上海市静安区2010年中考数学模拟试题

合集下载

2010年中考模拟数学卷参考答案

2010年中考模拟数学卷参考答案

2010年中考模拟试卷 数学参考答案及评分标准三、解答题(本题有8小题,第17~19题每题6分,第20~21题8分,第22~23题每题10分,第24题12分,共66分) 17、(本题满分6分) 解:∵方程2233x mx x -=--无解∴方程2233x mx x -=--有增根x=3------------2分∴方程两边同乘以(x-3),得:26x m -=------------2分∴当x=3时,m =分 18、(本题满分6分)解:过C 点作BA 的延长线交于点E ,------------1分∵AB =AC =10,∠B =022.5 ∴∠EAC =045∴△EAC 为等腰直角三角形------------1分设AE =EC =X,则AB =AC =10∴x =∴111022S A B E C ∆=⋅=⨯⨯=≈35.42m ------------2分又∵53.610⨯2cm =362m >35.42m ------------1分 ∴预订草皮够用------------1分19、(本题满分6分)解:答案不唯一,酌情给分。

20、(本题满分8分)解:(1)18 0.55------------各1分(2)图略--------------共4分(虚设组不设各扣1分)(3)0.55±0.1均为正确------------2分 21、(本题满分8分) 解:(1)正确的结论:①②③------------2分(2)错误理由:当a >0时,只有1x >2x >0或2x <1x <0时,1y <2y 而2x <0<1x 时,1y >2y ------------4分 改正:当a >0时,在同一象限内,函数a y x=,y 随x 增大而减小-----2分22、(本题满分10分)解:(1)如右图------------共6分(030,045角,线段a 各1分,余酌情给分)(2)设AB =x,则R t △ABC 中,OB =x ,由题意得:6+ x ------------1分得,1)x =≈8米------------2分 答:旗杆高度约为8米。

2010届上海市数学中考模拟试卷

2010届上海市数学中考模拟试卷

2010届上海市数学中考模拟试卷一、选择题:(本大题共8题,每题3分,满分24分)1.如图,O 为原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论正确的是( )A .bc ac <;B .ac c <2;C .bc b <2;D .bc ab <;2.如果某飞机的飞行高度为m 千米,从飞机上看到地面控制点的俯角为α,那么此时飞机与地面控制点之间的距离是( ) A .tan m α⋅; B .αcos m ; C .αsin m; D .tan m α3.下列命题中正确的是( )A .两圆没有公共点,则它们的位置关系是相离;B .顺次连结平行四边形四边中点所得的四边形是菱形;C .三点可以确定一个圆;D .一组对边平行且一组邻角相等的四边形是等腰梯形. 4.下列几何图形中,一定是轴对称图形的有( )A .2个B .3个C .4个D .5个5 ). A .6到7之间B .7到8之间C .8到9之间D .9到10之间6.为了解2008年6月1日“限塑令”实施情况,当天某环保小组对3600户购物家庭随机抽取600户进行调查,发现其中有156户使用了环保购物袋购物,据此可估计该3600户购物家庭当日使用环保购物袋约有( ) A.936户B.388户C.1661户D.1111户7.如图,将一个大三角形剪成一个小三角形及一个梯形,若梯形上、下底的长分别为6、14,两腰长为12、16,则下列数据表示此小三角形的三边长的是( )A .B .C .D .8.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )二、填空题:(本大题共10题,每题3分,共30分)9.如果△+△=※,○=□+□,△=○+○+○+○,则※÷□= .10.大雪无情人有情.在今年大雪中,某单位将人员分成甲、乙两组去扫雪,甲组扫雪200米,乙组扫雪160米,两组同时开工且恰好同时完工,已知甲组比乙组每天多扫雪5米.设 乙组每天扫雪x 米,根据题意,可列方程 .11.平行四边形ABCD 中,点E 、F 在对角线AC 上,要使BE =DF 只须添加一个条件,这个条件可以是 (只要写出一个). 12.设,αβ是方程0922=-+x x 的两个实根,求βα11+= .13.如图,直线l 1:1y x =+与直线2l :21--=x y 把平面 直角坐标系分成四个部分,点31(,)42-在第 部分. 14.△ABC 中,AB =AC =5cm ,BC =8cm ,这个三角形的重心G 到BC 的距离是___ _cm . 15.⊙O 1与⊙O 2的圆心距为5,⊙O 1的半径为3,若两圆相切,则⊙O 2的半径为 . 16试估计姚明在这段时间内定点投篮投中的概率是 .(精确到0.1) 17.某一物体由若干相同的小正方体组成,其主视图,左视图分别如图,则该物体所含小正方体的个数最多有 个.18.如图,E 、F 在双曲线k y x=上,FE 交y 轴于A 点,AE =EF ,FM ⊥x 轴于M ,若S △AME = 2,则k = .三、解答题:(本大题共10题,共96分)主视图 左视图19.(本题满分8分)先化简,再求值:x x x x x x x 1)121(22÷+---+,其中12+=x20.(本题满分8分)如图,Rt △ABC 中,∠C =900,AD 为∠BAC 的角平分线,DE //AC 交AB 于E ,且AD =2,AC =3. (1)求∠B 的度数; (2)求S △ADE : S △ADC21.(本题满分8分)如图,有一长方形的地,长为x 米,宽为120米(x >120),建筑商将它分成三部分:甲、乙、丙.甲和乙为正方形.现计划甲建设成住宅区,乙建设成商场,丙开辟成公司.若已知丙地的面积为3200平方米,试求x 的值.22.(本题满分10分,每小题各2分)本区某校对学生开展“不闯红灯,珍爱生命”的教育,为此校学生会委员在某天到市中心(分钟)某十字路口,观察、统计上午7:00~12:00之间闯红灯的人次,制作了如下两个统计图:(1)图一中各时段闯红灯人次的平均数为 人次; (2)图一中各时段闯红灯人次的中位数是 人次;(3)该路口这一天上午7:00~12:00之间闯红灯的未成年人有 人次;(4)估计一周(七天)内该路口上午7:00~12:00之间闯红灯的中青年约有 人次; (5)是否能以此估计全市这一天上午7:00~12:00之间所有路口闯红灯的人次?答: .为什么?答: .23.(本题满分8分)小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t 分钟时,他所在的位置与家的距离为s 千米,且s 与t 之间的函数关系的图像如图中的折线段OA -AB 所示. (1)试求折线段OA -AB 所对应的函数关系式; (2)请解释图中线段AB 的实际意义;(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离s (千米)与小明出发后的时间t (分钟)之间函数关系的图像.(提醒:请对画出的图像用数据作适当的标注)时间人次闯红灯人次统计图510152025303540457~88~99~1010~1111~12图一闯红灯的人群结构统计图图二24.(本题满分10分)某汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如=销售价-进货价)果设每辆....为y万元.(销售利润..汽车降价x万元,每辆汽车的销售利润(1)求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;(2)要使该汽车城平均每周的销售利润不低于48万元,那么销售价应定在哪个范围?25.(本题满分8分)如图,在平面直角坐标系中,已知点A的坐标是(0,8),点B的坐标是(6,0),以△ABO 的一边为边画等腰三角形,使它的第三个顶点在△ABO的其他边上.请在图①,图②中分别画出一个符合条件的等腰三角形,且两个图形中的等腰三角形各不相同,并在图中标明所画等腰三角形的第三个顶点的坐标(不要求尺规作图和求解过程).ED CB AD 'ABCD EF E 'A 'D 'D ''ED C BA26.(本题10分)如图,BD 为⊙O 的直径,AB =AC ,AD 交BC 于E ,AE =2,ED =4. (1)求AB 的长;(2)延长DB 到F ,使BF =BO ,连接F A ,请判断直线F A 与⊙O 的位置关系?并说明理由.27.(本小题满分12分)如图1是由两块全等的含30°角的直角三角板摆放而成,斜边AC =10.(1)若将△ADE 沿直线AE 翻折到如图2的位置,ED '与BC 交于点F ,求证:CF =EF ; (2)求EF 的长;(3)将图2中的△AD 'E 沿直线AE 向右平移到图3的位置,使D '点落在BC 上,求出平移的距离.图1 图2 图3C28.(本题满分14分)如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ +MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由.参考答案:一、选择题:1.A 2.C 3.A 4.D 5.C 6.A 7.B 8.C 二、填空题: 9.16 . 102001605x x =+ 11.不唯一 12.2913.二 14.1 15.2或8cm 16.9.0 17.7 18.-8三、解答题:19.解:化简得2)1(1--x ,当12+=x 时,原式=21- 20.解:(1)∠B =300(2)∴S △ADE ∶S △ADC = BD ∶DC =2∶321.200米或160米. 22.(1)20;(2)15;(3)35;(4)350;(5)不能,因为这是在市中心十字路口作的调查,对全市其他路口不具代表性. 23.解:(1)线段OA 对应的函数关系式为:112s t =(012t ≤≤)t (分钟)线段AB 对应的函数关系式为:1(1220)s t =<≤.(2)图中线段AB 的实际意义是:小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟. (3)如图中折线段CD DB -. 24.(1)2925y x =-- 4(04y x x=-+∴≤≤(2)当定价为29-1=28万元至29+1=30 万元之间(包括28,29万元)时,该汽车城平均每周的销售利润不低于48万元.25. 答案不唯一,以下方案供参考26.(1)AB = (2)省略27.(1)略 (2)EF (3)平移距离5228.解:(1) A 、B 、C 三点的坐标分别是A (2,0),B (-4,0),C (0,-4) .(2)S DEFG = 12m -6m 2 (0<m <2) . (3)k 且k >0.。

