浙教版数学九年级(上)期末综合练习试卷

合集下载

浙教版九年级数学上册期末综合检测试卷(有答案)

浙教版九年级数学上册期末综合检测试卷(有答案)

【期末专题复习】浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A. 3B. 6C.D. 102.△ABC∽△A′B′C′,且∠A=68°,则∠A′=().A. 22°B. 44°C. 68°D. 80°3.如图,将△ABC绕点C顺时针方向旋转40°,得△A′B′C,若AC⊥A′B′,则∠A等于()A. 50°B. 60°C. 70°D. 80°4.随机掷一枚均匀的硬币20次,其中有8次出现正面,12次出现反面,则掷这枚均匀硬币出现正面的概率是()A. B. C. D.5.已知抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A. t>-5B. -5<t<3C. 3<t≤4D. -5<t≤4=()6.如图,在平行四边形ABCD中,E是BC延长线上一点,AE交CD于点F,且CE=BC,则 △△A. B. C. D.7.如图,已知矩形ABCD中,AB=3,BE=2,EF⊥BC.若四边形EFDC与四边形BEFA相似而不全等,则CE=()A.3B.3.5C.4D.4.58.如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD相交于点F,DE:EC=2:3,则S△DEF:S△ABF等于()A. 4:25B. 4:9C. 9:25D. 2:39.一条排水管的截面如图.已知排水管的截面圆半径OB=10,水面宽AB是16,则截面水深CD是()A. 3B. 4C. 5D. 610.如图,二次函数y=ax2+bx+c的图象过(1,-1)和(3,0),则下列关于这个二次函数的描述,正确的是()A. y的最小值大于-1B. 当x=0时,y的值大于0C. 当x=2时,y的值等于-1D. 当x>3时,y的值大于0二、填空题(共10题;共33分)11.若抛物线的开口向上,则的取值范围是________.12.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为________cm13.一个不透明的盒子中有一定数量的完全相同的小球,分别标号为1,2,3,其中标号为1的小球有3个,标号为2的小球2个,标号为3的小球有m个,若随机摸出一个小球,其标号为偶数的概率为,则m 的值为________.14.如图,在平面直角坐标系xOy中,△ABC外接圆的圆心坐标是 ________,半径是 ________.15.抛物线y=﹣2x2+4x﹣1的对称轴是直线________ .16.如图,是半圆的直径,是一条弦,是的中点,于点且交于点,交于点.若,则________.17.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为________.18.(2017•无锡)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于________.19.如图,在扇形AOB中,∠AOB=900,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积是________.20.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D,E分别是AB,AC的中点,点G,F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是________.三、解答题(共9题;共57分)21.如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).①画出△ABC关于y轴对称的△A1B1C1;②将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留)22.甲、乙两人做摸球游戏,在不透明的口袋里放入大小相同的两个黑球和两个白球,甲摸出两个球后放回,乙再摸出两个球,若摸出一黑一白甲赢,若摸出两个相同颜色的乙赢.这个游戏公平吗?为什么?23.已知函数y=(k﹣2)x k2﹣4k+5+2x是关于x的二次函数.求:(1)满足条件的k的值;(2)当k为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?24.某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x 元.(1)根据题意,完成下表:(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?25.亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?26.如图,在□ABCD中,AB=4,AD=6,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=.[MISSING IMAGE: , ](1)求AE的长;(2)求ΔCEF的周长和面积.27.某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.(1)求所获利润y (元)与售价x(元)之间的函数关系式;(2)为获利最大,商店应将价格定为多少元?(3)为了让利顾客,且获利最大,商店应将价格定为多少元?28.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).29.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A.D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】A4.【答案】B5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】B10.【答案】D二、填空题11.【答案】a>212.【答案】513.【答案】714.【答案】(5,2);15.【答案】x=116.【答案】17.【答案】18.【答案】3﹣﹣19.【答案】π20.【答案】≤l<13三、解答题21.【答案】①△A1B1C1如图所示②△A2BC2如图所示线段BC旋转过程中所扫过得面积S= = .22.【答案】解:画树状图如下:由树状图知,P(一黑一白), P(颜色相同),∵∴不公平23.【答案】解:(1)函数y=(k﹣2)x k2﹣4k+5+2x是关于x的二次函数,得,解得k=1或k=3;(2)当k=1时,函数y=﹣x2+2x有最高点;y=﹣(x﹣1)2+1,最高点的坐标为(1,1),当x<1时,y随x的增大而增大.24.【答案】解:(1)(2)设批发商可获得利润元,=当时,售价为:50-5=45(元),答:T恤的销售单价定为45元时该批发商可获得最大利润,最大利润为2250元.25.【答案】过A作CN的平行线交BD于E,交MN于F.由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,∠AEB=∠AFM=90°.又∵∠BAE=∠MAF,∴△ABE∽△AMF.∴,即:,解得MF=20m.∴MN=MF+FN=20+0.8=20.8m.∴住宅楼的高度为20.8m.26.【答案】27.【答案】解:(1)当x>120时,y1=﹣10x2+2500x﹣150000;当100<x<120时,y2=﹣30x2+6900x﹣390000;(2)y1=﹣10x2+2500x﹣150000=﹣10(x﹣125)2+6250;y2=﹣30x2+6900x﹣390000=﹣30(x﹣115)2+6750;6750>6250,所以当售价定为115元获得最大为6750元;(3)当涨价x=5(元)时,所获利润y1的最大值=6250(元);当降价x=5(元)时,所获利润y2的最大值=6750(元).∴为获利最大,应降价5元,即将价格定为115元.28.【答案】解:根据题意得:AB⊥BH,CD⊥BH,FG⊥BH,在Rt△ABE和Rt△CDE中,∵AB⊥BH,CD⊥BH,∴CD∥AB,可证得:△CDE∽△ABE∴①,同理:②,又CD=FG=1.7m,由①、②可得:,即,解之得:BD=7.5m,将BD=7.5代入①得:AB=5.95m≈6.0m.答:路灯杆AB的高度约为6.0m.29.【答案】(1)解:由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3(2)解:∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A.点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3 ,BC=∴△PBC的周长最小是:.(3)解:①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2)第11 页共11 页。

