近固定不动的分子b,当a,b间分子力为零时,它们具有的分子势能一定最小E.一定质量的理想气体等温膨胀,一定吸收热量(2)(10分)如图所示,玻璃管粗细均匀,两封闭端装有理想气体,上端气柱长30 cm、下端气柱长27 cm,中间水银柱长10 cm.在竖直管中间接一水平玻璃管,右端开口与大气相通,管的直径与竖直部分相同,用光滑活塞封闭5 cm长水银柱.现用外力缓慢推活塞恰好将水平管中水银全部推入竖直管中,此时上端气柱较原来缩短2 cm,求外界大气压强为多少.解析:(1)对于不同的压强和温度,水的饱和汽压不同,故绝对湿度大时相对湿度不一定大,故A错误;温度是分子平均动能的标志,同一温度下,氮气分子的平均动能一定等于氧气分子的平均动能,故B错误;荷叶上的小水滴呈球形,这是表面张力使液面收缩的结果,故C正确;分子a从无穷远处靠近固定不动的分子b,分子间距大于r0时分子力表现为引力,没有达到平衡位置过程中,分子力做正功,则分子势能减小;分子间距小于r0时,分子力表现为斥力,距离再减小的过程中分子力做负功,分子势能增大.所以当a,b间等于r0时,分子力为零,它们具有的分子势能最小,故D正确;一定质量的理想气体等温膨胀,气体对外做功,而内能不变,根据热力学第一定律,气体一定从外界吸热,故E正确.(2)上端封闭气体的压强p1=p0-p h=(p0-5)cmHg,下端封闭气体的压强p2=p0+p h=(p0+5)cmHg,气体发生等温变化,由玻意耳定律得上部分气体:p1L1S=p1′L1′S,下部分气体:p2L2S=p2′L2′S,其中:p2′=p1′+3×5 cmHg,L1′=L1-2 cm,L2′=L2-3 cm,解得p0=75 cmHg.答案:(1)CDE (2)75 cmHg3.(2020·新疆乌鲁木齐二模)(1)(5分)一定质量的理想气体由状态A变化到状态B,压强随体积变化的关系如图所示,这个过程(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分).A.气体的温度一直降低B.气体的密度一直变小C.气体的内能一直变大D.气体一直对外界做功E.气体一直向外界散热(2)(10分)如图所示,一可移动的绝热活塞M将一截面积为400 cm2的汽缸分为A,B两个汽缸,A,B两个汽缸装有体积均为12 L、压强均为1 atm、温度均为27 ℃的理想气体.现给左面的活塞N施加一推力,使其缓慢向右移动,同时给B气体加热,此过程中A汽缸的气体温度保持不变,活塞M保持在原位置不动.已知1 atm=105 Pa.不计活塞与汽缸壁间的摩擦.当推力F=2×103 N时,求:①活塞N向右移动的距离;②B汽缸中的气体升温到多少摄氏度.解析:(1)气体从状态A到状态B,发生等压变化,根据盖—吕萨克定律知,体积与热力学温度成正比,体积增加,气体的温度一直升高,故A错误;根据密度ρ=,质量不变,体积变大,密度变小,故B正确;理想气体的内能只与温度有关,A到B温度升高,内能变大,故C正确;因为气体体积变大,故气体一直对外界做功,故D 正确;根据热力学第一定律,ΔU=W+Q,内能增加ΔU>0,气体一直对外做功W<0,所以Q>0,气体一直从外界吸热,故E错误.(2)①对A汽缸中的气体进行状态分析,有p A=p0=105 Pap A′=p A+=1.5×105 Pa,V A=12 L=1.2×10-2 m3,A汽缸中的气体为等温变化,根据玻意耳定律,有p A V A=p A′V A′解得V A′=8×10-3 m3,活塞N向右移动的距离为x=-,解得x=10 cm.