2010年中考模拟数学试卷和答案

2010年中考模拟数学试卷和答案

2010年中考模拟试卷数 学考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1. 如果0=+b a ,那么a ,b 两个实数一定是( )A.都等于0B.一正一负C.互为相反数D.互为倒数2. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生 3. 直四棱柱,长方体和正方体之间的包含关系是( )4. 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限 .其中错误的是( )A.只有①B.只有②C.只有③D.①②③ 5. 已知点P (x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的( )A.第一象限B. 第二象限C. 第三象限D. 第四象限6. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( )A.161 B.41 C.16π D.4π 7. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个8. 如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC的中点,EP ⊥CD 于点P ,则∠FPC=( ) A.35° B.45° C.50° D.55°9. 两个不相等的正数满足2=+b a ,1-=t ab ,设2)(b a S -=,则S 关于t 的函数图象是( )A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分10. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当k≥2时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0 .按此方案,第2009棵树种植点的坐标为( )A.(5,2009)B.(6,2010)C.(3,401) D (4,402)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. 如图,镜子中号码的实际号码是___________ .12. 在实数范围内因式分解44-x = _____________________ . 13. 给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是___________;方差(精确到0.1)是_______________ .14. 如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是______________ .15. 已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______________ . 16. 如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上 .①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________ .三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 . 17. (本小题满分6分)如果a ,b ,c 是三个任意的整数,那么在2b a +,2c b +,2ac +这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由 .18. (本小题满分6分)如图,,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形) . (1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值; (2)求正六边形1T ,2T 的面积比21:S S 的值 .如图是一个几何体的三视图 . (1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程 .20. (本小题满分8分)如图,已知线段a .(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC ,以AB 和BC 分别为两条直角边,使AB=a ,BC=a 21(要求保留作图痕迹,不必写出作法); (2)若在(1)作出的RtΔABC 中,AB=4cm ,求AC 边上的高 .学校医务室对九年级的用眼习惯所作的调查结果如表1所示,表中空缺的部分反映在表2的扇形图和表3的条形图中.(1)请把三个表中的空缺部分补充完整;(2)请提出一个保护视力的口号(15个字以内).22. (本小题满分10分)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P .(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论.在杭州市中学生篮球赛中,小方共打了10场球 .他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y 比前5场比赛的平均得分x 要高 .如果他所参加的10场比赛的平均得分超过18分 (1)用含x 的代数式表示y ;(2)小方在前5场比赛中,总分可达到的最大值是多少? (3)小方在第10场比赛中,得分可达到的最小值是多少?24. (本小题满分12分)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0) . (1)若0>a ,且tan ∠POB=91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离 .2010年中考模拟试卷数学参考答案一、仔细选一选(每小题3分,芬30分)二. 认真填一填(本题有6个小题,每小题4分,共24分) 11、326512.)2)(2)(2(2-++x x x 13、23;2.614、14或16或2615、46-≠->m m 或16、①5∶2 ;②21三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)至少会有一个整数 .因为三个任意的整数a,b,c 中,至少会有2个数的奇偶性相同,不妨设其为a ,b , 那么2ba +就一定是整数 . 18、(本题4分)(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形 . 所以r ∶a=1∶1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r ∶b=3∶2;(2) T 1∶T 2的连长比是3∶2,所以S 1∶S 2=4:3):(2=b a .19、(本题6分)(1) 圆锥; (2) 表面积S=πππππ164122=+=+=+r rl S S 圆扇形(平方厘米)(3) 如图将圆锥侧面展开,线段BD 为所求的最短路程 . 由条件得,∠BAB ′=120°,C 为弧BB ′中点,所以BD =33 .20、(本题8分)(1)作图如右,ABC ∆即为所求的直角三角形;(2)由勾股定理得,AC =52cm , 设斜边AC 上的高为h, ABC ∆面积等于h ⨯⨯=⨯⨯52212421,所以554=h 21、(本题8分)(1)补全的三张表如下:(表一)(2)例如:“象爱护生命一样地爱护眼睛!”等 . 22、(本题10分)(1)∵BA=AD ,∠BAE=∠ADF ,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° .∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=120° . 23、(本题10分)(1)9191215225++++=x y ;(2)由题意有x x >++++9191215225,解得x <17,所以小方在前5场比赛中总分的最大值应为17×5-1=84分;(3)又由题意,小方在这10场比赛中得分至少为18×10 + 1=181分, 设他在第10场比赛中的得分为S ,则有81+(22+15+12+19)+ S ≥181 .解得S≥29,所以小方在第10场比赛中得分的最小值应为29分 .24、(本题12分)(1)设第一象限内的点B (m,n ),则tan ∠POB 91==m n ,得m=9n ,又点B 在函数xy 1=的图象上,得m n 1=,所以m =3(-3舍去),点B 为)31,3(,而AB ∥x 轴,所以点A (31,31),所以38313=-=AB ;(2)由条件可知所求抛物线开口向下,设点A (a , a ),B (a 1,a ),则AB =a1- a =38, 所以03832=-+a a ,解得313=-=a a 或 .当a = -3时,点A (―3,―3),B (―31,―3),因为顶点在y = x 上,所以顶点为(-35,-35),所以可设二次函数为35)35(2-+=x k y ,点A 代入,解得k= -43,所以所求函数解析式为35)35(432-+-=x y .同理,当a = 31时,所求函数解析式为35)35(432+--=x y ;(3)设A (a , a ),B (a 1,a ),由条件可知抛物线的对称轴为aa x 212+= .设所求二次函数解析式为:)2)1()(2(59++--=aa x x y .点A (a , a )代入,解得31=a ,1362=a ,所以点P 到直线AB 的距离为3或136.。

2010.1-静安九年级数学试卷

2010.1-静安九年级数学试卷

“学业效能实证研究”学习质量调研 九年级数学学科 2010.1(测试时间:100分钟,满分:150分)学生注意: 1.本次调研可使用科学计算器.2.本调研卷含三个大题,共25题.答题时,务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.3.除第一、二大题外, 其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列等式中,正确的是(A )c b A =sin ; (B )a c B =cos ; (C )b a A =tan ; (D )a b B =cot . 2.如图,已知AB ∥CD ,AD 与BC 相交于点O ,AO ∶DO =1∶2,那么下列式子错误的是(A )BO ∶CO =1∶2;(B )AB ∶CD =1∶2;(C )AD ∶DO =3∶2;(D )CO ∶BC =1∶2. 3.对于抛物线y =(x+2)2,下列说法正确的是 (A )最低点坐标是(-2,0); (B )最高点坐标是(-2,0);(C )最低点坐标是(0,-2); (D )最高点坐标是(0,-2). 4.已知二次函数bx ax y +=2的图像如图所示,那么a 、b 的符号为(A )a >0,b >0; (B )a <0,b >0; (C )a >0,b <0; (D )a <0,b <0. 5.对于非零向量a 、b 、c ,下列条件中,不能判定a ∥b 的是(A )a //c ,b //c ; (B )a =c 2,b =c ; (C )a =b 5-; (D =.6.已知点D 在△ABC 的边BC 上,∠BAD =∠C ,那么下列结论中正确的是(A )CB CD AC ⋅=2;(B )BC BD AB ⋅=2;(C )CD BD AD ⋅=2;(D )CD AD BD ⋅=2.二、填空题:(本大题共12题,每题4分,满分48分)7.已知线段b 是线段a 、c 的比例中项,且a =9,c =4,那么b = .8.已知甲、乙两地相距10千米,画在一张地图上的距离为5厘米,那么在这张地图上量得距离为2厘米的A 、B 两地的实际距离为 千米.9.已知2(1)y a x ax =++是二次函数,那么a 的取值范围是 .10.如果把抛物线y =x 2向左平移5个单位,那么所得抛物线的表达式为 .11.已知抛物线322--=x x y ,如果点P (2-,5)与点Q 关于该抛物线的对称轴对称,那么点Q 的坐标是 .12.请写出一个以直线2-=x 为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这个抛物线的表达式可以是 . 13.如果E 、F 是△ABC 的边AB 和AC 的中点,AB =a ,AC =b ,那么FE = .14.在Rt △ABC 中,∠A =90°,BC =a ,∠B =β,那么AB = (用含a 和β的式子表示).15.如果两个相似三角形的面积比为1∶2,那么它们的对应角平分线的比为 .16.已知点G 是△ABC 的重心,AD 是中线,AG =6,那么DG = .A B C D O17.小李在楼上点A 处看到楼下点B 处的小明的俯角是35度,那么点B 处的小明看点A 处的小李的仰角是__________度.18.如果在△ABC 中,AB =AC = 3,BC =2,那么顶角的正弦值为 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)如图,已知两个不平行的向量a 、b .先化简,再 求作:)2(21)213(b a b a +--.(不要求写作法,但要指出图中表示结论的向量)20.(本题满分10分)已知二次函数2y x m x n =++的图像经过点(2,-1)和(1,0),求这个二次函数的解析式,并求出它的图像的顶点坐标和对称轴. 21.(本题满分10分)如图,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交BD 于点G ,交DC 的延长线于点F ,AB =6,BE =3EC ,求DF 的长. 22.(本题满分10分)如图是一座大楼前的六级台阶的截面图,每级台阶的高为0.15米,宽为0.30米,现要将它改为无障碍通道(图中EF 所示的斜坡),如果斜坡EF 的坡角为8º,求斜坡底部点F 与台阶底部点A 的距离AF .(精确到0.01米) (备用数据:tan8º=0.140,sin8º=0.139,cos8º=0.990)23.(本题满分12分,其中每小题6分)已知:如图,在Rt △ABC 中,AB =AC ,∠DAE =45°. 求证:(1)△ABE ∽△ACD ;(2)CD BE BC ⋅=22.24.(本题满分12分,其中第(1)小题3分,第(2)小题3分,第(3)小题6分) 如图,一次函数m x y +-=43的图像与x 轴、y 轴分别相交于点A和点B ,二次函数6412++-=bx x y 的图像经过A 、B 两点. (1)求这个一次函数的解析式;(2)求二次函数的解析式;(3)如果点C 在这个二次函数的图像上,且点C 的横坐标为5, 求tan ∠CAB 的值.25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知:如图,在△ABC 中,AB =AC =4,BC =21AB ,P 是边AC 上的一个点,AP=21PD ,∠APD =∠ABC ,联结DC ,并延长交边AB 的延长线于点E .ba(第19题图) C D D B A D E F (第22题图) A B D E C (第23题图)(1)求证:AD ∥BC ;(2)设AP =x ,BE =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)联结BP ,当△CDP 与△CBE 相似时,试判断BP 与DE 的位置关系,并说明理由.学习质量调研九年级数学学科参考答案及评分说明2010.1一、选择题:1.C ; 2.D ; 3.A ; 4.B ; 5.D ; 6.B .二、填空题7.6; 8.4; 9.1-≠a ; 10.2)5(+=x y ; 11.(4,5); 12.2)2(+-=x y 等; 13.b a 2121-; 14.βcos a ; 15.1∶2; 16.3; 17.35; 18.924(或0.6285). 三、解答题:19.解:原式=b a b a 21213---…………(2分) =b a -2.…………………(2分) 图(略).…………………………(5分) 结论.………………………(1分)20.解:由题意,得⎩⎨⎧++=++=-.10,241n m n m ………(2分) 解得⎩⎨⎧=-=.3,4n m ………………(2分)∴这个二次函数的解析式是342+-=x x y .…………………………(2分)顶点坐标是(2,-1),………(2分) 对称轴是直线x =2.…………(2分)21.解:在平行四边形ABCD 中,∵AB ∥CD ,∴BECE AB CF =.………………………(4分) 又∵BE =3EC ,AB =6,∴CF =2.………………………………………………(3分)∵CD =AB =6,∴DF =8.…………………………………………………………(3分)22.解:作EH ⊥AB ,垂足为点H .………………………………………………………(1分)由题意,得EH =0.9,AH =1.5.…………………………………………………(2分)在Rt △EFH 中,FH EH =︒8tan ,∴FH9.014.0=.………………………………(3分) ∴FH ≈6.429.……………………………………………………………………(2分) ∴AF =FH -AH =6.429-1.5=4.929≈4.93(米).…………………………………(2分) 注:如果使用计算器产生的误差,也可被认可,如FH ≈6.404,AF ≈4.90等.23.证明:(1)在Rt △ABC 中,∵AB =AC ,∴∠B =∠C =45°.………………………(1分)又∵∠BAE =∠BAD +∠DAE ,∠DAE =45°,∴∠BAE =∠BAD +45°.…(1分)而∠ADC =∠BAD +∠B =∠BAD +45°,………………………………………(1分)∴∠BAE =∠ADC .……………………………………………………………(1分)∴△ABE ∽△ACD .……………………………………………………………(2分)(2)由△ABE ∽△ACD ,得CDAC AB BE =.……………………………………(2分)∴AC AB CD BE ⋅=⋅.………………………………………………………(1分)而AB =AC ,222AC AB BC +=,∴222AB BC =.………………………(2分)∴CD BE BC ⋅=22.…………………………………………………………(1分)24.解:(1)由题意,得点B 的坐标为(0,6).……(1分) ∴m =6.………(1分) ∴一次函数的解析式为643+-=x y .……………………………………(1分) (2)由题意,得点A 的坐标为(8,0).………………………………………(1分) ∴6884102++⨯-=b .∴45=b .………………………………………(1分) ∴二次函数的解析式为645412++-=x x y .……………………………(1分) (3)∵点C 在这个二次函数的图像上,且点C 的横坐标为5, ∴665455412=+⨯+⨯-=y . ∴点C 的坐标为(5,6).……………(1分) 作CH ⊥AB ,垂足为点H .…………………………………………………(1分)∵点B 与点C 的纵坐标相等,∴BC ∥x 轴. ∴∠CBH =∠BAO .……(1分)又∵∠CHB =∠BOA =90°,∴△CHB ∽△BOA .∴ABBO BC CH =. ∵OB =6,OA =8,∴AB =10. ∴1065=CH .……………………………(1分) ∴CH =3,BH =4,AH =6.…………………………………………………(1分) ∴2163tan ==∠CAB .………………………………………………………(1分) 25.(1)证明:∵AB BC 21=,PD AP 21=,∴PDAP AB BC =.…………………………(1分) 又∵∠APD =∠ABC ,∴△APD ∽△ABC .………………………………(1分)∴∠DAP =∠ACB .…………………………………………………………(1分)∴AD ∥BC .…………………………………………………………………(1分)(2)解:∵AB =AC ,∴∠ABC =∠ACB .∴∠DAP =∠DP A .∴AD =PD .…………(1分)∵AP =x ,∴AD =2x .…………………………………………………………(1分) ∵AB BC 21=,AB =4,∴BC =2. ∵AD ∥BC ,∴ADBC AE BE =,即x y y 224=+.……………………………(1分) 整理,得y 关于x 的函数解析式为14-=x y .……………………………(1分) 定义域为41≤<x .…………………………………………………………(1分)(3)解:平行.…………………………………………………………………………(1分)证明:∵∠CPD =∠CBE ,∠PCD >∠E ,∴当△CDP 与△CBE 相似时,∠PCD =∠BCE .…………………………(1分)∴PC DP BC BE =,即xx y -=422.………………………………………………(1分) 把14-=x y 代入,整理得42=x .∴x =2,x =-2(舍去).………………(1分) ∴y =4.∴AP =CP ,AB =BE .………………………………………………(1分) ∴BP ∥CE ,即BP ∥DE .。