浙教版九年级上册数学期末考试试卷附答案

浙教版九年级上册数学期末考试试卷附答案

浙教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.若32y x =,则x yx +的值为()A .32B .5C .52D .122.在一个不透明的盒子中有1个白球和3个红球,它们除颜色外其余都相同,从盒子里任意摸出1个球,摸到白球的概率是()A .12B .13C .14D .153.将抛物线2y x =-向左平移3个单位,再向上平移5个单位,则平移后的抛物线解析式为()A .2(3)5y x =-++B .2(3)5y x =-+-C .2(3)5y x =--+D .2(3)5y x =---4.如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则EC 的长为()A .1B .2C .3D .45.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为()A .12cmB .18cmC .20cmD .24cm6.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则tan ADC ∠的值为()A .21313B .31313C .23D .327.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A 、B 、C 、D 、E 、O 均是正六边形的顶点.则点O 是下列哪个三角形的外心()A .AEDB .ABD △C .BCD △D .ACD△8.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=()A .30°B .36︒C .54︒D .45︒9.如图,CD 是Rt ABC 斜边AB 上的高,8AC =,6BC =,点O 是CD 上的动点,以O 为圆心作半径为1的圆,若该圆与ABC 重叠部分的面积为π,则OC 的最小值为()A .54B .43C .75D .5310.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)ky k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =()A .4B .92C .32D .5二、填空题11.正五边形每个内角的度数是_______.12.在一个有10万人的小镇随机调查了1000人,其中有100人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是_______.13.如图,已知⊙O 上三点A ,B ,C ,切线PA 交OC 延长线于点P ,若2OP OC =,则ABC ∠=_______.14.如图所示,正方形的顶点A 在矩形DEFG 的边EF 上,矩形DEFG 的顶点G 在正方形的边BC 上.已知正方形的边长为4,DG 的长为6,则DE 的长为_______.15.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).16.如图,直角ABC 的直角边长4AB BC ==,D 是AB 中点,线段PQ 在边AC 上运动,322PQ =PDBQ 面积的最大值为_______,周长的最小值为_______.三、解答题17.(1)计算:022sin 30(2021)tan 60π︒+--︒.(2)已知线段4a =,9b =,求线段a ,b 的比例中项.18.在一个不透明的盒子中有3个颜色、大小、形状完全相同的小球,小球上分别标有1,2,3这3个号码.(1)搅匀后从中随机抽出1个小球,抽到1号球的概率是_______.(2)搅匀后先从中随机抽出1个小球(不放回),再从余下的2个球中随机抽出1个球,求抽到的2个小球的号码的和为奇数的概率.19.如图,某海防哨所(O )发现在它的北偏西30°,距离哨所500m 的A 处有一艘船,该船向正东方向航行,经过3分钟到达哨所东北方向的B 处,求该船的航速.(精确到1/km h )20.如图,在ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,//DE AC ,//EF AB .(1)求证:BDE EFC :△△.(2)若35AF FC =,EFC 的面积是25,求ABC 的面积.21.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x (元/千克)55606570销售量y (千克)70605040(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?22.如图,在ABC 中,点O 是BC 中点,以O 为圆心,BC 为直径作圆刚好经过A 点,延长BC 于点D ,连接AD .已知CAD B ∠=∠.(1)求证:①AD 是⊙O 的切线;②ACD BAD :△△;(2)若8BD =,1tan 2B =,求⊙O 的半径.23.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,ABC 中,点D 是BC 边上一点,连接AD ,若2AD BD CD =⋅,则称点D 是ABC 中BC 边上的“好点”.(1)如图2,ABC 的顶点是43⨯网格图的格点,请仅用直尺画出(或在图中直接描出)AB 边上的“好点”;(2)ABC 中,14BC =,3tan 4B =,tan 1C =,点D 是BC 边上的“好点”,求线段BD 的长;(3)如图3,ABC 是⊙O 的内接三角形,点H 在AB 上,连结CH 并延长交⊙O 于点D .若点H 是BCD △中CD 边上的“好点”.①求证:OH AB ⊥;②若//OH BD ,⊙O 的半径为r ,且3r OH =,求CHDH的值.24.如图,在平面直角坐标系中,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,且∠OBC =30°,OB =3OA .(1)求抛物线y =ax 2+bx +3的解析式;(2)点P 为直线BC 上方抛物线上的一动点,P 点横坐标为m ,过点P 作PF //y 轴交直线BC 于点F ,写出线段PF 的长度l 关于m 的函数关系式;(3)过点P 作PD ⊥BC 于点D ,当 PDF 的周长最大时,求出 PDF 周长的最大值及此时点P 的坐标.参考答案【分析】由32y x =,设()30,y k k =≠则2,x k =再代入求值即可得到答案.【详解】解:32y x =,∴设()30,y k k =≠则2,x k =∴2355.222x y k k k x k k ++===故选:.C 【点睛】本题考查的是比例的基本性质,掌握设参数的方法解决有关比例的问题是解题的关键.2.C 【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【详解】解: 不透明的口袋里装有1个白球、3个红球,共有4个球,∴现随机从袋里摸出1个球是白球的概率为14;故选:C .【点睛】本题考查了概率的计算,熟练掌握概率公式是解题的关键.3.A 【分析】根据图象向左平移加,向上平移加,可得答案.【详解】解:将抛物线y=-x 2向左平移3个单位,再向上平移5个单位,平移后抛物线的解析式是y=-(x+3)2+5,故选:A .【点睛】本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.【详解】试题分析:根据平行线分线段成比例可得AD AEDB EC =,代入计算可得:643EC=,即可解EC=2,故选B .考点:平行线分线段成比例5.D 【分析】连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,由题意可知CD 为8,然后根据勾股定理求出BD 的长,进而可得出AB 的长.【详解】如图,连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,则AB=2BD ,∵圆的直径为26cm ,∴圆的半径r=OB=13cm ,由题意可知,CD=8cm ,∴OD=13-8=5(cm ),∴()12BD cm ==,∴AB=24cm ,故选:D .【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.6.C 【分析】根据圆周角定理可知,∠ABC=∠ADC.在Rt△ACB中,根据锐角三角函数的定义即可求出∠ABC的正切值,从而得出答案.【详解】连接BC、AC.∵∠ADC和∠ABC所对的弧都是 AC,∴根据圆周角定理知,∠ABC=∠ADC,∴在Rt△ACB中,2 tan3ACABCBC∠==,∴tan∠ADC=2 3,故选C.【点睛】本题主要考查锐角三角函数的定义和圆周角的知识点,解答本题的关键是利用圆周角定理把求∠ADC的正切值转化成求∠ABC的正切值.7.D【分析】根据三角形外心的性质,到三个顶点的距离相等,可以依次判断.【详解】答:因为三角形的外心到三角形的三个顶点的距离相等,所以由正六边形性质可知,点O 到A,B,C,D,E的距离中,只有OA=OC=OD.故选:D.【点睛】此题主要考查了三角形外心的性质,即到三角形三个顶点的距离相等.8.B【分析】连接OC ,易得四边形CDOE 是矩形,△DOE ≌△CEO ,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC ,∵∠AOB =90°,CD ⊥OA ,CE ⊥OB ,∴四边形CDOE 是矩形,∴CD ∥OE ,∴∠DEO =∠CDE ,由矩形CDOE 易得到△DOE ≌△CEO ,∴图中阴影部分的面积=扇形OBC 的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36,∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.9.D【分析】根据勾股定理求出AB=10,由OC 取最小值时,O 与BC 相切,证明△OCP ∽△BCD ∽△BAC 得出::3:4:5OP PC CO =,从而求出OC 的最小值.【详解】解:2S r ππ==∵圆O 的半径为1,且圆与ABC 重叠部分的面积为π,∴此圆全部在△ABC 内,如图,在Rt ABC 中,8AC =,6BC =,∴10AB =若OC 取最小值时,O 与BC 相切,设切点为P ,连接OP ,则OP ⊥BC∵CD ⊥AB∴∠OPC=∠CDB∵∠OCP=∠BCD∴△OCP ∽△BCD同理可证△BAC ∽△BCD∴△OCP ∽△BCD ∽△BAC∵::6:8:103:4:5BC AC AB ==∴::3:4:5OP PC CO =又∵OP=1∴OC=15533⨯=故选:D .【点睛】此题主要考查了相似三角形的判定与性质,勾股定理以及直线与圆的位置关系,证明△OCP ∽△BCD ∽△BAC 是解答此题的关键.10.B【分析】设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可.【详解】解:在k y x =中,设(,)(0)k B x k x >,则3k x x+=,(,)k C x x ∵AB 经过坐标原点,∴(,)k A x x--∵ABC 为直角三角形,且30A ∠=︒,∴∠60B =︒∴1,22BC AB AB BC ==又∵2AB OB=∴BC OB=∴3k x x ⎪+=⎪⎩解得,92=k 故选:B .【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.11.108︒【分析】先求出正n 边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为2180()n -⨯︒,∴正五边形的内角和是5218540(0)-⨯︒=︒,则每个内角的度数是5405108︒÷=︒.故答案为:108︒【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.12.10%【分析】由随机调查了1000人,其中100人看中央电视台的早间新闻,直接利用概率公式求解即可求得答案.【详解】解:∵随机调查了1000人,其中100人看中央电视台的早间新闻,∴在该镇随便问一个人,他看中央电视台早间新闻的概率大约是:10=10%100,故答案为:10%.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.30︒【分析】如图,连接,OA 先证明2,OP OA =再证明90,OAP ∠=︒利用三角函数求解60AOP ∠=︒,从而可得答案.【详解】解:如图,连接,OA ,2,OA OC OP OC == 2,OP OA ∴=PA 是O 的切线,90,OAP ∴∠=︒1cos ,2OA AOP OP ∴∠==60AOP ∴∠=︒,,AC AC= 11603022ABC AOC ∴∠=∠=⨯︒=︒,故答案为:30.︒【点睛】本题考查的是圆周角定理,圆的切线的性质,锐角三角函数的应用,掌握以上知识是解题的关键.14.83【分析】根据两角对应相等得出 AED CGD ,再根据相似三角形的性质得出=AD DE DG DC,从而得出DE 的长;【详解】解:∵四边形ABCD 是正方形,∴AD=DC=4,∠ADC=∠C=90°,∴∠GDC+∠ADG=90°,∵四边形DEFG 是矩形,∴∠EDG=∠E =90°,∴∠EDA+∠ADG=90°,∴∠GDC=∠EDA∴ AED CGD ,∴=AD DE DG DC ,∵DG=6∴4=64DE ∴83DE =【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的性质和判定是解题的关键15.