②对B汽缸中的气体进行状态分析有p B′=p A′=1.5×105 Pa,p B=p A=p0=105 PaT B=300 K,B汽缸中的气体为等容变化,有=,解得T B′=450 K,即t B′=177 ℃.答案:(1)BCD (2)①10 cm ②177 ℃4.(2020·河南开封一模)(1)(5分)下列说法中正确的是(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分).A.分子运动的平均速度可能为零,瞬时速度不可能为零B.液体与大气相接触时,表面层内分子所受其他分子的作用表现为相互吸引C.空气的相对湿度用空气中所含水蒸气的压强表示D.有些非晶体在一定条件下可以转化为晶体E.随着分子间距增大,分子间引力和斥力均减小,分子势能不一定减小(2)(10分)如图所示,一汽缸固定在水平地面上,通过活塞封闭有一定质量的理想气体,活塞与缸壁的摩擦可忽略不计,活塞的截面积S=100 cm2.活塞与水平平台上的物块A用水平轻杆连接,在平台上有另一物块B,A,B的质量均为m=62.5 kg,物块与平台间的动摩擦因数μ=0.8.两物块间距为d=10 cm.开始时活塞距缸底L1=10 cm,缸内气体压强p1等于外界大气压强p0=1×105 Pa,温度t1=27 ℃.现对汽缸内的气体缓慢加热(g=10 m/s2),求:①物块A开始移动时,汽缸内的温度;②物块B开始移动时,汽缸内的温度.解析:(1)分子做永不停息的无规则运动,分子运动的平均速度不可能为零,瞬时速度有可能为零,故A错误;液体与大气相接触,表面层内分子间距较大,分子力表现为引力,故B正确;空气的绝对湿度用空气中所含水蒸气的压强表示,故C错误;晶体和非晶体通过外界干预可以相互转化,如把晶体硫加热熔化(温度超过300 ℃)再倒进冷水中,会变成柔软的非晶硫,再过一段时间又会转化为晶体,故D正确;随着分子间距增大,分子间引力和斥力均减小,若分子力表现为引力,分子力做负功,分子势能增大,故E正确.(2)①物块A开始移动前气体做等容变化,则有p2=p0+=1.5×105 Pa,由查理定律有=,解得T2=T1=450 K.②物块A开始移动后,气体做等压变化,到A与B刚接触时,p3=p2=1.5×105 Pa;V3=(L1+d)S由盖—吕萨克定律有=,解得T3=T2=900 K,之后气体又做等容变化,设物块A和B一起开始移动时气体的温度为T4p4=p0+=2.0×105 Pa;V4=V3由查理定律有=,解得T4=T3=1 200 K.答案:(1)BDE(2)①450 K ②1 200 K5.(2020·内蒙古赤峰三模)(1)(5分)关于一定量的气体,下列说法正确的是(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分).A.气体的体积指的是该气体的分子所能到达的空间的体积,而不是该气体所有分子体积之和B.只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低C.在完全失重的情况下,气体对容器壁的压强为零D.气体从外界吸收热量,其内能一定增加E.气体在等压膨胀过程中温度一定升高(2)(10分)在一端封闭、内径均匀的光滑直玻璃管内,有一段长为l=16 cm的水银柱封闭着一定质量的理想气体,当玻璃管水平放置达到平衡时如图(甲)所示,被封闭气柱的长度l1=23 cm;当管口向上竖直放置时,如图(乙)所示,被封闭气柱的长度l2=19 cm.已知重力加速度g=10 m/s2,不计温度的变化.