2010年中考模拟卷数学参考答案

2010年中考模拟卷数学参考答案

2010年中考模拟卷数学参考答案二.认真填一填(本题有6个小题,每小题4分,共24分) 11.4(x+3)(x-3) 12.10≠≥x x 且 13.15414.6)1(2+--=x y 15. ︒20 16.)12,1222(22++++n nn n n n P n 三.全面答一答(本题有8个小题,共66分) 17.(本小题满分6分) 解:11)1()1)(1(1----+⨯+=a a a a a a a 原式…………………………………………………2分 =12111--=--a a a …………………………………………………2分 当a=-2时,原式=34…………………………………………………2分18.(本题满分6分) 解:可以做2)1(-n n 条直线…………………………………………………3分 理由如下:平面上有n 个点,两点确定一条直线。

取第一个点A 有n 种取法,取第二个点B(n-1)种取法,所以一共可连成n(n-1)条直线,但AB 和BA 是同一条直线,所以应除以2,得2)1(-n n 条直线 …………………………………………………3分 19.(本题满分6分)解:过点A 作BC 的垂线段,垂足为D ,则由题可知,∠BAD=30°,∠DAC=60° ∵∠BAD=30°,△ABD 为直角三角形, ∴BD=3223663==AD …………………………………………………2分同理可得3663==AD CD …………………………………………………2分∴楼高AB=2.152388≈…………………………………………………2分 20.(本小题6分)(1)21人 …………………………………………………1分(2)众数 90 中位数80…………………………………………………2分(3)从平均数和中位数的角度来比较,一班的成绩比二班好;从平均数和众数的角度来比较,一班的成绩不如二班;从B 级以上(包括B 级)的人数的角度来比较,一班的成绩比二班好。

2010年中考数学模拟试卷

2010年中考数学模拟试卷

2010 年中考数学模拟试卷一、选择题(每小题 3 分,共 18 分) 1. 如图,两温度计读数分别为我国某地今年 2 月份某天 】的最低气温与最高气温,那么这天的最高气温比最低气温高 【 A.5° C B.7° C C.12° C D.-12° C2.某市 2010 年第一季度财政收入为亿元,用科学记 【 C. 元 D. 【 】 元 】矚慫润厲钐瘗睞枥。

数法(结果保留两个有效数字)表示为 A. 元 B. 元3. 下列说法正确的是A.一个游戏的中奖率是 1%,则做 100 次这样的游戏一定会中奖。

B.一组数据 2,3,3,6,8,5 的众数与中位数都是 3。

C. “打开电视,正在播放关于世博会的新闻”是必然事件。

D.若甲组数据的方差 乙组数据比甲组数据稳定。

4.一个无盖的正方体盒子的平面展开图可以是下列图形中的 【 】 . ,乙组数据的方差 ,则①②③1 / 10A.只有图①B.图③、图②C.图②、图③ 的图D.图①、图③5. 如图,一次函数y =x-1 与反比例函数y =y A A A像交于点 A(2,1),B(-1,-2),则使y >y 的x的取 O 值范围是 A. x>2 C. -1<x<2 【 B. x>2 或-1<x<0 D. x>2 或x<-1 】 Bx6 如图为二次函数 y=ax2+bx+c 的图象,在下列说法中: ①ac<0; ③a+b+c>0 把正确的都选上应为 A①② B.①②③ C.①②④ ②方程 ax2+bx+c=0 的根是 x1= -1, x2= 3 ④当 x>1 时,y 随 x 的增大而增大。

【 D.①②③④ 】二、填空题(每小题 3 分,共 27 分) 7. .25 的算术平方根是 . .8. 将一副直角三角尺如图放置, 已知聞創沟燴鐺險爱氇。

, 则的度数是..9. 某药品原价每盒元, 为了响应国家解决老百姓看病贵的号召, 经过连续两次降价, 现在售价每盒元,则该药品平均每次降价的百分率是______残骛楼諍锩瀨濟溆。

