遗传算法经典MATLAB代码资料讲解

合集下载

遗传算法详解(含MATLAB代码)

遗传算法详解(含MATLAB代码)

遗传算法详解(含MATLAB代码)Python遗传算法框架使用实例(一)使用Geatpy实现句子匹配在前面几篇文章中,我们已经介绍了高性能Python遗传和进化算法框架——Geatpy的使用。

本篇就一个案例进行展开讲述:pip install geatpy更新至Geatpy2的方法:pip install --upgrade --user geatpy查看版本号,在Python中执行:import geatpyprint(geatpy.__version__)我们都听过“无限猴子定理”,说的是有无限只猴子用无限的时间会产生特定的文章。

在无限猴子定理中,我们“假定”猴子们是没有像人类那样“智能”的,而且“假定”猴子不会自我学习。

因此,这些猴子需要“无限的时间"。

而在遗传算法中,由于采用的是启发式的进化搜索,因此不需要”无限的时间“就可以完成类似的工作。

当然,需要产生的文章篇幅越长,那么就需要越久的时间才能完成。

下面以产生"T om is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much."的句子为例,讲述如何利用Geatpy实现句子的搜索。

之前的文章中我们已经讲述过如何使用Geatpy的进化算法框架实现遗传算法编程。

这里就直接用框架。

把自定义问题类和执行脚本编写在下面的"main.py”文件中:# -*- coding: utf-8 -*-import numpy as npimport geatpy as eaclass MyProblem(ea.Problem): # 继承Problem父类def __init__(self):name = 'MyProblem' # 初始化name(函数名称,可以随意设置) # 定义需要匹配的句子strs = 'Tom is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much.'self.words = []for c in strs:self.words.append(ord(c)) # 把字符串转成ASCII码M = 1 # 初始化M(目标维数)maxormins = [1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = len(self.words) # 初始化Dim(决策变量维数)varTypes = [1] * Dim # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [32] * Dim # 决策变量下界ub = [122] * Dim # 决策变量上界lbin = [1] * Dim # 决策变量下边界ubin = [1] * Dim # 决策变量上边界# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)def aimFunc(self, pop): # 目标函数Vars = pop.Phen # 得到决策变量矩阵diff = np.sum((Vars - self.words)**2, 1)pop.ObjV = np.array([diff]).T # 把求得的目标函数值赋值给种群pop的ObjV执行脚本if __name__ == "__main__":"""================================实例化问题对象============================="""problem = MyProblem() # 生成问题对象"""==================================种群设置================================"""Encoding = 'RI' # 编码方式NIND = 50 # 种群规模Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,problem.borders) # 创建区域描述器population = ea.Population(Encoding, Field, NIND) # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)"""================================算法参数设置=============================="""myAlgorithm = ea.soea_DE_rand_1_L_templet(problem, population) # 实例化一个算法模板对象myAlgorithm.MAXGEN = 2000 # 最大进化代数"""===========================调用算法模板进行种群进化========================="""[population, obj_trace, var_trace] = myAlgorithm.run() # 执行算法模板population.save() # 把最后一代种群的信息保存到文件中# 输出结果best_gen = np.argmin(obj_trace[:, 1]) # 记录最优种群是在哪一代best_ObjV = obj_trace[best_gen, 1]print('最优的目标函数值为:%s'%(best_ObjV))print('有效进化代数:%s'%(obj_trace.shape[0]))print('最优的一代是第 %s 代'%(best_gen + 1))print('评价次数:%s'%(myAlgorithm.evalsNum))print('时间已过 %s 秒'%(myAlgorithm.passTime))for num in var_trace[best_gen, :]:print(chr(int(num)), end = '')上述代码中首先定义了一个问题类MyProblem,然后调用Geatpy内置的soea_DE_rand_1_L_templet算法模板,它实现的是差分进化算法DE-rand-1-L,详见源码:运行结果如下:种群信息导出完毕。

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。

它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。

它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。

遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。

从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。

如此模仿生命的进化进行不断演化,直到满足期望的终止条件。

运算流程:Step 1:对遗传算法的运行参数进行赋值。

参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。

Step 2:建立区域描述器。

根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。

Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。

Step 4:执行比例选择算子进行选择操作。

Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。

Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。

Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。

运用遗传算法工具箱:运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。

目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。

实际上,GADS就是大家所看到的Matlab中自带的工具箱。

我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。

因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

matlab遗传算法代码

matlab遗传算法代码

matlab遗传算法代码
1 、算法概述
遗传算法(Genetic Algorithms,GA)是一种仿生学优化算法,它借用遗传学中物
竞天择的进化规则,模拟“自然选择”与“遗传进化”得出选择最优解的过程。

其基本原
理是对现有的种群中的各个个体,将其表示成某种形式的编码,然后根据自变量与约束条件,利用杂交、变异等操作,产生新一代解的种群,不断重复这一过程,最终求出收敛到
最优解的种群。

2、遗传算法的作用
遗传算法的主要作用在于优化多元函数,能够在大量的变量影响目标函数值的情况下
寻求最优解。

和其它现有的数值优化技术比较,如梯度下降法等,遗传算法更能适应“凸”和“非凸”都能解决,不受约束条件与搜索空间的影响较大,又叫做“智能搜索法”。


计算机视觉等计算机技术领域,经常用遗传算法来对一系列特征参数进行搜索和调节,成
功优化提高了系统的正确处理率。

3、matlab遗传算法的实现
Matlab的遗传算法应用是基于GA Toolbox工具箱,它提供了一个功能强大的、可扩
展的包装器,可用于构建遗传算法模型。

(1)编写最优化函数:
使用和设置最优化表达式或函数、变量;
(2)设置参数编码:
设置变量的编码,比如选择0-1二进制、0-10十进制;
(3)选择遗传算法的方法
选择遗传算法的方法,可以在多个选择中选择,比如变异、杂交等;
(4)设置运算参数:
设置每代的种群数、最大进化的世代数;
(5)运行遗传算法:
根据设定的参数运行遗传算法,算出收敛到最优解的种群;
(6)获得最优解:
获得收敛到最优解的条件下的最优解,得出最优解所在位置等参数,完成整个优化搜索。

