利用导数解决不等式恒成立的参数范围问题
专题05 应用导数研究不等式恒成立问题(解析版)
专题05 应用导数研究不等式恒成立问题【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,应用导数研究不等式恒成立问题的主要命题角度有:证明不等式恒成立、由不等式恒(能)成立求参数的范围、不等式存在性问题.本专题就应用导数研究不等式恒成立问题,进行专题探讨,通过例题说明此类问题解答规律与方法---参变分离、数形结合、最值分析等.一、利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.二、不等式恒成立问题的求解策略(1)已知不等式f(x,λ)≥0(λ为实参数)对任意的x∈D恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,其一般步骤如下:(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a>0,Δ<0或a<0,Δ<0)求解.三、不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.【压轴典例】例1.(2021·全国高三其他模拟)已知数列{}n a 满足11a =,()1ln 1n n a a +=+.若11n n a a λ++≥恒成立,则实数λ的最大值是( )(选项中e 为自然对数的底数,大约为2.71828)A .21e -B .2e 1- CD .e【答案】D【详解】由()1ln 1n n a a +=+得()111ln 1n n n n a a a a +++-=-+,设()ln(1),1f x x x x =-+>-, ()1x f x x '=+,()f x 在(1,0)-单调递减,在(0,+∞)单调递增,故min ()(0)0f x f ==,则10n n a a +->,所以1n n a a +≤, 1n a ≥,由11n n a a λ++≥得111ln(1)n n a a λ++++≥易得11ln(11)n n a a λ++≤++,记110n t a ++=>,所以111ln(1ln )n n a t a t ++=++,记()ln t f t t=,()2ln 1()ln t f t t -'=,当ln 10t ->即()0f t '>得t e >时()f t 单调递增,当ln 10t -<即()0f t '<得0t e <<时()f t 单调递减,所以min ()()f t f e e ==,得e λ≤,例2.(2021·浙江嘉兴市·高三)已知函数()()()1x f x e a tax =-+,其中0t ≠.若对于某个t ∈R ,有且仅有3个不同取值的a ,使得关于x 的不等式()0f x ≥在R 上恒成立,则t 的取值范围为( )A .()1,eB .(),2e eC .(),e +∞D .()2,e +∞ 【答案】C【详解】显然0a ≥,否则0x e a ->,于是()()()10x f x e a tax =-+≥,即10tax +≥,这与不等式的解集为R 矛盾.又易知0a =时,不等式()0f x >恒成立.于是仅需再分析0a >的情形.易知0t >,由()()()10x f x e a tax =-+=知ln x a =或1x ta=-,所以11ln ln a a a ta t =-⇔-=.所以原问题等价于关于a 的方程1ln a a t-=有两解,设()ln h a a a =,则()ln 1h a a '=+,10a e <<时,()0h a '<,()h a 递减,1a e>时,()0'>h a ,()h a 递增,所以min 11()h a h e e ⎛⎫==- ⎪⎝⎭,0x →时,()0h a →,a →+∞时,()h a →+∞,所以由关于a 的方程1ln a a t -=有两解,得110e t-<-<,所以t e >. 例3.(2020·新高考全国Ⅰ卷)已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a 的取值范围.【解析】f(x)的定义域为(0,+∞),f'(x)=ae x-1-.(1)当a=e 时,f(x)=e x -ln x+1,f'(1)=e-1,曲线y=f(x)在点(1,f(1))处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.直线y=(e-1)x+2在x 轴,y 轴上的截距分别为,2,因此所求三角形的面积为.(2)当0<a<1时,f(1)=a+ln a<1不满足条件;当a=1时,f(x)=e x-1-ln x,f'(x)=e x-1-.当x ∈(0,1)时,f'(x)<0;当x ∈(1,+∞)时,f'(x)>0.所以f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1.所以a=1满足条件;当a>1时,f(x)=ae x-1-ln x+ln a ≥e x-1-ln x ≥1.综上,a 的取值范围是[1,+∞).例4.(2020·全国卷Ⅰ高考理科·T21)已知函数f(x)=e x +ax 2-x.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f=e x +x 2-x ,f'=e x +2x -1,由于f″=e x +2>0, 故f'单调递增,注意到f'=0, 故当x ∈时,f'<0,f 单调递减,当x ∈时,f'>0,f 单调递增.(2)由f ≥x 3+1得,e x +ax 2-x ≥x 3+1,其中x ≥0, ①当x =0时,不等式为:1≥1,显然成立,符合题意;②当x>0时,分离参数a得,a≥-,记g =-,g'=-,令h=e x -x2-x -1,则h'=e x-x-1,h″=e x-1≥0,故h'单调递增,h'≥h'=0,故函数h单调递增,h≥h=0,由h≥0可得:e x -x2-x-1≥0恒成立,故当x ∈时,g'>0,g单调递增;当x ∈时,g'<0,g单调递减,因此,=g =,综上可得,实数a 的取值范围是.例5.(2020·天津高考·T20)已知函数f(x)=x3+k ln x(k∈R),f'(x)为f(x)的导函数.(1)当k=6时,①求曲线y=f(x)在点(1,f(1))处的切线方程;②求函数g(x)=f(x)-f'(x )+的单调区间和极值;(2)当k≥-3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有>.【解析】(1)①当k=6时,f(x)=x3+6ln x,f'(x)=3x2+.可得f(1)=1,f'(1)=9,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-1=9(x-1),即y=9x-8.②依题意,g(x)=x3-3x2+6ln x +,x∈(0,+∞).从而可得g'(x)=3x2-6x +-,整理可得:g'(x )=,令g'(x)=0,解得x=1.当x变化时,g'(x),g(x)的变化情况如表:x(0,1) 1 (1,+∞)g'(x) - 0 +g(x) 单调递减极小值单调递增所以,g(x)的减区间为(0,1),单调递增区间为(1,+∞);g(x)的极小值为g(1)=1,无极大值.(2)由f (x )=x 3+k ln x ,得f'(x )=3x 2+.对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令=t (t >1), 则(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))=(x 1-x 2)-2 =--3x 2+3x 1+k -2k ln =(t 3-3t 2+3t -1)+k .(ⅰ)令h (x )=x --2ln x ,x ∈(1,+∞).当x >1时,h'(x )=1+-=>0,由此可得h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1),即t --2ln t >0. 因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以(t 3-3t 2+3t -1)+k ≥(t 3-3t 2+3t -1)-3=t 3-3t 2+6ln t +-1.(ⅱ) 由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +>1,故t 3-3t 2+6ln t +-1>0.(ⅲ) 由(ⅰ)(ⅱ)(ⅲ)可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))>0.所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有>.例6.(2021·江苏苏州市·高三)已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值;(2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤.【答案】(1)1a =;(2)证明见解析.【详解】(1)因为1()(1)ax f x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a ee +-=.设()(1)2x h x x e e =+-, 由于()(2)0x h x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =.(2)设()1t u t e t =--,则()1t u t e '=-,当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax ax x xe x b e x x x --≤--=对(0,)x ∈+∞恒成立.设ln 1()ax xe x g x x --=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=, 当且仅当()ln 0x ax x ϕ=+=时等号成立.由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增,又()()1a a a e ae a a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ,即方程()ln 0x ax x ϕ=+=有唯一解()0,1a x e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1a x e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x --≤--=对(0,)x ∈+∞恒成立,所以b a ≤. 例7.(2020·江苏高考·T19)已知关于x 的函数y=f(x),y=g(x)与h(x)=kx+b(k,b ∈R)在区间D 上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x 2+2x,g(x)=-x 2+2x,D=(-∞,+∞).求h(x)的表达式;(2)若f(x)=x 2-x+1,g(x)=kln x,h(x)=kx-k,D=(0,+∞).求k 的取值范围;(3)若f(x)=x 4-2x 2,g(x)=4x 2-8,h(x)=4(t 3-t)x-3t 4+2t 2(0<|t|≤),D=[m,n]⊆[-,],求证:n-m ≤. 【解析】(1)由f(x)=g(x)得x=0.又f'(x)=2x+2,g'(x)=-2x+2,所以f'(0)=g'(0)=2,所以,函数h(x)的图象为过原点,斜率为2的直线,所以h(x)=2x.经检验:h(x)=2x 符合题意.(2)h(x)-g(x)=k(x-1-ln x),设φ(x)=x -1-ln x,则φ'(x)=1-=,φ(x)≥φ(1)=0,所以当h(x)-g(x)≥0时,k ≥0.设m(x)=f(x)-h(x)=x 2-x+1-(kx-k)=x 2-(k+1)x+(1+k)≥0,当x=≤0时,m(x)在(0,+∞)上递增,所以m(x)>m(0)=1+k ≥0,所以k=-1.当x=>0时,Δ≤0,即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤时,由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+≤0.(*)令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立, 所以φ(t)在[1,]上是减函数,则φ()≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为,因此n-m≤x2-x1=≤.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),令v'(t)=0,得t=.当t∈时,v'(t)<0,v(t)是减函数;当t∈时,v'(t)>0,v(t)是增函数;v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-,],所以n-m≤+1<.③当-≤t<0时,因为f(x),g(x)均为偶函数,因此n-m≤也成立.综上所述,n-m≤.例8.(2020届安徽省马鞍山市高三)已知函数.(1)若在定义域内无极值点,求实数的取值范围;(2)求证:当时,恒成立.【答案】(1);(2)见解析【解析】(1)由题意知,令,则,当时,在上单调递减, 当时,在上单调递增, 又,∵在定义域内无极值点,∴ 又当时,在和上都单调递增也满足题意,所以(2),令,由(1)可知在上单调递増,又,所以存在唯一的零点,故在上单调递减,在上单调递増,∴由知 即当时,恒成立.例9.(2021·安徽高三)已知函数()2ln ,f x x ax x =+-其中0.a ≥(1)讨论()f x 的单调性;(2)若当2x >时()31,12f x x <+恒成立,求a 的取值范围. 【答案】(1)当18a ≥时,函数()f x 在()0,∞+内单增;当108a <<,()f x 在1181180,,4,4a a a a -⎛--+⎛⎫ ⎪ ⎪⎝⎭⎝⎭∞内单增,在11811844a a a a -+-⎛ ⎝⎭内单减;当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减; (2)7ln20,4-⎡⎤⎢⎥⎣⎦. 【详解】(1)()212121,0ax x f x ax x x x-+=+'-=> 若()()110,21,x a f x ax f x x x-==+-=-在(0,1)内单增,在()1,+∞内单减. 若0,a >由2210ax x -+=知, 18a ∆=-.当Δ180,a =-≤即18a ≥时,2210,ax x -+≥此时()f x 在()0,∞+内单增. 当1Δ180,08a a =-><<时,1184a x a-=,此时()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 综上所述:当18a ≥时,函数()f x 在()0,∞+内单增. 当108a <<,()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减.(2)()3112f x x <+即231ln 1,2x ax x x +-<+ 即2311ln 2ax x x x <++- 即22111ln 2x a x x x x <++-,2x >,令()22111ln ,2,2x g x x x x x x=++-> 则()23311212ln 2x g x x x x -=---'33264ln ,22x x x x x--+=> 令()()324264ln ,2,320h x x x x x h x x x=--+>=-+>'. 所以()h x 在2x >时单增,()()()24ln222ln410h x h >=-=->,因此()0g x '>, ()g x 在2x >时单增,()()7ln224g x g ->=,于是7ln2.4a -≤ 故a 的取值范围是7ln20,.4-⎡⎤⎢⎥⎣⎦例10.(2020届山西省孝义市一模)已知函数. (1)讨论函数的单调性; (2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2).【解析】(1)由可得的定义域为,且, 若,则,函数在上单调递增; 若,则当时,,在上单调递增, 当时,,在上单调递减. 综上,当时,函数在上单调递增; 当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立, 即,不等式恒成立.∵当时,,∴, 即证当时,大于的最大值.又∵当时,,∴,综上所述,.【总结提升】不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合( 图象在 上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法 ① 求得的范围. 【压轴训练】1.