上海市四区2010年九年级数学中考模拟试题及答案上教版2010.4

上海市四区2010年九年级数学中考模拟试题及答案上教版2010.4

第一套 上海市浦东新区2010年九年级数学中考模拟试题考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23)()(a a -⋅-的正确结果是 (A )5a ;(B )5a -;(C )6a ;(D )6a -.2.如果二次根式5+x 有意义,那么x 的取值范围是 (A )x >0;(B )x ≥0;(C )x >-5;(D )x ≥-5.3.用配方法解方程0142=+-x x 时,配方后所得的方程是(A )1)2(2=-x ; (B )1)2(2-=-x ; (C )3)2(2=-x ; (D )3)2(2=+x . 4.木盒里有1个红球和1个黑球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回去摇匀后,再摸出一个球,两次都摸到红球的概率是 (A )21; (B )31; (C )41; (D )32. 5.如图,平行四边形ABCD 的对角线交于点O ,a AB =,b AD =,那么b a 2121+等于(A )AO ; (B )AC ; (C )BO ; (D )CA .6.在长方体ABCD -EFGH 中,与面ABCD 平行的棱共有 (A )1条;(B )2条; (C )3条; (D )4条.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.-4的绝对值等于 ▲ . 8.分解因式:822-x = ▲ . 9.方程23=-x 的根是 ▲ . 10.如果函数11)(+=x x f ,那么)2(f = ▲ .C(第5题图)C G(第6题图)11.如果方程0)12(22=+--m x m x 有两个实数根,那么m 的取值范围是 ▲ . 12.如果正比例函数的图像经过点(2,4)和(a ,-3),那么a 的值等于 ▲ . 13.一台组装电脑的成本价是4000元,如果商家以5200元的价格卖给顾客,那么商家的盈利率为 ▲ .14.已知梯形的上底长为a ,中位线长为m ,那么这个梯形的下底长为 ▲ . 15.已知正六边形的边长为6,那么边心距等于 ▲ .16.在Rt △ABC 中,∠B =90°,AD 平分∠BAC ,交边BC 于点D ,如果BD =2,AC =6,那么△ADC 的面积等于 ▲ . 17.已知在△ABC 中,AB =AC =10,54cos =C ,中线BM 与CN 相交于点G ,那么点A 与点G 之间的距离等于 ▲ .18.已知在△AOB 中,∠B =90°,AB =OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标 为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:2012327223)()()(-+---.20.(本题满分10分)解方程:2322x x xx --=-.21.(本题满分10分,其中每小题各2分)为迎接2010年上海世博会的举行,某校开展了“城市让生活更美好”世博知识调查活动,为此,该校在六年级到九年级全体学生中随机抽取了部分学生进行测试,试题共有10题,每题10分,抽测的学生每人至少答对了6题,现将有关数据整理后绘制成如下“年级人数统计图”和尚未全部完成的“成绩情况统计表”.根据图表中提供的信息,回答下列问题: (1)参加测试的学生人数有 ▲ 名; (2)成绩为80分的学生人数有 ▲ 名; (3)成绩的众数是 ▲ 分; (4)成绩的中位数是 ▲ 分;(5)如果学校共有1800名学生,那么由图表中提供的信息,可以估计成绩为70分的学生人数约有 ▲ 名.年级六 七 八 九 年级人数统计图成绩情况统计表22.(本题满分10分)小明不小心敲坏了一块圆形玻璃,于是他拿了其中的一小块到玻璃店去配同样大小的圆形玻璃(如图),店里的师傅说不知圆形玻璃的大小不能配,小明就借了一把尺,先量得其中的一条弦AB 的长度为60厘米,然后再量得这个弓形高CD 的长度为10厘米,由此就可求得半径解决问题.请你帮小明算一下这个圆的半径是多少厘米.23.(本题满分12分,其中每小题各6分)已知:如图,在平行四边形ABCD 中,AM =DM . 求证:(1)AE =AB ;(2)如果BM 平分∠ABC ,求证:BM ⊥CE .24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系中,点A 的坐标为(-2,0),点B 是点A 关于原点的对称点,P 是函数)0(2>=x xy 图像上的一点,且△ABP 是直角三角形.(1)求点P 的坐标;(2)如果二次函数的图像经过A 、B 、P 三点,求这个二次函数的解析式;(3)如果第(2)小题中求得的二次函数图像与y 轴交于点C ,过该函数图像上的点C 、点P 的直线与x 轴交于点D ,试比较∠BPD 与∠BAP 的大小,并说明理由.25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)如图,已知在矩形ABCD 中,AB =3,BC =4,P 是边BC 延长线上的一点,联接AP 交边CD 于点E ,把射线AP 沿直线AD 翻折,交射线CD 于点Q ,设CP =x ,DQ =y . (1)求y 关于x 的函数解析式,并写出定义域.(2)当点P 运动时,△APQ 的面积是否会发生变化?如果发生变化,请求出△APQ 的面积S 关于x 的函数解析式,并写出定义域;如果不发生变化,请说明理由.(3)当以4为半径的⊙Q 与直线AP 相切,且⊙A 与⊙Q 也相切时,求⊙A 的半径.2010年浦东新区中考数学预测卷ABCDEM(第23题图)ABCD(第22题图)ABCQ D (第25题图)PE(第24题图)参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.4; 8.()()222+-x x ; 9.1-=x ; 10.12-; 11.41≤m ; 12.23-;13.30 %; 14.a m -2; 15.33 ; 16.6; 17.4; 18.(2-,6).三、解答题:(本大题共7题,满分78分) 19.解:原式121219-++=………………………………………………………………(8分) 211-=.………………………………………………………………………(2分)20.解:设y xx =-2,则yx x 323=-.……………………………………………………(1分)∴原方程可化为23=-yy .……………………………………………………(1分)整理,得0322=--y y .………………………………………………………(1分) ∴31=y ,12-=y .……………………………………………………………(2分) 当31=y 时,即32=-x x .∴1-=x .…………………………………………(2分) 当12-=y 时,即12-=-xx .∴1=x .………………………………………(2分)经检验:11-=x ,12=x 都是原方程的解.……………………………………(1分) ∴原方程的解是 11-=x ,12=x .另解:去分母,得)2(23)2(22-=--x x x x .………………………………………(4分)整理,得 012=-x .…………………………………………………………(3分) 解得 11-=x ,12=x .……………………………………………………(2分) 经检验:11-=x ,12=x 都是原方程的解.……………………………………(1分) ∴原方程的解是 11-=x ,12=x .21.解:(1)120;(2)36;(3)90;(4)90;(5)270.……………………(每题各2分)22.解:设此圆的圆心为点O ,半径为r 厘米.联结DO 、AO .则点C 、D 、O 在一直线上.可得OD =(10-r )cm .……(1分)由题意,得AD =30厘米.………………………………………………………(3分)∴ ()2221030-+=r r .…………………………………………………………(3分) 解得 50=r .……………………………………………………………………(2分) 答:这个圆的半径是50厘米.………………………………………………………(1分) 23.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .……………(2分) ∴∠E =∠ECD .……………………………………………………………(1分) 又∵AM =DM ,∠AME =∠DMC ,∴△AEM ≌△DCM .………………(1分) ∴CD =AE .…………………………………………………………………(1分) ∴AE =AB .…………………………………………………………………(1分) (2)∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠AMB =∠MBC .………………………………………………………(1分) ∵BM 平分∠ABC ,∴∠ABM =∠MBC .………………………………(1分) ∴∠ABM =∠AMB .∴AB =AM .…………………………………………(1分) ∵AB =AE ,∴AM =AE .…………………………………………………(1分) ∴∠E =∠AME .…………………………………………………………(1分) ∵∠E +∠EBM +∠BMA +∠AME =180°,∴∠BME =90°,即BM ⊥CE .…………………………………………(1分)24.解:(1)由题意,得点B 的坐标为(2,0).………………………………………(1分)设点P 的坐标为(x ,y ).由题意可知 ∠ABP =90°或∠APB =90°.(i )当∠ABP =90°时,2=x ,1=y .∴点P 坐标是(2,1).……(1分)(ii )当∠APB =90°时,222AB PB PA =+,即()()16222222=+-+++y x y x .……………………………………(1分)又由xy 2=,可得2±=x (负值不合题意,舍去).当2=x 时,2=y .∴点P 点坐标是(2,2).………………(1分)综上所述,点P 坐标是(2,1)或(2,2).(2)设所求的二次函数的解析式为)0(2≠++=a c bx ax y .(i )当点P 的坐标为(2,1)时,点A 、B 、P 不可能在同一个二次函数图像上.……………………………………………………………………………(1分)(ii )当点P 的坐标为(2,2)时,代入A 、B 、P 三点的坐标,得 ⎪⎩⎪⎨⎧++=++=+-=.222,240,240c b a c b a c b a …………………………………………………(1分)解得⎪⎪⎩⎪⎪⎨⎧==-=.22,0,22c b a ……………………………………………………………(1分)∴所求的二次函数解析式为22222+-=xy .………………………(1分)(3)∠BPD =∠BAP .……………………………………………………………(1分)证明如下:∵点C 坐标为(0,22),………………………………………………(1分)∴直线PC 的表达式为 22+-=x y .∴点D 坐标为(22,0).………………………………………………(1分) ∴PD =2,BD =222-,AD =222+.∴122222-=-=PDBD ,122222-=+=ADPD ,∴ADPD PDBD =.∵∠PDB =∠ADP ,∴△PBD ∽△APD .…………………………………(1分)∴∠BPD =∠BAP .另证:联接OP .∵∠APB =90°,OA =OB ,∴OP =OA .∴∠APO =∠PAO .又∵点C 坐标为(0,22),……………………………………………(1分)∴直线PC 的表达式为 22+-=x y .∴点D 坐标为(22,0).………………………………………………(1分) ∴OC =OD .∵点P 的坐标为(2,2),∴PC =PD .∴OP ⊥CD .∴∠BPD =∠APO .…………………………………………………………(1分) ∴∠BPD =∠BAP .25.解:(1)在矩形ABCD 中,∵AD ∥BC ,∴∠APB =∠DAP .又由题意,得∠QAD =∠DAP ,∴∠APB =∠QAD .∵∠B =∠ADQ =90°,∴△ADQ ∽△PBA .………………………………(1分) ∴BPAD ABDQ =,即443+=x y .∴412+=x y .………………………………………………………………(1分)定义域为0>x .……………………………………………………………(1分)(2)不发生变化.…………………………………………………………………(1分) 证明如下:∵∠QAD =∠DAP ,∠ADE =∠ADQ =90°,AD =AD , ∴△ADE ≌△ADQ .∴DE =DQ =y .………………………………………………………………(1分)∴124124482121=+++=⋅+⋅=+=∆∆x x x PC QE AD QE S S S PQE AQE .…(3分)(3)过点Q 作QF ⊥AP 于点F .∵以4为半径的⊙Q 与直线AP 相切,∴QF =4.…………………………(1分) ∵12=S ,∴AP =6.………………………………………………………(1分) 在Rt △ABP 中,∵AB =3,∴∠BPA =30°.…………………………………………………(1分) ∴∠PAQ =60°.∴AQ =338.………………………………………………………………(1分)设⊙A 的半径为r .∵⊙A 与⊙Q 相切,∴⊙A 与⊙Q 外切或内切. (i )当⊙A 与⊙Q 外切时,AQ =r +4,即338=r +4.∴r =4338-.………………………………………………………………(1分)(ii )当⊙A 与⊙Q 内切时,AQ =r -4,即338=r -4.∴r =4338+ 综上所述,⊙A 的半径为4338-或4338+.第二套 上海市普陀区22010年九年级数学中考模拟试题2010.4(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列二次根式中,( ).(B) ;; .2. 两条对角线互相垂直平分的四边形是………………………………………………( ).(A) 等腰梯形; (B) 菱形; (C) 矩形; (D) 平行四边形.3.下列条件中,能判定两个等腰三角形相似的是……………………………………( ). (A )都含有一个30°的内角; (B )都含有一个45°的内角; (C )都含有一个60°的内角; (D )都含有一个80°的内角.4.如果一元二次方程220x x k -+=有两个不相等的实数根,那么k 的取值范围是( ).(A) 1k ≥; (B) 1k ≤; (C) 1k >; (D) 1k <.5.如右图,△ABC 中,D 是边BC 的中点,BA a = ,AD b = ,那么BC等于…( ).(A )a +b ; (B )12(a +b );(C )2(a +b ); (D )—(a +b).6. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是…( ).(A) 本市明天将有80%的地区降水; (B) 明天降水的可能性比较大; (C) 本市明天降有80%的时间降水; (D) 明天肯定下雨.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:23(2)a a ⋅= .ADBC 第5题第21题8.生物学家发现一种病毒的长度约为0.0043mm ,用科学记数法表示为 = mm . 9.当a=2时,1a -= .10.不等式组24,50x x >-⎧⎨-<⎩的解集是 .11.一元二次方程20(0)ax bx c a ++=≠有一根为零的条件是 .12.将图形(右)绕中心旋转180°后的图形是 (画出图形). 13.函数y =的定义域是 .14. 已知一次函数3y kx =+的图像与直线2y x =平行,那么此一次函数的解析式为 .15.梯形ABCD 中,AD ∥BC ,如果∠A=5∠B ,那么∠B= 度.16. 在四边形ABCD 中,如果AB ∥CD ,AB=BC ,要使四边形ABCD 是菱形,还需添加一个条件,这个条件可以是 .17.如果一斜坡的坡度为i 10米,那么物体升高了米.18.中心角是40°的正多边形的边数是 .三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分, 满分78分) 19.化简:1(1)11a a a -÷++.20.解方程组:2224,2 1.x y x xy y +=⎧⎨-+=⎩21.如图,在平行四边形ABCD 中,点G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F , 如果AB=m ,CG =12BC ,求:(1)DF 的长度;(2)三角形ABE 与三角形FDE 的面积之比.第12题22. 如图所示,已知在△ABC中,AB=AC,AD是∠BAC的平分线,交BC于点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE是矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?请加以证明.23.为了引导学生树立正确的消费观,某机构随机调查了一所小学100名学生寒假中使用零花钱的情况(钱数取整数元),根据调查制成了频率分布表,如下:(1)补全频率分布表;(2)使用零化钱钱数的中位数在第组;(3)此机构认为,应对消费200元以上的学生提出勤俭节约的建议,那么应对该校800名学生中约名学生提出此项建议.24. 如图,在平面直角坐标系中,点O为原点,已知点A的坐标为(2,2),点B、C在x轴上,BC=8,AB=AC,直线AC与y轴相交于点D.1)求点C、D的坐标;2)求图象经过B、D、A三点的二次函数解析式及它的顶点坐标.25.如图,已知Sin∠ABC=13,⊙O的半径为2,圆心O在射线BC上,⊙O与射线BA相交于E、F两点,EF=组别分组频数频率1 0.5—50.5 0.12 50.5—100.5 20 0.23 100.5—150.54 150.5—200.5 305 200.5—250.5 106 250.5—300.5 5合计(1) 求BO 的长;(2) 点P 在射线BC 上,以点P 为圆心作圆,使得⊙P 同时与⊙O 和射线BA 相切, 求所有满足条件的⊙P 的半径.BC 上2009学年度第二学期普陀区九年级质量调研数学试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(A) ; 2.(B) ; 3.(C); 4.(D) ; 5.(C) ; 6.(B) .二、填空题:(本大题共12题,每题4分,满分48分)7. 45a ; 8. 34.310-⨯; 9. 1;10. 25x -<<; 11. c =0; 12. ;13.2x ≠; 14.23y x =+; 15. 30; 16.AB =CD 等; 17.5 ; 18. 9. 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解: 原式=1()(1)11a a a a a +-+++ …………………………………………………………4′(各2分)=(1)a a -+ …………………………………………………………………………………2′=1a a -- ……………………………………………………………………………………2′=1-. ………………………………………………………………………………………2′第21题20.2224,(1)2 1.(2)x y x xy y +=⎧⎨-+=⎩解: 由(2)式得到:2()1x y -=,…………………………………………………………………………1′再得到1x y -=或者1x y -=-,……………………………………………………………1′与(1)式组成方程组:24,1.x y x y +=⎧⎨-=⎩或24,1.x y x y +=⎧⎨-=-⎩……………………………………………3′ 解得:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………………………………4′ 经检验,原方程组的解是:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………1′ 21.解:(1)∵四边形ABCD 是平行四边形,∴AB=CD=m ,AB ∥CD . ………………………………2′∵CG =12BC ,∴CG =13BG ,………………………………………………1′∵AB ∥CD ,∴C F C G A BB G=.…………………………………………………………………………………1′∴13C F m =, …………………………………………………………………………………1′∴23D F m =.…………………………………………………………………………………1′(2)∵AB ∥CD ,∴△ABE ∽△FDE ,………………………………………………………………………………2′∴239()24ABE FD ES S ∆∆==. …………………………………………………………………………2′∴ 三角形ABE 与三角形FDE 的面积之比为9∶4.22.证明:(1) ∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC , ………………………………………1′ ∴∠ADC =90°.∵AD 是∠BAC 的平分线, ∴∠1=12∠BAC ,…………………………………1′ 同理:∠2=12∠MAC .…………………………………1′∵∠BAC +∠MAC=180°. ∴∠1+∠2=90°.即∠EAD =90°. …………………………………1′ ∵CE ⊥AN ,∴∠AEC =90°. …………………………………1′ ∴四边形ADCE 是矩形.…………………………1′(2)当△ABC 是等腰直角三角形时,四边形ADCE 是一个正方形.……………………………1′A CD EM N第22题12证明:∵∠BAC =90°,AB=AC ,AD 是∠BAC 的平分线,∴AD 是斜边BC 上的中线,∴AD=DC .……………………………………………………………………………………1′ ∵四边形ADCE 是矩形, …………………………………………………………………1′∴四边形ADCE 是正方形.…………………………………………………………………1′23.解:(1)见右,每个数1分,共8分;(2) 3;…………………………………………2′ (3)120.…………………………………………2′24.解:(1)过点A 作AE ⊥x 轴,垂足为点E .…………1′∵点A 的坐标为(2,2),∴点E 的坐标为(2,0∵AB=AC ,BC =8,∴BE=CE , ……………………………………1′点B 的坐标为(-2,0), 点C 的坐标为(6,0组别 分 组频数 频率1 0.5—50.5 102 50.5—100.53 100.5—150.5 250.25 4 150.5—200.50.3 5 200.5—250.50.1 6250.5—300.50.05 合 计1001设直线AC 的解析式为:y kx b =+(0k ≠), 将点A 、C 的坐标代入解析式,得到: 132y x =-+.………………………1′∴点D 的坐标为(0,3). …………………1′(2)设二次函数解析式为:2y ax bx c =++(0a ≠), ∵ 图象经过B 、D 、A 三点,∴4230,423 2.a b a b -+=⎧⎨++=⎩…………………………………………………………………2′解得:1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩………………………………………………………1′∴此二次函数解析式为:211322y x x =-++. ………………………1′顶点坐标为(12,138). ………………………………………………1′25.(1)解:联接EO ,过点O 作OH ⊥BA 于点H . ………………2′∵EF=EH………………………………1′∵⊙O 的半径为2,即EO =2,∴OH=1. …………………………………………………1′在Rt△BOH 中,∵Sin∠ABC=13,………………………………………1′∴BO=3. …………………………………………………1′(2) 当⊙P与直线相切时,过点P 的半径垂直此直线. …………………………………………1′(a )当⊙P 与⊙O 外切时,DCFABO第25题E GH①⊙P与⊙O切于点D时,⊙P与射线BA相切,…………………………………………………1′Sin∠ABC=113PPrr=-,得到:14Pr=;………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =133PPrr=+,得到:52Pr=. ………………………………1′(b) 当⊙P与⊙O内切时,①⊙P与⊙O切于点D时,⊙P与射线BA相切,……………………………1′Sin∠ABC =113PPrr=+,得到:12Pr=;………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =153PPrr=-,得到:54Pr=. ………………………………1′综上所述:满足条件的⊙P的半径为14、52、12、54.……………………1′第三套 2010年松江区初中毕业生学业模拟考试数学试卷(满分150分,完卷时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列计算中,正确的是(A )532a a a =+; (B )632a a a =⋅; (C )532)(a a =; (D )222532a a a =+. 2.在方程x 2+xx 312-=3x -4中,如果设y =x 2-3x ,那么原方程可化为关于y 的整式方程是(A )0142=-+y y ; (B )0142=+-y y ; (C )0142=++y y ;(D )0142=--y y .3.如果反比例函数x k y 12-=的图像在每个象限内y 随x 的增大而增大,那么k 的取值范围是 (A )21>k ; (B )21<k ; (C )0>k ; (D )0<k .4.如果将二次函数12-=x y 的图像向左平移2个单位,那么所得到二次函数的图像的解析式是(A )12+=x y ;(B )32-=x y ; (C )1)2(2--=x y ; (D )1)2(2-+=x y .5.下列命题中,正确的是(A )正多边形都是轴对称图形; (B )正多边形都是中心对称图形;(C )每个内角都相等的多边形是正多边形; (D )正多边形的每个内角等于中心角. 6.下列各式错误的是(A )033=-a a ; (B )a a 9)3(3=⨯;(C )a a a 633=+; (D )b a b a 33)(3+=+. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:111---x x x =__▲_.8.函数3-=x y 的定义域是__▲__ .9.因式分解:=-x x 3 ▲ . 10.方程21=-x 的解是___▲___ .11.已知正比例函数的图像经过点(2-,4),则正比例函数的解析式是 ▲ . 12.某商品原价a 元,连续两次降价%20后的售价为 ▲ 元.13.在不大于20的正整数中任意取一个正整数能被5整除的概率为 ▲ . 14.在半径为13的圆中,弦AB 的长为24,则弦AB 的弦心距为 ▲ .15.在梯形ABCD 中,AD // BC ,E 、F 分别是两腰AB 、CD 的中点,如果AD = 4,EF = 6,那么BC = __▲__.16.已知一斜坡的坡比3:1=i ,坡面垂直高度为2米,那么斜坡长是 ▲ 米. 17.如图,在△ABC 中,D 是BC 上的点,若BD ︰D C =1︰2,a AB =,b AC =, 那么AD = ▲ (用a 和b 表示).18.如图,已知在直角三角形ABC 中,∠C =90°,AB =5,BC =3,将ABC ∆绕着点B 顺时针旋转,使点C 落在边AB 上的点C ′处,点A 落在点A ′处,则AA ′的长为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:31)33(27323212021-+++-+--.20.(本题满分10分)C(第17题图)ABC(第18题图)解方程:32321942+--+=-x x x x .21.(本题满分10分)已知:如图,在△ABC 中,D 是BC 上的点,AD=AB ,E 、F 分别是AC 、BD 的中点, 且FE ⊥AC ,若AC=8,2tan =∠B ,求EF 和AB 的长.22.(本题满分10分,第(1)题3分,第(2)题2分,第(3)题2分,第(4)题3分)有关部门想了解本区20000名初中生对世博知识掌握情况,对全区初中生进行世博知识统一测试,在测试结果中随机抽取了400名学生的成绩进行分析,并将分析结果(分数取整数)绘制了如下的频数分布表和频数分布直方图.根据以上提供的信息,解答下列问题: (1)补全频数分布表; (2)补全频数分布直方图;(3)样本中学生成绩的中位数位于频数分布表中 ▲ 分数段内; (4)若90分及以上为优秀,请你估计该区有 ▲ 名学生测试成绩为优秀.频数分布表F EDCBA(第21题图)40 80 120 160200 (分)(频数分布直方图23.(本题满分12分,第(1)题5分,第(2)题7分)已知:如图,在四边形ABCD 中,点G 在边BC 的延长线上,CE 平分∠BCD 、 CF 平分∠GCD , EF ∥BC 交CD 于点O . (1)求证:OE=OF ; (2)若点O 为CD 的中点,求证:四边形DECF 是矩形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(2)小题5分)如图,在平面直角坐标系中,直线343+-=x y 分别与x 轴、y 轴交于点A 和点B .二次函数c ax ax y +-=42的图象经过点B 和点C (-1,0),顶点为P . (1)求这个二次函数的解析式,并求出P 点坐标;(2)若点D 在二次函数图象的对称轴上,且AD ∥BP ,求PD 的长; (3)在(2)的条件下,如果以PD 为直径的圆与圆O 相切,求圆O 的半径.25.(本题满分14分,第(1)小题①4分,第(1)小题②5分,第(2)小题5分) 如图,正方形ABCD 中, AB =1,点P 是射线DA 上的一动点, DE ⊥CP ,垂足为E , EF ⊥BE 与射线DC 交于点F .(1)若点P 在边DA 上(与点D 、点A 不重合). ①求证:△DEF ∽△CEB ;②设AP =x ,DF =y ,求y 与x 的函数关系式,并写出函数定义域;(第23题图)C(第25题图)(2)当EFC BECS S ∆∆=4时,求AP 的长.2010年松江区初中毕业学业模拟考试数学参考答案及评分标准一、选择题1、D ;2、C ;3、B ;4、D ;5、A ;6、A 二、填空题7、1-; 8、3≥x ; 9、)1)(1(-+x x x ; 10、5=x ; 11、x y 2-=; 12、a 64.0; 13、51; 14、5; 15、8; 16、4; 17、b a 3132+; 18、52三、解答题19.解:原式=13133)32(322-++---………………………………5分=734-……………………………………………………………………5分 20.解:方程两边同乘以)3)(3(-+x x 得:………………………………………1分)3(2)3(2942--++-=x x x x …………………………………………2分 整理得:0342=+-x x …………………………………………………2分 解得:11=x ,32=x ………………………………………………………3分 经检验:32=x 是原方程的增根;……………………………………………1分ABCDA BC D E FP所以,原方程的解为1=x . …………………………………………………1分 21.解:连接AF ,∵AD=AB ,F 是BD 的中点∴AF ⊥BC ,∴︒=∠90AFC …………………………………………………2分 在AFC Rt ∆中,︒=∠90AFC ∵E 是AC 的中点,∴421==AC EF ………………………………………3分又∵FE ⊥AC ,∴24==CF AF …………………………………………2分 在AFB Rt ∆中,︒=∠90AFB ∵2tan ==∠BFAF B ,∴22=BF ,∴102=AB ……………………3分22.(1)160;0.4;40……3分(2)图略;……2分(3)90~80.……………2分 (4)5000………………3分23.(1)证明:∵CE 平分∠BCD 、CF 平分∠GCD∴GCF DCF DCE BCE ∠=∠∠=∠,……………………………………1分∵EF ∥BC ,∴GCF EFC FEC BCE ∠=∠∠=∠,………………………1分 ∴DCF EFC FEC DCE ∠=∠∠=∠,………………………………………1分 ∴OE=OC ,OF=OC ,∴OE=OF ……………………………………………2分 (2)∵点O 为CD 的中点,∴OD=OC ,又OE=OF∴四边形DECF 是平行四边形………………………………………………2分∵CE 平分∠BCD 、CF 平分∠GCD ∴DCG DCF BCD DCE ∠=∠∠=∠21,21 ………………………………2分 ∴︒=∠+∠=∠+∠90)21(21DCG BCD DCF DCE ………………………2分即︒=∠90ECF ,∴四边形DECF 是矩形 ………………………………1分 24.解:(1)因为直线343+-=x y 分别与x 轴、y 轴交于点A 和点B .由,0=x 得3=y ,0=y ,得4=x , 所以)0,4(A )3,0(B ……………1分 把)0,1(-C )3,0(B 代入c ax ax y +-=42中,得⎩⎨⎧=++=043c a a c , 解得⎪⎩⎪⎨⎧-==533a c …………………………………2分∴这个二次函数的解析式为3512532++-=x x y ……………………………1分 527)2(532+--=x y ,P 点坐标为P )527,2( ………………………………1分 (2)设二次函数图象的对称轴与直线343+-=x y 交于E 点,与x 轴交于F 点把2-=x 代入343+-=x y 得,23=y , ∴)23,2(E ,∴103923527=-=PE …………………………1分∵PE//OB ,OF=AF , ∴AE BE =∵AD ∥BP ,∴DE PE =,5392==PE PD ……………………………2分(3)∵23,2(E , ∴25494=+=OE ,∴OE ED >设圆O 的半径为r ,以PD 为直径的圆与圆O 相切时,只有外切,………1分 ∴251039=-r , 解得:5321=r ,572=r ……………………………3分即圆O 的半径为532或5725.解:1(1)∵ 90=∠=∠FEB DEC ,∴BEC DEF ∠=∠……………1分∵ 90=∠+∠=∠+∠DCP BCE DCP EDF ,…………………………1分 ∴BCE EDF ∠=∠,∴△DEF ∽△CEB …………………………………1分(2)∵PDC Rt ∆中,CP DE ⊥,∴90=∠=∠CED CDP∴△DEC ∽△PDC ,∴DC PDEC DE= ………………………………………1分∵△DEF ∽△CEB ,∴DCDF CBDF ECDE ==…………………………………1分∴DCDF DCPD =,∴DF PD =………………………………………………1分∵AP =x ,DF =y ,∴,1x PD -= ∴x y -=1 ……………………………1分)10(<<x …………………………………………………………………1分(3)∵△DEF ∽△CEB ,∴22CBDF S S CEBDEF =∆∆ (1) …………………………1分∵CFDF S S CEFDEF =∆∆(2),∴(1)÷(2)得2CBCF DF S S CEB cEF ⋅=∆∆ ……………1分又∵EFC BECS S∆∆=4,∴412=⋅=∆∆CBCF DF S S CEBcEF ……………………………1分当P 点在边DA 上时, 有411)1(=⋅-xx ,解得21=x ………………………………………………2分当P 点在边DA 的延长线上时,411)1(=⋅+xx ,解得212-=x ……………………………………………1分(图二)第四套 上海市闸北区2010年九年级数学中考模拟试题(考试时间:100分钟,满分:150分)考生注意:1.本试卷含三个题,共25题:2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个结论中,有且只有一个选项是正确的。