求:①大气压强p0(用cmHg表示);②当玻璃管开口向上以a=5 m/s2的加速度匀加速上升时,水银柱和玻璃管相对静止时被封闭气柱的长度. 解析:(1)气体的体积指的是该气体的分子所能到达的空间的体积,A正确;根据气体温度的微观意义可知,B 正确;在完全失重的情况下,分子运动不停息,气体对容器壁的压强不为零,C错误;若气体在从外界吸收热量的同时对外界做功,则气体的内能不一定增加,D错误;气体在等压膨胀过程中,根据盖—吕萨克定律知,体积增大,温度升高,E正确.(2)①由玻意耳定律可得p0l1S=(p0+ρgl)l2S解得p0=76 cmHg.②当玻璃管加速上升时,设封闭气体的压强为p,气柱的长度为l3,液柱质量为m,对液柱,由牛顿第二定律可得pS-p0S-mg=ma,又=16 cmHg,解得p=p0+=100 cmHg,由玻意耳定律可得p0l1S=pl3S解得l3=17.48 cm.答案:(1)ABE(2)①76 cmHg ②17.48 cm6.(2020·江西景德镇一模)(1)(5分)下列说法中正确的是(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分).A.尽管技术不断进步,但热机的效率仍不能达到100%,而制冷机却可以使温度降到热力学零度B.雨水没有透过布雨伞是液体表面张力的作用导致的C.气体温度每升高1 K所吸收的热量与气体经历的过程有关D.空气的相对湿度定义为水的饱和蒸汽压与相同温度时空气中所含水蒸气压强的比值E.悬浮在液体中的微粒越大,在某一瞬间撞击它的液体分子数越多,布朗运动越不明显(2)(10分)如图(甲)所示,竖直放置的汽缸内壁光滑,横截面积为S=1×10-3 m2.活塞的质量为m=2 kg,厚度不计.在A,B两处设有限制装置,使活塞只能在A,B之间运动,B下方汽缸的容积为1.0×10-3m3,A,B之间的容积为2.0×10-4 m3,外界大气压强p0=1.0×105 Pa.开始时活塞停在B处,缸内气体的压强为0.9p0,温度为27 ℃.现缓慢加热缸内气体,直至327 ℃.求:①活塞刚离开B处时气体的温度t2;②缸内气体最后的压强;③在图(乙)中画出整个过程中的p V图线.解析:(1)热力学零度只能接近而不能达到,A错误;雨水没有透过布雨伞是液体表面张力的作用导致的,B正确;由热力学第一定律ΔU=Q+W知,温度每升高1 K,内能增加,但既可能是吸收热量,也可能是对气体做功使气体的内能增加,C正确;空气的相对湿度是指空气中所含水蒸气的压强与同温度下的饱和蒸汽压的比值,故D错误,微粒越大,某一瞬间撞击它的分子数越多,受力越容易平衡,布朗运动越不显著,E正确.(2)①活塞刚离开B处时,设气体的压强为p2,由二力平衡可得p2=p0+解得p2=1.2×105 Pa由查理定律得=,解得t2=127 ℃.②设活塞最终移动到A处,缸内气体最后的压强为p3,由理想气体状态方程得=,解得p3=1.5×105 Pa.因为p3>p2,故活塞最终移动到A处的假设成立.③如图所示答案:(1)BCE(2)①127 ℃②1.5×105 Pa ③见解析教师备用:(2020·东北三省四市联合体三模)(1)下列叙述和热力学定律相关,其中正确的是(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分).A.第一类永动机不可能制成,是因为违背了能量守恒定律B.能量耗散过程中能量不守恒C.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,违背了热力学第二定律D.