③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0,b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1,∴12ba -=,∴b=-2a ;∵c+a+b >0,∴c-a >0,∴a-c <0,∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x 当p <0时,()()120<--p m x m x ∴()()120p m x m x --≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.16.11222+【分析】(1)连接DQ ,则可得四边形PDBQ DPQ BDQ S S S =+△△,根据已知条件分别表示出DPQ S 和BDQ S ,再根据AC 和PQ 的值求得四边形PDBQ 面积的最大值;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,设1BH D E ⊥于点H ,交AC 于点F ,据此可得,四边形1PD EQ 为平行四边形,因为四边形PDBQ的周长2BD PQ DP BQ EQ BQ =+++=++,周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,此时EQ BQ BE +=,再根据勾股定理求得BE 的长即可.【详解】(1)如图,连接DQ ,∴四边形PDBQ DPQ BDQ S S S =+△△,∵直角ABC 的直角边长4AB BC ==,D 是AB 中点,∴ABC 为等腰直角三角形,122BD AD AB ===,∴AC =设AP x =,∴AQ AP PQ x =+=+,∴CQ AC AQ x x =-==,设DPQ V 底边PQ 上的高为1h ,∴2h ===∴113222DPQ S PQ h =⨯⨯=⨯△,设BDQ △底边PQ 上的高为2h ,∴22h AQ ==,∴2113222222BDQ S BD h x x =⨯⨯=⨯⨯=+△,∴四边形PDBQ 3332222S x x =++=+,∴当x 最大时,四边形PDBQ 的面积最大,∵x 的最大值AC PQ =-=∴四边形PDBQ 的面积最大值1132=;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,∴四边形1PD EQ 为平行四边形,1DG AG D G ==,∴1DP D P EQ ==,又∵四边形PDBQ 的周长2BD PQ DP BQ EQ BQ =+++=++,∴周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,∴此时EQ BQ BE +=,设1BH D E ⊥于点H ,交AC 于点F ,∴BF AC ⊥,∴1DG AG D G FH ===∴BF AF ==∴BH BF FH =+==∴1FG D H AF AG ==-==∴112EH D E D H =-==,∴在Rt BEH 中,BE ==∴四边形PDBQ 的周长最小值2=.【点睛】本题考查了等腰直角三角形的性质、三角形的面积、四边形面积、四边形周长等知识,解答本题的关键是正确的作出辅助线.17.(1)1-;(2)6.【分析】(1)先计算特殊角的正弦与正切值、零指数幂,再计算实数的混合运算即可得;(2)根据比例中项的定义列出式子计算即可得.【详解】(1)原式21212⨯+-=113=+-1=-;(2)设线段a ,b 的比例中项为x ,则::a x x b =,4a = ,9b =,4::9x x ∴=,解得6x =或6x =-(不符题意,舍去),即线段a ,b 的比例中项为6.【点睛】本题考查了特殊角的正弦与正切值、零指数幂、比例中项,熟记各定义和运算法则是解题关键.18.(1)13;(2)23【分析】(1)用列举法列出所有可能出现的结果,其中“抽到1号”的有1种,即可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.【详解】(1)共有3种可能出现的结果,其中“抽到1号球”的有1种,∴“抽到1号球”的概率为13;(2)用列表法表示出所有可能出现的结果情况如下:∴由表可知,共有6种等可能结果,其中其中“和为奇数”的有4种,∴4263P ==.【点睛】本题考查了列举法、列表法求随机事件发生的概率,列举出所有可能出现的结果是解答本题的关键.19.14/km h【分析】设AB 与正北方向线交于点C ,根据已知及三角函数求得AC 、OC 的长,再根据等腰直角三角形的性质求得BC 的长,利用AB=AC+BC 求出AB 的长,再除以该船航行的时间即可求解;【详解】如图所示:设AB 与正北方向线交于点C ,∵在Rt △AOC 中,∠AOC=30°,OA=500m ,∴sin 30250AC OA m =︒= ,cos30OC OA =︒= ,∵△OBC 是等腰直角三角形,∴BC OC ==,∴250AB AC BC =+=+,∴该船的航速为:2503=5100060+÷+【点睛】本题考查了解直角三角形的知识,解一般三角形的问题一般可以转化为解直角三角形的问题,解决方法为构造直角三角形,难度一般;20.(1)见解析;(2)64【分析】(1)由平行线的性质可得∠DEB=∠FCE ,∠DBE=∠FEC ,再根据相似三角形的判定可得结论;(2)先根据35AF FC =得出58CF AC =,再根据相似三角形的判定与性质即可得出答案.【详解】(1)∵DE ∥AC ,∴∠DEB=∠FCE ,∵EF ∥AB ,∴∠DBE=∠FEC ,∴△BDE ∽△EFC ;(2)∵35AF FC =,∴58CF AC =,∵//EF AB ,∴△BAC ∽△EFC ,∴22564⎛⎫== ⎪⎝⎭ EFC ABC CF AC S S ,∵25= EFC S ,∴64= ABC S ,即△ABC 的面积为64.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是本题的关键.21.(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得:55706060k b k b +=⎧⎨+=⎩,解得:2180k b =-⎧⎨=⎩,∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.22.(1)①见解析;②见解析;(2)3r =【分析】(1)①直接用直径所对圆周角是90°进行解题即可;②找到∠CAD=∠ABD 和∠ADC=∠BDA ,两个角相等即可证明两个三角形相似;(2)利用锐角三角函数和相似三角形的性质即可求出半径的长度;【详解】(1)①如图所示,连接AO ,由BC 是直径得90BAC ∠= ,∵OB=OA ,∴∠B=∠OAB ,∵∠CAD=∠B ,∴∠OAD=∠OAC+∠CAD=∠OAC+∠OAB=90°,∴AD 为圆的切线;②在△ACD 和△BAD 中,∠CAD=∠ABD ,∠ADC=∠BDA ,∴△ACD ∽△BAD(2)由(1)知△ACD ∽△BAD ∴DA DC AC DB DA AB==,∵1tan 2B =,∴1tan 2AC B AB ==,∴12DA DC DB DA ==,则2AD CD =,即182AD AD BD ==,得AD=4,∴122CD AD ==,∴BC=BD-CD=8-2=6,∴半径3r =;【点睛】本题考查了直径所对圆周角等于90°,相似三角形的判定以及锐角三角函数,正确掌握知识点是解题的关键;23.(1)见解析;(2)5或10;(3)①见解析;②23.【分析】(1)分两种情况讨论,如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2.CD AD BD = 从而可作出图形;(2)作BC 边上的高AH ,由3tan 4AH B BH ==tan 1,AH C CH ==可得:4,,3BH AH CH AH ==再列方程414,3AH AH +=求解6,8,6,AH BH CH ===设BD x =,则由222,AD AH DH =+2AD BD CD =⋅可得22(8)6(14)x x x -+=-,解方程可得答案;(3)①首先证得,AHC DHB ∽则该相似三角形的对应边成比例:,AH CH DH BH=即••AH BH CH DH =,由点H 是BCD △中CD 边上的“好点”,可得2•,BH CH DH =再证明,AH BH =再利用垂径定理的推论可得结论;②如图④,连接,AD 证明90,ABD ∠=︒可得AD 是直径,所以,,A O D 共线,设,OH x =则3,OA OD x ==2,BD x =再分别求解,,CH DH 从而可得答案.【详解】解:(1)如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2,CD AD BD = 即D 为ABC 中边AB 上的“好点”.理由如下:如图①,90ACB CEF ∠=∠=︒,2,4,EF AC CE CB ====(),CEF BCA SAS ∴ ≌,ECF CBA ∴∠=∠90,ECF BCD ∠+∠=︒ 90BCD CBA ∴∠+∠=︒,90CDB ∴∠=︒,∴90CDA CDB ∠=∠=︒,,ACD CBD ∴ ∽,CDADBD CD ∴=2,CD AD BD ∴= 如图②, 矩形,ANBC ,CD ND AD BD ∴===2.CD AD BD ∴= (2)如图③,作BC 边上的高AH ,3tan 4AHB BH ==tan 1,AHC CH ==4,,3BH AH CH AH ∴==14,BC BH CH =+= ∴414,3AH AH +=6,8,6,AH BH CH ∴===设BD x =,则8,14,DH x CD x =-=- 222,AD AH DH =+2AD BD CD =⋅,∴22(8)6(14)x x x -+=-,215500,x x ∴-+=()()5100,x x ∴--=∴5x =或10x =,经检验:5x =或10x =都符合题意,所以BD 的长为5或10.(3)①∵,,CHA BHD ACH DBH ∠=∠∠=∠∴,AHC DHB ∽∴,AH CH DH BH =即••AH BH CH DH =,∵点H 是BCD △中CD 边上的“好点”,2•,BH CH DH ∴=2•,BH AH BH ∴=,BH AH ∴=.OH AB ∴⊥②2.3CH DH =理由如下:如图④,连接,AD //,OH BD ,OH AB ⊥∴90,ABD ∠=︒∴AD 是直径,所以,,A O D 共线,3,r OH = ∴设,OH x =则3,OA OD x ==2,BD x ∴=22223642,AB AD BD x x x ∴=-=-=,OH AB ⊥ 22222,483,AH BH x HD BD HB x x x ∴===+=+=2•,BH CH DH =22,3BH CH x DH ∴==2.3x CH DH ∴=【点睛】本题考查的是直角三角形斜边上的中线等于斜边的一半,三角形的中位线的性质,勾股定理的应用,相似三角形的判定与性质,解直角三角形的应用,垂径定理,圆周角定理,掌握以上知识是解题的关键.24.(1)y =﹣13x 2+3;(2)l==213m -+;(3,P 15)4【分析】(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),根据∠OBC =30°,得B (0),而OB =3OA ,得A0),再用待定系数法即可得y =﹣13x 2+3;(2)延长PF 交x 轴于点E ,先由B (0),C (0,3)得直线BC 的表达式为y=3-x +3,设点P (m,21333m -++),则点F (m,3-m +3),故PF =l=213m -+;(3)先证明∠OBC =30°=∠P ,在Rt △PDF 中,PD =cos30°⋅PF,DF =sin30°⋅PF =12PF ,故△PDF 的周长=PD +PF +DF+1+12)PF,可知PF 最大时,△PDF 的周长最大,而当m=2时,l 最大=94,即PF 最大为94,即可得到答案.【详解】解:(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),∴OC =3,∵∠OBC =30°,∴OB=tan 30°OC∴B(0),又OB =3OA,即3OA ,∴OA∴A(0),将A(0),B(0)代入y =ax 2+bx +3,得:0330273a a ⎧=-+⎪⎨=++⎪⎩,解得:13a b ⎧=-⎪⎪⎨⎪=⎪⎩∴y =﹣13x 2+3;(2)延长PF 交x 轴于点E,如图:设直线BC 表达式为y =sx +t ,将B(0),C (0,3)代入得:3t t ⎧+⎪⎨=⎪⎩,解得3s t ⎧=⎪⎨⎪=⎩∴直线BC 的表达式为y=3-x +3,设点P (m,2133m -++),则点F (m,+3),∴PF =l=21(3)(3)3m -++--+=213m -;(3)∵∠OBC =30°,∴∠BFE =60°=∠PFD ,∵PD ⊥BC ,∴∠P =30°,在Rt △PDF 中,PD =cos 30°⋅PFPF ,DF =sin 30°⋅PF =12PF,∴△PDF 的周长=PD +PF +DF 12)PF PF ,∴PF 最大时,△PDF 的周长最大,而由(2)知:PF =l =213m -=219()324x --+,∴当m l 最大=94,即PF 最大为94,此时,△PDF∴点P 的坐标为15()24,△PDF 的周长最大值为278+.【点睛】本题考查二次函数综合应用,涉及待定系数法、二次函数图象上点坐标的特征、解直角三角形、三角形周长等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.。