(2021·长宁区·上海市延安中学高三)设函数()f x 的定义域为R ,满足()()22f x f x +=,且当(]0,2x ∈时,()194f x x x =+-.若对任意(],x m ∈-∞,都有()23f x ≥-,则m 的取值范围是( )A .215⎛⎤-∞ ⎥⎝⎦,B .163⎛⎤-∞ ⎥⎝⎦,C .184⎛⎤-∞ ⎥⎝⎦,D .194⎛⎤-∞ ⎥⎝⎦,【答案】D【详解】当(]0,2x ∈时,()194f x x x =+-的最小值是1,4-由()()22f x f x +=知,当(]2,4x ∈时,()()192224f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,2-当(]4,6x ∈时,()()194444f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,-要使()23f x ≥-,则()1924443x x -+-≥--,解得:194x ≤或16.3x ≥2.(2020·河津中学高三)若函数2()cos sin 3f x a x x x ⎛⎫=-+ ⎪⎝⎭(其中a 为参数)在R 上单调递增,则a 的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,,33⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭C .11,33⎡⎤-⎢⎥⎣⎦D .1,03⎡⎤-⎢⎥⎣⎦【答案】C【详解】函数1()sin sin 23f x a x x x =-+在R 上单调递增,等价于2245()cos cos21cos cos 0333f x a x x x a x =-+=-++'在R 上恒成立.设cos x t =,则245()033g t t at =-++在[1,1]-上恒成立,所以45(1)0,3345(1)0,33g a g a ⎧=-++⎪⎪⎨⎪-=--+⎪⎩解得.3.(2021·全国高三专题练习)已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( )A .1-B .0C .1D .2【答案】B【详解】设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212ln x kx x x x >-,等价于1221ln 1x kx x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-.设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=.所以0k ≤,k 的最大值为0.4.(2019·天津高考模拟)已知函数23ln ,1(),46,1x x f x x x x -≤⎧=⎨-+>⎩ 若不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,则实数a 的取值范围为( )A .13,3e ⎡⎤-⎢⎥⎣⎦ B .[3,3ln 5]+ C .[3,4ln 2]+D .13,5e ⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题意得:设g(x)=|2|x a -,易得a >0,可得2,2g(x)=2,2a x a x a x a x ⎧-≥⎪⎪⎨⎪-+⎪⎩<,g(x)与x 轴的交点为(,0)2a,① 当2a x ≥,由不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,可得临界值时,()g()f x x 与相切,此时2()46,1f x x x x =-+>,()2,2ag x x a x =-≥,可得'()24f x x =-,可得切线斜率为2,242x -=,3x =,可得切点坐标(3,3), 可得切线方程:23y x =-,切线与x 轴的交点为3(,0)2,可得此时322a =,3a =, 综合函数图像可得3a ≥;② 同理,当2ax <,由()g()f x x 与相切, (1)当2()46,1f x x x x =-+>,()2,2a g x x a x =-+<,可得'()24f x x =-,可得切线斜率为-2,242x -=-,1x =,可得切点坐标(1,3),可得切线方程25y x =-+,可得5a =,综合函数图像可得5a ≤,(2)当()3ln ,1f x x x =-≤,()2,2a g x x a x =-+<,()g()f x x 与相切,可得'1()f x x, 此时可得可得切线斜率为-2,12x -=-,12x =,可得切点坐标1(,32)2In +, 可得切线方程:1(32)2()2y In x -+=--,242y x In =-++可得切线与x 轴的交点为2(2,0)2In +,可得此时2222a In =+,42a In =+, 综合函数图像可得42a In ≤+, 综上所述可得342a In ≤≤+,故选C.5.(2020·广东佛山市·高三)(多选)命题:p 已知ABC 为锐角三角形,不等式cos cos log 0sin CAB≥恒成立,命题2:2q x x ax +在[1,2]x ∈上恒成立,在[1,2]上恒成立,则真命题的为( ) A .p q ∨ B .p q ∧C .p q ⌝∨D .p q ∧⌝【答案】AD 【详解】因为为锐角三角形,所以0,0,0222A B C πππ<<<<<<,所以2A B π+>,则022A B ππ>>->,所以0cos cos()sin 12A B B π<<-=<,所以cos 01sin AB<<,又0cos 1C <<,所以不等式cos cos log 0sin CA B≥恒成立,故命题p 是真命题;命题2:2q x x ax +在[1,2]x ∈上恒成立()min2x a ⇔+,在[1,2]上恒成立,故命题q 是假命题所以p q ∨,p q ∧⌝是真命题.6.(2020·福清西山学校高三)(多选)记函数()f x 与()g x 的定义域的交集为I ,若存在0x I ∈,使得对任意x I ∈,不等式()()fx g x -⎡⎤⎣⎦()00x x -≥恒成立,则称()()(),f x g x 构成“相关函数对”.下列所给的两个函数构成“相关函数对”的有( ) A .()xf x e =,()1g x x =+B .()ln f x x =,()1g x x= C .()f x x =,()2g x x =D .()f x x =,【答案】BD【详解】根据函数的新定义,可得两个函数的图象有一个交点,且交点的两侧图象一侧满足()()f x g x >,另一侧满足()()f x g x <,对于A 中,令()()()1xx f x g x e x ϕ=-=--,可得()1xx e ϕ'=-,当0x >时,()10xx e ϕ'=->,函数单调递增;当0x <时,()10x x e ϕ'=-<,函数单调递减,所以当0x =时,函数()x ϕ 取得最小值,最小值为()00ϕ=,即()0x ϕ≥,所以()()f x g x ≥恒成立,不符合题意;对于B 中,令()()()1ln ,0x f x g x x x x ϕ=-=->,可得()2110x x xϕ'=+>,所以函数()x ϕ单调递增,又由()()11ln110,ln 0e e eϕϕ=-<=->,设0x x =满足()00x ϕ=,且01x e <<,则对任意(0,)x ∈+∞,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意;对于C 中,函数()f x x =,()2g x x =,根据一次函数和二次函数的性质,可得函数()y f x =的图象由两个交点,此时不满足题意;对于D 中,令()()()1()2x x f x g x x ϕ=-=,可得()1211()ln 2022x x x ϕ-'=+>,所以()x ϕ在定义域[0,)+∞单调递增,又由()()1010,102ϕϕ=-<=>,所以方程()0x ϕ=只有一个实数根,设为0x ,则满足对任意x I ∈,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意. 7.(2020·浙江高三月考)已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln x x x a a -≤-恒成立,则a 的最小值为______.【答案】3e【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=,∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33x x e ae x x a ⇔≤⇔≤恒成立,令()3x xg x e=,只需max ()a g x ≥,()33x xg x e -'=,∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e ,∴3a e≥, ∴a 的最小值为3e. 8.(2020·全国高三月考)已知函数()()ln 202xaf x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++,两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-,令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减, ()()max ln 11a g x g ∴>=-=,a e ∴>.9.(2021·安徽高三开学考试)已知函数()()11ln f x a x x =+++. (1)讨论函数()f x 的单调性;(2)对任意0x >,求证:()()22e 11exa x f x x +++>.【答案】(1)答案见解析;(2)证明见解析.【详解】(1)由题意得,()f x 的定义域为()0,∞+,()()1111a x f x a x x++'=++=, 当1a ≥-时,()0f x '>恒成立,∴()f x 在()0,∞+上单调递增. 当1a <-时,令()0f x '>,解得11x a <-+;令()0f x '<,解得11x a >-+, ∴()f x 在10,1a ⎛⎫-⎪+⎝⎭上单调递增,在1,1a ⎛⎫-+∞⎪+⎝⎭上单调递减. (2)要证()()22e 11e x a x f x x +++>,即证22e ln 0e x x x ⋅->.令()22e ln e xg x x x =⋅-,则()()22221e e e x x x g x x--'=.令()()221e e x r x x x =--,则()22e e x r x x '=-, 易得()r x '在()0,∞+上单调递增,且()212e e 0r '=-<,()223e 0r '=>,∴存在唯一的实数()01,2x ∈,使得()00r x '=,∴()r x 在()00,x 上单调递减,在()0,x +∞上单调递增.∵()00r <,()20r =, ∴当()0r x >时,2x >;当()0r x <时,02x <<,∴()g x 在()0,2上单调递减,在()2,+∞上单调递增,∴()()21ln 20g x g ≥=->.综上,22e ln 0e x x x ⋅->,即()()22e 11exa x f x x +++>.10.(2020·山东高考模拟)已知函数2()ln 2()f x x a x x a R =+-∈.(1)求()f x 的单调递增区间;(2)若函数()f x 有两个极值点1212,()x x x x <且12()0f x mx -≥恒成立,求实数m 的取值范围.【答案】(1)12a ≥时,增区间为(0,)+∞;0a ≤时,增区间为1()2++∞;102a <<时,增区间为,)+∞;(2)3(,ln 2]2-∞--. 【解析】(1)函数()f x 的定义域为(0,)+∞,222'()22a x x af x x x x-+=+-=,令2220x x a -+=,484(12)a a ∆=-=-,1︒若12a ≥时,0∆≤,'()0f x ≥在(0,)+∞恒成立,函数()f x 在(0,)+∞上单调递增. 2︒若12a <,>0∆,方程2220x x a -+=,两根为1x =2x =,当0a ≤时,20x >,2(,)x x ∈+∞,'()0f x >,()f x 单调递增. 当102a <<时,1>0x ,20x >, 1(0,)x x ∈,'()0f x >,()f x 单调递增,2(,)x x ∈+∞,'()0f x >,()f x 单调递增.综上,12a ≥时,函数()f x 单调递增区间为(0,)+∞, 0a ≤时,函数()f x单调递增区间为1()2+∞, 102a <<时,函数()f x单调递增区间为1(0,2-,1()2++∞. (2)由(1)知,()f x 存在两个极值点1212,()x x x x <时,102a <<且121x x =+,122a x x ⋅=,则1112ax x +=,()1121a x x =-,且1102x <<,2112x <<. 此时()120f x mx ≥-恒成立,可化为()()21111112121ln 21f x x x x x x m x x +--≤=- ()()11111111121ln 11x x x x x x x -+-+--=-1111112ln 1x x x x =-++-恒成立, 设1()12ln 1g x x x x x =-++-,1(0,)2x ∈,2221(1)1'()122ln 2ln (1)(1)x g x x xx x --=-++-=+--2(2)2ln (1)x x x x -=+-, 因为102x <<,所以(2)0x x -<,2ln 0x <,所以)'(0g x <,故()g x 在1(0,)2单调递减,13()ln 222g x g ⎛⎫>=-- ⎪⎝⎭,所以实数m 的取值范围是3(,ln 2]2-∞--.11.(2021·黑龙江哈尔滨市·哈尔滨三中高三)已知()()ln 0f x x mx m =->. (1)若()y f x =在点()()1,1f 处的切线平行于x 轴,求其单调区间和极值;(2)若不等式()21112f x xmx ++≤对于任意的0x >恒成立,求整数m 的最小值. 【答案】(1)增区间为()0,1,减区间为()1,+∞,()f x 的极大值为1-,无极小值;(2)2. 【详解】(1)()1f x m x'=-,则()110f m '=-=,1m ∴=, ()ln f x x x ∴=-,定义域为(0,)+∞,()111xf x x x-'=-=令()0f x '>,得01x <<;令()0f x '<,得1x >()f x ∴的增区间为()0,1,减区间为()1,+∞,且()f x 的极大值为()11f =-,无极小值.(2)因为0m >,所以()21112f x xmx ++≤对于任意的0x >恒成立,可化为21ln 122x x m x x ++≥+,设()2ln 12x x h x x x++=+,则()()()()()()2222212(ln 1)(22)12ln 22x x x x x x x x x x h x x x x x ⎛⎫++-+++ ⎪-++⎝⎭'==++, 设()2ln g x x x =+,则()2ln g x x x =+单调增,且111112ln 2ln 2ln 4022222g ⎛⎫=+=-=-< ⎪⎝⎭,()10g >,01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00g x =,即 ()00h x '=,所以002ln 0x x +=,所以当012x x <<时,0()()0g x g x <=,()0h x '>, 当01x x <<时,0()()0g x g x >=,()0h x '<,()h x ∴在()00,x 单调递增,在()0,x +∞单调递减()()000022max000001ln 1112,12222x x x h x h x x x x x x +++⎛⎫∴====∈ ⎪++⎝⎭()()021,2m h x ∴≥∈,m ∴的最小整数值为2。
高考数学一轮复习利用导数研究不等式恒(能)成立问题
g(x)m in=g23=-8257, ∴M≤1--8257=12172, ∴满足条件的最大整数 M 为 4. (2)对任意的 s,t∈12,2有 f(s)≥g(t), 则 f(x)m in≥g(x)m . ax 由(1)知当 x∈12,2时,g(x)m ax=g(2)=1,
∴当 x∈12,2时,f(x)=ax+xln x≥1 恒成立, 即 a≥x-x2ln x 恒成立. 令 h(x)=x-x2ln x,x∈12,2, ∴h′(x)=1-2xln x-x, 令 φ(x)=1-2xln x-x, ∴φ′(x)=-3-2ln x< 0, h′(x)在12,2单调递减,
[针对训练] (2023·珠海检测)已知 f(x)=12ln x-mx(m> 0),g(x)=x-ax(a> 0). (1)求函数 f(x)的单调区间; (2)若 m=21e2,∀x1,x2∈[2,2e2],g(x1)≥f(x2),求实数 a 的取值范围. 解:f(x)=12ln x-mx 的定义域为(0,+∞), f′(x)=21x-m=1-22xmx=-mxx-21m.