nsga-ⅲ算法matlab代码及注释

nsga-ⅲ算法matlab代码及注释

nsga-ⅲ算法matlab代码及注释一、NSGA-Ⅲ算法简介NSGA-III算法是多目标优化领域的一种经典算法,它是基于非支配排序的遗传算法。

该算法通过模拟自然选择的过程,不断改进种裙中的个体,以寻找Pareto前沿上的最优解。

NSGA-III算法在解决多目标优化问题方面表现出色,广泛应用于工程、经济和管理等领域。

二、代码实现下面是NSGA-III算法的Matlab代码示例,包含了代码的注释和解释。

```matlab初始化参数pop_size = 100; 种裙大小max_gen = 100; 最大迭代次数p_cross = 0.8; 交叉概率p_mut = 0.1; 变异概率n_obj = 2; 目标函数数量初始化种裙pop = initialization(pop_size);进化过程for gen = 1:max_gen非支配排序和拥挤度距离计算[fronts, cd] = non_dominated_sort(pop);种裙选择offspring = selection(pop, fronts, cd, pop_size);交叉和变异offspring = crossover(offspring, p_cross);offspring = mutation(offspring, p_mut);合并父代和子代种裙pop = merge_pop(pop, offspring, pop_size);end结果分析pareto_front = get_pareto_front(pop);plot_pareto_front(pareto_front);```三、代码解释1. 初始化参数:设置种裙大小、最大迭代次数、交叉概率、变异概率和目标函数数量等参数。

2. 初始化种裙:调用初始化函数,生成初始的种裙个体。

3. 进化过程:在每一代中,进行非支配排序和拥挤度距离计算,然后进行种裙选择、交叉和变异操作,最后合并父代和子代种裙。

遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)遗传算法解决简单问题%主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc;clear all;close all;global BitLengthglobal boundsbeginglobal boundsendbounds=[-2,2];precision=0.0001;boundsbegin=bounds(:,1);boundsend=bounds(:,2);%计算如果满足求解精度至少需要多长的染色体BitLength=ceil(log2((boundsend-boundsbegin)'./precision));popsize=50; %初始种群大小Generationmax=12; %最大代数pcrossover=0.90; %交配概率pmutation=0.09; %变异概率%产生初始种群population=round(rand(popsize,BitLength));%计算适应度,返回适应度Fitvalue和累计概率cumsump[Fitvalue,cumsump]=fitnessfun(population);Generation=1;while Generation<generationmax+1< p="">for j=1:2:popsize%选择操作seln=selection(population,cumsump);%交叉操作scro=crossover(population,seln,pcrossover);scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);%变异操作smnew(j,:)=mutation(scnew(j,:),pmutation);smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);endpopulation=scnew; %产生了新的种群%计算新种群的适应度[Fitvalue,cumsump]=fitnessfun(population);%记录当前代最好的适应度和平均适应度[fmax,nmax]=max(Fitvalue);fmean=mean(Fitvalue);ymax(Generation)=fmax;ymean(Generation)=fmean;%记录当前代的最佳染色体个体x=transform2to10(population(nmax,:));%自变量取值范围是[-2,2],需要把经过遗传运算的最佳染色体整合到[-2,2]区间xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1);xmax(Generation)=xx;Generation=Generation+1;endGeneration=Generation-1;Bestpopulation=xx;Besttargetfunvalue=targetfun(xx);%绘制经过遗传运算后的适应度曲线。

遗传算法matlab程序代码

遗传算法matlab程序代码

遗传算法matlab程序代码遗传算法是一种优化算法,用于在给定的搜索空间中寻找最优解。

在Matlab中,可以通过以下代码编写一个基本的遗传算法:% 初始种群大小Npop = 100;% 搜索空间维度ndim = 2;% 最大迭代次数imax = 100;% 初始化种群pop = rand(Npop, ndim);% 最小化目标函数fun = @(x) sum(x.^2);for i = 1:imax% 计算适应度函数fit = 1./fun(pop);% 选择操作[fitSort, fitIndex] = sort(fit, 'descend');pop = pop(fitIndex(1:Npop), :);% 染色体交叉操作popNew = zeros(Npop, ndim);for j = 1:Npopparent1Index = randi([1, Npop]);parent2Index = randi([1, Npop]);parent1 = pop(parent1Index, :);parent2 = pop(parent2Index, :);crossIndex = randi([1, ndim-1]);popNew(j,:) = [parent1(1:crossIndex),parent2(crossIndex+1:end)];end% 染色体突变操作for j = 1:NpopmutIndex = randi([1, ndim]);mutScale = randn();popNew(j, mutIndex) = popNew(j, mutIndex) + mutScale;end% 更新种群pop = [pop; popNew];end% 返回最优解[resultFit, resultIndex] = max(fit);result = pop(resultIndex, :);以上代码实现了一个简单的遗传算法,用于最小化目标函数x1^2 + x2^2。

遗传算法及其MATLAB程序代码

遗传算法及其MATLAB程序代码

遗传算法及其MATLAB程序代码遗传算法及其MATLAB实现主要参考书:MATLAB 6.5 辅助优化计算与设计飞思科技产品研发中⼼编著电⼦⼯业出版社2003.1遗传算法及其应⽤陈国良等编著⼈民邮电出版社1996.6主要内容:遗传算法简介遗传算法的MATLAB实现应⽤举例在⼯业⼯程中,许多最优化问题性质⼗分复杂,很难⽤传统的优化⽅法来求解.⾃1960年以来,⼈们对求解这类难解问题⽇益增加.⼀种模仿⽣物⾃然进化过程的、被称为“进化算法(evolutionary algorithm)”的随机优化技术在解这类优化难题中显⽰了优于传统优化算法的性能。

⽬前,进化算法主要包括三个研究领域:遗传算法、进化规划和进化策略。

其中遗传算法是迄今为⽌进化算法中应⽤最多、⽐较成熟、⼴为⼈知的算法。

⼀、遗传算法简介遗传算法(Genetic Algorithm, GA)最先是由美国Mic-hgan⼤学的John Holland于1975年提出的。

遗传算法是模拟达尔⽂的遗传选择和⾃然淘汰的⽣物进化过程的计算模型。

它的思想源于⽣物遗传学和适者⽣存的⾃然规律,是具有“⽣存+检测”的迭代过程的搜索算法。

遗传算法以⼀种群体中的所有个体为对象,并利⽤随机化技术指导对⼀个被编码的参数空间进⾏⾼效搜索。

其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等5个要素组成了遗传算法的核⼼内容。

遗传算法的基本步骤:遗传算法是⼀种基于⽣物⾃然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从⼀组随机产⽣的称为“种群(Population)”的初始解开始搜索过程。

种群中的每个个体是问题的⼀个解,称为“染⾊体(chromos ome)”。

染⾊体是⼀串符号,⽐如⼀个⼆进制字符串。

这些染⾊体在后续迭代中不断进化,称为遗传。

在每⼀代中⽤“适值(fitness)”来测量染⾊体的好坏,⽣成的下⼀代染⾊体称为后代(offspring)。

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

遗传算法入门(上)代码中的进化学说与遗传学说写在之前算法所属领域遗传算法的思想解析为什么要用遗传算法?科研现状应用现状遗传算法入门系列文章:(中篇)遗传算法入门(中)实例,求解一元函数最值(MATLAB版)(下篇)遗传算法入门(下)实例,求解TSP问题(C++版)写在之前说明:本想着用大量篇幅写一篇“关于遗传算法的基本原理”作为本系列入门的第一篇,但是在找寻资料的过程中,看到网络上有大量的关于遗传算法的介绍,觉得写的都挺好,所以本文我就简单写点自己的理解。

推荐几篇关于遗传算法的介绍性文章:遗传算法详解(GA)(个人觉得很形象,很适合初学者)算法所属领域相信每个人学习一门知识之前,都会想知道这门知识属于哪一门学科范畴,属于哪一类技术领域?首先对于这种问题,GA是没有绝对的归属的。

算法的定义是解决问题的一种思想和指导理论。

而遗传算法也是解决某一问题的一种思想,用某一编程语言实现这种思想的程序具有很多特点,其中一个便是智能性和进化性,即,不需要大量的人为干涉,程序本身能够根据一定的条件自我筛选,最终得出令人满意的结果。

所以按照这种特性,把它列为人工智能领域下的学习门类毫无疑问是可以的。

遗传算法的思想是借鉴了达尔文的进化学说和孟德尔的遗传学说,把遗传算法说成是一门十足的仿生学一点都不过分。

然而从应用的角度出发,遗传算法是求最优解问题的好方法,如信号处理中的优化、数学求解问题、工业控制参数最优解、神经网络中的激活函数、图像处理等等,所以把遗传算法说成优化范畴貌似也说的过去。

为了方便理解,我们可以暂时将其定位为人工智能–智能优化,这也是很多书中描述遗传算法的惯用词汇。

遗传算法的思想解析遗传算法(gentic algorithms简称GA)是模拟生物遗传和进化的全局优化搜索算法我们知道,在人类的演化中,达尔文的进化学说与孟德尔的遗传学说起着至关重要的理论指导。

每个人作为一个个体组成一个人类种群,正是经历着物竞天择,才会让整个群体慢慢变的更好,即更加适应周围的环境。

遗传算法 matlab

遗传算法 matlab

遗传算法 Matlab什么是遗传算法?遗传算法是一种模拟生物进化过程的优化算法。

它模拟了自然界中的遗传、突变和选择等过程,利用这些操作来搜索和优化问题的解空间。

遗传算法具有以下几个关键步骤:1.初始化种群:通过生成一组随机解来初始化初始种群。

每个解被编码为一个染色体,染色体通常由二进制字符串表示。

2.评价适应度:使用适应度函数评估每个个体的适应度。

适应度函数通常通过衡量个体在解空间中的性能来定义。

3.选择操作:选择操作基于个体的适应度进行,通过概率选择操作来确定哪些个体应该参与繁殖下一代。

适应度较高的个体有更大的概率被选中。

4.交叉操作:选择的个体进行交叉操作,生成下一代的染色体。

交叉操作通过交换个体染色体中的信息来生成新的个体。

5.变异操作:为了保持种群的多样性,变异操作在染色体中进行随机的变异。

这个过程通过随机改变染色体中的部分基因来进行。

6.替换操作:根据新生成的染色体替换当前种群中某些个体,以此来形成新的种群。

7.重复上述步骤:重复执行上述步骤直到满足终止条件(例如达到最大迭代次数或找到满意的解)。