浙教版九年级上册数学期末测试卷(完整版)

浙教版九年级上册数学期末测试卷(完整版)

浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是( )A.(-2,-2)B.(-2,-1)C.(-1,-1)D.(2,1)2、如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A. cmB. cmC. cmD.1cm3、下列各组线段中,不成比例的是()A.4cm,10cm,6cm,8cmB.12cm,4cm,6cm,8cmC.33cm,11cm,22cm,66cmD.2cm,4cm,4cm,8cm4、如图,在中,,,则的度数是()A. B. C. D.5、如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A.20cmB.18cmC.2 cmD.3 cm6、某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A. B. C. D.7、已知二次函数y=ax2+bx+c(a≠0)的图象过点(O,m)(2,m)(m>0),与x轴的一个交点为(x1, 0),且﹣1<x1<0.则下列结论:①若点()是函数图象上一点,则y>0;②若点是函数图象上一点,则y>0;③(a+c)2<b2.其中正确的是()A.①B.①②C.①③D.②③8、把抛物线向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A. B. C.D.9、如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(-2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是()A.(0,0)B.(-1,1)C.(-1,0)D.(-1,-1)10、下列判断正确的是()A.“打开电视机,正在播NBA篮球赛”是必然事件B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就必有1次反面朝上C.一组数据2,3,4,5,5,6的众数和中位数都是5D.甲组数据的方差S甲2=0.03,则乙组数据比甲组数据稳定2=0.24,乙组数据的方差S乙11、如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,…,重复上述过程,经过2018次后,所得到的正六边形边长是原正六边形边长的()A.()2016倍B.()2017倍C.()2018倍D.()2019倍12、如图4,在梯形ABCD中,AD//BC,AC与BD相交于点O,则下列三角形中与△BOC一定相似的是A.△ABDB.△DOAC.△ACDD.△ABO13、已知和均是以为自变量的函数,当时,函数值分别是和,若存在实数,使得,则称函数和具有性质P。

浙教版数学九年级(上)期末综合练习试卷

浙教版数学九年级(上)期末综合练习试卷

浙教版数学九年级(上)期末综合练习试卷班级 姓名 学号 .一、选择题1. 反比例函数xm y 12+=的图象在 ( )A. 第一、三象限B. 第一、四象限C. 第一、二象限D. 第三、四象限 2. 抛物线42+=x y 的顶点坐标是 ( ) A.(4,0) B. (-4,0) C.(0,-4) D.(0,4)3. 下表是满足二次函数c bx ax y ++=2的五组数据,1x 是方程02=++c bx ax 的一个解,则下列选项中正确的是 ( )A.8.16.11<<xB.0.28.11<<xC.2.20.21<<xD.4.22.21<<x4.如图, 在ABCD 中, AB=10, AD=6, E 是AD 的中点,在AB•上取一点F,• 使△CBF∽△CDE, 则BF 的长是( ) A.5 B.8.2 C.6.4 D.1.8 5. 已知如图,点C 是线段AB 的黄金分割点(AC >BC ), 则下列结论中正确的是 ( ) A.222BC AC AB += B.2BC AC BA =C.215-=AC BCD.215-=BC AC 6.已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N ((-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 27. 如图,已知AB 是⊙O 的直径,以B 为圆心,BO 为半径画弧交 ⊙O 于C ,D 两点,则∠BCD 的度数是 ( )A. 30B. 50C. 60D.40 8. 若抛物线c x x y ++=22的顶点在x 轴上,则c 的值为 ( ) A. 1 B. -1 C. 2 D. 49. 在中国地理图册上,连结上海、香港、台湾三地构成一个三 角形,用刻度尺测得它们之间的距离如图所示,飞机从台湾 直飞上海的距离约为1286千米,那么飞机从台湾绕道香港(第5题)ACBA OBCD(第7题)(第9题)香港A F DE CB再到上海的飞行距离约为 ( ) A. 3858千米 B. 3456千米 C. 2400千米 D. 3800千米10.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数23.54.9h t t =-(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是 ( ) (A )0.71s (B ) 0.70s (C )0.63s (D )0.36s 二.填空题(每小题5分,共30分)11.将抛物线2x y =的图象向右平移3个单位, 则平移后的抛物线的解析式为 .12.如图,四边形ABCD 是长方形,以BC 为直径的半圆 与AD 边只有一个交点,且AB =x ,则阴影部分的面积 为___________.13.用半径为12cm ,圆心角为150的扇形做一个圆锥模型的侧面,则此圆锥底面圆的半径为cm.14.二次函数2y ax bx c =++和一次函数y mx n =+ 的图象如图所示,则2ax bx c mx n ++≤+时,x 的取值范围是____________.15.小华在距离路灯6米的地方,发现自己在地面上的影长 是2米,如果小华的身高为1.6米,那么路灯离地面的 高度是 米.16.有一个Rt △ABC ,∠A=90︒,∠B=60︒,AB=1,将它放在平面直角坐标系中,使斜边BC 在x轴上,直角顶点A 在反比例函数y=x上,则点C 的坐标为___ ______. 三、解答题17.在圣诞节,小明自己动手用纸板制作圆锥形的圣诞老人帽.圆锥帽底面直径为18 cm ,母线长为36 cm ,请你计算制作一 个这样的圆锥帽需用纸板的面积.EDCBA18.网格中每个小正方形的边长都是1.(1)将图①中的格点三角形ABC 平移,使点A 平移至点A`,画出平移后的三角形; (2)在图②中画一个格点三角形DEF ,使△DEF ∽△ABC ,且相似比为2∶1; (3)在图③中画一个格点三角形PQR ,使△PQR ∽△ABC1.19.如图,在菱形ABCD 中,点E 在CD 上,连结AE 并延长与BC 的延长线交于点F .(1)写出图中所有的相似三角形(不需证明); (2)若菱形ABCD 的边长为6,DE :AB=3:5, 试求CF 的长.20.如图,AB 是⊙O 的直径,点P 是⊙O 上的动点(P 与A ,B 不重合),连结AP ,PB ,过点O 分别作OE ⊥AP 于E ,OF ⊥BP 于F .(1)若AB=12,当点P 在⊙O 上运动时,线段EF 的长会不会改变.若会改变,请说明理由;若不会改变,请求出EF 的长;(2)若AP=BP ,求证四边形OEPF 是正方形.FEPOBA 图ABC A`ABC ABC图图21.课堂上,周老师出示了以下问题,小明、小聪分别在黑板上进行了板演,请你也解答这个问题:在一张长方形ABCD 纸片中,AD =25cm, AB =20cm. 现将这张纸片按如 下列图示方式折叠,分别求折痕的长. (1) 如图1, 折痕为AE;(2) 如图2, P ,Q 分别为AB ,CD 的中点,折痕为AE; (3) 如图3, 折痕为EF .22.点坐标是M (1,2),并且经过点C (0,3),抛物线与直线2 x 交于点P .(1)求抛物线的函数解析式。