解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1, 令 f′(x)> 0,得 x> 1e,令 f′(x)< 0,得 0< x< 1e,所以 f(x)在1e,+∞单调 递增,在0,1e单调递减; 所以当 x=1e时,f(x)取得极小值,且极小值为 f1e=1eln1e=-1e;无极大值.
[方法技巧] 根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问题, 此类问题关键是对参数分类讨论,在参数的每一段上求函数的最值,并判 断是否满足题意,若不满足题意,只需找一个值或一段内的函数值不满足 题意即可.
[针对训练] 已知函数f(x)=ex+(1-a)x-ln a·ln x(a>0). (1)若a=e,求函数f(x)的单调区间; (2)若不等式f(x)<1在区间(1,+∞)有解,求实数a的取值范围. 解:(1)当 a=e 时,f(x)=ex+(1-e)x-ln x, f′(x)=ex+(1-e)-1x=(ex-e)+x-x 1, 当 x> 1 时,ex-e> 0,x-x 1> 0,所以 f′(x)> 0,即 f(x)在(1,+∞)单调递增,
利用导数“三招”破解不等式恒成立问题
利用导数“三招”破解不等式恒成立问题不等式恒成立问题一直是高考命题的热点,把函数问题、导数问题和不等式恒成立问题交汇命制压轴题成为一个新的热点命题方向.[典例] (2017·全国卷Ⅲ)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝⎛⎭⎫1+12·⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <m ,求m 的最小值. [方法演示]解:(1)f (x )的定义域为(0,+∞).①若a ≤0,因为f ⎝⎛⎭⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -a x 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 故x =a 是f (x )在(0,+∞)的唯一最小值点. 由于f (1)=0,所以当且仅当a =1时,f (x )≥0. 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n ,得ln ⎝⎛⎭⎫1+12n <12n . 从而ln ⎝⎛⎭⎫1+12+ln ⎝⎛⎭⎫1+122+…+ln ⎝⎛⎭⎫1+12n <12+122+…+12n =1-12n <1. 故⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <e. 而⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+123>2, 所以m 的最小值为3. [解题师说](1)对a 分类讨论,并利用导数研究f (x )的单调性,找出最小值点,从而求出a . (2)由(1)得当x >1时,x -1-ln x >0.令x =1+12n ,换元后可求出⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n 的范围.[应用体验]1.已知函数f (x )=(2-a )ln x +1x +2ax . (1)当a =2时,求函数f (x )的极值; (2)当a <0时,讨论f (x )的单调性;(3)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3]恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.解:(1)函数f (x )的定义域为(0,+∞),当a =2时,函数f (x )=1x +4x ,所以f ′(x )=-1x 2+4.由f ′(x )>0,得x >12,f (x )在⎝⎛⎭⎫12,+∞上单调递增; 由f ′(x )<0,得0<x <12,f (x )在⎝⎛⎭⎫0,12上单调递减, 所以函数f (x )在x =12处取得极小值f ⎝⎛⎭⎫12=4,无极大值. (2)f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2,令f ′(x )=0,得x =12或x =-1a .①当-1a >12,即-2<a <0时,由f ′(x )>0,得12<x <-1a ;由f ′(x )<0,得0<x <12或x >-1a ,所以函数f (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减.②当-1a <12,即a <-2时,由f ′(x )>0,得-1a <x <12;由f ′(x )<0,得0<x <-1a 或x >12,所以函数f (x )在⎝⎛⎭⎫0,-1a 上单调递减,在⎝⎛⎭⎫-1a ,12上单调递增,在⎝⎛⎭⎫12,+∞上单调递减,③当a =-2时,f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.(3)由(2)知当a ∈(-3,-2),x 1,x 2∈[1,3]时,函数f (x )在区间[1,3]上单调递减; 所以当x ∈[1,3]时,f (x )max =f (1)=1+2a ,f (x )min =f (3)=(2-a )ln 3+13+6a ,故对任意的a ∈(-3,-2),恒有(m +ln 3)a -2ln 3>1+2a -(2-a )ln 3-13-6a 成立,即am >23-4a .因为a <0,所以m <23a -4,又⎝⎛⎭⎫23a -4min =-133,所以实数m 的取值范围是⎝⎛⎦⎤-∞,-133.[典例] (2018·(1)若f (x )在区间⎣⎡⎭⎫-12,1上的最大值为38,求实数b 的值; (2)若对任意的x ∈[1,e],都有g (x )≥-x 2+(a +2)x 恒成立,求实数a 的取值范围. [方法演示]解:(1)f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,得x =0或x =23.当x ∈⎝⎛⎭⎫-12,0时,f ′(x )<0,函数f (x )为减函数, 当x ∈⎝⎛⎭⎫0,23时,f ′(x )>0,函数f (x )为增函数, 当x ∈⎝⎛⎭⎫23,1时,f ′(x )<0,函数f (x )为减函数. ∵f ⎝⎛⎭⎫-12=38+b ,f ⎝⎛⎭⎫23=427+b , ∴f ⎝⎛⎭⎫-12>f ⎝⎛⎭⎫23. ∴f ⎝⎛⎭⎫-12=38+b =38, ∴b =0.(2)由g (x )≥-x 2+(a +2)x ,得(x -ln x )a ≤x 2-2x , ∵x ∈[1,e],∴ln x ≤1≤x ,由于不能同时取等号, ∴ln x <x ,即x -ln x >0,∴a ≤x 2-2x x -ln x 在x ∈[1,e]上恒成立.令h (x )=x 2-2xx -ln x ,x ∈[1,e],则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2,当x ∈[1,e]时,x -1≥0,x +2-2ln x =x +2(1-ln x )>0,从而h ′(x )≥0, ∴函数h (x )=x 2-2xx -ln x 在[1,e]上为增函数,∴h (x )min =h (1)=-1,∴a ≤-1. 故实数a 的取值范围为(-∞,-1]. [解题师说]由不等式恒成立求解参数的取值范围问题,一般采用分离参数的方法,转化为求不含参数的函数的最值问题,如本例(2)转化为a ≤x 2-2xx -ln x,从而将问题转化为求函数h (x )=x 2-2xx -ln x,x ∈[1,e]的最小值问题.[应用体验]2.(2018·湖北七市(州)联考)函数f (x )=ln x +12x 2+ax (a ∈R),g (x )=e x +32x 2.(1)讨论f (x )的极值点的个数;(2)若对任意的x ∈(0,+∞),总有f (x )≤g (x )成立,求实数a 的取值范围.解:(1)法一:由题意得f ′(x )=x +1x +a =x 2+ax +1x (x >0),令f ′(x )=0,即x 2+ax +1=0,Δ=a 2-4.①当Δ=a 2-4≤0,即-2≤a ≤2时,x 2+ax +1≥0对x >0恒成立,即f ′(x )=x 2+ax +1x≥0对x >0恒成立,此时f (x )没有极值点.②当Δ=a 2-4>0,即a <-2或a >2时.若a <-2,设方程x 2+ax +1=0的两个不同实根为x 1,x 2,不妨设x 1<x 2,则x 1+x 2=-a >0,x 1x 2=1>0,故x 2>x 1>0,∴当0<x <x 1或x >x 2时,f ′(x )>0; 当x 1<x <x 2时,f ′(x )<0,故x 1,x 2是函数f (x )的两个极值点.若a >2,设方程x 2+ax +1=0的两个不同实根为x 3,x 4, 则x 3+x 4=-a <0,x 3x 4=1>0,故x 3<0,x 4<0. ∴当x >0时,f ′(x )>0,故函数f (x )没有极值点. 综上,当a <-2时,函数f (x )有两个极值点, 当a ≥-2时,函数f (x )没有极值点. 法二:f ′(x )=x +1x +a , ∵x >0,∴f ′(x )∈[a +2,+∞).①当a +2≥0,即a ∈[-2,+∞)时,f ′(x )≥0对∀x >0恒成立,f (x )在(0,+∞)上单调递增,f (x )没有极值点.②当a +2<0,即a ∈(-∞,-2)时,f ′(x )=0有两个不等正数解,设为x 1,x 2,∴f ′(x )=x +1x +a =x 2+ax +1x =(x -x 1)(x -x 2)x(x >0). 不妨设0<x 1<x 2,则当x ∈(0,x 1)时,f ′(x )>0,f (x )单调递增,当x ∈(x 1,x 2)时,f ′(x )<0,f (x )单调递减,当x ∈(x 2,+∞)时,f ′(x )>0,f (x )单调递增,所以x 1,x 2分别为f (x )极大值点和极小值点,故f (x )有两个极值点.综上所述,当a ∈[-2, +∞)时,f (x )没有极值点, 当a ∈(-∞,-2)时,f (x )有两个极值点. (2)f (x )≤g (x )⇔e x -ln x +x 2≥ax ,因为x >0,所以a ≤e x +x 2-ln xx 对∀x >0恒成立. 设φ(x )=e x +x 2-ln x x(x >0), 则φ′(x )=⎝⎛⎭⎫e x +2x -1x x -(e x +x 2-ln x )x 2=e x (x -1)+ln x +(x +1)(x -1)x 2,当x ∈(0,1)时,φ′(x )<0,φ(x )单调递减,当x ∈(1,+∞)时,φ′(x )>0,φ(x )单调递增, ∴φ(x )≥φ(1)=e +1,∴a ≤e +1. 故实数a 的取值范围为(-∞,e +1].导数应用的问题,其中求参数的取值范围是重点考查题型.在平常教学中,教师往往介绍利用变量分离法来求解.但部分题型利用变量分离法处理时,会出现“00”型的代数式,而这是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则.[洛必达法则]法则1 若函数f (x )和g (x )满足下列条件: (1)li m x →af (x )=0及li m x →ag (x )=0; (2)在点a 的去心邻域内,f (x )与g (x )可导且g ′(x )≠0; (3)li m x →af ′(x )g ′(x )=l ,那么li m x →a f (x )g (x )=li m x →a f ′(x )g ′(x )=l .法则2 若函数f (x )和g (x )满足下列条件: (1)li m x →af (x )=∞及li m x →ag (x )=∞; (2)在点a 的去心邻域内,f (x )与g (x )可导且g ′(x )≠0; (3)li m x →af ′(x )g ′(x )=l ,那么li m x →a f (x )g (x )=li m x →a f ′(x )g ′(x )=l .[典例] 已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)如果当x >0,且x ≠1时,f (x )>ln x x -1+kx ,求k 的取值范围.[方法演示]解:(1)f ′(x )=a x +1x -ln x(x +1)2-bx 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1. (2)法一:由(1)知f (x )=ln x x +1+1x,所以 f (x )-ln x x -1+k x =11-x 22ln x +(k -1)(x 2-1)x .设h (x )=2ln x +(k -1)(x 2-1)x (x >0), 则h ′(x )=(k -1)(x 2+1)+2x x 2.①设k ≤0,由h ′(x )=k (x 2+1)-(x -1)2x 2知,当x ≠1时,h ′(x )<0,h (x )单调递减. 而h (1)=0,故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0; 当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0.从而当x >0,且x ≠1时,f (x )-ln x x -1+kx>0, 即f (x )>ln x x -1+kx. ②设0<k <1.由于y =(k -1)(x 2+1)+2x =(k -1)x 2+2x +k -1的图象开口向下,且Δ=4-4(k -1)2>0,对称轴x =11-k >1,所以当x ∈1,11-k时,(k -1)(x 2+1)+2x >0, 故h ′(x )>0,而h (1)=0,故当x ∈⎝⎛⎭⎫1,11-k 时,h (x )>0,可得11-x 2h (x )<0,与题设矛盾,③设k ≥1.