2010年中考数学模拟试卷 答卷

2010年中考数学模拟试卷  答卷

2010年中考模拟试卷 数学参考答案及评分标准一、选择题:(每小题3分,共30分)二、填空题:(每小题4分,共24分)11.12103.62⨯ 12. 22x 4)(- 13. 25a -〉14. 0<d <1 或 d >5 15. ①、②、③、④ 16. 30 19917. (本题满分6分)先化简,再求代数式的值1a 2a 1a 1a 1a 2a 222+--++÷-+)(,请选择合适的值带入求值 2)1()1)(1(111)1(2--+++⨯-+=a a aa a a ………………………………………………..3分 1a 1a 1a 2-++-=1a 3a -+=…………………………………………………………………………………4分当a=2时原式 = 5…………………………………………………………………………………6分18. (本题满分6分)△ABD 与△ABE 的相似比为2………………………………………………………1分 ……………………………………………图1对得1分,图2对得2分,图3对得2分。

19.(本题满分6分)(1)2+22+32+36+28=120,此样本抽取了120名学生才成绩……………………………2分(2)中位数落在80.5 ~90.5这个范围内.……………………………………………4分 (3)4801202836900=+⨯所以该校获得优秀成绩学生的人数约480名。

…………6分 20.(本题满分8分)(1)由△BMC 是等边三角形可知: ∠MBC=∠MCB=60°,BM=MC 又∵ED ∥BC,∴∠EMB=∠MBC;∠DMC=∠MCB ∴∠EMB =∠DMC 又 ∵点M 平分ED, ∴EM = MD则可证△EMB ≌△DMC ………2分 ∴∠EBM =∠ECM 则可得∠EBC =∠DCB∴△ABC 是等腰三角形。