如何在 Matlab 中实现遗传算法?在 Matlab 中,可以使用遗传算法和优化工具箱来实现遗传算法。

以下是实现遗传算法的一般步骤:1.定义适应度函数:根据具体问题定义适应度函数,该函数衡量每个个体在解空间中的性能。

适应度函数的设计将影响到最终结果。

2.初始化种群:使用内置函数或自定义函数来生成初始种群。

每个个体都应该表示为染色体形式的解。

3.设置遗传算法参数:根据具体问题设置遗传算法的参数,如种群大小、迭代次数、选择操作和交叉操作的概率等。

4.编写遗传算法主循环:在主循环中,使用选择操作、交叉操作和变异操作来生成新的染色体,并计算每个个体的适应度。

5.选择操作:使用选择函数根据适应度值选择染色体。

具体的选择函数可以根据问题的特点进行调整。

6.交叉操作:使用交叉函数对染色体进行交叉操作,生成下一代的染色体。

手把手教你学matlab遗传算法

手把手教你学matlab遗传算法

基于遗传算法求解函数最优值1.选择函数形式:y=10*sin(5*x)+7*abs(x-5)+102.函数直观图像:3.函数理论最大值:X=0.286,Y=52.89904.Matlab函数实现:the best X is--->>0.32the best Y is--->>52.735.Matlab程序5.1--------------------------------------------------------------%-------------函数说明----------------%%主函数%---------------------------------------function main()clearclcpopsize=100;%种群大小chromlength=10;%二进制编码长度pc=0.6;%交叉概率pm=0.001;%变异概率pop=initpop(popsize,chromlength);%初始种群for i=1:100[objvalue]=cal_objvalue(pop);%计算适应度值(函数值)fitvalue=objvalue;[newpop]=selection(pop,fitvalue);%选择操作[newpop]=crossover(newpop,pc);%交叉操作[newpop]=mutation(newpop,pm);%变异操作pop=newpop;%更新种群[bestindividual,bestfit]=best(pop,fitvalue);%寻找最优解x2=binary2decimal(bestindividual);x1=binary2decimal(newpop);[y1]=cal_objvalue(newpop);if mod(i,10)==0figure;fplot('10*sin(5*x)+7*abs(x-5)+10',[010]);hold on;title(['迭代次数为n='num2str(i)]);plot(x1,y1,'*');endendfprintf('the best X is--->>%5.2f\n',x2);fprintf('the best Y is--->>%5.2f\n',bestfit);5.2-----------------------------------%-------------函数说明----------------%初始化种群大小%输入变量:%popsize:种群大小%chromlength:染色体长度--》转化的二进制长度%输出变量:%pop:种群%---------------------------------------function pop=initpop(popsize,chromlength)pop=round(rand(popsize,chromlength));5.3--------------------------------------%-------------函数说明----------------%二进制转化十进制函数%输入变量:%二进制种群%输出变量:%十进制数值%---------------------------------------function pop2=binary2decimal(pop)[px,py]=size(pop);for i=1:pypop1(:,i)= 2.^(py-i).*pop(:,i);end%sum(.,2)对行求和,得到列的向量temp=sum(pop1,2);pop2=temp*10/1023;5.4--------------------------------------%-------------函数说明----------------%计算函数目标值%输入变量:%二进制数值%输出变量:%目标函数值%---------------------------------------function[objvalue]=cal_objvalue(pop)x=binary2decimal(pop);%转化二进制数为x变量的变化域范围的数值%x=temp*10/1023;%objvalue=10*sin(5*x)+7*cos(4*x);%objvalue=10*sin(x)+7*x+10objvalue=10*sin(5*x)+7*abs(x-5)+10;5.5------------------------------------------%-------------函数说明----------------%%输入变量:%pop:二进制种群%fitvalue:适应度值%输出变量:%newpop:选择以后的二进制种群%---------------------------------------function[newpop]=selection(pop,fitvalue) %构造轮盘[px,py]=size(pop);totalfit=sum(fitvalue);p_fitvalue=fitvalue/totalfit;p_fitvalue=cumsum(p_fitvalue);%概率求和排序%-------ms=sort(rand(px,1));%从小到大排列fitin=1;newin=1;while newin<=pxif(ms(newin))<p_fitvalue(fitin)newpop(newin,:)=pop(fitin,:);newin=newin+1;else fitin=fitin+1;endend5.6---------------------------------------%-------------函数说明----------------%%输入变量:%pop:二进制的父代种群数%pc:交叉的概率%输出变量:%newpop:交叉后的种群数%---------------------------------------function[newpop]=crossover(pop,pc)[px,py]=size(pop);newpop=ones(size(pop));for i=1:2:px-1if(rand<pc)cpoint=round(rand*py);newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];elsenewpop(i,:)=pop(i,:);newpop(i+1,:)=pop(i+1,:);endend5.7------------------------------------------%-------------函数说明----------------%%输入变量:%pop:二进制种群%pm:变异概率%输出变量:%newpop:变异以后的种群%---------------------------------------function[newpop]=mutation(pop,pm)[px,py]=size(pop);newpop=ones(size(pop));for i=1:pxif(rand<pm)mpoint=round(rand*py);if mpoint<=0mpoint=1;endnewpop(i,:)=pop(i,:);if newpop(i,mpoint)==0newpop(i,mpoint)=1;else newpop(i,mpoint)=0;endelsenewpop(i,:)=pop(i,:);endend5.8----------------------------------------%-------------函数说明----------------%%输入变量:%pop:种群%fitvalue:种群适应度%%输出变量:%bestindividual:最佳个体(二进制个体)%bestfit:最佳适应度值%---------------------------------------function[bestindividual,bestfit]=best(pop,fitvalue) [px,py]=size(pop);bestindividual=pop(1,:);bestfit=fitvalue(1);for i=2:pxif fitvalue(i)>bestfitbestindividual=pop(i,:);bestfit=fitvalue(i);endend。

MATLAB中的遗传算法优化方法介绍与应用

MATLAB中的遗传算法优化方法介绍与应用

MATLAB中的遗传算法优化方法介绍与应用引言遗传算法是一种模拟自然进化和基因遗传规律的优化方法,通过模拟生物进化过程中的选择、交叉和变异等操作,逐步搜索并优化问题的解。

在MATLAB中,遗传算法是一种强大的优化工具,被广泛应用于各个领域的问题求解。

本文将介绍遗传算法的基本原理、MATLAB中的实现方法以及一些应用示例。

一、遗传算法的基本原理1.1 遗传算法的基本原理遗传算法基于达尔文的进化论和遗传学原理,通过模拟自然界生物种群的遗传和进化过程,以求得问题的最优解。

遗传算法的基本原理包括以下几个步骤:(1)初始化种群:随机生成一组个体,每个个体都代表问题的一个解。

(2)适应度评价:根据问题的要求,对每个个体进行适应度评价,评估其解的优劣程度。

(3)选择操作:根据适应度评价结果,选择一些个体作为父代,用于产生下一代个体。

(4)交叉操作:将选中的父代个体进行交叉,生成新的子代个体。

(5)变异操作:对部分子代个体进行变异操作,引入一定的随机扰动,增加搜索范围。

(6)更新种群:将子代和部分父代个体合并,形成新的种群。

(7)终止条件判断:判断是否达到终止条件,如果满足,则输出最优解;否则,返回第(2)步。

1.2 MATLAB中的遗传算法工具箱MATLAB提供了遗传算法工具箱,用于实现遗传算法的各个步骤。

通过利用该工具箱提供的函数和操作,用户可以方便地构建自己的优化问题,并应用遗传算法进行求解。

下面是一些常用的MATLAB函数:(1)gamultiobj:多目标遗传算法函数,用于多目标优化问题求解。

(2)ga:单目标遗传算法函数,用于单目标优化问题求解。

(3)GADefaults:遗传算法的默认参数设置。

(4)fitnessfcn:适应度函数,用于评估个体的适应度。

(5)crossoverfcn:交叉函数,用于实现个体的交叉操作。

(6)mutationfcn:变异函数,用于实现个体的变异操作。

(7)selectionfcn:选择函数,用于实现个体的选择操作。

遗传算法介绍并附上Matlab代码

遗传算法介绍并附上Matlab代码

1、遗传算法介绍遗传算法,模拟达尔文进化论的自然选择和遗产学机理的生物进化构成的计算模型,一种不断选择优良个体的算法。

谈到遗传,想想自然界动物遗传是怎么来的,自然主要过程包括染色体的选择,交叉,变异(不明白这个的可以去看看生物学),这些操作后,保证了以后的个基本上是最优的,那么以后再继续这样下去,就可以一直最优了。

2、解决的问题先说说自己要解决的问题吧,遗传算法很有名,自然能解决的问题很多了,在原理上不变的情况下,只要改变模型的应用环境和形式,基本上都可以。

但是遗传算法主要还是解决优化类问题,尤其是那种不能直接解出来的很复杂的问题,而实际情况通常也是这样的。

本部分主要为了了解遗传算法的应用,选择一个复杂的二维函数来进行遗传算法优化,函数显示为y=10*sin(5*x)+7*abs(x-5)+10,这个函数图像为:怎么样,还是有一点复杂的吧,当然你还可以任意假设和编写,只要符合就可以。

那么现在问你要你一下求出最大值你能求出来吗?这类问题如果用遗传算法或者其他优化方法就很简单了,为什么呢?说白了,其实就是计算机太笨了,同时计算速度又超快,举个例子吧,我把x等分成100万份,再一下子都带值进去算,求出对应的100万个y的值,再比较他们的大小,找到最大值不就可以了吗,很笨吧,人算是不可能的,但是计算机可以。