此时h ′(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得11-x 2h (x )<0,与题设矛盾.综上所述,k 的取值范围为(-∞,0].(法一在处理第(2)问时很难想到,现利用洛必达法则处理如下) 法二:由题设可得,当x >0,x ≠1时,k <2x ln x1-x 2+1恒成立.令g (x )=2x ln x1-x 2+1(x >0,x ≠1), 则g ′(x )=2·(x 2+1)ln x -x 2+1(1-x 2)2,再令h (x )=(x 2+1)ln x -x 2+1(x >0,x ≠1), 则h ′(x )=2x ln x +1x -x ,又h ″(x )=2ln x +1-1x 2,易知h ″(x )=2ln x +1-1x 2在(0,+∞)上为增函数,且h ″(1)=0,故当x ∈(0,1)时,h ″(x )<0,当x ∈(1,+∞)时,h ″(x )>0,∴h ′(x )在(0,1)上为减函数,在(1,+∞)上为增函数,故h ′(x )>h ′(1)=0, ∴h (x )在(0,+∞)上为增函数.又h (1)=0,∴当x ∈(0,1)时,h (x )<0,当x ∈(1,+∞)时,h (x )>0, ∴当x ∈(0,1)时,g ′(x )<0,当x ∈(1,+∞)时,g ′(x )>0, ∴g (x )在(0,1)上为减函数,在(1,+∞)上为增函数. 由洛必达法则知, li m x →1g (x )=2li m x →1x ln x 1-x 2+1=2li m x →1 1+ln x -2x+1=2×⎝⎛⎭⎫-12+1=0,∴k ≤0, 故k 的取值范围为(-∞,0]. [解题师说]解决本题第(2)问时,如果直接讨论函数的性质,相当繁琐,很难求解.采用参数与变量分离较易理解,但是分离出来的函数式的最值无法求解,而利用洛必达法则却较好的处理了它的最值,这是一种值得借鉴的方法.[应用体验]3.已知函数f (x )=x (e x -1)-ax 2,若当x ≥0时,f (x )≥0,求a 的取值范围. 解:当x ≥0时,f (x )≥0,即x (e x -1)≥ax 2. ①当x =0时,a ∈R ;②当x >0时,x (e x-1)≥ax 2等价于a ≤⎝⎛⎭⎫e x-1x min .记g (x )=e x -1x ,x ∈(0,+∞),则g ′(x )=(x -1)e x +1x 2.记h (x )=(x -1)e x +1,x ∈[0,+∞),则h ′(x )=x e x >0.因此h (x )=(x -1)e x +1在[0,+∞)上单调递增,且h (x )>h (0)=0,所以g ′(x )=h (x )x 2>0, 从而g (x )=e x -1x 在(0,+∞)上单调递增.由洛必达法则有li m x →0g (x )=li m x →0 e x -1x =li m x →0 e x1=1,所以g (x )>1,即有a ≤1. 故实数a 的取值范围为(-∞,1].1.(2017·全国卷Ⅱ)设函数f (x )=(1-x 2)e x . (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x .令f ′(x )=0,得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)f (x )=(1+x )(1-x )e x . ①当a ≥1时,设函数h (x )=(1-x )e x ,则h ′(x )=-x e x <0(x >0). 因此h (x )在[0,+∞)上单调递减, 又h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1. ②当0<a <1时,设函数g (x )=e x -x -1,则g ′(x )=e x -1>0(x >0), 所以g (x )在[0,+∞)上单调递增,而g (0)=0, 故e x ≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2, (1-x )(1+x )2-ax -1=x (1-a -x -x 2), 取x 0=5-4a -12, 则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0, 故f (x 0)>ax 0+1.当a ≤0时,取x 0=5-12, 则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞). 2.已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)若对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围. (2)证明:对一切x ∈(0,+∞),ln x >1e x -2e x恒成立.解:(1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立, 则a ≤2ln x +x +3x.设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2.当x ∈(0,1)时,h ′(x )<0,h (x )单调递减; 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增. 所以h (x )min =h (1)=4,因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4,故实数a 的取值范围是(-∞,4]. (2)问题等价于证明x ln x >x e x -2e (x >0).又f (x )=x ln x (x >0),f ′(x )=ln x +1, 当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增, 所以f (x )min =f ⎝⎛⎭⎫1e =-1e . 设m (x )=x e x -2e (x >0),则m ′(x )=1-xe x, 当x ∈(0,1)时,m ′(x )>0,m (x )单调递增, 当x ∈(1,+∞)时,m ′(x )<0,m (x )单调递减, 所以m (x )max =m (1)=-1e ,从而对一切x ∈(0,+∞),f (x )>m (x )恒成立,即x ln x >x e x -2e恒成立.所以对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立.3.已知函数f (x )=bx 2-2ax +2ln x .(1)若曲线y =f (x )在(1,f (1))处的切线为y =2x +4,求实数a ,b 的值;(2)当b =1时,若y =f (x )有两个极值点x 1,x 2,且x 1<x 2,a ≥52,若不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解:(1)由题可知f (1)=b -2a =6,∵f ′(x )=2bx -2a +2x ,∴f ′(1)=2b -2a +2=2,联立可得a =b =-6. (2)当b =1时,f (x )=x 2-2ax +2ln x ,∴f ′(x )=2x -2a +2x =2(x 2-ax +1)x. ∵f (x )有两个极值点x 1,x 2,且x 1<x 2, ∴x 1,x 2是方程x 2-ax +1=0的两个正根, ∴x 1+x 2=a ≥52,x 1·x 2=1,∴x 1+1x 1≥52,∴0<x 1≤12.不等式f (x 1)≥mx 2恒成立,即m ≤f (x 1)x 2恒成立. f (x 1)x 2=x 21-2ax 1+2ln x 1x 2=x 31-2ax 21+2x 1ln x 1 =x 31-2(x 1+x 2)x 21+2x 1ln x 1=-x 31-2x 1+2x 1ln x 1.令h (x )=-x 3-2x +2x ln x ⎝⎛⎭⎫0<x ≤12, 则h ′(x )=-3x 2+2ln x <0, ∴h (x )在⎝⎛⎦⎤0,12上是减函数, ∴h (x )≥h ⎝⎛⎭⎫12=-98-ln 2,故m ≤-98-ln 2, ∴实数m 的取值范围为⎝⎛⎦⎤-∞,-98-ln 2. 4.(2018·张掖诊断)已知函数f (x )=mxln x,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e 为自然对数的底数).(1)求f (x )的解析式及单调递减区间;(2)是否存在最小的常数k ,使得对任意x ∈(0,1),f (x )>k ln x+2x 恒成立?若存在,求出k 的值;若不存在,请说明理由.解:(1)f ′(x )=m (ln x -1)(ln x )2, 由f ′(e 2)=m 4=12,得m =2,故f (x )=2x ln x, 此时f ′(x )=2(ln x -1)(ln x )2. 由f ′(x )<0,得0<x <1或1<x <e ,所以函数f (x )的单调递减区间为(0,1),(1,e).(2)f (x )>k ln x +2x 恒成立,即2x ln x >k ln x +2x 恒成立⇔k ln x <2x ln x-2x 恒成立, 当x ∈(0,1)时,ln x <0,则有k >2x -2x ·ln x 恒成立.令g (x )=2x -2x ·ln x ,则g ′(x )=2x -ln x -2x. 再令h (x )=2x -ln x -2,则h ′(x )=x -1x <0, 所以h (x )在(0,1)上单调递减,所以h (x )>h (1)=0,故g ′(x )=h (x )x>0, 所以g (x )在(0,1)上单调递增,g (x )<g (1)=2⇒k ≥2.故存在常数k =2满足题意.。
2024届新高考一轮总复习人教版 第三章 重难突破系列(一) 利用导数解决不等式恒成立、有解 课件
[对点练] 1.已知曲线 f(x)=bex+x 在 x=0 处的切线方程为 ax-y+1=0. (1)求 a,b 的值; (2)当 x2>x1>0 时,f(x1)-f(x2)<(x1-x2)(mx1+mx2+1)恒成立,求实数 m 的取值范围.
解:(1)由 f(x)=bex+x 得,f′(x)=bex+1, 由题意得在 x=0 处的切线斜率为 f′(0)=b+1=a, 即 b+1=a,又 f(0)=b,可得-b+1=0,解得 b=1,a=2.
(2)由 f(1)≥0,得 a≥e-1 1>0,则 f(x)≥0 障碍点:不能把a+a 1看做整体,分离出来
对任意的 x>0 恒成立可转化为a+a 1≥2xx-ex 1对任意的 x>0 恒成立.················6 分
2x-1 设函数 F(x)= xex (x>0), ··································································7 分
于是a+a 1≥1e,解得 a≥e-1 1.故实数 a 的取值范围[e-1 1,+∞). ··················12 分
【点拨】 利用分离参数法确定不等式 f(x,λ)≥0(x∈D,λ 为参数)恒成立问题中参 数范围的步骤:
(1)将参数与变量分离,化为 f1(λ)≥f2(x)或 f1(λ)≤f2(x)的形式; (2)求 f2(x)在 x∈D 时的最大值或最小值; (3)解不等式 f1(λ)≥f2(x)max 或 f1(λ)≤f2(x)min,得到 λ 的取值范围.
(2)由(1)知,f(x)=ex+x,所以 f(x1)-f(x2)<(x1-x2)(mx1+mx2+1), 即为 f(x1)-mx21-x1<f(x2)-mx22-x2, 由 x2>x1>0 知,上式等价于函数 φ(x)=f(x)-mx2-x=ex-mx2 在(0,+∞)为增函数, φ′(x)=ex-2mx≥0,即 2m≤exx, 令 h(x)=exx(x>0),h′(x)=ex(xx-2 1), 当 0<x<1 时,h′(x)<0 时,h(x)单调递减; 当 x>1 时,h′(x)>0,h(x)单调递增,h(x)min=h(1)=e, 则 2m≤e,即 m≤2e,所以实数 m 的范围为(-∞ 若不等式 2x ln x≥-x2+ax-3 在区间(0,e]上恒成立,求实数 a 的取值范围. 解:不等式 2x ln x≥-x2+ax-3 在区间(0,e]上恒成立等价于 2ln x≥-x+a-3x, 令 g(x)=2ln x+x-a+3x,x∈(0,e],则 g′(x)=2x+1-x32=x2+x22x-3=(x+3x)(2x-1), 则在区间(0,1)上,g′(x)<0,函数 g(x)为减函数; 在区间(1,e]上,g′(x)>0,函数 g(x)为增函数. 由题意知 g(x)min=g(1)=1-a+3≥0,得 a≤4,所以实数 a 的取值范围是(-∞,4].
利用导数处理不等式恒成立求参数范围
(ea-1,+∞).
(2)∵f(x)≤2a,∴a≤______________,
令g(x)= ,x≥2,则g′(x)= , __________________________
______________________
令t(x)=ln x-x+1,则t′(x)= = , _________________________ ___________________ 由t′(x)>0解得0<x<1,由t′(x)<0解得x>1, 故t(x)在(0,1)上单调递增,在(1,+∞)上单调递减, t(x)max=t(1)=0, ∴当x≥2时,t(x)<0,所以ln x<x-1, ∴g′(x)>0,g(x)在[2,+∞)上单调递增,∴g(x)min= g(2) ∴a≤g(2)=2ln 2,∴a的取值范围(-∞,2ln 2].