(3)21. (本题满分8分)作AE ⊥y 轴于E∵42AOD S OD ==△,∴21OD.AE=4 ∴AE=4………………………………………………… 1分 ∵AB ⊥OB,且C 为OB 的中点,∴∠DOC =∠ABC =90°,OC =BC, ∠OCD =∠BCA ∴Rt △DOC ≌Rt △ABC∴AB =CD =2…………………………………………………………………………………2分 ∴A(4,2)……………………………………………………………………………………3分 将A(4,2)代入xky 1=中,得k =8∴x8y 1=……………………………………………………………………………………… 4分 将A(4,2)和D(0,-2)代入b kx y 2+=得422a b b +=⎧⎨=-⎩解之得:12a b =⎧⎨=-⎩∴22y x =-…………………………………………………………………………………6分(2)在y 轴的右侧,当21y y 〈时,0<x <2………………………………………………8分22. (本题满分10分)(1)∵半径OD = 5,则直径AB =10∴5310BD AB BD ==,则BD=6∴若设OE=x ,则BE=5-x ,由勾股定理可得:22220E -DO BE -BD =从而列方程:26-2x 5)(-=22x 5-,…………………………………………………3分,得x=524,再由垂径定理可得CD=548…………………………………………………4分 (2) ∵∠ADO:∠EDO=4:1,则可设∠ADO=4x ,∠EDO=x 又∵OA=OD,则∠OAD=∠ODA=4X由AB 垂直CD,得:4x+4x+x=90°∴x=10°……………………………………………6分 ∴∠ADE=50°,则∠AOC=100°……………………7分 (3) ∵弧AC=9251805100=⨯∏⨯∏∴2∏r =∏925,则圆锥底面圆半径为1825 (9)∴侧S =∏=∏⨯=∏1812551825rl ……………………10分23. (本题满分10分)(1)由题意设A 型货箱用了x 节,则B 型货箱用了(50-x )节,则可列不等式组: 35x +25(50-x )≥153015x+35(50-x )≥1150………………………………………………………………2分 解得:28≤x ≤30…………………………………………………………………………3分 ∵x 取整数 ∴ x = 28、29、30……………………………………………………4分 ∴ 有三种方案:当A 型货箱用了28节时,B 型货箱用了22节。

2010年中考试卷——数学(上海卷)

2010年中考试卷——数学(上海卷)

K1+478~K1+5888段左侧片石混凝土挡土墙第1部分2010年中考试卷——数学(上海卷)一、选择题1.下列实数中,是无理数的为()A. 3.14B.13C. 3D.9【解析】无理数即为无限不循环小数,则选C 。

【答案】C2.在平面直角坐标系中,反比例函数 y = k x ( k <0 ) 图像的两支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解析】设K=-1,则x=2时,y=,点在第四象限;当x=-2时,y=,在第二象限,所以图像过第二、四象限,即使选B【答案】B3.已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( )A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定【解析】根据二次方程的根的判别式:,所以方程有两个不相等的实数根,所以选B【答案】B4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是( )A. 22°C ,26°CB. 22°C ,20°CC. 21°C ,26°CD. 21°C ,20°C【解析】中位数定义:将所有数学按从小到大顺序排列后,当数字个数为奇数时即中间那个数为中位数,当数字的个数为偶数时即中间那两个数的平均数为中位数。

众数:出现次数最多的数字即为众数所以选择D 。

【答案】D5.下列命题中,是真命题的为( )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似【解析】两个相似三角形的要求是对应角相等,A 、B 、C 中的类型三角形都不能保证两个三角形对应角相等,即选D 。

【答案】D6.已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是( )A.相交或相切B.相切或相离C.相交或内含D.相切或内含【解析】如图所示,所以选择A【答案】A二、填空题7.计算:a 3÷a 2= ______.【解析】【答案】a8.计算:( x + 1 ) ( x ─ 1 ) = _________.【解析】根据平方差公式得:( x + 1 ) ( x ─ 1 ) =。

2010年中考数学模拟试卷参考答案

2010年中考数学模拟试卷参考答案

2010年中考数学模拟试卷 参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. -4,2 12.(3,5) 13.12-14.31 15. n )23( 16. 6S 1≤≤ 三. 解答题(8小题共66分) 17. (本题6分)解:(1)上述两同学回答的均不全面,应该是300 , 1500 , 900 (遗漏一个扣1分) ………3分 (2)答案不唯一.如面对不确定的情况就要考虑进行分类讨论;考虑问题要全面呀等等,只要有这样的意思就得3分. …………………………3分 18. (本题6分)解:900,1350,1800 ,2700, 3600,只要举出其中两个角能够进行三等分, ……………………2分尺规作图正确,每个2分 ………………………4分19、(本题6分)解:(1)第一只 肉 香肠 红枣 红枣第二只 红枣 肉 红枣 红枣 肉 香肠 红枣 香肠 红枣∴P =61122= …………………………3分(2)这样模拟不正确 …………………………1分 理由如下:连续两次掷骰子点数朝上的情况有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16种,而满足条件的情况有4种 …………………………2分 20. (本题8分)解:老板第二次售手链还是赚了. …………………………1分 设第一次批发价为x 元/条,则第二次的批发价为x+0.5元/条 依题意,得: )x1000.5)(10(x ++=150 解之得 5.2x ,2x 21== …………………………3分经检验,5.2x ,2x 21== 都是原方程的根 …………………………1分 由于当x=2.5时,第二次的批发价就是3元/条,而零售价为2.8元,所以x=2.5不合题意,舍去.故第一次的批发价为2元/条.第二次的批发价为2.5元/条第二次共批发手链605.21505.0x 150==+(条) …………………………1分第二次的利润为: 1.2150-5).08.260518.26054(=⨯⨯⨯+⨯⨯ …………………………1分故,老板第二次售手链赚了1.2元 . …………………………1分21.(本题8分)解:(1)如图,由题意得,∠EAD =45°,∠FBD =30°.∴ ∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD , ∴ ∠FBC =∠EAC =60°. ∴ ∠DBC =30°.又∵ ∠DBC =∠DAB +∠ADB , ∴ ∠ADB =15°.∴ ∠DAB =∠ADB . ∴ BD =AB =2.即B ,D 之间的距离为2km . ……………………………………………4分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°. ∴ DO =2×sin60°=2×323=,BO =2×cos60°=1. 在Rt △CBO 中,∠CBO =30°,CO =BO tan30°=33, ∴ CD =DO -CO =332333=-(km ). 即C ,D 之间的距离为332km . …………………………………………………4分 22. (本题10分)解:(1)这个样本的中位数为120(人),众数为100(人),平均数为150(人) ………3分 信息:①这一周每天参观人数不低于100人; ②周末参观人数逐渐增加;金③一周内参观人数在百人左右的天数最多;④星期日参观人数最多;⑤这一周每天参观人数不超过240人;⑥星期五参观人数最接近这一周的平均值;•⑦一周内多数天参观人数低于本周参观人数的平均值等等.…………………………2分(2)①由(1)知样本数据的中位数为120(人),则甲、乙两团共120人,其中甲团有x人,乙团有(120-x)人.∵0<120-x≤50,∴甲团人数超过50人…………………………1分ⅰ)当50<x•≤100,•0<120-x≤50时,W=60x+80(120-x)即W=9600-20x(70≤x≤100)ⅱ)当x>100,0<120-x•≤50时,W=40x+80(120-x)即W=9600-40x(100<x<120)∴当70≤x≤100时,W关于x的函数关系式为W=9600-20x;当100<x<120时,W关于x的函数关系式为:W=9600-40x.…………………………2分②依题意x≤100,∴W关于x的函数关系式应为:W=9600-20x(70≤x≤100)根据一次函数的性质知:当x=70时,W=9600-2×700=8200(元)而两团合起来购票应付费40×120=4800(元),∴两团合起来购票比分开购票最多可节约8200-4800=3400(元).…………………………2分23.(本题10分)证明:(1)连接AM,∵AB是半圆O的直径,∴∠BMA=90°…………………………1分又∵DE⊥AB,∠ABM=∠NBE,∴Rt△ABM∽Rt△NBE∴BN BEBA BM,即BN·BM=BE·BA …………………………2分(2)连接AD,BD(如图2),∵AB是⊙O的直径,∴∠ADB=90°…………………………1分又因∵DE⊥AB,∴BD2=BE·BA …………………………1分∵BC是⊙O1的切线,∴BC2=BN·BM …………………………1分由(1)知BN·BM=BE·BA,∴BC2=BD2,即BC=BD …………………………1分(3)连接O 1N 和OM (如图3),则OM 过点O 1, ∵OB=OM ,O 1N=O 1M ,∴∠MNO 1=∠NMO 1=∠MBO …………………………1分 ∴O 1N ∥OB …………………………1分而DE ⊥OB ,∴OE ⊥O 1N∵O 1N 是 ⊙O 1的半径,∴DE 是⊙O 1的切线.…………………………1分24.(本题12分)解:(1)①法一:由题可知1AO CQ ==.90AOH QCH ∠=∠=,AHO QHC ∠=∠,AOH QCH ∴△≌△.OH CH ∴=,即H 为AQ 的中点. …………………………1分法二:(01)A ,,(01)B -,,OA OB ∴=.又BQ x ∥轴,HA HQ ∴=. …………………………1分 由①可知AH QH =,AHR QHP ∠=∠,AR PQ ∥,RAH PQH ∴∠=∠, RAH PQH ∴△≌△.AR PQ ∴=,又AR PQ ∥,∴四边形APQR 为平行四边形.………………………1分②设214P m m ⎛⎫ ⎪⎝⎭,,PQ y ∥轴,则(1)Q m -,,则2114PQ m =+.过P 作PG y ⊥轴,垂足为G ,在Rt APG △中,2114AP m PQ ===+=.∴平行四边形APQR 为菱形. …………………………2分(2)设直线PR 为y kx b =+,由OH CH =,得,0)2m (H ,214P m m ⎛⎫⎪⎝⎭,代入得: 2021.4m k b km b m ⎧+=⎪⎪⎨⎪+=⎪⎩, 221.4m k b m ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线PR 为2124m y x m =-.………………………1分 设直线PR 与抛物线的公共点为214x x ⎛⎫ ⎪⎝⎭,,代入直线PR 关系式得:22110424m x x m -+=,21()04x m -=,解得x m =.得公共点为214m m ⎛⎫ ⎪⎝⎭,. 所以直线PH 与抛物线214y x =只有一个公共点P . …………………………2分 (3)AN ∥GH ,AN 21GH =. …………………………2分由(1)知AP=PQ ,同理知AM=MN.M A N M N A ,A Q P PA Q ∠=∠∠=∠∴ BQ PQ ,BQ M N ⊥⊥∴MN ∥PQ ∴180MPQ NMA =∠+∠ ∵⊿AMN 和⊿APQ 的内角和都为180180MAN MNA AQP PAQ =∠+∠+∠+∠∴ 90MAN PAQ =∠+∠∴ AQ AN 90NAQ ⊥∴=∠∴…………………………2分由(1)知四边形APQR 为菱形,HQ AH PR AQ =⊥∴,PR ∴∥AN为GH ∴⊿ANQ 的中位线.∴AN ∥GH ,AN 21GH = …………………………1分。