而遗传算法也是很笨的一个个搜索,只不过加了一点什么了,就是人为的给它算的方向和策略,让它有目的的算,这也就是算法了。

3、如何开始?我们知道一个种群中可能只有一个个体吗?不可能吧,肯定很多才对,这样相互结合的机会才多,产生的后代才会多种多样,才会有更好的优良基因,有利于种群的发展。

那么算法也是如此,当然个体多少是个问题,一般来说20-100之间我觉得差不多了。

那么个体究竟是什么呢?在我们这个问题中自然就是x值了。

其他情况下,个体就是所求问题的变量,这里我们假设个体数选100个,也就是开始选100个不同的x值,不明白的话就假设是100个猴子吧。

遗传算法matlab代码

遗传算法matlab代码

function youhuafunD=code;N=50; % Tunablemaxgen=50; % Tunablecrossrate=0.5; %Tunablemuterate=0.08; %Tunablegeneration=1;num = length(D);fatherrand=randint(num,N,3);score = zeros(maxgen,N);while generation<=maxgenind=randperm(N-2)+2; % 随机配对交叉A=fatherrand(:,ind(1:(N-2)/2));B=fatherrand(:,ind((N-2)/2+1:end));% 多点交叉rnd=rand(num,(N-2)/2);ind=rnd tmp=A(ind);A(ind)=B(ind);B(ind)=tmp;% % 两点交叉% for kk=1:(N-2)/2% rndtmp=randint(1,1,num)+1;% tmp=A(1:rndtmp,kk);% A(1:rndtmp,kk)=B(1:rndtmp,kk);% B(1:rndtmp,kk)=tmp;% endfatherrand=[fatherrand(:,1:2),A,B];% 变异rnd=rand(num,N);ind=rnd [m,n]=size(ind);tmp=randint(m,n,2)+1;tmp(:,1:2)=0;fatherrand=tmp+fatherrand;fatherrand=mod(fatherrand,3);% fatherrand(ind)=tmp;%评价、选择scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数score(generation,:)=scoreN;[scoreSort,scoreind]=sort(scoreN);sumscore=cumsum(scoreSort);sumscore=sumscore./sumscore(end);childind(1:2)=scoreind(end-1:end);for k=3:Ntmprnd=rand;tmpind=tmprnd difind=[0,diff(tmpind)];if ~any(difind)difind(1)=1;endchildind(k)=scoreind(logical(difind));endfatherrand=fatherrand(:,childind);generation=generation+1;end% scoremaxV=max(score,[],2);minV=11*300-maxV;plot(minV,'*');title('各代的目标函数值');F4=D(:,4);FF4=F4-fatherrand(:,1);FF4=max(FF4,1);D(:,5)=FF4;save DData Dfunction D=codeload youhua.mat% properties F2 and F3F1=A(:,1);F2=A(:,2);F3=A(:,3);if (max(F2)>1450)||(min(F2)<=900)error('DATA property F2 exceed it''s range (900,1450]') end% get group property F1 of data, according to F2 value F4=zeros(size(F1));for ite=11:-1:1index=find(F2<=900+ite*50);F4(index)=ite;endD=[F1,F2,F3,F4];function ScoreN=scorefun(fatherrand,D)F3=D(:,3);F4=D(:,4);N=size(fatherrand,2);FF4=F4*ones(1,N);FF4rnd=FF4-fatherrand;FF4rnd=max(FF4rnd,1);ScoreN=ones(1,N)*300*11;% 这里有待优化for k=1:NFF4k=FF4rnd(:,k);for ite=1:11F0index=find(FF4k==ite);if ~isempty(F0index)tmpMat=F3(F0index);tmpSco=sum(tmpMat);ScoreBin(ite)=mod(tmpSco,300);endendScorek(k)=sum(ScoreBin);endScoreN=ScoreN-Scorek;遗传算法实例:% 下面举例说明遗传算法%% 求下列函数的最大值%% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %% 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01 。

遗传算法matlab代码

遗传算法matlab代码

遗传算法matlab代码以下是一个简单的遗传算法的MATLAB 代码示例:matlab复制代码% 遗传算法参数设置pop_size = 50; % 种群大小num_vars = 10; % 变量数目num_generations = 100; % 进化的代数mutation_rate = 0.01; % 变异率crossover_rate = 0.8; % 交叉率% 初始化种群population = rand(pop_size, num_vars);% 开始进化for i = 1:num_generations% 计算适应度fitness = evaluate_fitness(population);% 选择操作selected_population = selection(population, fitness);% 交叉操作offspring_population = crossover(selected_population,crossover_rate);% 变异操作mutated_population = mutation(offspring_population,mutation_rate);% 生成新种群population = [selected_population; mutated_population];end% 选择最优解best_solution = population(find(fitness == max(fitness)), :);% 适应度函数function f = evaluate_fitness(population)f = zeros(size(population));for i = 1:size(population, 1)f(i) = sum(population(i, :));endend% 选择函数function selected_population = selection(population, fitness)% 轮盘赌选择total_fitness = sum(fitness);probabilities = fitness / total_fitness;selected_indices = zeros(pop_size, 1);for i = 1:pop_sizer = rand();cumulative_probabilities = cumsum(probabilities);for j = 1:pop_sizeif r <= cumulative_probabilities(j)selected_indices(i) = j;break;endendendselected_population = population(selected_indices, :);end% 交叉函数function offspring_population = crossover(parental_population, crossover_rate)offspring_population = zeros(size(parental_population));num_crossovers = ceil(size(parental_population, 1) *crossover_rate);crossover_indices = randperm(size(parental_population, 1),num_crossovers);以下是另一个一个简单的遗传算法的MATLAB 代码示例:matlab复制代码% 初始化种群population = rand(nPopulation, nGenes);% 进化迭代for iGeneration = 1:nGeneration% 计算适应度fitness = evaluateFitness(population);% 选择父代parentIdx = selection(fitness);parent = population(parentIdx, :);% 交叉产生子代child = crossover(parent);% 变异子代child = mutation(child);% 更新种群population = [parent; child];end% 评估最优解bestFitness = -Inf;for i = 1:nPopulationf = evaluateFitness(population(i, :));if f > bestFitnessbestFitness = f;bestIndividual = population(i, :);endend% 可视化结果plotFitness(fitness);其中,nPopulation和nGenes分别是种群大小和基因数;nGeneration是迭代次数;evaluateFitness函数用于计算个体的适应度;selection函数用于选择父代;crossover函数用于交叉产生子代;mutation函数用于变异子代。

matlab遗传算法实例

matlab遗传算法实例

matlab遗传算法实例Matlab遗传算法实例引言:遗传算法是一种模拟自然进化过程的优化算法,它通过模拟优胜劣汰、基因交叉和变异等自然选择机制,来寻找问题的最优解。

在Matlab中,我们可以利用遗传算法工具箱来快速实现遗传算法,并解决各种实际问题。

本文将介绍一个基于Matlab的遗传算法实例,以帮助读者更好地理解和应用遗传算法。

一、问题描述假设我们要在一个由0和1组成的二进制串中寻找最优解。

具体而言,我们定义了一个目标函数,目标函数的输入是一个二进制串,输出是一个实数值。

我们的目标是找到一个二进制串,使得目标函数的输出值最大化。

二、遗传算法的基本原理遗传算法是基于自然进化过程的优化算法,它的基本原理如下:1. 初始化种群:随机生成一组二进制串作为初始种群。

2. 评估适应度:根据目标函数计算每个个体的适应度值。

3. 选择操作:根据适应度值选择优秀个体作为父代,进行繁殖。

4. 交叉操作:对选出的父代个体进行基因交叉,生成新的子代个体。

5. 变异操作:对子代个体进行基因变异,引入新的基因信息。

6. 更新种群:用子代替换父代,生成新的种群。

7. 终止条件判断:判断是否满足终止条件,若满足则输出最优解,否则返回第3步。