利用导数研究恒成立问题
一.已知不等式恒成立求参数范围问题 常见处理的方法: 1. 部分分离参数后,数形结合(适用于选择填空题); 2. 完全分离参数,转化为求函数(不含参数)的最值;
3. 含参数,直接讨论求函数最值(讨论) 4. 同构式转化,利用复合函数的单调性进行转化等。
例1 (2022·浙江嘉兴高三模拟)已知函数f(x)=-xln x +a(x+1),a∈R.
在区间(1,e]上,g′(x)>0,函数g(x)为增函数.
故g(x)min=g(1)=4,所以a≤4, 所以实数a的取值范围是(-∞,4].
【答案】 (-∞,4]
(1)求函数f(x)的单调区间; (2)若关于x的不等式f(x)≤2a在[2,+∞)上恒成立,求 a的取值范围.
【解析】 (1)当a=0时,f(x)=-xln x(x>0), f′(x)=-ln x-1,由f′(x)>0解得0<x<e-1,由f′(x)<0解得x>e-1, 故f(x)的单调递增区间为(0,e-1),单调递减区间为(e-1,+ ∞); 当a≠0时,由f(x)=-xln x+a(x+1),得f(x)的定义域为(0, +∞), f′(x)=-(ln x+1)+a,令f′(x)=-(ln x+1)+a=0,解得x= ea-1,
利用导数求解参数问题(恒成立问题)经典题目
用导数解参数问题已知函数的单调性,求参变量的取值范围,实质上是含参不等式恒成立的一种重要题型。
本文将举例说明此类问题的求解策略。
结论一、 不等式()()f x g a ≥恒成立⇔[]min()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立⇔[]max()()f x g a ≤(求解()f x 的最大值).结论二、 不等式()()f x g a ≥存在解⇔[]max()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解⇔[]min()()f x g a ≤(即求解()f x 的最小值).一、(2008湖北卷)若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞- 二、若不等式()2211x m x ->-对满足2m ≤的所有m 都成立,求x 的取值范围。
解:设()()()2121f m m x x =---,对满足2m ≤的m ,()0f m <恒成立,()()()()()()2221210202021210x x f f x x ⎧----<-<⎧⎪⎪∴∴⎨⎨<---<⎪⎪⎩⎩解得:1122x -++<<三、(2009浙江)已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析:(Ⅰ)略(Ⅱ))2()1(23)(2+--+='a a x a x x f函数)(x f 在区间)1,1(-不单调,等价于导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2<-++a a a ,解得15-<<-a 四、(新课程卷 )若函数y =31x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围.解:[])1()1()1()(2---=-+-='a x x a ax x x f令0)(='x f ,解得x=1或x=a-1,并且 a≠2,否则f (x)在整个定义域内单调。
人教版导数如何解决含参数不等式恒成立问题
如何解决含参数“不等式恒成立”问题(1)分离参数法分离参数法一定要搞清谁是变量,谁为参数,一般知道谁的范围谁就是变量。
求谁的范围,谁就是参数,利用分离参数法,常用到函数的单调性,基本不等式求最值。
例如:设2)1ln()(ax x x x f --+=,当a 满足什么条件时,)(x f 在⎥⎦⎤⎢⎣⎡--31,21单调递减?解:由题意)(x f 的定义域为),1(+∞-得x x a ax ax x x f ++--=--+=1)12(22111)(2'⇔0)12(22≤+--x a ax ,∈x ⎥⎦⎤⎢⎣⎡--31,21恒成立⇔0122≤++a ax 法一:(分离参数法)0122≤++a ax x a x a +-≤⇒-≤+⇒1121)1(2,又因为11+-=x y 在⎥⎦⎤⎢⎣⎡--31,21单调递增。
2max -=y ,1-≤a 。
(2)分类讨论法有的不等式恒成立问题,参数与变量不是那么容易分离或分离后根本求不出最值(或极限值)那么就需分类讨论法。
上面的习题也可以用分类讨论法:法二(分类讨论法)令122)(++=a ax x g ,∈x ⎥⎦⎤⎢⎣⎡--31,21由题意得00)21({<≤-⇒a g 或00)31({>≤-a g 或1)(0{==x g a 1-≤⇒a 。
例2函数ax x a x x f +-=22ln )(,若函数)(x f 在),1(+∞为单调递减,求实数a 的取值范围。
分析:要求a 的范围,我们就把a 作为参数,优先考虑分离参数法,但是对于这题a 参数没有办法分离,我们只能选择分类讨论法。
解:)(x f 的定义域为),0(+∞xax ax a x a x x f )1)(12(21)(2'-+-=+-=(因式分解是关键)0)1)(12()(≥-+=ax ax x g当0=a 时,1)(-=x g ,不合题意当0>a 时,)(x g y =是开口向上的抛物线,由图象分析可得,若0)(≥x g 在1>x 恒成立,则111≥⇒≤a a当0<a 时,同理分析可得21121-≤⇒≤-a a 。
导数综合不等式恒成立问题主参换位法
导数综合不等式恒成立问题主参换位法
当我们在解题时,经常会遇到需要证明一些不等式的问题。
而对于仅包含导数的不等式,我们可以使用主参换位法来进行求解。
主参换位法是一种基于函数的单调性来推导不等式的方法。
它的基本思想是通过构造一个合适的函数作为主参,在这个函数上进行主参换位,然后通过对比这个函数与原函数的大小关系,来得到原不等式的结论。
具体的步骤如下:
1. 将原不等式表示成导数的形式,即将不等式两边求导。
2. 构造一个主参函数,使其在有关区间上的导数始终大于等于原函数的导数。
3. 对主参函数进行主参换位,即将主参函数表示出关于原函数的形式。
4. 比较主参函数与原函数的大小关系,得到原不等式的结论。
下面以一个例子来说明主参换位法的应用:
例:证明对于任意实数x,有x^2 + 3 >= 4x。
解:首先将原不等式表示成导数的形式,即求导。
导数的形式为:2x >= 4。
然后我们构造主参函数,使其在有关区间上的导数始终大于等于原函数的导数。
主参函数的形式为:2x。
接下来我们对主参函数进行主参换位,即将主参函数表示出关于原函数的形式。
主参换位得到:2x - 4 >= 0。
最后我们比较主参函数与原函数的大小关系,得到原不等式的结论。
原不等式的结论为:2x - 4 >= 0,即 x^2 + 3 >= 4x。
利用导数解参数范围的八种策略讲解
导数解参数问题的八种策略策略一:分离变量法所谓分离变量法,是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知.解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下结论均为已知x 的范围,求a 的范围:结论一、 不等式()()f x g a ≥恒成立⇔[]min ()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立⇔[]max ()()f x g a ≤(求解()f x 的最大值).结论二、 不等式()()f x g a ≥存在解⇔[]max ()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解⇔[]min ()()f x g a ≤(即求解()f x 的最小值).案例1、(2009福建卷)若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________. 分析:)0(12)(>+='x xax x f 依题意方程120ax x +=在()0,+∞内有解,即)0,()0(212-∞∈⇒>-=a x xa 案例2、(2008湖北卷)若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞- 分析:由题意可知02)(≤++-='x b x x f ,在(1,)x ∈-+∞上恒成立, 即1)1()2(2-+=+≤x x x b 在(1,)x ∈-+∞上恒成立,由于1x ≠-,所以1b ≤-, 案例3、(2008广东卷)设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则( )A .3a >-B .3a <-C .13a >-D .13a <- 分析:'()3ax f x ae =+,若函数在x R ∈上有大于零的极值点,即'()30ax f x ae =+=有正根。
利用导数研究恒成立或存在性问题
题型二 等价转化法求参数范围
例2 (1)(2021·河北保定模拟)已知函数f(x)=(x-a)·ln(ax), g(x)=x2-a+1ax+1,a≥1.
①当a=1时,求f(x)的图象在点(e,f(e))处的切线方程; ②是否存在实数a使f(x)>g(x)对∀x∈ 1a,a 恒成立?若存 在,求出a的值;若不存在,请说明理由.
由题意f′(1)·12=(3-2a)·12=-1,解得a=52. (2)不等式2xlnx≥-x2+ax-3在区间(0,e]上恒成立等价于 2lnx≥-x+a-3x,即a≤2lnx+x+3x在区间(0,e]上恒成立.
令g(x)=2lnx+x+3x, 则g′(x)=2x+1-x32=x2+x22x-3=(x+3)x(2 x-1), 则在区间(0,1)上,g′(x)<0,函数g(x)为减函数; 在区间(1,e]上,g′(x)>0,函数g(x)为增函数. 故g(x)min=g(1)=4,得a≤4, 所以实数a的取值范围是(-∞,4]. 【答案】 (1)a=52 (2)(-∞,4]
(2)f′(x)=ex-1-2ax, 令h(x)=ex-1-2ax, 则h′(x)=ex-2a. ①当2a≤1,即a≤12时, 在[0,+∞)上,h′(x)≥0,h(x)单调递增, h(x)≥h(0),即f′(x)≥f′(0)=0, ∴f(x)在[0,+∞)上为增函数, ∴f(x)≥f(0)=0, ∴当a≤12时满足条件.
在区间12,2上,f(x)=xa+xlnx≥1恒成立等价于a≥x-x2lnx 恒成立.
设h(x)=x-x2lnx,h′(x)=1-2xlnx-x, 令m(x)=xlnx,由m′(x)=lnx+1>0得x>1e. 即m(x)=xlnx在1e,+∞上是增函数, 可知h′(x)在区间12,2上是减函数,
利用导数解决不等式的恒成立问题
利用导数解决不等式的恒成立问题华南师范大学数学科学学院(510631)李可欣不等式的恒成立问题一直是中学数学的重要内容,需要利用导数解决,在近几年的高考试题中,常见于压轴题,作为区分考生能力高低的分水岭。
本文将讨论此类问题的解题策略及注意问题,主要利用导数在求函数最值和单调性问题上的优越性,将传统知识与现代方法交互作用、交相映辉,需要学生灵活运用知识以解决问题。
其中常见的基本题型分为(1)已知某个不等式恒成立,求参数的取值范围;(2)证明某个不等式恒成立。
而我们的解题策略分为两点,一是灵活应用函数思想,二是注意变量的选择,下面我们将对这两点展开深入讨论。
一、灵活应用函数思想形如“a x f ≥)(”或“a x f ≤)(”型不等式,是恒成立问题中最基本的类型,许多复杂的恒成立问题最终都可归结为这一类型。
而解此类问题的指导思想是:构造函数,或参数分离后构造函数,转化为新函数的最值问题。
根据恒成立的本质,我们可以进行如下转化:(1)对任意D x ∈,有a x f ≥)((其中a 为常数)恒成立⇔对D x ∈,a x f ≥min )(.(2)对任意D x ∈,有a x f ≤)((其中a 为常数)恒成立⇔对D x ∈,a x f ≤max )(. 其中,常数a 可以用函数)(x g 替代,即对任意D x ∈,有)()(x g x f ≥恒成立⇔对D x ∈,0)()(≥-x g x f 恒成立⇔对D x ∈,0)]()([min ≥-x g x f 恒成立;或者将上述)(x f 看成)(x f ',那么有函数)(x f 在区间D 单调递增⇒对D x ∈,0)(≥'x f 恒成立⇒对D x ∈,0)(min ≥'x f 恒成立.(3)任意1x ,D x ∈2,都有)()(21x g x f ≥恒成立⇔对D x ∈,max min )()(x g x f ≥; 任意1x ,D x ∈2,都有)()(21x g x f ≤恒成立⇔对D x ∈,max min )()(x g x f ≤. 例1(2010·天津理21):已知函数).()(R x xex f x ∈=- (1) 求函数)(x f 的单调区间和极值;(2) 已知函数)(x g y =的图像与函数)(x f y =的图像关于直线1=x 对称,证明当 1>x 时,)()(x g x f >;(3) 如果21x x ≠,且)()(21x f x f ≠,证明.221>+x x 。
利用导数解不等式及参数的取值范围问题++肥城一中++高三数学+++祝万红
3. (2015·全国卷Ⅱ)设函数 f(x)=emx+x2-mx. (1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增; (2)若对于任意 x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1, 求 m 的取值范围.