【完整版】浙教版九年级上册数学期末测试卷

【完整版】浙教版九年级上册数学期末测试卷

浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、将抛物线向上平移个单位后得到的抛物线恰好与轴有一个交点,则a的值为()A.-1B.1C.-2D.22、周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()mA. B. C.4 D.3、如图,在△ABC中,DF∥EG∥BC,且AD=DE=EB,△ABC被DF、EG分成三部分,且三部分面积分别为S1, S2, S3,则Sl:S2:S3=()A.1;1:1B.1:2:3C.1:3:5D.1:4:94、如图,圆O的弦GH,EF,CD,AB中最短的是()A.GHB.EFC.CDD.AB5、如图,五边形是的内接正五边形,是的直径,则的度数是()A.18°B.36°C.D.72°6、如图,A,B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A 与点B之间的距离为( )A. rB. rC.rD.2r7、如图,C、D是以AB为直径、O为圆心的半圆上的两点,OD∥BC,OD与AC 交于点E,下列结论中不一定成立的是()A.AD=DCB.∠ACB=90°C.△AOD是等边三角形D.BC=2EO8、有5张看上去无差别的卡片,上面分别写着0,π,,,1.333,背面朝上放在不透明的桌子上,若随机抽取1张,则取出的卡片上的数是无理数的概率是()A. B. C. D.9、已知点D、E分别在△ABC边AB、AC上,DE∥BC,BD=2AD,那么S△DBE :S△EBC等于()A.1:2B.1:3C.1:4D.2:110、如图,直线l1∥l2∥l3,若AB=3,BC=4,则的值是()A. B. C. D.11、如图,正△AOB的边长为5,点B在x轴正半轴上,点A在第一象限,反比例函数y=(x>0)的图象分别交边AO,AB于点C,D,若OC=2BD,则实数k的值为()A.4B.C.D.812、在平面直角坐标系中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.b>0B.b 2-4ac<0C.a+b+c>0D.点A的坐标为(﹣2,0)13、抛物线的顶点坐标是( )A.(3,5)B.(-3,-5)C.(-3,5)D.(3,-5)14、将抛物线向右平移一个单位,所得的抛物线的解析式为().A. +1B. -1C.D.15、如图,AB是⊙O的直径,点D,C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则∠DAC的度数为( )A.15°B.30°C.45°D.60°二、填空题(共10题,共计30分)16、如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE// BC,EF//AB,且AD:DB=3:5,那么CF:CB 等于________.17、二次函数的图象过点(3,1),(6,-5),若当3<<6时,随着的增大而减小,则实数的取值范围是________.18、如图,在大小为4×4的正方形网格中,是相似三角形的是________(请填上编号).的图象.P是19、如图,将抛物线向右平移2个单位,得到抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物抛物线y2线y交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,请2求出满足条件的t的值,则t=________.20、的半径为,两条弦,,且,直径于点,则的值为________.21、如图,△ABC中,点D,E分别在边AB,AC上,请添加一个条件________,使得△ADE与△ABC相似.22、已知:在平行四边形ABCD中,点E在DA的延长线上,AE= AD,连接CE 交BD于点F,则的值是________.23、将平行四边形ABCD(如图)绕点C旋转后,点D落在边BC上的点D′,点A落到A′,且点A′、B、A在一直线上.如果AB=3,AD=13,那么cosA=________.24、如图,是锐角三角形的外接圆,,且,点是高线的交点,连接,则的度数为________,的长为________.25、某市组织的“五城联创”演讲比赛中,小明等25人进入总决赛,赛制规定,13人上午参赛,12人下午参赛,小明抽到上午比赛的概率是________.三、解答题(共5题,共计25分)26、已知:,求的值.27、亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?28、如图,在△ABC中(∠B≠∠C),AB=8 cm,BC=16 cm,点P从点A开始沿边AB向点B以2 cm/s的速度移动,点Q从点B开始沿边BC向点C以4 cm/s 的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.29、如图所示,长方形ABCD的长AB为10 cm,宽AD为6 cm,把长方形ABCD 绕AB边所在的直线旋转一周,然后用平面沿AB方向去截所得的几何体,求截面的最大面积.30、如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2)(1)求过A、B、C三点的抛物线解析式.(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S.①求S与t的函数关系式.②当t是多少时,△PBF的面积最大,最大面积是多少?(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F 的坐标;若不能,请说明理由.参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、A5、C6、B7、C8、B9、B10、B11、A12、D13、C14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

浙教版九年级(上)数学期末统测试题(九上全册,含答案)

浙教版九年级(上)数学期末统测试题(九上全册,含答案)

第4题图浙教版九年级数学第一学期期末检测试卷满分150分,考试时间为120分钟,不能使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线2y ax bx c =++的顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,一、选择题(每小题4分,共48分) 1. 反比例函数xy 3-= 的图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 2.若抛物线2y ax =经过点P (1,-3),则此抛物线也经过点( ) A .P (1,3)- B .P (1,3)-- C .P (1,3) D .P (3,1)- 3. 二次函数y =ax 2+ bx , 若a +b =1,则它的图象必经过点( )A .(1,1)--B .(1,1)-C .(1,1)-D .(1, 1) 4.如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于点B ,若S △AOB =3,则k 的值为( ) A .1.5 B .3C .6D .3或3-5.如图,点D 在△ABC 边BC 上,且ADC BAC ∠=∠,若CD =2, BC =8,则AC 的长为( ) A.33+B.3 C .1或4D .46.底面半径3cm ,高为4cm 的圆锥的侧面积为( )cm 2A .12πB .15πC .30πD .24π7.已知P 是线段AB 的黄金分割点,且AP PB >,10AB =,则AP 长约为( ) A .0.618 B . 6.18 C . 3.82 D .0.3828.如图,C 是以AB 为直径的⊙O 上一点,已知AB =5,BC =3,则圆心O 到弦BC 的距离是( ) A .1.5 B .2 C .2.5 D .3 9.把抛物线2y x =向右平移2个单位得到的抛物线是( )A .22y x =+B .22y x =-C .2(2)y x =+D .2(2)y x =-10.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ( )BA第8题图第5题图y–1 33O x第10题图P1 第15题图11. 直线l 1∥l 2∥l 3,且l 1与l 2的距离为1,l 2与l 3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A ,B ,C 恰好分别落在三条直线上,AC 与直线l 2交于点D ,则线段BD 的长度为( ) A .254B .253C .203D .15412.如图,在直角坐标系xOy 中,点O 为坐标原点,等腰直角△OAB 的顶点A 、B 在某反比例函数的图象上,且点A 在第一象限横坐标为4,则△OAB 的面积是( )A .8B .16C .2045-D .4085- 二、填空题(每题4分,共24分)13. 如图,∠1=∠2,添加一个条件使得△ADE ∽△ABC ,你添加的是14. 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =16(cm ),则球的半径为cm .15. 如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠D = ° 16.已知抛物线2223y x x m m =-++-的图象经过(1,0),则m =___________ 17.如图,点D 、E 分别在△ABC 的边上AB 、AC 上,且AB C AED ∠=∠,若DE =4,BC =6,AB =8,则AE 的长为___________18.如图△ABC 中,∠C =90°, AC =3,BC =4,CD 是AB 边上的高,分别以AC 、BC 为直径的半圆交于 C 、D 两点,则图中的阴影部分的面积是 三、解答题(共78分)D_ C_ B_ A第18题图EDCBA第17题图第11题图第12题图YX86422468510BAOABC DO12第21题图19. (6分)点P (2,1)在反比例函数xky =的图象上. (1)求该反比例函数解析式;(2)如果A (-1,1b ),B (-2,2b )也是该图象上的两点,试比较1b 与2b 的大小.20. (6分)如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.21.(8分)已知:如图,A 、B 、C 、D 是⊙O 上的点,∠1=∠2,AC =3cm . (1)求证:AC BD =;(2)能否求出BD 的长?如能,求出BD 的长;如不能,说明理由.22.(8分)如图,扇形OAB 的圆心角为120°,半径为6cm .(1) 请用尺规作出此扇形的对称轴(不写作法,保留作图痕迹); (2)此扇形围成一个圆锥的侧面 (不计接缝),求圆锥的底面半径.23.(12分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?24.(12分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C'处,BC′交AD于点G;E、F分别是C D'和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D'处,点D'恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求AGAB的值;(3)求EF的长.25.(12分)如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数12(0)y xx=>图象上任意一点,以P(1)求证:线段AB为⊙P的直径;(2)求△AOB的面积;(3)如图2,Q是反比例函数12(0)y xx=>图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D。

浙教版九年级上数学期末综合练习附答案

浙教版九年级上数学期末综合练习附答案

浙教版九年级上数学期末综合练习一.选择题(共13小题)1.下列函数中,y随x的增大而减小的是()A.y=﹣x B.y=﹣C.y=﹣(x>0)D.y=x(x>0)2.如图,在平面直角坐标系内,点A是反比例函数y=(x>0)图象上的一点,过点A作x轴的垂线,垂足为B,则△AOB的面积为()A.B.1C.2D.43.若反比例函数图象经过点(﹣1,6),则下列点也在此函数上的是()A.(﹣3,2)B.(3,2)C.(2,3)D.(6,1)4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1 C.顶点坐标是(1,2)D.与x轴有两个交点5.抛物线y=(x﹣1)2﹣3的对称轴是()A.y轴B.直线x=﹣1 C.直线x=1 D.直线x=﹣36.下列函数中,图象经过原点的是()A.y=3x B.y=1﹣2x C.y=D.y=x2﹣17.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解B.x=1 C.x=﹣4 D.x=﹣1或x=4 8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6B.5C.4D.39.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°10.如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C 11.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°12.若两个相似多边形的面积之比为1:4,则它们的周长之比为()A.1:4 B.1:2 C.2:1 D.4:1 13.如图,△ABC∽△DEF,相似比为1:2.若BC=1,则EF的长是()A.1B.2C.3D.4二.填空题(共17小题)14.已知实数x、y满足,则=_________.15.线段AB=10,点P是AB的黄金分割点,且AP>BP,则AP=_________(用根式表示).16.如图,在△ABC中,DE∥BC,AD=2,AB=6,AE=3,则AC的长为_________.17.如图,已知AD∥EF∥BC,如果AE:EB=2:3,FC=6,那么DC=_________.18.如图,AB∥CD,AC与BD相交于点O,AB=3,若BO:BD=1:3,则CD等于_________.19.如图,在△ABC中,EF∥BC,AD⊥BC交EF于点G,EF=4,BC=5,AD=3,则AG= _________.20.如图,△ABC中,D、E分别是AB、AC的中点,若△ADE的面积为2,则四边形DECB 的面积是_________.21.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为_________.22.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是_________.23.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为_________.24.如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=_________.25.如图,⊙O的半径为4,点A、B、C在⊙O上,且∠ACB=45°,则弦AB的长是_________.26.抛物线y=x2﹣4x+5的对称轴是直线_________.27.二次函数y=x2+3图象的顶点坐标是_________.28.如果二次函数y=(2k﹣1)x2﹣3x+1的图象开口向上,那么常数k的取值范围是_________.29.函数y=(x+5)(2﹣x)图象的开口方向是_________.30.若二次函数y=ax2+bx+c的图象经过原点,则c的值为_________.参考答案与试题解析一.选择题(共13小题)1.A2.B3.A4.C5.C6.A7.D8.B9.C10.A11.C12.B13.B二.填空题(共17小题)14.2.15.()(用根式表示).16.9.17.10.18.6.19..20.6.21..22..23.3.24.55°.25.4.26.x=2.27.(0,3).28.k>.29.向下.30.0.。