三、Matlab代码实现以下是一个简单的Matlab代码实例,用于求解上述问题:```matlab% 目标函数定义function y = fitnessFunc(x)y = sum(x);end% 遗传算法主函数function [bestSolution, bestFitness] = geneticAlgorithm(popSize, numGen, pc, pm)% 初始化种群population = round(rand(popSize, numGen));% 迭代进化for t = 1:numGen% 评估适应度fitness = arrayfun(@fitnessFunc, population);% 选择操作[~, sortedIdx] = sort(fitness, 'descend');eliteIdx = sortedIdx(1:round(popSize/2));elite = population(eliteIdx, :);% 交叉操作crossIdx = rand(popSize, 1) < pc;crossPairs = reshape(population(crossIdx, :), [], 2);crossPoints = randi(numGen-1, size(crossPairs, 1), 1) + 1;offsprings = [elite; arrayfun(@(i) [crossPairs(i, 1:crossPoints(i)), crossPairs(i, crossPoints(i)+1:end)], 1:size(crossPairs, 1), 'UniformOutput', false)];population = vertcat(offsprings{:});% 变异操作mutateIdx = rand(popSize, numGen) < pm;population(mutateIdx) = 1 - population(mutateIdx);end% 输出结果fitness = arrayfun(@fitnessFunc, population);[bestFitness, bestIdx] = max(fitness);bestSolution = population(bestIdx, :);end% 调用遗传算法求解最优解popSize = 100; % 种群大小numGen = 100; % 进化代数pc = 0.8; % 交叉概率pm = 0.01; % 变异概率[bestSolution, bestFitness] = geneticAlgorithm(popSize, numGen, pc, pm);```四、实验结果与讨论根据上述Matlab代码实例,我们可以得到一个最优解,即一个二进制串。

遗传算法Matlab源代码

遗传算法Matlab源代码

遗传算法Matlab源代码完整可以运行的数值优化遗传算法源代码function[X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSiz e,options,pCross,pMutation,pInversion)%[X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSiz e,options,pCross,pMutation,pInversion)% Finds a maximum of a function of several variables.% fga solves problems of the form:% max F(X) subject to: LB = X = UB (LB=bounds(:,1),UB=bounds(:,2))% X - 最优个体对应自变量值% MaxFval - 最优个体对应函数值% BestPop - 最优的群体即为最优的染色体群% Trace - 每代最佳个体所对应的目标函数值% FUN - 目标函数% bounds - 自变量范围% MaxEranum - 种群的代数,取50--500(默认200)% PopSize - 每一代种群的规模;此可取50--200(默认100)% pCross - 交叉概率,一般取0.5--0.85之间较好(默认0.8)% pMutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1)% pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编码,option(2)设定求解精度(默认1e-4)T1=clock;%检验初始参数if nargin2, error('FMAXGA requires at least three input arguments'); endif nargin==2, MaxEranum=150;PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==3, PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==4, options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==5, pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==6, pMutation=0.1;pInversion=0.25;endif nargin==7, pInversion=0.25;endif (options(1)==0|options(1)==1)find((bounds(:,1)-bounds(:,2))0)error('数据输入错误,请重新输入:');end% 定义全局变量global m n NewPop children1 children2 VarNum% 初始化种群和变量precision = options(2);bits = ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间VarNum = size(bounds,1);[Pop] = InitPop(PopSize,bounds,bits,options);%初始化种群[m,n] = size(Pop);fit = zeros(1,m);NewPop = zeros(m,n);children1 = zeros(1,n);children2 = zeros(1,n);pm0 = pMutation;BestPop = zeros(MaxEranum,n);%分配初始解空间BestPop,TraceTrace = zeros(1,MaxEranum);完整可以运行的数值优化遗传算法源代码Lb = ones(PopSize,1)*bounds(:,1)';Ub = ones(PopSize,1)*bounds(:,2)';%二进制编码采用多点交叉和均匀交叉,并逐步增大均匀交叉概率%浮点编码采用离散交叉(前期)、算术交叉(中期)、AEA重组(后期)OptsCrossOver = [ones(1,MaxEranum)*options(1);...round(unidrnd(2*(MaxEranum-[1:MaxEranum]))/MaxEranum)]';%浮点编码时采用两种自适应变异和一种随机变异(自适应变异发生概率为随机变异发生的2倍)OptsMutation = [ones(1,MaxEranum)*options(1);unidrnd(5,1,MaxEranum)]';if options(1)==3D=zeros(n);CityPosition=bounds;D = sqrt((CityPosition(:, ones(1,n)) - CityPosition(:, ones(1,n))').^2 +...(CityPosition(:,2*ones(1,n)) - CityPosition(:,2*ones(1,n))').^2 );end%========================================================================== % 进化主程序%%===================================== ===================================== eranum = 1;H=waitbar(0,'Please wait...');while(eranum=MaxEranum)for j=1:mif options(1)==1%eval(['[fit(j)]=' FUN '(Pop(j,:));']);%但执行字符串速度比直接计算函数值慢fit(j)=feval(FUN,Pop(j,:));%计算适应度elseif options(1)==0%eval(['[fit(j)]=' FUN '(b2f(Pop(j,:),bounds,bits));']);fit(j)=feval(FUN,(b2f(Pop(j,:),bounds,bits)));elsefit(j)=-feval(FUN,Pop(j,:),D);endend[Maxfit,fitIn]=max(fit);%得到每一代最大适应值Meanfit(eranum)=mean(fit);BestPop(eranum,:)=Pop(fitIn,:);Trace(eranum)=Maxfit;if options(1)==1Pop=(Pop-Lb)./(Ub-Lb);%将定义域映射到[0,1]:[Lb,Ub]--[0,1] ,Pop--(Pop-Lb)./(Ub-Lb)endswitch round(unifrnd(0,eranum/MaxEranum))%进化前期尽量使用实行锦标赛选择,后期逐步增大非线性排名选择case {0} [selectpop]=TournamentSelect(Pop,fit,bits);%锦标赛选择case {1}[selectpop]=NonlinearRankSelect(Pop,fit,bits);%非线性排名选择end完整可以运行的数值优化遗传算法源代码[CrossOverPop]=CrossOver(selectpop,pCross,OptsCrossOver(er anum,:));%交叉[MutationPop]=Mutation(CrossOverPop,fit,pMutation,VarNum,O ptsMutation(eranum,:)); %变异[InversionPop]=Inversion(MutationPop,pInversion);%倒位%更新种群if options(1)==1Pop=Lb+InversionPop.*(Ub-Lb);%还原PopelsePop=InversionPop;endpMutation=pm0+(eranum^3)*(pCross/2-pm0)/(eranum^4); %逐步增大变异率至1/2交叉率percent=num2str(round(100*eranum/MaxEranum));waitbar(eranum/MaxEranum,H,['Evolution complete ',percent,'%']);eranum=eranum+1;endclose(H);% 格式化输出进化结果和解的变化情况t=1:MaxEranum;plot(t,Trace,t,Meanfit);legend('解的变化','种群的变化');title('函数优化的遗传算法');xlabel('进化世代数');ylabel('每一代最优适应度');[MaxFval,MaxFvalIn]=max(Trace);if options(1)==1|options(1)==3X=BestPop(MaxFvalIn,:);elseif options(1)==0X=b2f(BestPop(MaxFvalIn,:),bounds,bits);endhold on;plot(MaxFvalIn,MaxFval,'*');text(MaxFvalIn+5,MaxFval,['FMAX=' num2str(MaxFval)]);str1=sprintf(' Best generation:\n %d\n\n Best X:\n %s\n\n MaxFval\n %f\n',...MaxFvalIn,num2str(X),MaxFval);disp(str1);% -计时T2=clock;elapsed_time=T2-T1;if elapsed_time(6)0elapsed_time(6)=elapsed_time(6)+60;elapsed_time(5)=elapsed_time(5)-1;endif elapsed_time(5)0elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_t ime(4)-1;end完整可以运行的数值优化遗传算法源代码str2=sprintf('elapsed_time\n %d (h) %d (m) %.4f (s)',elapsed_time(4),elapsed_time(5),elapsed_time(6));disp(str2);%===================================== ===================================== % 遗传操作子程序%%===================================== ===================================== % -- 初始化种群--% 采用浮点编码和二进制Gray编码(为了克服二进制编码的Hamming悬崖缺点)function [initpop]=InitPop(popsize,bounds,bits,options)numVars=size(bounds,1);%变量数目rang=(bounds(:,2)-bounds(:,1))';%变量范围if options(1)==1initpop=zeros(popsize,numVars);initpop=(ones(popsize,1)*rang).