18
(1)证明:f′(x)=m(emx-1)+2x. 若 m≥0,则当 x∈(-∞,0)时,emx-1≤0,f′(x)<0; 当 x∈(0,+∞)时,emx-1≥0,f′(x)>0. 若 m<0,则当 x∈(-∞,0)时,emx-1>0,f′(x)<0; 当 x∈(0,+∞)时,emx-1<0,f′(x)>0. 所以,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
11
链接高考
1. (2018·全国卷Ⅲ)已知函数 f(x)=ax2+exx-1. (1)求曲线 y=f(x)在点(0,-1)处的切线方程; (2)证明:当 a≥1 时,f(x)+e≥0.
12
解:(1)f′(x)=-ax2+2eax-1x+2,f′(0)=2. 因此曲线 y=f(x)在(0,-1)处的切线方程是 2x-y-1=0. (2)证明:当 a≥1 时,f(x)+e≥(x2+x-1+ex+1)e-x. 令 g(x)=x2+x-1+ex+1,则 g′(x)=2x+1+ex+1. 当 x<-1 时,g′(x)<0,g(x)单调递减; 当 x>-1 时,g′(x)>0,g(x)单调递增.所以 g(x)≥g(-1)=0. 因此 f(x)+e≥0.
13
2. (2016·全国卷Ⅲ)设函数 f(x)=ln x-x+1. (1)讨论函数 f(x)的单调性; (2)证明当 x∈(1,+∞)时,1<xl-n x1<x; (3)设 c>1,证明当 x∈(0,1)时,1+(c-1)x>cx.
2.13.2利用导数研究不等式的恒成立、能成立问题
第二章
考点 层级突破
课时 分组冲关
②当 a>1 时,令 g'(x)=0,得 x=ln a,
当 x 变化时,g(x),g′(x)的变化情况如下表:
x
(0,ln a) ln a (ln a,+∞)
g′(x)
-
0
+
g(x) 单调递减 极小值 单调递增
故存在 x=ln a,使得 g(ln a)<g(0)=0.
第二章
考点 层级突破
课时 分组冲关
[解] (1)f′(x)=(ex-2a)+xex-2ax=(x+1)(ex-2a),x∈R. ①若 a≤0,由 f′(x)=0 解得 x=-1. ∴当 x<-1 时,f′(x)<0,当 x>-1 时,f′(x)>0, ∴当 x=-1 时,f(x)取得极小值 f(-1)=a-1e=0,解得 a=1e(舍 去); ②若 a>0,由 f′(x)=0 解得 x=-1 或 x=ln (2a),
当 x≥1 时,g′(x)<0,得 g(x)在[1,+∞)上单调递减,有 g(x)≤g(1)
=e+1 1,而由(1)知,ef+x1≥ef+11=e+1 1. 所以,当 x≥1 时,xexe++11fx≥ex-1.
第二章
考点 层级突破
课时 分组冲关
(3)f(x)=x-ln x≥(1-m)x+m,即 ln x-m(x-1)≤0, 记 h(x)=ln x-m(x-1),则 h(x)≤0 对任意 x∈(0,+∞)恒成立, 求导得 h′(x)=1x-m(x>0) 若 m≤0,则 h′(x)>0,得 h(x)在(0,+∞)上单调递增, 又 h(1)=0,故当 x>1 时,h(x)>0,不合题意; 若 m>0,得 h(x)在0,m1 上单调递增,在m1 ,+∞单调递减. h(x)max=hm1 =-ln m-1+m≤0,故 f(m)≤1, 由(1)知 f(m)≥1,则 m 只能等于 1.
利用导数解决不等式恒(能)成立问题
第五节 利用导数解决不等式恒(能)成立问题考点1 分离参数法解决不等式恒成立问题利用分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实参数)恒成立问题中参数取值范围的基本步骤:(1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式.(2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围.已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.[解] (1)因为函数f (x )=x ln x 的定义域为(0,+∞),所以f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e ,所以f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e .令f ′(x )>0,得ln x +1>0,解得x >1e ,所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞.综上,f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e ,单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞. (2)因为g ′(x )=3x 2+2ax -1,由题意得2x ln x ≤3x 2+2ax +1恒成立.因为x >0,所以a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x>0),则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍).当x变化时,h′(x),h(x)的变化情况如下表:所以当x=1时,h(x)取得极大值,也是最大值,且h(x)max=h(1)=-2,所以若a≥h(x)在x∈(0,+∞)上恒成立,则a≥h(x)max=-2,即a≥-2,故实数a的取值范围是[-2,+∞).若f(x)≥a或g(x)≤a恒成立,只需满足f(x)min≥a或g(x)max≤a即可,利用导数方法求出f(x)的最小值或g(x)的最大值,从而问题得解.(2019·石家庄质量检测)已知函数f(x)=ax e x-(a+1)(2x-1).(1)若a=1,求函数f(x)的图象在点(0,f(0))处的切线方程;(2)当x>0时,函数f(x)≥0恒成立,求实数a的取值范围.[解](1)若a=1,则f(x)=x e x-2(2x-1).即f′(x)=x e x+e x-4,则f′(0)=-3,f(0)=2,所以所求切线方程为3x+y-2=0.(2)由f(1)≥0,得a≥1e-1>0,则f(x)≥0对任意的x>0恒成立可转化为aa+1≥2x-1x e x对任意的x>0恒成立.设函数F(x)=2x-1x e x(x>0),则F′(x)=-(2x+1)(x-1)x2e x.当0<x<1时,F′(x)>0;当x >1时,F ′(x )<0,所以函数F (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以F (x )max =F (1)=1e .于是aa +1≥1e ,解得a ≥1e -1. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫1e -1,+∞. 考点2 分类讨论法解决不等式恒成立问题遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x )或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2019·合肥六校联考)已知函数f (x )=(x +a -1)e x,g (x )=12x 2+ax ,其中a 为常数.(1)当a =2时,求函数f (x )在点(0,f (0))处的切线方程;(2)若对任意的x ∈[0,+∞),不等式f (x )≥g (x )恒成立,求实数a 的取值范围.[解] (1)因为a =2,所以f (x )=(x +1)e x ,所以f (0)=1,f ′(x )=(x +2)e x ,所以f ′(0)=2,所以所求切线方程为2x -y +1=0.(2)令h (x )=f (x )-g (x ),由题意得h (x )min ≥0在x ∈[0,+∞)上恒成立,因为h (x )=(x +a -1)e x -12x 2-ax ,所以h ′(x )=(x +a )(e x -1).①若a≥0,则当x∈[0,+∞)时,h′(x)≥0,所以函数h(x)在[0,+∞)上单调递增,所以h(x)min=h(0)=a-1,则a-1≥0,得a≥1.②若a<0,则当x∈[0,-a)时,h′(x)≤0;当x∈(-a,+∞)时,h′(x)>0,所以函数h(x)在[0,-a)上单调递减,在(-a,+∞)上单调递增,所以h(x)min=h(-a),又因为h(-a)<h(0)=a-1<0,所以不合题意.综上,实数a的取值范围为[1,+∞).对于不适合分离参数的不等式,常常将参数看作常数直接构造函数,常用分类讨论法,利用导数研究单调性、最值,从而得出参数范围.设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a的取值范围.[解](1)f′(x)=(1-2x-x2)e x,令f′(x)=0,得x=-1±2,当x∈(-∞,-1-2)时,f′(x)<0;当x∈(-1-2,-1+2)时,f′(x)>0;当x∈(-1+2,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)令g(x)=f(x)-ax-1=(1-x2)e x-(ax+1),令x=0,可得g(0)=0.g′(x)=(1-x2-2x)e x-a,令h(x)=(1-x2-2x)e x-a,则h′(x)=-(x2+4x+1)e x,当x≥0时,h′(x)<0,h(x)在[0,+∞)上单调递减,故h(x)≤h(0)=1-a,即g′(x)≤1-a,要使f(x)-ax-1≤0在x≥0时恒成立,需要1-a≤0,即a≥1,此时g(x)≤g(0)=0,故a≥1.综上所述,实数a的取值范围是[1,+∞).考点3等价转化法解决能成立问题存在x∈[a,b],f(x)≥a成立⇔f(x)max≥a.存在x∈[a,b],f(x)≤a成立⇔f(x)min≤a.存在x1∈[a,b],对任意x2∈[a,b],f(x1)≤g(x2)成立⇔f(x)min≤g(x)min.已知函数f(x)=3ln x-12x2+x,g(x)=3x+a.(1)若f(x)与g(x)的图象相切,求a的值;(2)若∃x0>0,使f(x0)>g(x0)成立,求参数a的取值范围.[解](1)由题意得,f′(x)=3x-x+1,g′(x)=3,设切点为(x0,f(x0)),则k=f′(x0)=3x0-x0+1=3,解得x0=1或x0=-3(舍),所以切点为⎝⎛⎭⎪⎫1,12,代入g(x)=3x+a,得a=-5 2.(2)设h(x)=3ln x-12x2-2x.∃x>0,使f(x0)>g(x0)成立,等价于∃x >0,使h (x )=3ln x -12x 2-2x >a 成立,等价于a <h (x )max (x >0).因为h ′(x )=3x -x -2=-x 2-2x +3x=-(x -1)(x +3)x, 令⎩⎪⎨⎪⎧ h ′(x )>0,x >0,得0<x <1;令⎩⎪⎨⎪⎧h ′(x )<0,x >0,得x >1. 所以函数h (x )=3ln x -12x 2-2x 在(0,1)上单调递增,在(1,+∞)上单调递减,所以h (x )max =h (1)=-52,即a <-52,因此参数a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-52.(1)“恒成立”“存在性”问题一定要正确理解其实质,深刻挖掘内含条件,进行等价转化.(2)构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离参数的方法,转化为求函数的最值问题.已知函数f (x )=ax -e x (a ∈R ),g (x )=ln x x . (1)求函数f (x )的单调区间;(2)∃x 0∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围.[解] (1)因为f ′(x )=a -e x ,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上单调递减;当a >0时,令f ′(x )=0得x =ln a .由f ′(x )>0得x <ln a ,所以f (x )的单调递增区间为(-∞,ln a ); 由f ′(x )<0得x >ln a ,所以f (x )的单调递减区间为(ln a ,+∞).(2)因为∃x0∈(0,+∞),使不等式f(x)≤g(x)-e x,则ax≤ln xx,即a≤ln xx2.设h(x)=ln xx2,则问题转化为a≤⎝⎛⎭⎪⎫ln xx2max,由h′(x)=1-2ln xx3,令h′(x)=0,则x= e.当x在区间(0,+∞)内变化时,h′(x),h(x)的变化情况如下表:由上表可知,当x=e时,函数h(x)有极大值,即最大值为12e,所以a≤12e.。
利用导数解决不等式恒成立中参数问题优秀教案