能量耗散是从能量转化的角度反映出自然界中的宏观过程具有方向性E.物体从单一热源吸收的热量可全部用于做功(2)如图,将导热性良好的薄壁圆筒开口向下竖直缓慢地放入水中,筒内封闭了一定质量的气体(可视为理想气体).当筒底与水面相平时,圆筒恰好静止在水中.此时水的温度t1=7.0 ℃,筒内气柱的长度h1=14 cm.已知大气压强p0=1.0×105 Pa,水的密度ρ=1.0×,重力加速度大小g取10 m/s2.①若将水温缓慢升高至27 ℃,此时筒底露出水面的高度Δh为多少?②若水温升至27 ℃后保持不变,用力将圆筒缓慢下移至某一位置,撤去该力后圆筒恰能静止,求此时筒底到水面的距离H(结果保留两位有效数字).解析:(1)第一类永动机既不消耗能量又能源源不断地对外做功,违背了能量守恒定律,所以不可能制成,故A正确;能量耗散过程中能量也守恒,故B错误;电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是由于压缩机做功,并不违背热力学第二定律,故C错误;能量耗散是从能量转化的角度反映出自然界中的宏观过程具有方向性,故D正确;根据热力学第二定律可知,气体不可能从单一热源吸热,并全部用来对外做功,而不引起其他变化;若引起外界变化则可以,故E正确.(2)①设圆筒的横截面积为S,水温升至27 ℃时,气柱的长度为h2,根据盖—吕萨克定律,有=圆筒静止,筒内外液面高度差不变,有:Δh=h2-h1解得Δh=1 cm.②设圆筒的质量为m,静止在水中时筒内气柱的长度为h3.则排开的水的重力等于桶的重力为mg=ρgh1S=ρgh3S圆筒移动过程,根据玻意耳定律,有(p0+ρgh1)h2S=[p0+ρg(H+h3)]h3S解得,H=72 cm.答案:(1)ADE (2)①1 cm ②72 cm高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知地球半径约为6.4×106 m,空气的摩尔质量约为29×10-3kg/mol,一个标准大气压约为1.0×105 Pa.利用以上数据可估算出地球表面大气在标准状况下的体积为A.4×1016 m3B.4×1018 m3C. 4×1020 m3D. 4×1022 m32.对一定量的气体,下列说法正确的是A.气体的体积是所有气体分子的体积之和B.气体分子的热运动越剧烈, 气体温度就越高C.气体对器壁的压强是由大量气体分子对器壁不断碰撞而产生的D.当气体膨胀时,气体分子之间的势能减小,因而气体的内能减少3.地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能)A.体积减小,温度降低B.体积减小,温度不变C.体积增大,温度降低D.体积增大,温度不变4.为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水位上升了45mm.查询得知,当时雨滴竖直下落速度约为12m/s.据此估算该压强约为(设雨滴撞击睡莲后无反弹,不计雨滴重力,雨水的密度为1×103kg/m3A.0.15 PaB.0.54 PaC.1.5 PaD.5.4 Pa5.如图所示,一绝热容器被隔板K隔开a、b两部分.已知a内有一定量的稀薄气体,b内为真空.抽开隔板K后,a内气体进入b,最终达到平衡状态.在此过程中( )A.气体对外界做功,内能减少B.气体不做功,内能不变C.气体压强变小,温度降低D.气体压强变小,温度不变6.右图为两分子系统的势能E p与两分子间距离r的关系曲线。