*(rand(popsize,numVars))+(ones (popsize,1)*bounds(:,1)');elseif options(1)==0precision=options(2);%由求解精度确定二进制编码长度len=sum(bits);initpop=zeros(popsize,len);%The whole zero encoding individualfor i=2:popsize-1pop=round(rand(1,len));pop=mod(([0 pop]+[pop 0]),2);%i=1时,b(1)=a(1);i1时,b(i)=mod(a(i-1)+a(i),2)%其中原二进制串:a(1)a(2)...a(n),Gray串:b(1)b(2)...b(n)initpop(i,:)=pop(1:end-1);endinitpop(popsize,:)=ones(1,len);%The whole one encoding individualelsefor i=1:popsizeinitpop(i,:)=randperm(numVars);%为Tsp问题初始化种群endend% -- 二进制串解码--function [fval] = b2f(bval,bounds,bits)% fval - 表征各变量的十进制数% bval - 表征各变量的二进制编码串% bounds - 各变量的取值范围% bits - 各变量的二进制编码长度scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); %The range of the variablesnumV=size(bounds,1);cs=[0 cumsum(bits)];for i=1:numVa=bval((cs(i)+1):cs(i+1));fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1);end% -- 选择操作--完整可以运行的数值优化遗传算法源代码% 采用基于轮盘赌法的非线性排名选择% 各个体成员按适应值从大到小分配选择概率:% P(i)=(q/1-(1-q)^n)*(1-q)^i, 其中P(0)P(1)...P(n), sum(P(i))=1function [NewPop]=NonlinearRankSelect(OldPop,fit,bits) global m n NewPopfit=fit';selectprob=fit/sum(fit);%计算各个体相对适应度(0,1)q=max(selectprob);%选择最优的概率x=zeros(m,2);x(:,1)=[m:-1:1]';[y x(:,2)]=sort(selectprob);r=q/(1-(1-q)^m);%标准分布基值newfit(x(:,2))=r*(1-q).^(x(:,1)-1);%生成选择概率newfit=[0 cumsum(newfit)];%计算各选择概率之和rNums=rand(m,1);newIn=1;while(newIn=m)NewPop(newIn,:)=OldPop(length(find(rNums(newIn)newfit)),:);newIn=newIn+1;end% -- 锦标赛选择(含精英选择) --function [NewPop]=TournamentSelect(OldPop,fit,bits)global m n NewPopnum=floor(m./2.^(1:10));num(find(num==0))=[];L=length(num);a=sum(num);b=m-a;PopIn=1;while(PopIn=L)r=unidrnd(m,num(PopIn),2^PopIn);[LocalMaxfit,In]=max(fit(r),[],2);SelectIn=r((In-1)*num(PopIn)+[1:num(PopIn)]');NewPop(sum(num(1:PopIn))-num(PopIn)+1:sum(num(1:PopIn)),:)=OldPop(SelectIn,:);PopIn=PopIn+1;r=[];In=[];LocalMaxfit=[];endif b1NewPop((sum(num)+1):(sum(num)+b-1),:)=OldPop(unidrnd(m,1,b-1),:);end[GlobalMaxfit,I]=max(fit);%保留每一代中最佳个体NewPop(end,:)=OldPop(I,:);% -- 交叉操作--function [NewPop]=CrossOver(OldPop,pCross,opts)global m n NewPopr=rand(1,m);完整可以运行的数值优化遗传算法源代码y1=find(rpCross);y2=find(r=pCross);len=length(y1);if len==1|(len2mod(len,2)==1)%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数y2(length(y2)+1)=y1(len);y1(len)=[];endi=0;if length(y1)=2if opts(1)==1%浮点编码交叉while(i=length(y1)-2)NewPop(y1(i+1),:)=OldPop(y1(i+1),:);NewPop(y1(i+2),:)=OldPop(y1(i+2),:);if opts(2)==0n1%discret crossoverPoints=sort(unidrnd(n,1,2));NewPop(y1(i+1),Points(1):Points(2))=OldPop(y1(i+2),Points(1):Po ints(2));NewPop(y1(i+2),Points(1):Points(2))=OldPop(y1(i+1),Points(1):Po ints(2));elseif opts(2)==1%arithmetical crossoverPoints=round(unifrnd(0,pCross,1,n));CrossPoints=find(Points==1);r=rand(1,length(CrossPoints));NewPop(y1(i+1),CrossPoints)=r.*OldPop(y1(i+1),CrossPoints)+(1 -r).*OldPop(y1(i+2),CrossPoints);NewPop(y1(i+2),CrossPoints)=r.*OldPop(y1(i+2),CrossPoints)+(1 -r).*OldPop(y1(i+1),CrossPoints); else %AEA recombination Points=round(unifrnd(0,pCross,1,n));CrossPoints=find(Points==1);v=unidrnd(4,1,2);NewPop(y1(i+1),CrossPoints)=(floor(10^v(1)*OldPop(y1(i+1),Cro ssPoints))+...10^v(1)*OldPop(y1(i+2),CrossPoints)-floor(10^v(1)*OldPop(y1(i+2),CrossPoints)))/10^v(1);NewPop(y1(i+2),CrossPoints)=(floor(10^v(2)*OldPop(y1(i+2),Cro ssPoints))+...10^v(2)*OldPop(y1(i+1),CrossPoints)-floor(10^v(2)*OldPop(y1(i+1),CrossPoints)))/10^v(2);endi=i+2;endelseif opts(1)==0%二进制编码交叉while(i=length(y1)-2)if opts(2)==0[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=EqualCrossOver(OldPop( y1(i+1),:),OldPop(y1(i+2),:)); else[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=MultiPointCross(OldPop( y1(i+1),:),OldPop(y1(i+2),:)); endi=i+2;endelse %Tsp问题次序杂交for i=0:2:length(y1)-2xPoints=sort(unidrnd(n,1,2));NewPop([y1(i+1)y1(i+2)],xPoints(1):xPoints(2))=OldPop([y1(i+2)y1(i+1)],xPoints(1):xPoints(2));完整可以运行的数值优化遗传算法源代码%NewPop(y1(i+2),xPoints(1):xPoints(2))=OldPop(y1(i+1),xPo ints(1):xPoints(2));temp=[OldPop(y1(i+1),xPoints(2)+1:n)OldPop(y1(i+1),1:xPoints(2))];for del1i=xPoints(1):xPoints(2)temp(find(temp==OldPop(y1(i+2),del1i)))=[];endNewPop(y1(i+1),(xPoints(2)+1):n)=temp(1:(n-xPoints(2)));NewPop(y1(i+1),1:(xPoints(1)-1))=temp((n-xPoints(2)+1):end);temp=[OldPop(y1(i+2),xPoints(2)+1:n)OldPop(y1(i+2),1:xPoints(2))];for del2i=xPoints(1):xPoints(2)temp(find(temp==OldPop(y1(i+1),del2i)))=[];endNewPop(y1(i+2),(xPoints(2)+1):n)=temp(1:(n-xPoints(2)));NewPop(y1(i+2),1:(xPoints(1)-1))=temp((n-xPoints(2)+1):end);endendendNewPop(y2,:)=OldPop(y2,:);% -二进制串均匀交叉算子function[children1,children2]=EqualCrossOver(parent1,parent2) global n children1 children2hidecode=round(rand(1,n));%随机生成掩码crossposition=find(hidecode==1);holdposition=find(hidecode==0);children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因% -二进制串多点交叉算子function[Children1,Children2]=MultiPointCross(Parent1,Parent2)%交叉点数由变量数决定global n Children1 Children2 VarNumChildren1=Parent1;Children2=Parent2;Points=sort(unidrnd(n,1,2*VarNum));for i=1:VarNumChildren1(Points(2*i-1):Points(2*i))=Parent2(Points(2*i-1):Points(2*i));Children2(Points(2*i-1):Points(2*i))=Parent1(Points(2*i-1):Points(2*i));end% -- 变异操作--function[NewPop]=Mutation(OldPop,fit,pMutation,VarNum,opts) global m n