利用导数解决不等式恒成立中地参数问题一、单参数放在不等式上型:【例题1】(07全国Ⅰ理)设函数.若对所有都有,求地取值范围.解:令,则,(1)若,当时,,故在上为增函数,∴时,,即.(2)若,方程地正根为,此时,若,则,故在该区间为减函数.∴时,,即,与题设相矛盾.综上,满足条件地地取值范围是.说明:上述方法是不等式放缩法.【针对练习1】(10课标理)设函数,当时,,求地取值范围.解:【例题2】(07全国Ⅰ文)设函数在及时取得极值.(1)求、地值;(2)若对于任意地,都有成立,求地取值范围.解:(1),∵函数在及取得极值,则有,.即,解得,.(2)由(1)可知,,.当时,;当时,;当时,.∴当时,取得极大值,又,.则当时,地最大值为.∵对于任意地,有恒成立,∴,解得或,因此地取值范围为.最值法总结:区间给定情况下,转化为求函数在给定区间上地最值.【针对练习2】(07重庆理)已知函数在处取得极值,其中、、为常数.(1)试确定、地值;(2)讨论函数地单调区间;(3)若对任意,不等式恒成立,求地取值范围.解:【针对练习3】(10天津文)已知函数,其中.若在区间上,恒成立,求地取值范围.解:【例题3】(08湖南理)已知函数.(1)求函数地单调区间;(2)若不等式对任意地都成立(其中是自然对数地底数),求地最大值.解:(1)函数地定义域是,.设.则,令,则.当时,,在上为增函数,当时,,在上为减函数.∴在处取得极大值,而,∴,函数在上为减函数.于是当时,,当时,.∴当时,在上为增函数.当时,,在上为减函数.故函数地单调递增区间为,单调递减区间为.(2)不等式等价于不等式,由知,.设,,则.由(1)知,,即.∴,,于是在上为减函数.故函数在上地最小值为.∴a地最大值为.小结:解决此类问题用地是恒成立问题地变量分离地方法,此类方法地解题步骤是:①分离变量;②构造函数(非变量一方);③对所构造地函数求最值(一般需要求导数,有时还需求两次导数);④写出变量地取值范围.【针对练习4】(10全国1理)已知,若,求地取值范围.解:【针对练习5】若对所有地都有成立,求实数地取值范围.解:二、单参数放在区间上型:【例题4】已知三次函数图象上点处地切线经过点,并且在处有极值.(1)求地解析式;(2)当时,恒成立,求实数地取值范围.解:(1)∵,∴,于是过点处地切线为,又切线经过点,∴,①∵在处有极值,∴,②又,③∴由①②③解得:,,,∴.(2),由得,.当时,,单调递增,∴;当时,,单调递减,∴.∴当时,在内不恒成立,当且仅当时,在内恒成立,∴地取值范围为.【针对练习6】(07陕西文)已知在区间上是增函数,在区间,上是减函数,又.(1)求地解析式;(2)若在区间上恒有成立,求地取值范围.解:三、双参数中知道其中一个参数地范围型:【例题5】(07天津理)已知函数,其中,.(1)讨论函数地单调性;(2)若对于任意地,不等式在上恒成立,求地取值范围.解:(1).当时,显然.这时在,上内是增函数.当时,令,解得.当变化时,,地变化情况如下表:由(2)知,在上地最大值为与地较大者,对于任意地,不等式法二:变量分离.∵,∴,即.令,,∴在上递减,最小值为,从而得,∴满足条件地地取值范围是.或用,即,进一步分离变量得,利用导数可以得到在时取得最小值,从而得,∴满足条件地地取值范围是.法三:变更主元.∵,∴在递增,即地最大值为.以下同上法.说明:本题是在对于任意地,在上恒成立相当于两次恒成立,这样地题,往往先保证一个恒成立,在此基础上,再保证另一个恒成立.【例题6】设函数,,若对于任意地,不等式在上恒成立,求实数地取值范围.解:在上恒成立,即在上恒成立.由条件得,又,∴,即.设,则.令,,当,;当,,∴时,,于是,∴在递减,∴地最小值为,∴,因此满足条件地地取值范围是.【针对练习7】设函数,其中,.若对于任意地,不等式在上恒成立,求地取值范围.解:四、双参数中地范围均未知型:【例题7】(10湖南理)已知函数,对任意地,恒有.(1)证明:当时,;(2)若对满足题设条件地任意,,不等式恒成立,求地最小值.解:(1)易知.由题设,对任意地,,即恒成立,∴,从而.于是,且,因此.故当时,有,即当时,.(2)由(1)知,.当时,有.令,则,.而函数地值域是.因此,当时,地取值集合为.当时,由(1)知,,.此时或,.从而恒成立.综上所述,地最小值为.【针对练习8】若图象上斜率为3地两切线间地距离为,设.(1)若函数在处有极值,求地解析式;(2)若函数在区间上为增函数,且在区间上都成立,求实数地取值范围.解:五、双参数中地线性规划型:【例题8】(12浙江理)已知,,函数.(1)证明:当时,①函数地最大值为;②;(2)若对恒成立,求地取值范围.解:(1)①.当时,,在上恒成立,∴在上递增,此时地最大值为:;当时,,此时在上递减,在上递增,∴在上地最大值为:.综上所述:函数在上地最大值为.②∵,当时,.当时,.设,,列表可得,∴当时,,∴.(2)由①知:函数在上地最大值为,∴.由②知:,于是对恒成立地充要条件为:或,在坐标系中,不等式组所表示地平面区域为如图所示地阴影部分,其中不包括线段.作一组平行线,得,∴地取值范围为.【针对练习9】已知函数.(1)若,求地单调区间;(2)若地两个极值点,恒满足,求地取值范围.解:六、双参数中地绝对值存在型:【例题9】(06湖北理)设是函数地一个极值点.(1)求与地关系式(用表示),并求地单调区间;(2)设,.若存在,使得成立,求地取值范围.解:(1),由,得,即得,则.令,得或,由于是极值点,∴,即.当时,,则在区间上,,为减函数;在区间上,,为增函数;在区间上,,为减函数.当时,,则在区间上,,为减函数;在区间上,,为增函数;在区间上,,为减函数.(2)由(1)知,当时,,在区间上地单调递增,在区间上单调递减,那么在区间上地值域是,而,,,那么在区间上地值域是.又在区间上是增函数,且它在区间上地值域是,由于,∴只须仅须且,解得.故地取值范围是.【针对练习10】(10辽宁理)已知函数.(1)讨论函数地单调性;(2)设,如果对任意,,,求地取值范围.解:总结:关于运用导数解决含参函数问题地策略还有很多,参数问题形式多样,方法灵活多变,技巧性较强,对于某些“含参函数”题目,不一定用某一种方法,还可用多种方法去处理.这就要求我们养成良好地数学思维,有良好地观察与分析问题地能力,灵活地转化问题能力,使所见到地“含参函数”问题能更有效地解决.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.p1Ean。
利用导数解决含参不等式参数取值范围问题的策略_李文东
利用导数解决含参不等式参数取值范围问题的策略广东省中山市中山纪念中学(528454) 李文东含参不等式恒成立问题,特别是利用导数解决含参关系式恒成立求参数的取值范围这一问题经常出现在高考试题中,是高考的重点也是难点.解决这一类问题需要用到函数与方程思想、转化与化归思想、数形结合思想和分类讨论等数学思想,能够很好的反映学生的数学素养.下面结合例题具体谈谈此类问题的求解策略.策略一 不等式(,)0f x a …恒成立⇔min (,)0f x a …,合理分类讨论求最值. 例1 (2010年高考新课标卷理科)设函数2()1x f x e x ax =---,a R ∈.若当0x ≥时,()0f x ≥恒成立,求a 的取值范围.解 因为()12xf x e ax '=--,它比较复杂,考虑进一步求导:()"2f x ex a =-,显然()"f x 递增,故当0x ≥时,()"12min f x a =-.于是(1)当21a ≤,即12a ≤时,()"0f x ≥,所以()'f x 在[)0,+∞单调递增,所以()'f x ≥ ()00f '=,即() '0f x ≥,所以()f x 在[)0,+∞单调递增,所以()()00f x f ≥=.(2)当21a >,即12a >时,令''()20x f x e a =-=,解之得ln 2x a =.当()0,ln 2x a ∈时,()"0f x <,()'f x 为单调递减函数;又因为()'00f =,所以()0,ln 2x a ∈时,()'0f x <,所以()f x 在区间()0,ln 2a 是单调递减函数.又()00f =,所以()0,ln 2x a ∈时,()0f x <不符合题意要求.综上所述,实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦. 评注 (1)分类讨论的难点在于分类标准的确定,目标就是确定导函数的符号,一般要结合导函数的具体形式来确定.如果导函数的符号能等价转化为一个二次函数的符号,则常见的讨论标准如下:1.讨论是否是二次函数;2.讨论零点的存在与否;3.讨论零点是否在定义域之内;4.讨论零点的大小关系;5.讨论二次函数的开口方向.(2)本例中()12x f x e ax '=--比较复杂,为了研究其符号,关键还是弄清楚其单调性,故继续对其求导后根据()""2f x e a =-的符号来确定讨论标准.策略二 分离参数避免分类讨论,快速求解.例2 (2013年高考全国新课标卷)已知函数2()f x x ax b =++,()()xg x e cx d =+,若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(1)求a ,b ,c ,d 的值;(2)若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解 (1)4a =,2b c d ===.(2)2x ≥-时,()()f x kg x ≤,即242(22)xx x ke x ++≤+. 故当1x >-时,220x >+,于是分离参数后有2422(1)x x x k e x +++…,令242()(1)x x x h x e x ++=+,则22(2)'()(1)x x x h x e x +=-+,可知当,0()1x ∈-时,()0h x '>,()h x 递增;,()0x ∈+∞时,()0h x '<,()h x 递减;于是()()max 2021k h x h k ≥==⇒≥;而当21x -≤<-时,220x +<,于是有2422(1)x x x k e x +++≤,可知当)2(1x ∈--,时,()0h x '>,()h x 递增;于是22min 2()(2)2k h x h e k e ≤==⇒-≤.综上,k 的取值范围为21k e ≤≤.评注 本题是一个典型的利用分离参数法求解参数取值范围的例子,分离中需要注意分母函数()g x 的符号,分离参数的目的就是避免复杂的分类讨论而达到快速求解!策略三 利用必要条件或端点效应缩小参数的范围.例3 (2014年高考全国新课标卷)已知函数()2x x f x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值.解 (1)略.(2)注意到()00g =,要使当0x >时,()0g x >,则必存在00x >,当0()0x x ∈,时,()g x 递增,也即有:当0()0x x ∈,时,()0g x '≥,从而必有:()'00g ≥.而22'()2'(2)4'()2(2)4(2)x x x x g x f x bf x e e b e e --=-=+--+-.注意到()'00g =,从而同理必有()"00g ≥.而22)''()4()4(x x x x g x ee b e e --=---,注意到()"00g =,从而同理必有()"'00g ≥.而 22'''())8()4(x x x x g x e e b e e --=+-+,于是()()'''08202g b b =-≥⇒≤.而当2b ≤时,()()()24g x f x bf x =-()()()28f x f x h x ≥-=,222()2()8()122(2)'0x x x x x x h x e e e e e e ---=+-++=+->,故()h x 递增,又()00h =,于是()0h x >,也即有()0g x >成立.综上,b 的最大值为2.评注 端点效应是指:对于[]x a b ∀∈,,()0f x ≥,且()0f a =.则必然0()x a b ∃∈,,当0,[]x a x ∈时()f x 递增,从而有0,[]x a x ∈时,()'0f x ≥成立,特别有()'0f a ≥这一必要条件得出参数的范围,然后说明这一范围的充分性即可,这样既避免了分类讨论,也可避免了分离参数后函数很复杂且有时需要用到罗必塔法则的情形.实际操作中,若不满足这一条件,我们也可以在自变量的范围内取一特定值,缩小参数的取值范围,减少分类讨论的种类!策略四 分离函数,数形结合,转化为两函数图像的关系.例4 若不等式()2ln 2ax x a x x -≥-对1[)x ∀∈+∞,恒成立,求a 的取值范围.解 方法一 因为不等式2ln (2)ax x a x x -≥-对1[)x ∀∈+∞,恒成立,所以2()a x x lnx -≥对1[)x ∀∈+∞,恒成立.当1x =时,不等式显然成立,当1x >时,20x x ->,ln 0x >,故0a >.2()()g x a x x =-,()ln f x x =作出两函数的图像,如图1.图1当()f x 与()g x 在1x =处相切时,()()1g x x >图像恰好位于()()1f x x >图像的上方,此时()()'11f g =',即1a =,结合图像可知,所求a 的取值范围为1a ≥.评注 本法是转化为两曲线的情况.