下列说法正确的是A.当r大于r1时,分子间的作用力表现为引力B.当r小于r1时,分子间的作用力表现为斥力C.当r等于r2时,分子间的作用力为零D.在r由r1变到r2的过程中,分子间的作用力做负功7.景颇族的祖先发明的点火器如图所示,用牛角做套筒,木质推杆前端粘着艾绒。

猛推推杆,艾绒即可点燃,对筒内封闭的气体,在压缩过程中A.气体温度升高,压强不变B.气体温度升高,压强变大C.气体对外界做正功,其体内能增加D.外界对气体做正功,气体内能减少8.两分子间的斥力和引力的合力F与分子间距离r的关系如图中曲线所示,曲线与r 轴交点的横坐标为r0.。

相距很远的两分子在分子力作用下,由静止开始相互接近。

若两分子相距无穷远处时分子势能为零,下列说法正确的是A.在r>r0阶段,F做正功,分子动能增加,势能减小B.在r<r0阶段,F做负功,分子动能减小,势能也减小C.在r=r0时,分子势能最小,动能最大D.在r=r0时,分子势能为零E.分子动能和势能之和在整个过程中不变9.下列现象中,能说明液体存在表面张力的有 _________.(A) 水黾可以停在水面上(B) 叶面上的露珠呈球形(C) 滴入水中的红墨水很快散开(D) 悬浮在水中的花粉做无规则运动10.物体由大量分子组成,下列说法正确的是A.分子热运动越剧烈,物体内每个分子的动作越大B.分子间引力总是随着分子间的距离减小而减小C.物体的内能跟物体的温度和体积有关D.只有外界对物体做功才能增加物体的内能11.清晨,草叶上的露珠是由空气中的水汽凝结成的水珠,这一物理过程中,水分子间的A.引力消失,斥力增大 B.斥力消失,引力增大C.引力、斥力都减小 D.引力、斥力都增大12.下列关于布朗运动的说法,正确的是A.布朗运动是液体分子的无规则运动B. 液体温度越高,悬浮粒子越小,布朗运动越剧列C.布朗运动是由于液体各部分的温度不同而引起的D.布朗运动是由液体分子从各个方向对悬浮粒子撞击作用的不平衡引起的13.如图,一定量的理想气体从状态a沿直线变化到状态b,在此过程中,其压强(A)逐渐增大 (B)逐渐减小(C)始终不变 (D)先增大后减小14.某种气体在不同温度下的气体分子速率分布曲线如图所示,图中f(v)表示v处单(A) I II III T T T >> (B) III III I T T T >>(C) ,II I II III T T T T >> (D) I II III T T T ==15.如图所示为两分子系统的势能E p 与两分子间距离r 的关系曲线。

下列说法正确的是A .当r 大于r 1时,分子间的作用力表现为引力B .当r 小于r 1时,分子间的作用力表现为斥力C .当r 等于r 2时,分子间的作用力为零D .在r 由r 1变到r 2的过程中,分子间的作用力做负功16.一定量的理想气体与两种实际气体Ⅰ、Ⅱ在标准大气压下做等压变化时的V-T 关系如图所示,图中2100=''--'V V V V .用三份上述理想气体作为测温物质制成三个相同的温度计,然后将其中两个温度计中的理想气体分别换成上述实际气体Ⅰ、Ⅱ.在标准大气压下,当环境温度为T 0时,三个温度计的示数各不相同,如图所示,温度计(ⅱ)中的测温物质应为实际气体(图中活塞质量忽略不计);若此时温度计(ⅱ)和(ⅲ)的示数分别为21℃ 和24℃,则此时温度计(ⅰ)的示数为 ℃ ;可见用实际气体作为测温物质时,会产生误差.为减小在T 1~T 2范围内的测量误差,现针对T 0进行修正,制成如图所示的复合气体温度计,图中无摩擦导热活塞将容器分成两部分,在温度为T 1时分别装入适量气体Ⅰ和Ⅱ,则两种气体体积之比V Ⅰ∶V Ⅱ应为 .17.如图所示,粗细均匀、导热良好、装有适量水银的U 型管竖直放置,右端与大气相通,左端封闭气柱长20l cm =(可视为理想气体),两管中水银面等高。

先将右端与一大气压强075p cmHg =)①求稳定后低压舱内的压强(用“cmHg”做单位)②此过程中左管内的气体对外界 (填“做正功”“做负功”“不做功”),气体将 (填“吸热”或放热“)。

18.如图,绝热气缸A 与导热气缸B 均固定于地面,由刚性杆连接的绝热活塞与两气缸间均无摩擦。

两气缸内装有处于平衡状态的理想气体,开始时体积均为0V 、温度均为0T 。

缓慢加热A 中气体,停止加热达到稳定后,A 中气体压强为原来的1.2倍。

设环境温度始终保持不变,求气缸A 中气体的体积A V 和温度A T 。

19.(13分)如图,长L=100cm ,粗细均匀的玻璃管一端封闭。

水平放置时,长L 0=50cm 的空气柱被水银封住,水银柱长h=30cm 。

将玻璃管缓慢地转到开口向下的竖直位置,然后竖直插入水银槽,插入后有Δh=15cm 的水银柱进入玻璃管。

设整个过程中温度始终保持不变,大气压强p 0=75cmHg 。

求:(1)插入水银槽后管内气体的压强p ;(2)管口距水银槽液面的距离H 。

20.(8分)一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板,集热器容积为0v ,开始时内部封闭气体的压强为o p 。