NewPopNewPop=OldPop;r=rand(1,m);MutIn=find(r=pMutation);L=length(MutIn);完整可以运行的数值优化遗传算法源代码i=1;if opts(1)==1%浮点变异maxfit=max(fit);upfit=maxfit+0.05*abs(maxfit);if opts(2)==1|opts(2)==3while(i=L)%自适应变异(自增或自减)Point=unidrnd(n);T=(1-fit(MutIn(i))/upfit)^2;q=abs(1-rand^T);%if q1%按严格数学推理来说,这段程序是不能缺少的% q=1%endp=OldPop(MutIn(i),Point)*(1-q);if unidrnd(2)==1NewPop(MutIn(i),Point)=p+q;elseNewPop(MutIn(i),Point)=p;endi=i+1;endelseif opts(2)==2|opts(2)==4%AEA变异(任意变量的某一位变异)while(i=L)Point=unidrnd(n);T=(1-abs(upfit-fit(MutIn(i)))/upfit)^2;v=1+unidrnd(1+ceil(10*T));%v=1+unidrnd(5+ceil(10*eranum/MaxEranum));q=mod(floor(OldPop(MutIn(i),Point)*10^v),10);NewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)-(q-unidrnd(9))/10^v;i=i+1;endelsewhile(i=L)Point=unidrnd(n);if round(rand)NewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)*(1-rand);elseNewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)+(1-OldPop(MutIn(i),Point))*rand; endi=i+1;endendelseif opts(1)==0%二进制串变异if L=1while i=Lk=unidrnd(n,1,VarNum); %设置变异点数(=变量数)for j=1:length(k)if NewPop(MutIn(i),k(j))==1NewPop(MutIn(i),k(j))=0;else完整可以运行的数值优化遗传算法源代码NewPop(MutIn(i),k(j))=1;endendi=i+1;endendelse%Tsp变异if opts(2)==1|opts(2)==2|opts(2)==3|opts(2)==4numMut=ceil(pMutation*m);r=unidrnd(m,numMut,2);[LocalMinfit,In]=min(fit(r),[],2);SelectIn=r((In-1)*numMut+[1:numMut]');while(i=numMut)mPoints=sort(unidrnd(n,1,2));if mPoints(1)~=mPoints(2)NewPop(SelectIn(i),1:mPoints(1)-1)=OldPop(SelectIn(i),1:mPoints(1)-1);NewPop(SelectIn(i),mPoints(1):mPoints(2)-1)=OldPop(SelectIn(i),mPoints(1)+1:mPoints(2));NewPop(SelectIn(i),mPoints(2))=OldPop(SelectIn(i),mPoints(1));NewPop(SelectIn(i),mPoints(2)+1:n)=OldPop(SelectIn(i),mPoints( 2)+1:n);elseNewPop(SelectIn(i),:)=OldPop(SelectIn(i),:);endi=i+1;endr=rand(1,m);MutIn=find(r=pMutation);L=length(MutIn);while i=LmPoints=sort(unidrnd(n,1,2));rIn=randperm(mPoints(2)-mPoints(1)+1);NewPop(MutIn(i),mPoints(1):mPoints(2))=OldPop(MutIn(i),mPoin ts(1)+rIn-1);i=i+1;endendend% -- 倒位操作--function [NewPop]=Inversion(OldPop,pInversion)global m n NewPopNewPop=OldPop;r=rand(1,m);PopIn=find(r=pInversion);len=length(PopIn);if len=1while(i=len)d=sort(unidrnd(n,1,2));完整可以运行的数值优化遗传算法源代码NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i),d(2):-1:d(1)); i=i+1;。

遗传算法matlab程序代码

遗传算法matlab程序代码

function [R,Rlength]= GA_TSP(xyCity,dCity,Population,nPopulation,pCrossover,percent,pMutation,generation,nR,rr,rang eCity,rR,moffspring,record,pi,Shock,maxShock)clear allA=load('d.txt');AxyCity=[A(1,:);A(2,:)]; %x,y为各地点坐标xyCityfigure(1)grid onhold onscatter(xyCity(1,:),xyCity(2,:),'b+')grid onnCity=50;nCityfor i=1:nCity %计算城市间距离for j=1:nCitydCity(i,j)=abs(xyCity(1,i)-xyCity(1,j))+abs(xyCity(2,i)-xyCity(2,j));endend %计算城市间距离xyCity; %显示城市坐标dCity %显示城市距离矩阵%初始种群k=input('取点操作结束'); %取点时对操作保护disp('-------------------')nPopulation=input('种群个体数量:'); %输入种群个体数量if size(nPopulation,1)==0nPopulation=50; %默认值endfor i=1:nPopulationPopulation(i,:)=randperm(nCity-1); %产生随机个体endPopulation %显示初始种群pCrossover=input('交叉概率:'); %输入交叉概率percent=input('交叉部分占整体的百分比:'); %输入交叉比率pMutation=input('突变概率:'); %输入突变概率nRemain=input('最优个体保留最大数量:');pi(1)=input('选择操作最优个体被保护概率:');%输入最优个体被保护概率pi(2)=input('交叉操作最优个体被保护概率:');pi(3)=input('突变操作最优个体被保护概率:');maxShock=input('最大突变概率:');if size(pCrossover,1)==0pCrossover=0.85;endif size(percent,1)==0percent=0.5;endif size(pMutation,1)==0pMutation=0.05;endShock=0;rr=0;Rlength=0;counter1=0;counter2=0;R=zeros(1,nCity-1);[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);R0=R;record(1,:)=R;rR(1)=Rlength;Rlength0=Rlength;generation=input('算法终止条件A.最多迭代次数:');%输入算法终止条件if size(generation,1)==0generation=200;endnR=input('算法终止条件B.最短路径连续保持不变代数:');if size(nR,1)==0nR=10;endwhile counter1<generation&counter2<nRif counter2<nR*1/5Shock=0;elseif counter2<nR*2/5Shock=maxShock*1/4-pMutation;elseif counter2<nR*3/5Shock=maxShock*2/4-pMutation;elseif counter2<nR*4/5Shock=maxShock*3/4-pMutation;elseShock=maxShock-pMutation;endcounter1newPopulationoffspring=crossover(newPopulation,nCity,pCrossover,percent,nPopulation,rr,pi,nRemain);offspringmoffspring=Mutation(offspring,nCity,pMutation,nPopulation,rr,pi,nRemain,Shock);[newPopulation,R,Rlength,counter2,rr]=select(moffspring,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);counter1=counter1+1;rR(counter1+1)=Rlength;record(counter1+1,:)=R;endR0;Rlength0;R;Rlength;minR=min(rR);disp('最短路经出现代数:')rr=find(rR==minR)disp('最短路经:')record(rr,:);mR=record(rr(1,1),:)disp('终止条件一:')counter1disp('终止条件二:')counter2disp('最短路经长度:')minRdisp('最初路经长度:')rR(1)figure(2)plotaiwa(xyCity,mR,nCity)figure(3)i=1:counter1+1;plot(i,rR(i))grid onfunction[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain)Distance=zeros(nPopulation,1); %零化路径长度Fitness=zeros(nPopulation,1); %零化适应概率Sum=0; %路径长度for i=1:nPopulation %计算个体路径长度for j=1:nCity-2Distance(i)=Distance(i)+dCity(Population(i,j),Population(i,j+1));end %对路径长度调整,增加起始点到路径首尾点的距离Distance(i)=Distance(i)+dCity(Population(i,1),nCity)+dCity(Population(i,nCity-1),nCity);Sum=Sum+Distance(i); %累计总路径长度end %计算个体路径长度if Rlength==min(Distance)counter2=counter2+1;elsecounter2=0;endRlength=min(Distance); %更新最短路径长度Rlength;rr=find(Distance==Rlength);R=Population(rr(1,1),:); %更新最短路径for i=1:nPopulationFitness(i)=(max(Distance)-Distance(i)+0.001)/(nPopulation*(max(Distance)+0.001)-Sum); %适应概率=个体/总和。

Matlab学习系列37. 遗传算法

Matlab学习系列37. 遗传算法

37. 遗传算法一、算法概述遗传算法(Genetic Algorithm),是由美国的J. Holland教授于1975年首先提出的,是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。

遗传算法的生物背景知识:基因(Gene):一个遗传因子,染色体上一个单元(解中的一个参数);染色体/个体(Chromosome):由一组基因构成(问题可能的一个解);种群(Population):由一系列染色体组成的一个集合;生存竞争,适者生存:对环境适应度高的个体参与繁殖的机会比较多,后代就会越来越多。