顺着这个思路,本题还有以下两种解法.方法二 因为不等式2ln (2)ax x a x x -≥-对1[)x ∀∈+∞,恒成立,所以2()a x x lnx -≥对1[)x ∀∈+∞,恒成立,也即(1)ln x a x x-≥对1[)x ∀∈+∞,恒成立.令x (n )l f x x =,则21ln '()x f x x -=,可知()f x 在(1)e ,上递增,()e +∞,上递减.如图2,故当直线()1y a x =-位于()f x 在1x =处的切线及其上方时,不等式恒成立,从而 ()'11a f ≥=.图2图3 方法三 因为不等式2ln (2)ax x a x x -≥-对1[)x ∀∈+∞,恒成立,所以ln 1ax x x ≥-对1()x ∀∈+∞,恒成立. 令ln ()1f x x x =-,则211ln '()(1)x x f x x --=-.令1()1ln g x x x =--,则211'()g x x x=- 210(1)x x x-=≤≥,故()g x 递减,于是()()10g x g ≤=,进一步有()'0f x ≤,从而()f x 在(1)+∞,上递减,由于()f x 在1x =处没有意义,因此需要用到洛必达法则,1111l lim ()lim lim 111n x x x f x x x x →→→===-.如图3,当直线y ax =过点(1)1,时恰好满足题意,所求a 的取值范围为1a ≥.例5 已知函数()()ln 1f x x a x =-+,若对任意的]2[1x ∈,,2()f x x ≥恒成立,求实数a 的取值范围.解 2()f x x ≥,即22ln(1)ln(1)x a x x x x x a ⇒-≥-+≥+对任意的]2[1x ∈,恒成立.因为]2[1x ∈,时,20x x -≤,()ln 10x +>,故0a ≤,从而函数()ln 1y a x =+和函数2y x x =-都在[1]2,上递减,且它们的凹凸性相反.在同一坐标系下作出两函数的图像,如图4,可知当函数()ln 1y a x =+满足在2x =时,2y ≤-即可,即2ln 32ln 3a a ≤-⇒-….图4评注 分离函数可看作分离参数法的推广,分离函数时,可以尽量从多个角度尝试不同的分离方式,只要分离后的函数比较简单即可.策略五 等价变换,巧妙转化.例6 (广东省2019届高三六校联考)已知函数ln 2()x f x x+=. (1)求函数()f x 在[1,)+∞上的值域;(2)若1,[)x ∀∈+∞,()ln ln 424x x ax +≤+恒成立,求实数a 的取值范围.解 (I)略.(2)令ln x t =,则()0tx e t =≥,不等式()ln ln 424x x ax +≤+等价于2442tt t ae ≤+-,分离参数后得:2442()t t t a g t e +-=…,(2)(4)'()t t t g t e -+=,可知函数()g t 在[0,2]上递增,在[2,)+∞上递减,于是max 282()g a t e =≥,故实数a 的取值范围为2[4),e +∞. 例7 若对任意0x >,1(1)2()ln ax a e x x x +≥+恒成立,求实数a 的取值范围.解 不等式1(1)2()ln ax a e x x x +≥+两边同乘以x 得:2(1)2(1)ln a x ax ex x +≥+,进一步有22(1)ln (1)ln a x a x e e x x +≥+.令()()l 1n f x x x =+,则原不等式等价于:2()()ax f e f x ≥.又易知()f x 在(0,)+∞上递增,故2a x e x ≥,分离参数可得:ln 2a x x ≥⋅.令n (l )g x x x =,易知()g x 在(0,)e 上递增,在(),e +∞上递减,故max 22()a g x e ≥⋅=. 评注 当函数()f x 比较复杂时,我们可以对其进行等价变换,比如换元法,同构法等,使得问题达到简化的目的!以上是导数解决函数恒成立求参数取值范围问题的一般策略.一般来说,从解题的复杂程度来说选择的步骤是:数形结合,分离函数→分离参数→端点效应→合理转化→分类讨论.当然以上顺序也不是一成不变的,还是要具体情况具体分析.最后结合分离函数法来简单谈一下作为一个教师怎么编制出恒成立问题的试题.我们可以利用一些常见的曲线和直线来构造恒成立问题,特别是直线过曲线上的定点或者直线就是曲线在某点处的切线时.比如我们可以编制如下问题:(1)函数()ln f x x =在1x =处的切线方程为1y x =-,于是我们可以这样出题:当1x >时,()ln 1x a x <-恒成立,求a 的取值范围(答案:1a ≥);(2)函数()()()ln 11f x x x =-+在0x =处的切线方程为y x =,于是我们可以这样出题:当0x >时,()()1ln 1x x ax -+<恒成立,求a 的取值范围(答案:1a ≥).我们还可以将本文中的例4稍加改编得到如下比较有趣的一道题:(3)若不等式2ln (2)ax x a x x -≥-对0,()x ∀∈+∞恒成立,求a 的取值范围.结合文章中的解法,不难知道所求a 的取值范围为1a =,它只有一个值满足要求!。
利用导数求参数的取值范围方法归纳
利用导数求参数的取值范围一•已知函数单调性,求参数的取值范围类型1 •参数放在函数表达式上例1. 设函数f(x) 2x3 3(a 1)x2 6ax 8其中a R •⑴若f (x)在x 3处得极值,求常数a的值.⑵若f(x)在(,0)上为增函数,求a的取值范围二.已知不等式在某区间上恒成立,求参数的取值范围类型1.参数放在不等式上2例3•已知f(x) x3ax2bx c在x 与x 1时都取得极值3(1)求a、b的值及函数f (x)的单调区间.(2)若对x [ 1,2],不等式f(x) C2恒成立,求c的取值范围.23. 已知函数f (x) x3— 2x 5,若对任意x [ 1,21都有f (x) m则实数m的取值范围是2类型2 .参数放在区间上例4 .已知三次函数f(x) ax3 5x2 cx d图象上点(1,8)处的切线经过点(3,0),并且f (x)在x=3处有极值.(1) 求f (x)的解析式•( 2)当x (0,m)时,f (x) >0恒成立,求实数m的取值范围.分析:(1) f (x) x3 5x2 3x 9' 2(2) .f (x) 3x 10x 3 (3x 1)(x 3)由f (x) 0得X1丄必 3当x (0,1)时f (x) 0, f(x)单调递增,所以f (x) f (0) 93 3当x 』,3)时f '(x) 0, f (x)单调递减,所以f (x) f(3) 03所以当m 3时f(x) 0在(0,m)内不恒成立,当且仅当m (0,3]时f (x) 0在(0,m)内恒成立所以m的取值范围为(0,3]基础训练:4. 若不等式x4 4x3 ________________________________________ 2 a对任意实数x 都成立,则实数a的取值范围是___________________________________________________ .三.知函数图象的交点情况,求参数的取值范围.例5•已知函数f(x) ax3 bx2 3x在x 1, x 1处取得极值(1)求函数f(x)的解析式.⑵若过点A(1,m)(m 2)可作曲线y= f (x)的三条切线,求实数m的取值范围略解⑴求得f (x) x3 3x⑵设切点为M(x0,x3 3x0),因为f (x) 3x2 3所以切线方程为y m (3x2 3)(x 1),又切线过点M所以x3 3x0 m (3x2 3)(x01)即2x3 3x(2 m 3 0因为过点A可作曲线的三条切线,所以关于X。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以 / ( ) 在区间( 一 ∞, 1+ ) 单 调 递增 ,
∈( 1 + 1, +。 。 ) 时, 厂( )<O . 所以 , ( )
在( 1 , 1+ ) 单 调递增 , 在( 1+ 1
,
在区 间 ( 1+ { ,+ ∞)单 调 递 减 . 所 以
( )= ( 1+ )= I n 1 ≤ o 所 以 k≥
,
+。 。 ) 单
调递 减 , - 厂 ( )≤ 0恒 成 立 , 所以 f ( )=
1 . 因此实数 的取值范围为[ 1 , +∞) .
点评 : 学生 基 本 知 道 要 证 明 不 等式 恒 成
f ( 1 + 去 ) = I n 1 ≤ 0 即 ≥ 1 .
综 上所述 , 满 足题 意 的实 数 j } 的取 值 范 围为 [ 1 , +。 。 ) . 2 . 2 分 离参数 转 化为 求新 函数 最值
f ( )= I n ( 一1 )一k ( 一1 )+1≤ 0
立, 可以转化为求函数最值 , 转而求 函数 的导
数 的思路 . 但 忽略 了 函数 的定 义域 , 虽说 结果 碰 巧正确 , 但解 答 过程错 误 .
・
1 6 ・
2 0 1 5年 第 4期
河北 理科教 学研 究
/ , /
f ( )=I n ( 一1 )一k ( 一1 ) +1 ≤0 , 所以I n ( 一1 )+1≤ k ( 一1 ) . 设 f 。 ( ) :
I n ( 一1 )+ 1 ( >
=g ( 2 )=1 , 所以满足题意的实数 k 的取值
范 围为 [ 1 ,+ ∞) .
2 . 3 分 离成 两个 函数 , 数 形 结合
解法 三 把不 等 式 分 离 成 两个 函数 , 再由 函数 图 像 关 系 及 参 数 几 何 意 义 得 出参 数 范 围. 分离 出 的两个 函数 必须一 个是 已知 的 , 较 为 简单 的函数 , 否则 图像 得不 到 . 另一个 带 参
_ 厂 ( ) 的定义域为 ( 1 , + ∞) . 厂( )=
—
已知 函数 f ( )=I n ( 一1 )一k ( 一1 )
+1 ( k∈ R) , ( 1 ) 若 =2 , 求以 M( 2 , f ( 2 ) ) 为切点 的 曲线 的切线 方程 .
学 生解 答过 程 : ( )=
1 问题 的提 出
明, 精神 上近 乎一 首诗 . ”这 就是 数 学教 师 独 有的 高雅 的精神 享 受 , 这 就是 数 学 王 国对 数 学教 师 的最 高奖 赏 , 这 就 是数 学 迷 宫 吸引 无 数 人为 之疯 狂 的魅 力所在 .
2 . 1 直接 转化 为 求函数 最值
一
士 一 : — _ 譬 二 _ _ . ‘ 当 k ≤ o u 时 H , . ‘ . ・ . ‘
≥1 , . ・ . 一 + +1 >0 , . ・ . /( ) >0 在( 1 ,
+∞) 恒成 立 , 所以 f ( ) 在( 1 , +∞) 单 调递
分 类讨论 , 新 函数 的最 值可 能不 好求 .
g ) = 譬 ( ) = 0 = 2 ,
所 以 ∈ ( 1 , 2 ) 时 ( )>0 ; ∈( 2 , +∞)
时, ( )< 0 . 所以 厂 ( )在 ( 1 , 2 ) 单 调 递 增, 在( 2 , +。 。 ) 单调 递减 , 所 以 k≥ g ( )
法
高中数学的重要 内容 , 也是历年高考 的热点
考题 , 笔 者在 平时 的教学 中发 现 : 学 生在 不等
正 如 克 莱 因所 言 : “ 一 个 精 彩 巧 妙 的 证
式恒 成 立 的条 件 下 求 参 数 范 围往 往 不 知 所 措. 数 学教 育家 波利 亚有 句名 言 : “ 掌 握数 学 就 意味着 要善 于解题 . ” 因此笔 者觉 得有 必要 对此 类 问题 进行 归 类 分 析 , 并 对几 种 方 法 进 行对 比分 析 , 以供 同学们研 讨 .
上
一k=0 ,
增, 又 一 +∞ 时 , , ( ) 一 + ∞, 所 以 ( )
当 >0 时, /( ):0 则 1 + 去 , 当 ∈ ( 一 ∞ , 1 + 丢 ) 时 , 厂 ( ) ≤ 0不恒成立 . 1 + 去 . ∈ ( 1 , 1 + 去 ) 时 , / ( ) > 0 ; > 0 , 当 ∈( 1 + 专, + ∞ ) 时, 厂 ( ) < 0 .
2 0 1 5年 第 4期
河北理科 教 学研 究
问题 讨论
利 用 导数 解 决 不 等 式恒 成 立 的参 数 范 围 问题
山 东省枣庄 市 第二 中学 王中华 2 7 7 4 0 0
不 等式 恒成立 中的参数 范 围问题一 直是
2 不等 式恒成 立 求参 数范 围的 三种 常 见解
问题 讨论
恒 成立 , 所 以 k≥ I n ( 一1 )+ 1 恒成 立 .
一
大值恒 小 于等 于 零 解参 数 范 围 . 好 处 是 比较
直接 , 易想 , 没 有 经过 整 理 和化 简 , 需 要 注意
1
设
):
( > 1 ) ,
的是定 义域 恒 成 立 的 自变 量 范 围 . 难 处 是 讨 论 会 比较 多 , 容 易造成 讨论 不完 整 . 解 法二 通过 分离 参数 , 构造 新 函数 , 由参 数 恒大 于 ( 或小 于) 新 函数 的最 大 值 ( 或 最 小 值) 求解不等式 , 转 化 为 求 新 函数 的 最 值 问 题. 分离 参数 新 函数不 再含 参 , 因此不 需要 对 参数 进行 讨 论 , 但 分 离参 数 时不 等 式 可 能 要