经过太阳曝晒,气体温度由0300T k =升至1350T K =。

(1)求此时气体的压强。

(2)保持1350T K =不变,缓慢抽出部分气体,使气体压强再变回到o p 。

求集热器内剩余气体的质量与原来总质量的比值。

判断在抽气过程中剩余气体是吸热还是放热,并简述原因。

参考答案1.B 【解析】大气压是由大气重量产生的。

大气压强24mg mg p S Rπ==,带入数据可得地球表面大气质量m =5.2×1018kg 。

标准状态下1mol 气体的体积为v =22.4×10-3m 3,故地球表面大气体积为V =0m m v =1835.2102010-⨯⨯×22.4×10-3m 3=4×1018m 3,B 对。

【答案】BC【解析】因气体分子之间的距离远大于气体分子的大小,故气体的体积并不等于气体分子的体积之和,而是等于容器的容积,A 错;气体分子热运动的剧烈程度与气体的温度有关,气体温度越高,分子热运动越剧烈,B 正确;气体的压强是由于气体分子对器壁的碰撞作用而产生的,C 正确;气体的内能是气体分子的动能与势能总和,当气体膨胀时,由于气体分子间的作用力表现为引力,故气体分子的势能随分子间的距离增大而增大,D 错。

3.C【解析】本题考查气体的有关知识,本题为中等难度题目。

随着空气团的上升,大气压强也随着减小,那么空气团的体积会增大,空气团对外做功,其内能会减小,因为不计分子势能,所以内能由其温度决定,则其温度会降低。

所以空气团的体积增大、温度降低、压强减小。

4.A【解析】设圆柱形水杯的横截面积为S,则水杯中水的质量为m=ρV=103×45×10-3S=45S,由动量定理可得:Ft=mv,而p=S F ,所以p=st m v =36001245⨯⨯S S Pa=0.15Pa.5.BD【解析】试题分析:因b 内为真空,所以抽开隔板后,a 内气体可以“自发”进入b ,气体不做功.又因容器绝热,不与外界发生热量传递,根据热力学第一定律可以判断其内能不变,温度不变.由理想气体状态方程可知:气体体积增大,温度不变,压强必然变小,综上可判断B 、D 项正确.A 、绝热容器内的稀薄气体与外界没有热传递,Q=0,因而A 错误;B 、稀薄气体向真空扩散没有做功,W=0,因而B 正确;C 、根据热力学第一定律稀薄气体的内能不变,则温度不变,因而C 错误;D 、稀薄气体扩散体积增大,压强必然减小,D 正确;故选BD .考点:本题考查了热力学第一定律的应用。

点评:热力学第一定律的应用及运用理想气体状态方程对气体的温度、压强和体积的判断是解决此题的关键.6.BC【解析】分子间距等于r 0时分子势能最小,即r 0= r 2。

当r 小于r 1时分子力表现为斥力;当r 大于r 1小于r 2时分子力表现为斥力;当r 大于r 2时分子力表现为引力,A 错BC 对。

在r 由r 1变到r 2的过程中,分子斥力做正功分子势能减小,D 错误。

【命题意图与考点定位】分子间距于分子力、分子势能的关系7.B【解析】在压缩过程中,外界对气体做正功,气体内能增大,温度升高,压强变大,选项B正确。

8.ACE 【解析】r 0为分子间的平衡距离;大于平衡距离时分子间为引力,小于平衡距离时,分子间为斥力;则有: A 、r 大于平衡距离,分子力表现为引力,相互靠近时F 做正功,分子动能增加,势能减小,故A 正确; B 、当r 小于r 0时,分子间的作用力表现为斥力,F 做负功,分子动能减小,势能增加,故B 错误; C 、由以上分析可知,当r 等于r 0时,分子势能最小,动能最大,故正确;但是由于分子势能的零势能面是人为确定的,故r 等于r 0时,分子势能不一定为零;故D 错误; E 、由于没有外力做功,故分子动能和势能之和在整个过程中不变,故E 正确;故选:ACE9.AB【解析】AB 说明液体存在表面张力,C 是扩散现象,D 是布朗运动说明水分子做热运动。

相关文档
最新文档