适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉(Crossover),基因突变(Mutation),适应度(Fitness)低的个体会被逐步淘汰,而适应度高的个体会越来越多。

那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

遗传算法思想:借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程。

问题域中的可能解被看作是种群的个体,对于一个最优化问题,一定数量的候选解的抽象表示(个体)的种群向更好的解进化。

每一代中种群的各个个体会被评价适应度,基于个体的适应度,从当前种群中随机择优选择多个个体,通过交叉、突变产生新的个体,逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。

这样进化若干代后就很有可能会进化出适应度函数值很高的个体。

二、算法步骤1. 基本步骤(1) 初始化:初始化进化代数计数器t←0,最大进化代数T(一般100~500),初始化变异概率α(一般0.0001~0.2)、交叉概率β(一般0.4~0.99),随机生成M个(一般10~100)个体作为初始群体P(t);(2) 个体评价:计算P(t)中各个个体的适应度值;(3) 选择运算:将选择算子作用于群体;(4) 交叉运算:将交叉算子作用于群体;(5) 变异运算:将变异算子作用于群体;(6) 终止条件:若t≤T,则t←t+1, 并转到第(2)步;否则输出P(t)中的最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传算法经典学习Matlab代码遗传算法实例:也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。

对于初学者,尤其是还没有编程经验的非常有用的一个文件遗传算法实例% 下面举例说明遗传算法%% 求下列函数的最大值%% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]%% 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。

%% 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其中 b 是[0,1023] 中的一个二值数。

%% %%--------------------------------------------------------------------------------------------------------------%%--------------------------------------------------------------------------------------------------------------%% 编程%-----------------------------------------------% 2.1初始化(编码)% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。

%遗传算法子程序%Name: initpop.m%初始化function pop=initpop(popsize,chromlength)pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为{0,1} 行数为popsize,列数为chromlength的矩阵,% roud对矩阵的每个单元进行圆整。

这样产生的初始种群。

% 2.2 计算目标函数值% 2.2.1 将二进制数转化为十进制数(1)%遗传算法子程序%Name: decodebinary.m%产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop)[px,py]=size(pop); %求pop行和列数for i=1:pypop1(:,i)=2.^(py-i).*pop(:,i);endpop2=sum(pop1,2); %求pop1的每行之和% 2.2.2 将二进制编码转化为十进制数(2)% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。

本例为1),% 参数1ength表示所截取的长度(本例为10)。

%遗传算法子程序%Name: decodechrom.m%将二进制编码转换成十进制function pop2=decodechrom(pop,spoint,length)pop1=pop(:,spoint:spoint+length-1);pop2=decodebinary(pop1);% 2.2.3 计算目标函数值% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

%遗传算法子程序%Name: calobjvalue.m%实现目标函数的计算function [objvalue]=calobjvalue(pop)temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数x=temp1*10/1023; %将二值域中的数转化为变量域的数objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值% 2.3 计算个体的适应值%遗传算法子程序%Name:calfitvalue.m%计算个体的适应值function fitvalue=calfitvalue(objvalue)global Cmin;Cmin=0;[px,py]=size(objvalue);for i=1:pxif objvalue(i)+Cmin>0temp=Cmin+objvalue(i);elsetemp=0.0;endfitvalue(i)=temp;endfitvalue=fitvalue';% 2.4 选择复制% 选择或复制操作是决定哪些个体可以进入下一代。

程序中采用赌轮盘选择法选择,这种方法较易实现。

% 根据方程pi=fi/∑fi=fi/fsum,选择步骤:% 1)在第t 代,由(1)式计算fsum 和pi% 2)产生{0,1} 的随机数rand( .),求s=rand( .)*fsum% 3)求∑fi≥s中最小的k ,则第k 个个体被选中% 4)进行N 次2)、3)操作,得到N 个个体,成为第t=t+1 代种群%遗传算法子程序%Name: selection.m%选择复制function [newpop]=selection(pop,fitvalue)totalfit=sum(fitvalue); %求适应值之和fitvalue=fitvalue/totalfit; %单个个体被选择的概率fitvalue=cumsum(fitvalue); %如fitvalue=[1 2 3 4],则cumsum(fitvalue)=[1 3 6 10][px,py]=size(pop);ms=sort(rand(px,1)); %从小到大排列fitin=1;newin=1;while newin<=pxif(ms(newin))<fitvalue(fitin)newpop(newin)=pop(fitin);newin=newin+1;elsefitin=fitin+1;endend% 2.5 交叉% 交叉(crossover),群体中的每个个体之间都以一定的概率pc 交叉,即两个个体从各自字符串的某一位置% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。

例如,假设2个父代个体x1,x2为:% x1=0100110% x2=1010001% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:% y1=0100001% y2=1010110% 这样2个子代个体就分别具有了2个父代个体的某些特征。

利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。

% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。

%遗传算法子程序%Name: crossover.m%交叉function [newpop]=crossover(pop,pc)[px,py]=size(pop);newpop=ones(size(pop));for i=1:2:px-1if(rand<pc)cpoint=round(rand*py);newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];elsenewpop(i,:)=pop(i);newpop(i+1,:)=pop(i+1);endend% 2.6 变异% 变异(mutation),基因的突变普遍存在于生物的进化过程中。

变异是指父代中的每个个体的每一位都以概率pm 翻转,即由“1”变为“0”,% 或由“0”变为“1”。

遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。

%遗传算法子程序%Name: mutation.m%变异function [newpop]=mutation(pop,pm)[px,py]=size(pop);newpop=ones(size(pop));for i=1:pxif(rand<pm)mpoint=round(rand*py);if mpoint<=0mpoint=1;endnewpop(i)=pop(i);if any(newpop(i,mpoint))==0newpop(i,mpoint)=1;elsenewpop(i,mpoint)=0;endelsenewpop(i)=pop(i);endend% 2.7 求出群体中最大得适应值及其个体%遗传算法子程序%Name: best.m%求出群体中适应值最大的值function [bestindividual,bestfit]=best(pop,fitvalue) [px,py]=size(pop);bestindividual=pop(1,:);bestfit=fitvalue(1);for i=2:pxif fitvalue(i)>bestfitbestindividual=pop(i,:);bestfit=fitvalue(i);endend% 2.8 主程序%遗传算法主程序%Name:genmain05.mclearclfpopsize=20; %群体大小chromlength=10; %字符串长度(个体长度)pc=0.6; %交叉概率pm=0.001; %变异概率pop=initpop(popsize,chromlength); %随机产生初始群体for i=1:20 %20为迭代次数[objvalue]=calobjvalue(pop); %计算目标函数fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度[newpop]=selection(pop,fitvalue); %复制[newpop]=crossover(pop,pc); %交叉[newpop]=mutation(pop,pc); %变异[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值y(i)=max(bestfit);n(i)=i;pop5=bestindividual;x(i)=decodechrom(pop5,1,chromlength)*10/1023;pop=newpop;endfplot('10*sin(5*x)+7*cos(4*x)',[0 10])hold onplot(x,y,'r*')hold off[z index]=max(y); %计算最大值及其位置x5=x(index)%计算最大值对应的x值y=z【问题】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1);eval=x 10*sin(5*x) 7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %2 5次遗传迭代运算借过为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。

相关文档
最新文档