浙教版九年级上册数学期末测试卷(综合考试)

浙教版九年级上册数学期末测试卷(综合考试)

浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是( )A. B. C. D.2、某天的同一时刻,甲同学测得1m的测竿在地面上的影长为0.6m,乙同学测得国旗旗杆在地面上的影长为9.6m。

则国旗旗杆的长为( )A.10mB.12mC.14mD.16m3、如图,已知AB是半圆O的直径,∠BAC=32º,D是弧AC的中点,那么∠DAC 的度数是()A.25ºB.29ºC.30ºD.32°4、如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(2,0).下列结论:①ac<0;②2a+b=0;③若关于x的方程ax2+bx+c﹣t=0有两个不相等的实数根,则t>0;④若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=4.其中正确的有()A.1个B.2个C.3个D.4个5、把抛物线y=2x2-1先向右平移2个单位,再向下平移1个单位,所得抛物线的解析式为()A.y=2x 2+8x+6B.y=2x 2-8x+6C.y=2x 2-8x+8D.y =2x 2-8x-86、如图,⊙O是△ABC的外接圆,点C、O在弦AB的同侧.若∠ACB=40°,则∠ABO的大小为()A.40°B.45°C.50°D.60°7、粮仓的顶部是圆锥形,这个圆锥的底面直径是4m,母线长为3m,为防雨需在粮仓的顶部铺上油毡,那么这块油毡的面积至少为( )A.6 m 2B.6π m 2C.12 m 2D.12π m 28、如图,在平面直角坐标系中,,,,点P为的外接圆的圆心,将绕点O逆时针旋转,点P的对应点P’的坐标为()A. B. C. D.9、二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个10、若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,-3),则此函数有()A.最小值-3B.最大值-3C.最小值2D.最大值211、两个相似三角形的对应边上的中线比为,则它们面积比的为()A.2:1B.1:2C.1:D. :112、下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等 C.同圆或等圆中,相等的圆心角所对的弧相等 D.经过切点且垂直于切线的直线必经过圆心13、有五只灯泡,其中两只是次品,从中任取一只恰为合格品的概率为()A.20%B.40%C.50%D.60%14、已知线段a=2,c=4,线段b是a,c的比例中项,则线段b的值为( )A.8B.3C.D.215、如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A.1条B.2条C.3条D.4条二、填空题(共10题,共计30分)16、在一个10万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是________.17、如图,在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=2,MB=4,BC=6,则MN的长为________.18、如图,圆O的直径AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,则∠MBA的余弦值为________ .19、如图,四边形ABCD内接于,若四边形ABCO是平行四边形,则的大小为________.20、如图,△ABC为⊙O的内接正三角形,P为弧BC上一点,PA交BC于D,已知PB=3,PC=6,则PD=________.21、如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④CD2=CE•CA.其中正确的结论是________ (把你认为正确结论的序号都填上)22、已知,且a+b=10,则b=________.23、从圆内一点P引两条弦AB与CD,则∠APC与弧AC、BD度数间的关系是________ .24、一条弦的弦心距等于它所在圆的直径的,则这条弦所对的圆周角为________.25、如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得的线段CD的长________三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施。

浙教版数学九年级上期末综合达标测试卷(含答案)

浙教版数学九年级上期末综合达标测试卷(含答案)

期末综合达标测试卷
(满分:120分时间:120分钟)
一、选择题(每小题3分,共30分)
1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有(B) A.4个B.3个
C.2个D.1个
2.如图,在△ABC中,D、E两点分别在BC、AC边上.若BD=CD,∠B=∠CDE,DE=2,则AB的长为(A)
第2题
A.4 B.5
C.6 D.7
3.如图,⊙O的直径CD⊥AB,∠AOC=50°,则∠CDB的度数为(A)
第3题
A.25°B.30°
C.40°D.50°
4.如图,在△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的点C′处,并且C′D∥BC,则CD的长是(A)
第4题
A.40
9
B.
50
9
C.15
4
D.
25
4
5.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,。

浙教版九年级数学上册期末综合复习检测试卷(有答案)

浙教版九年级数学上册期末综合复习检测试卷(有答案)

期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AĈ上的点,若∠BOC=40°,则∠D的度数为()A. 100°B. 110°C. 120°D. 130°2.两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为( )A. 23B.32C.4 9D. 943.在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为()A. 1:20B. 1:20000 C. 1:200000 D. 1:20000004.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A. 8cmB. 5cmC. 3cmD. 2cm5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是()A. ①②B. ①③C. ①③④D. ①②③④6.围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是23.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()颗 D. 12颗7.一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。

如果任意抛掷小正方体两次,那么下列说法正确的是()A. 得到的数字之和必然是4 B. 得到的数字之和可能是3C. 得到的数字之和不可能是2 D. 得到的数字之和有可能是18.函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是().A. a>0B. a−b+c<0 C. c<0D. 当−1<x<3时,y>09.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是()A. (-1.4,-1.4)B. (1.4,1.4)C. (-,- ) D. (,)10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.个 D. 4个二、填空题(共10题;共30分)11.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________.12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.13.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB=________14.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= ________时,以A、D、E为顶点的三角形与△ABC相似.15.已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.16.某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t﹣1.5t2,那么飞机着陆后滑行________ 米才能停止.17.已知点P为平面内一点,若点P 到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为________.18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________19.如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为________ .20.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 √2,则另一直角边AE的长为________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使ODOB =OEOA=13,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.23.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.24.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:.25.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)26.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?27.如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点M作MC⊥BC,垂足为C,MC与⊙O 交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).(1)当x=9时,求BM的长和△ABM的面积;(2)是否存在点M,使MD•DC=20?若存在,请求出x的值;若不存在,请说明理由.28.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币).(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?答案解析部分一、单选题 1.【答案】B 2.【答案】A 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】B 8.【答案】B 9.【答案】D 10.【答案】C 二、填空题 11.【答案】25 12.【答案】55 13.【答案】108° 14.【答案】125 , 53 15.【答案】(0,10) 16.【答案】600 17.【答案】2或3 18.【答案】1319.【答案】2 20.【答案】10 三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE , ∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC . 又∵∠B=∠D , ∴△ABC∽△ADE .22.【答案】解: ∵ ODOB =OEOA ,∠AOB =∠EOD (对顶角相等), ∴ △AOB ∼△EOD , ∴ ODOB =OEOA =13, ∴ 37.2AB =13, 解得AB =111.6米.所以,可以求出A 、B 之间的距离为111.6米23.【答案】解:图中的弧为BC,AB,AC,ACB,BAC,ABC. 24.【答案】解:∵共3红2黄1绿相等的六部分, ∴①指针指向红色的概率为36=12; ②指针指向绿色的概率为16; ③指针指向黄色的概率为26=13;④指针不指向黄色为56,(1)可能性最大的是④,最小的是②; (2)由题意得:②<③<①<④, 故答案为:②<③<①<④.25.【答案】解:设男同学标记为A 、B ;女学生标记为1、2,可能出现的所有结果列表如下:的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为212=16 26.【答案】解:连CO ∵DC⊥AD,CE⊥OB CD=EC ∠1=∠227.【答案】证明:(1)∵直线BC 与半径为6的⊙O 相切于点B ,且AB 为⊙O 的直径, ∴AB⊥BC, 又∵MC⊥BC, ∴AB∥MC, ∴∠BMC=∠ABM, ∵AB 是⊙O 的直径, ∴∠AMB=90°, ∴∠BCM=∠AMB=90°, ∴△BCM∽△AMB, ∴BMAB =MCBM ,∴BM 2=AB•MC=12×9=108, ∴BM=6√3, ∵BC 2+MC 2=BM 2, ∴BC=√BM 2−MC 2=3√3∴S △ABM =12AB•BC=12×12×3√3=18√3; (2)解:过O 作OE⊥MC,垂足为E , ∵MD 是⊙O 的弦,OE⊥MD, ∴ME=ED,又∵∠CEO=∠ECB=∠OBC=90°, ∴四边形OBCE 为矩形, ∴CE=OB=6, 又∵MC=x,∴ME=ED=MC﹣CE=x ﹣6,MD=2(x ﹣6), ∴CD=MC﹣MD=x ﹣2(x ﹣6)=12﹣x ,∴MD•DC=2(x﹣6)•(12﹣x)=﹣2x2+36x﹣144=﹣2(x﹣9)2+18∵6<x<12,∴当x=9时,MD•DC的值最大,最大值是18,∴不存在点M,使MD•DC=20.28.【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地 [80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x)=-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40.又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.。