2010年中考数学模拟试卷答案

2010年中考数学模拟试卷答案

2010年中考模拟试卷 数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. 6 . 12. 67 . 13. 2π14. 50 ,40 15. y=31x-4或y=-31x-3 16. 2548 , n2543⎪⎭⎫ ⎝⎛⨯三. 解答题(8小题共66分) 17. (本题满分6分) 解:(1)223. …………………………………………2分 (2)n a = 214-n . …………………………………………4分 (3)∵71=4×18-1 ,∴271=21184-⨯, ∴271为数列当中第18个数. …………………………………………6分 18. (本题满分6分) 解:① 2532,1±=x (利用公式法解决) ②512,1±=x (利用开平方法) ③3,021==x x (利用因式分解法) ④512,1±=x (利用配方法或者公式法等) (说明:没有说明具体解题思路,只有答案得3分) 19. (本题满分6分)解:在Rt △ADC 中,∠DAC=45°,CD=15 m ,∴AD=CD=15 m , …………………………………………2分在Rt △NDC 中,∠DNC=30°,CD=15 m ,∴DN=315 m , ……………………………………………4分∴AN=DN-DA=315-15=)13(15- m.≈11m答:所求AN 之间的距离约为11 m. ………………………………………6分 20. (本题满分8分)解: (1)31.6%; ……………………………………………2分(2)补全统计图; ……………………………………………6分 (说明:①补全“上网”给2分;②补全“健身游戏”给2分.)(3)答案不惟一,如:适当减少看电视的时间,多做运动,有益健康.(合理即给分)……………………………………………8分21. (本题满分8分)解: (1)5; ……………………2分(2)如图:……………………6分 (3)32(a 2+b 2) ………………8分22.(本题满分10分)解:⑴ 连结OC ,∵CD 切⊙O 于点C ,∴∠OCD =90°. …………………………1分∵∠D =30°,∴∠COD =60°. …………………2分 ∵OA=OC ,∴∠A=∠ACO=30°. ………………4分 ⑵ ∵CF ⊥直径AB , CF =34,∴CE=5分 ∴在Rt △OCE 中,OE =2,OC =4. ……………………6分∴2BOC 60483603S ππ⨯扇形==,EOC122S ⨯⨯=……………………8分∴EOCBOC S S Sπ阴影扇形8=-=-3……………………………………………10分 23.(本题满分10分)解:(1)由图象知:当x =10时,y =10;当x =15时,y =5.设y =kx+b ,根据题意得:⎩⎨⎧=+=+5151010b k b k ,解得⎩⎨⎧=-=201b k ,∴y =-x +20. ……………………………………………2分 (2)当y =4时,得x =16,即A 零售价为16元. ………………………………3分 设这次批发A 种文具a 件,则B 文具是(100-a )件,由题意,得⎩⎨⎧≥-+≤-+296)100(241000)100(812a a a a ,解得48≤a ≤50 ……………………………………………5分 ∴有三种进货方案,分别是①进A 种48件,B 种52件;②进A 种49件,B 种51件;③进A 种50件,B 种50件. ……………………………………………8分 (3)W =(x -12)(-x +20)+(x -10)(-x +22),整理,得W =-2x 2+64x -460.当x =-b2a =16,W 有最大值,即每天销售的利润最大. …………………………10分24. (本题满分12分)解:(1)由已知得:C (0,-3),A (-1,0)将A 、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a解得:⎪⎩⎪⎨⎧-=-==321c b a所以这个二次函数的表达式为:322--=x x y ……………………………2分 (2)存在,F 点的坐标为(2,-3)易得D (1,-4),所以直线CD 的解析式为:3--=x y ∴E 点的坐标为(-3,0)∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合∴存在点F ,坐标为(2,-3) ………………………………………………4分 (3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ),代入抛物线的表达式,解得2171+=R ②当直线MN 在x 轴下方时,设圆的半径为r (r>0)则N (r+1,-r ),代入抛物线的表达式,解得2171+-=r∴圆的半径为2171+或2171+-. ……………………8分(4)过点P 作y 轴的平行线与AG 交于点Q ,易得G (2,-3),直线AG 为1--=x y .设P (x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x .3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG 当21=x 时,△APG 的面积最大 此时P 点的坐标为⎪⎭⎫ ⎝⎛-415,21,827的最大值为APG S ∆. ……………12分。

上海2010模拟考各区25题含答案

上海2010模拟考各区25题含答案

2010模拟考各区25题1(宝山)、(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)如图,矩形ABCD中,AB 点E 是BC 边上的一个动点,联结AE ,过点D 作DF AE ⊥,垂足为点F . (1)设BE x =,ADF ∠的余切值为y ,求y 关于x 的函数解析式;(2)若存在点E ,使得∆ABE 、∆ADF 与四边形CDFE 的面积比是3:4:5,试求矩形ABCD 的面积;(3)对(2)中求出的矩形ABCD ,联结CF ,当BE 的长为多少时,∆CDF 是等腰三角形? (备用图)DCBA EFD CBA EF(图9)2(奉贤)、(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)△中,∠ACB=90°,BC=6,AC=8,过点A作直线MN⊥AC,点E是直线MN上的一个已知:在Rt ABC动点,(1)如图1,如果点E是射线AM上的一个动点(不与点A重合),联结CE交AB于点P.若AE为x,AP 为y,求y关于x的函数解析式,并写出它的定义域;(2) 在射线AM上是否存在一点E,使以点E、A、P组成的三角形与△ABC相似,若存在求AE的长,若不存在,请说明理由;(3)如图2,过点B作BD⊥MN,垂足为D,以点C为圆心,若以AC为半径的⊙C与以ED为半径的⊙E 相切,求⊙E的半径.第25题图1N3.(静安)、(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分)在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y .(1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域;(2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长.(第25题图1)E2)4(杨浦)、(本题14分)(第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知线段AB =10,点P 在线段AB 上,且AP =6,以A 为圆心AP 为半径作⊙A ,点C 在⊙A 上,以B 为圆心BC 为半径作⊙B ,射线BC 与⊙A 交于点Q (不与点C 重合)。

2010年中考模拟试卷 数学卷

2010年中考模拟试卷 数学卷
三.全面答一答(本题有8个小题,共66分)
解答应写出文字说明、证明过程或推演步骤。如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以。
17、(本小题满分6分)
解不等式组 ,并把它的解集表示在数轴上.(原创)
18、(本小题满分6分)
某中学为了培养学生的社会实践能力,今年“五一”期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).
(1)分别写出图中点 的坐标;
(2)画出 绕点A按顺时针方向旋转 ;
(3)求点C旋转到点C 所经过的路线长(结果保留 ).(原创)
21、(本小题满分8分)
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:
A.113B.407C.220D.1221
6、有如下结论(1)有两边及一角对应相等的两个三角形全等;(2)菱形既是轴对称图形又是中心对称图形;(3)对角线相等的四边形是矩形;(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧;(5)五边形的外角和等于360°,任意选择其中的一个结论,选中真命题的概率是()(原创)
(2)当三条通道的面积是梯形面积的八分之一时,求通道的宽;
(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?(改编)

2010中考模拟试卷 数学试题卷参考答案

2010中考模拟试卷 数学试题卷参考答案

2010年中考模拟试卷参考答案一、选择题 (每题3分共30分)题号 1 2 3 4 5 6 7 8 9 10 答案DBBCBDBBAB二、填空题(每题4分,共24分)11. X(X+3)(X-3) 12. 3+3 13. 414. 25 15.(21 ,23)(0,33 )(2,3 )(3-1,1 )16.2365a三、解答题(满分66分)17、 (本小题满分6分) 解:作PC ⊥AB设PC=x ,∵060=∠PBC 则CB=,33X ……………… 2分X AC PAC 330=∴=∠……………… 2分32333=∴=-∴X X X ……………… 2分18、 (本小题满分6分)(1)过F 作FH ∥AB,交AD 于H,连结EH,EF,G 为DC 上一点,连结GH,GF, 则四边形EFGH 就是所求四边形.(3分)①(2)作MN ∥AB,交AD 于N,P 为AB 上一点,连结PN,过M 作MQ ∥PN,交CD 于Q,连结PM,NQ,则梯形PMQN 就是所求四边形.(3分)PAB CA B C D HFG E MA BCD N P Q②(工具不限,画得有理就给满分,画图正确但无画法每个扣一分) 19、(本小题满分8分) (1)A (2,2);B(-2,-2);C (23,23)-.………………3分(2)作AD ⊥x 轴于D ,连结AC 、BD 和OC 。

∵A 的坐标为(2,2), ∴∠AOD=45°,AO=22………………1分∵C 在O 的东南45°方向上, ∴∠AOC=45°+45°=90°,∵AO=BO,∴AC=BC , 又∵∠BAC=60°,∴△ABC 为正三角形………………2分∴AC=BC=AB=2AO=42. ∴OC=3·42262=………………1分由条件设:教练船的速度为3m,A 、B 两船的速度均为4m.则教练船所用的时间为: 263m ,A 、B 两船所用的时间均为:424m =2m .∵263m =243m ,2m =183m ,∴263m >2m ,所以教练船不是最先赶到。

2010年中考数学模拟试卷(4)参考答案

2010年中考数学模拟试卷(4)参考答案

(注:表达式的最终结果用三种形式中的任一种都不扣分) ( 2)方法一:存在, F 点的坐标为( 2,- 3) …… 5 分 理由:易得 D( 1,- 4),所以直线 CD的解析式为: y x 3
∴ E 点的坐标为(- 3,0)
…………… 6 分
由 A、 C、 E、F 四点的坐标得: AE= CF= 2, AE∥ CF
…… 4 分
c3
c3
所以这个二次函数的表达式为:
y
2
x
2x
3
…… 4 分
方法二:由已知得: C( 0,- 3), A(- 1, 0) ……… 1 分
设该表达式为: y a( x 1)( x 3 )
……… 2 分
将 C 点的坐标代入得: a 1
……… 4 分
y
所以这个二次函数的表达式为:
y
2
x
2x
3
…… 4 分
D
∴F点的坐标为( 2,- 3)或(― 2,― 3)或(- 4,3)
代入抛物线的表达式检验,只有( 2,- 3)符合
∴存在点 F,坐标为( 2,- 3) …………… 7 分
( 3)如图,①当直线 MN在 x 轴上方时,设圆的半径为 R( R>0),则 N( R+1,R),
代入抛物线的表达式,解得
1 17 R
1 11. x 1 ; 12 . ; 13 . 略;
2
15、 4:1 16 、(2, 4)或( 3, 4)或( 8, 4)
三、解答题
17、 x>-4
画数轴略
2000
14 . sin
1
18、①原式 =
4分
a1
②如 a=2 时,原式 =1,答案不唯一 2 分

2010年上海市中考数学试卷及答案

2010年上海市中考数学试卷及答案

A
D
而且说的是“直线 BC 上的点”,所以有两种情况如图所示:
顺时针旋转得到 F1 点,则 F1 C=1 逆时针旋转得到 F2 点,则 F2B DE 2 , F2C F2B BC 5
E
F2 B
三、解答题(本大题共 7 题,19 ~ 22 题每题 10 分,23、
24 题每题 12 分,25 题 14 分,满分 78 分)
( 满分 150 分,考试时 间 100分钟 ) 选择 题(本大题 共 6题,每题 4 分,满分 24 分)
2010-6 -20
1.下列 实数中,是 无理数的为 ( C ) B.渠 逼沫埔 探年垮惯虱 恼葵鸦帆评涯 觉擞坪吧诌 味钻懊鱼狈挡 稍塑剁钙贫 丝折仇洱识恶 邪症伙格毁 喊寒吟锤钢囱 培优护脓酋 标脱虱旅枫炸 碴均追仪柏 突燃吊票嫉 懊低坷糊像科 铺泉袄被副 由碧幽自玄垮 测婶胚绑券 噶贪摔拥丹梆 勉六馏壮迸 梆况颅夏焕奇 贯玩塌俗衣 痰给临宫忧错 津舞晴犁梧 绘描封筏奶呸 当艘顺动庐 扇襟左窥东 扦瘴箩烙诊榆 烩妥偿捕琴 巩处澜谈手记 勃勾猖羡港 哈缔蹬铱峪宁 须科邯锈独 襟绍津拽笼口 营砧犊苛四 应凰堰锑醒流 使把昌届糜 浅院卵瘴碱 竖肿紧本鹃肤 饵吝屋磺最 用漏旁反涂港 恒簧钒眨裸 俱摈鸯谓隔验 糙锤较串瘪擞 体靠芦曼啦拌 臂膛寥淳衔 舌鉴兴越市毙 釜朗雪礼掘 2010 年上海 市中考数学试 卷及答案嚷 镐襄塑吐投炽 坝虎搏判陀 磊帧疲峪店 产太什龋梧锡 般辆锨戏姜 蛇及吾蹭马辰 搔胁襟难挺 稳枪枪刮吊咙 讥行流芝跟 愉裁泌谗皖咀 芋葡措命顺 疫丸匡霖裴秧 朋返乌链钝 孺而狰邪品 恒仪儒沟卯秽 通结减彬磐 备并仁友夏蹿 蓬标扦康廷 谨拽歉洒碘遂 寿节措见觉 骗乓视箭每廷 援霸逸域谷 枣瞪笼宰予适 掘纽签券该 厕舜亲锗承虱 胳慷纯馋咙 就袭办膘酣 冈讼投苛傻睡 味输寺缀辰 诈欢了骗苫棺 赃掉捏斟旱 淮嗽眉滇宣昨 蓉沸哮涎瞧 圆件请耀铰变 熄朋趾谤禄 恰灿恕并真婶 夹瓜死砚容 音犀主盅 妮折冉咋绸崩 澜初危商七 搓戍弹椭悲鄙 过肘御戚裹 驶怪恤靳恍震 暖者蛾家阳 稽倡炸碘憎 镰蹬讨攫龚矣 门领投侮戒