【完整版】浙教版九年级上册数学期末测试卷

【完整版】浙教版九年级上册数学期末测试卷

浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y 的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个2、下列各式中,y是x的二次函数的是( )A. B. C. D.3、如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D 为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD等于()A.20°B.40°C.65°D.70°4、下列说法正确的是()A.打开电视看CCTV—5频道,正在播放NBA篮球比赛是必然事件B.某一种彩票中奖概率是,那么买1000张这种彩票就一定能中奖C.度量一个三角形的内角和是360°,这是不可能事件D.小李掷一硬币,连续5次正面朝上,则他第6次掷硬币时,正面朝上的概率是15、如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列选项中的结论错误的是()A.FA:FB=1:2B.AE:BC=1:2C.BE:CF=1:2D.S:S△ABE =1:4△FBC6、二次函数(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>;④a-b+c>0;⑤若,且,则.其中正确的有().A.①②③B.②④C.②⑤D.②③⑤7、某中学在建党九十周年时,举行了“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( )A. B. C. D.8、如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°9、把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A. B. C. D.10、二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是()A. B. C. D.11、二次函数的图象如图所示,则下列结论中正确的是()A.a>0B.b>0C.c>0D.b 2-4ac>012、已知,那么下列等式中,不一定正确的是()A. B. C. D.13、在平面直角坐标系中,将线段OA绕原点O逆时针旋转90°,记点A(﹣1,)的对应点为A1,则A1的坐标为()A.(, 1)B.(1,)C.(﹣,﹣1)D.(﹣1,﹣)14、如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠COB、∠B 的度数是()°.A.10°和40°B.10°和50°C.40°和50°D.10°和60°15、某鱼塘里养了100条鲤鱼、若干条草鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,可估计该鱼塘中草鱼的数量为()A.150B.100C.50D.200二、填空题(共10题,共计30分)16、如图,在中,,,点D为AC上一点,作交BC于点E,点C关于DE的对称点为点O,以OA为半径作⊙O 恰好经过点C,并交直线DE于点M,N则MN的值为________.17、已知,则的值为________.18、如图,点A、B、C在O0上,切线CD与OB的延长线交于点D.若∠A=30°,CD= ,则⊙O的半径长为________.19、平面直角坐标系xoy中,将点A(2,3)绕(-2,-1)旋转90°后的坐标是________.20、把一个正多边形放大到原来的2.5倍,则原图与新图的相似比为________21、抛物线的y=(x﹣3)2﹣2的最小值为________.22、定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m, 1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣1时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在时,y随x的增大而减小;④当m≠0时,函数图象经过x轴上一个定点.其中正确的结论有________.(只需填写序号)23、如图,点P是边长为5的正方形ABCD内一点,且PB=2,PB⊥BF,垂足为点B,请在射线BF上找一点M,使得以B,M,C为顶点的三角形与ABP相似,则BM=________.24、如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为________.25、如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是________.三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、某兴趣小组开展课外活动.如图,小明从点M出发以1.5米/秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点F,此时点A,C,E三点共线.(1)请在图中画出光源O点的位置,并画出小明位于点F时在这个灯光下的影长FH(不写画法);(2)求小明到达点F时的影长FH的长.28、解不等式组写出符合不等式组的整数解,并求出这些整数解中能使关于x的方程:2x+k=﹣1的解为非负数的概率.29、已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:x …﹣1 0 1 3 4 …y …8 0 0 …(1)抛物线的对称轴是多少,点A,B的坐标是什么?(2)求二次函数y=ax2+bx+3的解析式;(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?30、如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径,扇形的圆心角,求该圆锥的母线长.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、C5、C6、D7、D8、B9、B10、D11、D12、A13、C14、D15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。

浙教版九年级数学上册期末综合复习检测试卷(有答案)

浙教版九年级数学上册期末综合复习检测试卷(有答案)

期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB 是半圆的直径,0为圆心,C 是半圆上的点,D 是 上的点,若/ BOC=40,则/ D 的度数为()A. 100 °B. 110 °C.120 °D. 1302•两个相似多边形一组对应边分别为 3 cm , 4.5 cm ,那么它们的相似比为()A. -B.C.D. 3. 在某幅地图上,AB 两地距离8.5cm ,实际距离为170km ,则比例尺为( ) A. 1:20" B.1 20000" C.1 200000D.1 20000004. 如图,AB 是O O 的直径,弦 CD 丄 AB 于点 E , OC=5cm , CD=8cm,贝U AE=()6.围棋盒子中有x 颗白色棋子和y 颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是-•如果在原有的棋子中再放进 4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是 -,则原来盒子中有白色棋子( )A. 4 颗B. 6 颗C. 8 颗D. 12 颗B. 5cmC. 3cmD. 2 cm2 .. ..5. 已知二次函数y=ax+bx+c ( a 工0的图象如图所示,下列结v 0;② 4a+2b+c v 0;③a - b+c > 0;C.①③④D.①②③④ A. 8cm A.①② B.①③7•—个质地均匀的小正方体的六面上都标有数字, 下列说法正确的是()A. (-1.4,-1.4)B.( 1.4,1.4)C.(-」,-,r)D.(」,」)210. 如图,二次函数 y=ax+bx+c (a 工)的图象与x 轴交于点A 、B 两点,与y 轴交于点C,对称轴为直线 x= -1,点B 的坐标为(1, 0),则下列结论: ①AB=4 ;②b 2 - 4ac > 0;③ab v 0;④a 2- ab+ac v 0,其中 正确的结论有()个.111J\ ! A \\0 p xA. 1个B.个乙填空题(共10题;共30分)11. 在一个不透明的纸箱内放有除颜色外无其他差别的 2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是 __________ .12. 如图,把△ ABC 绕C 点顺时针旋转 35 °得到厶A ' B,'AC' 交 AC 于点D,若/ A ' DC=90则/ A= _________1, 2,3, 4,5, 6。

浙教版九年级数学上册期末综合检测试卷(含答案)

浙教版九年级数学上册期末综合检测试卷(含答案)

浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm2.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A. ∠ABD=∠CB. ∠ADB=∠ABCC.D.3.抛物线y=3x2,y=-3x2,y= x2+3共有的性质是()A. 开口向上B. 对称轴是y轴C. 都有最高点D. y随x值的增大而增大4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()A. k>-B. k>- 且k≠0C. k≥-D. k≥- 且k≠05.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A. 0.5mB. 0.55mC. 0.6mD. 2.2m6.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则的值为()A. B. C. D.7.平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为( )A. (1,)B. ( -1,)C. (0,2)D. (2,0)8.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A. 70°B. 50°C. 40°D. 35°9.两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是()A. 75cm2B. 65cm2C. 50cm2D. 45cm210.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A. 2个B. 3个C. 4个D. 5个二、填空题(共10题;共30分)11.如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.12. 如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.15.如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB交BC于E,交AC于F.若AB=12,那么EF=________.16.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为________ 元时,可获得最大利润.17.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).18.如果2+ 是方程的一个根,那么c的值是________.19.如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB绕点O逆时针旋转90°得△′′,则点′的坐标为________20.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m (0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________ .三、解答题(共8题;共60分)21.如图,已知△ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转180°后的△A2B2C2,并写出点A2的坐标;(3)直接回答:∠AOB与∠A2OB2有什么关系?22.已知:如图所示,AD=BC。

浙教版九年级数学上册期末综合检测试卷(含答案)

浙教版九年级数学上册期末综合检测试卷(含答案)

浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm2.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A. ∠ABD=∠CB. ∠ADB=∠ABCC.D.3.抛物线y=3x2,y=-3x2,y= x2+3共有的性质是()A. 开口向上B. 对称轴是y轴C. 都有最高点D. y随x值的增大而增大4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()A. k>-B. k>- 且k≠0C. k≥-D. k≥- 且k≠05.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A. 0.5mB. 0.55mC. 0.6mD. 2.2m6.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则的值为()A. B. C. D.7.平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为( )A. (1,)B. ( -1,)C. (0,2)D. (2,0)8.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A. 70°B. 50°C. 40°D. 35°9.两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是()A. 75cm2B. 65cm2C. 50cm2D. 45cm210.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A. 2个B. 3个C. 4个D. 5个二、填空题(共10题;共30分)11.如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.12. 如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.15.如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB交BC于E,交AC于F.若AB=12,那么EF=________.16.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为________ 元时,可获得最大利润.17.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).18.如果2+ 是方程的一个根,那么c的值是________.19.如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB绕点O逆时针旋转90°得△′′,则点′的坐标为________20.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m (0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________ .三、解答题(共8题;共60分)21.如图,已知△ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转180°后的△A2B2C2,并写出点A2的坐标;(3)直接回答:∠AOB与∠A2OB2有什么关系?22.已知:如图所示,AD=BC。

浙教版九年级(上)期末数学综合复习试卷

浙教版九年级(上)期末数学综合复习试卷

浙教版九年级上册综合复习试卷一、单项选择题 1.判断下列命题:①菱形是中心对称图形;②若a>1且b>1,则a+b>2 ③全等三角形对应角相等;④直角三角形的两锐角互余 其中逆命题正确的有( )A.3个B.2个C.1个D.0个 2.已知关于x 的一元二次方程0232=--bx ax和0622=-+bx ax 有共同的根2-=x ,则b a 34+的值为( )A .4B .-4C .2D .-23.如图,将△ADE 绕正方形ABCD (四条边都相等,四个角都是直角)的顶点A 顺时针旋转 90°得△ABF,连接EF 交AB 于点H ;则下列结论:①AE ⊥AF ;②△ABF ≌△AED ;③点A 在线段EF 的中垂线上;④ △ADE 与△ABF 的周长和面积分别相等;其中正确的有( ) A .4个; B. 3个; C. 2个; D. 1个;4.如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动,那么下列结论成立的是( ) A.线段EF 的长逐渐增大 B.线段EF 的长逐渐减小 C.线段EF 的长不变 D.线段EF 的长与点P 的位置有关5.如果关于x 的方程022=--k x x 没有实数根,那么k 的最大整数值是( ) A .-3 B .-2 C .-1 D .06.在一次数学课上,李老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形.且要求等腰三角形的一个顶点与矩形的一个顶点重合,其余两个顶点在矩形的边上,则剪下的等腰三角形的面积为( )cm 2A.50B.50或40C.50或30 或20D.50或40或30 7.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )A .2个B .3个C .4个D .5个 8.如图,已知Rt △ABC ,∠C =90°,∠A =30°,在直线BC 或AC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的P 点有( ) A.2 个 B.4个 C.6个 D.8个9.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( ) A .第3天B .第4天C .第5天D .第6天10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行11.如图,正方形ABCD 外有一点P ,P 在BC 外侧,并在平行线AB 与CD 之间,若PA=17,PB =2,PC =5,则PD =( )A .25B .19C .32D .17 12.如图,四边形ABCD 中,∠A =∠C =90°,∠ABC =60°,AD =4,CD =10,则BD 的长等于( )A CB A ' B 'C '(第10题)图2图1第6题图CBA112 111021 2019 181716 1514 135498 7 6 2 3(第9题)A.134B.38C. 12D.310 13.如图,△ABC 中,AB =AC =2,BC 边上有10个不同的点1P ,2P ,……10P , 记C P B P AP M i i i i ⋅+=2(i = 1,2,……,10),那么1021M M M +++ 的值为( )A. 4B.14C. 40D.不能确定(第11题) (第12题) (第13题)二、填空题14.如图,是一个平铺的某种儿童雨伞的伞面,它是由12块完全相同的等腰三角形布料缝合而成,量得其中一个三角形OAB 的边OA =OB =40cm .则∠AOB= 度,这个伞面的面积S= cm 2.15.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成,其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .16.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n 个菱形n n n AB C D 的边n AD 的长是 .17. 如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方1D B 3第16题图A C 2B 2C 3D 3 B 1D 2C 1 第14题形“扩展”而来,边数记为4a ,…,依此类推,由正n 边形“扩展”而来的多边形的边数记为n a (n ≥3).则5a 的值是 ▲ ,当3451111n a a a a +++⋅⋅⋅+的结果是197600时,n 的值 ▲ .18.如图所示,直线12l l ⊥,垂足为点O ,A 、B 是直线1l 上的两点,且OB=2,AB=2.直线1l 绕点O 按逆时针方向旋转,旋转角度为α(0180α<<). (1)当α=60°时,在直线2l 上找点P ,使得△BPA 是以∠.B .为顶角...的等腰三角形,此时OP=___▲___. (2)当α在什么范围内变化时,直线2l 上存在点P , 使得△BPA 是以∠.B .为顶角...的等腰三角形,请用 不等式表示α的取值范围:___▲___. 三、解答题19.已知:如图在梯形ABCD 中,AD ∥BC,AB=8cm,∠B=60•°,∠C=45•°,AD=5cm, 求:(1)CD 的长:(5分)(2)梯形ABCD 的面积。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版数学九年级(上)期末综合练习试卷
班级 姓名 学号 .
一、选择题
1. 反比例函数x
m y 1
2+=的图象在 ( )
A. 第一、三象限
B. 第一、四象限
C. 第一、二象限
D. 第三、四象限 2. 抛物线42+=x y 的顶点坐标是 ( ) A.(4,0) B. (-4,0) C.(0,-4) D.(0,4)
3. 下表是满足二次函数c bx ax y ++=2的五组数据,1x 是方程02
=++c bx ax 的一个解,则下列选项中正确的是 ( )
A.8.16.11<<x
B.0.28.11<<x
C.2.20.21<<x
D.4.22.21<<x
4.如图, 在
ABCD 中, AB=10, AD=6, E 是AD 的中点,
在AB•上取一点F,• 使△CBF∽△CDE, 则BF 的长是( ) A.5 B.8.2 C.6.4 D.1.8 5. 已知如图,点C 是线段AB 的黄金分割点(AC >BC ), 则下列结论中正确的是 ( ) A.2
2
2
BC AC AB += B.2
BC AC BA =
C.215-=AC BC
D.2
15-=
BC AC 6.已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N
((-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )
A .y 1<y 2<y 3
B .y 2<y 1<y 3
C .y 3<y 1<y 2
D .y 1<y 3<y 2
7. 如图,已知AB 是⊙O 的直径,以B 为圆心,BO 为半径画弧交 ⊙O 于C ,D 两点,则∠BCD 的度数是 ( )
A. 30
B. 50
C. 60
D.
40 8. 若抛物线c x x y ++=22
的顶点在x 轴上,则c 的值为 ( ) A. 1 B. -1 C. 2 D. 4
9. 在中国地理图册上,连结上海、香港、台湾三地构成一个三 角形,用刻度尺测得它们之间的距离如图所示,飞机从台湾 直飞上海的距离约为1286千米,那么飞机从台湾绕道香港
再到上海的飞行距离约为 ( ) A. 3858千米 B. 3456千米
(第5题)
A
C B
A O
B
C
D
(第7题)
(第9题)
香港
A F D
E C
C. 2400千米
D. 3800千米
10.小敏在今年的校运动会跳远比赛中跳出了满意一
跳,函数23.5 4.9h t t =-(t 的单位:s ,h 的单位:m )可以
描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间
是 ( )
(A )0.71s (B ) 0.70s (C )0.63s (D )0.36s 二.填空题(每小题5分,共30分)
11.将抛物线2x y =的图象向右平移3个单位, 则平移后的抛物线的解析式为 .
12.如图,四边形ABCD 是长方形,以BC 为直径的半圆 与AD 边只有一个交点,且AB =x ,则阴影部分的面积 为___________.
13.用半径为12cm ,圆心角为
150的扇形做一个圆锥模型的侧面,则此圆锥底面圆的半径为
cm.
14.二次函数2y ax bx c =++和一次函数y mx n =+ 的图象如图所示,则2
ax bx c mx n ++≤+时,
x 的取值范围是____________.
15.小华在距离路灯6米的地方,发现自己在地面上的影长 是2米,如果小华的身高为1.6米,那么路灯离地面的 高度是 米.
16.有一个Rt △ABC ,∠A=90︒,∠B=60︒,AB=1,将它放在平面直角坐标系中,使斜边BC 在x 轴
上,直角顶点A 在反比例函数C 的坐标为___ ______. 三、解答题
17.在圣诞节,小明自己动手用纸板制作圆锥形的圣诞老人帽.
圆锥帽底面直径为18 cm ,母线长为36 cm ,请你计算制作一 个这样的圆锥帽需用纸板的面积.
18.网格中每个小正方形的边长都是1.
(1)将图①中的格点三角形ABC 平移,使点A 平移至点A`,画出平移后的三角形;
F
E
D
C
B
A
(2)在图②中画一个格点三角形DEF ,使△DEF ∽△ABC ,且相似比为2∶1; (3)在图③中画一个格点三角形PQR ,使△PQR ∽△ABC
1.
19.如图,在菱形ABCD 中,点E 在CD 上,连结AE 并延长与BC 的延长
线交于点F .
(1)写出图中所有的相似三角形(不需证明); (2)若菱形ABCD 的边长为6,DE :AB=3:5, 试求CF 的长.
20.如图,AB 是⊙O 的直径,点P 是⊙O 上的动点(P 与A ,B 不重合),连结AP ,PB ,过点O 分别作OE ⊥AP 于E ,OF ⊥BP 于F .
(1)若AB=12,当点P 在⊙O 上运动时,线段EF 的长会不会改
变.若会改变,请说明理由;若不会改变,请求出EF 的长;
(2)若AP=BP ,求证四边形OEPF 是正方形.
21.课堂上,周老师出示了以下问题,小明、小聪分别在黑板上进行了板演,
请你也解答这个问题:
在一张长方形ABCD 纸片中,AD =25cm, AB =20cm. 现将这张纸片按如 下列图示方式折叠,分别求折痕的长. (1) 如图1, 折痕为AE;
(2) 如图2, P ,Q 分别为AB ,CD 的中点,折痕为AE; (3) 如图3, 折痕为EF .
F
E
P
O
B
A 图
A
B
C A`
A
B
C A
B
C


22.

坐标是M (1,2),并且经过
点C (0,3),抛物线与直线2 x 交于点P .(1)求抛物线的函数解析式。

(2)在直线上取点A (2,5),求△PAM (3)抛物线上是否存在点Q ,使△QAM △PAM 的面积相等,若存在,请求出点Q 不
存在,请说明理由。

x。

相关文档
最新文档