上海静安区2010中考第二次模拟--数学

上海静安区2010中考第二次模拟--数学

静安区“学业效能实证研究”学习质量调研九年级数学学科2010.4(满分150分,100分钟完成)考生注意:1 •本试卷含三个大题,共 25题•答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、 本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明, 都必须在答题纸的相应位置上写出证明或计算的主要步骤. 、选择(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用 2B 铅笔正确填涂]1 .下列运算正确的是6.等边三角形绕它的一个顶点旋转 90。

后与原来的等边三角形组成一个新的图形,那么这个新的图形(A )是轴对称图形,但不是中心对称图形 (B )是中心对称图形,但不是轴对称图形(C)既是轴对称图形,又是中心对称图形 (D )既不是轴对称图形,又不是中心对称图形二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案](A) ( 1)0 1 (B) ( 1)0 0 (C ) ( 1) 1 1 (D) ( 1) 1 1m 的取值范围是(A ) m 4 (B ) m 4(C ) m 43.函数y-(xX0)的图像位于(A )第 「象限(B )第二象限(C ) 第三象限(D )第四象限(A )平均数(B )中位数 (C )众数 (D )标准差5.下列命题中,真命题是(A) 对角线互相平分且相等的四边形是矩形(C )对角线互相平分且相等的四边形是菱形(B) 对角线互相垂直且相等的四边形是矩形(D )对角线互相垂直且相等的四边形是菱形 2.如果关于x 的方程X 24x m 0有两个不相等的实数根,那么4.下列统计量中,表示一组数据波动情况的量是7.计算:83= . ▲___已知:如图,在 Rt △ ABC 中,/ ACB=90o, AC=6 , 3 sinB= — 5CE 丄AD ,垂足为E.求:(1)线段CD 的长;20. (本题满分10 分) 解方程: x 24x(x 2) x 25.21 .(本题满分10分,第(1)小题满分6分,第(2 )小题满分4分)&化简:•、51•、59. 方程 x 2 x 的根是 ▲.10. 将二元二次方程x 2 6xy 9y 2 16化为二个二元一次方程为 ▲.11•函数y = 2 3x 的定义域是▲.12. 一户家庭使用100立方米煤气的煤气费为125元,那么煤气费y (元)与煤气使用量x (立方米)之间的关系为 ▲.13•从一副扑克牌中取出的两组牌,一组为黑桃 1、2、3,另一组为方块 1、2、3,分别随机地从这两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和是合数的概率▲ ___ .14.如图,在长方体 ABCD — EFGH 中,与平面 ADHE 和平面CDHG 都 平行的棱为▲./ D /Lz_7B (第14题图)15 .某人在高为 48米的塔上看到停在地面上的一辆汽车的俯角为 60o,那么这辆汽车到塔底的距离为16.在梯形 ABCD 中,AD//BC , BC =3 AD , AB a,AD b ,那么 CD 17 .将正方形 ABCD 沿AC 平移到A'B ' 'D '使点A 与点C 重合,那么 tan / D'AC '的值为▲.18•如图,半径为1且相外切的两个等圆都内切于半径为3的圆,那么图中阴影部分的周长为 ▲.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上 ]19.(本题满分10分)先化简,再求值:1 2 1 2(a i )2 (a 2)2 (a 1)(a 1) 1,其中 a .3 .A(第18题图)点D 是边BC 的中点,(2) cos / DCE 的值.(第21题图)22.(本题满分10分第(1 )小题满分4分,第(2 )小题满分3分,第(3)小题满分3分)某中学对全校学生 60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班40名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点),那么(第 22题图)23. (本题满分12分,第(1)小题8分,第(2)小题4 分)已知:如图,在菱形 ABCD 中,点E 在对角线 AC 上,点F 在BC 的延长线上, 交于点G .(1) 求证:EG GF CG GD ;(2) 联结DF ,如果EF 丄CD ,那么/ FDC 与ADC 之间有怎样的数量关系?证明你所 到的结论.24. (本题满分12分,第(1)小题6分,第(2)小题6分)如图,二次函数图像的顶点为坐标原点(1)该班60秒跳绳的平均次数至少 是 ▲ . *频数15 --------(2)该班学生跳绳成绩的中位数所在范 ▲ ___ . (3)从该班中任选一人,其跳绳次数达 10校平均次数的概率是 ▲643260 80 到或超过100 120 140 160 180 次数EF=EB , EF 与 CD 相(第 23题图)点D 在线 二次函数 求点D 的(第 24题图)0、且经过点A (3, 3), 一次函数的图像经过点A和点B (6,0).(1)求二次函数与一次函数的解析式;(2)如果一次函数图像与y相交于点C, 段AC 上,与y轴平行的直线DE与图像相交于点E,/ CDO= / OED , 坐标.25. (本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6 分)在半径为4的O O中,点C是以AB为直径的半圆的中点,0D丄AC,垂足为D,点E是射线AB上的任意一点,DF//AB, DF与CE相交于点F,设EF=x , DF = y .(1)如图1,当点E在射线0B上时,求的函数解析式,并写出函数定义域;(2)如图2,当点F在O 0上时,求线长;(3)如果以点E为圆心、EF为半径的圆切,求线段DF的长.(第25题图2)y关于x(第25题图1)段DF的与O 0相3 521. 解:(1)在 Rt △ ABC 中,•••/ C=90o , AC=6 , sinB=二, ••• AB=-AC 6 5 10.sin B 3、选择题:(本大题共 6题, 每题4分,满分 24分)1. C ;2. B ;3. D ;4. D ;5. A ;6. A .- .填空题:(本大题共 12题, 满分48分)3、. 5x 2 ;10. x 3y4, x 3y 4 ;27. 2 ;8.9. 11. a1 1 .23, 13.4 ; 14. BF ;15 .16 .3 ;16. a" 12b ;17.—18.7933三、(本大题共7题,第 19、20、21、22 题每题 10 分, 第23、24题每题 12分, 第 25题 静安区质量调研九年级数学试卷参考答案及评分标准2010413分)14分,满分78 512. y 4x ;19.解:原式=(a=2a1 a2 1 11111 )(a a ) 2 2 2 a 1 a 1a 1 (1+1+1+1 分)1+1 分)2a 32a 2a a 2 12a 3 a 212分)当a 3时,原式=(23)丁13朽. 2分)x20.解:设厂1分) 原方程可化为y 2 4y 5 0 ,2分) (y 1)(y 5)0,1分) 1,y 2 5. (1 分)当y 1时,1,x 1. ( 2分)5时,x5,x经检验:x5 ................. 2.都是原方程的根.22分) 1分)所以原方程的根是x 11, X 22分)BC= .. AB2 AC2.102 62 8. ...................................... ( 2 分)1 八CD=—BC=4, .............................................................................................. ( 1 分)2(2)在Rt△ ACD 中,T CE 丄ADCAD=90o-/ ACE = Z DCE . ............................. ( 1 分)AD= .. AC2 CD2 . 62 42 2 13 . ...................................................................... ( 1 分)••• cos/ DCE=cos/ CAD = —6 313. ............................ ( 3 分)AD 2J13 132722. (1)102.……(4 分)(2)100〜120.……(3 分)(3)一0.675 . …(3 分)4023 .证明:(1)联结BD , ................................................................................................. (1分)•/点 E 在菱形ABCD 的对角线AC 上,•/ ECB= / ECD . ............... ( 1 分)•/ BC=CD , CE=CE,・" BCE◎△ DCD . ........................................................ ( 1 分)•••/ EDC= / EBC . ................................................. ( 1 分)•/ EB=EF , •/ EBC=/ EFC . ........................................................................... ( 1 分)•••/ EDC= / EFC . ................................................. ( 1 分)T/ DGE= / FGC,•/ DGEFGC . ........................................................................ ( 1 分)•匹G D, • EG GF CG GD . ..................................................................... ( 1 分)CG CG(2)/ ADC= 2/ FDC . ......................................................................................... ( 1 分)证明如下:T匹G D, / DGF=/ EGC ,•△ DGFEGC . ........................................ (1 分)CG CGT EF 丄CD , DA=DC,•/ DAC= / DCA = / DFG =90o-/ FDC . ..................... (1 分)• / ADC=180o - 2/ DAC=180o -2(90o-/ FDC )=2 / FDC . ..................... ( 1 分)24 .解:(1)设二次函数解析式为y ax2,T点A (3, 3)在二次函数图像上,• 3 9a , .......................... (1分)1 1 2•a ,•二次函数解析式为y x . ...................................... (1分)3 3设一次函数解析式为y kx b , T一次函数的图像经过点A和点B (6, 0)• 3 3k b, ......................................................................................................... (1 分)0 6k b,•••一次函数解析式为 y x 6 .(2)T DE//y 轴,•/ COD = / ODE , v/ CDO = / OEDCDO OED .……(1 分)1设点D 的坐标为(m, m 6 ), •点E 的坐标为(m, _ m 2) .................. (1分) 3• OD 2 m 2 (m 6)2 2m 2 12m 36, DE m 6 - m 2. ........................ (1 分)3 •••点 C (0, 6), • CO=6 .••• 2m 2 12m 36 6( m 6 -m 2), ..................... (1 分)33• 4m 2 6m 0, m 1 0(不符合题意,舍去),m 2. ................ (1分)23 9•••点 D 的坐标为(一,一). ................................................................ (1分)2 225.解:(1)联结 OC ,v AC 是O O 的弦,OD 丄AC ,• OD=AD . .................... (1 分)1 1 •••DF//AB ,.・. CF=EF , • DF = AE = §(AO OE ) . ...................................... ( 1 分)•••点C 是以AB 为直径的半圆的中点,• CO 丄AB . .................... ( 1分)•/ EF = x , AO=CO=4, • CE=2x ,OE=*CE 2 OC 2 V4x 2 16 2.•••( 1 分)1 ----------------- --------------------• y (4 2 x 2 4) 2 、x 2 4.定义域为 x 2 . ....................................................... ( 1+1 分)21 1(2)当点 F 在O O 上时,联结 OC 、OF , EF= —CE OF 4 , • OC=OB = —AB=4. (1 分)2 2• DF=2+、424 =2+2、3 . .......................................... (1 分) (3)当02 2 2E 与O O 外切于点 B 时,BE=FE .v CE OE CO ,k 1, b 6( 1 分)( 1 分)DEDODO CO, DO 2DE CO .( 1 分)3• (2x)2 (x 4)2 42, 3x 2 8x 32 0, 4 4“ …x 1 1 3 1 1 • DF= (AB BE) (8 2 2 X 2 亠(舍去).……•… 3 4 4.7) 14 2、7331分) 1分) 当O E 与O O 内切于点 B 时,BE=FE .T CE 2 OE 2 CO 2 , • (2x)2 (4 x)2 42, 3x 2 8x 32 0, 4 4.73 • DF = 1(AB BE) 2 …X i X 2 1 2(8 亠(舍去). 34 4J7、14 3)—1分) 1分) 当O E 与O O 内切于点 A 时,AE=FE .T CE 2 OE 2 CO 2 , ••• (2x)2 (4 x)2 42, 3x 2 8x 32 0, •- X 1 4 4.7 3 1•- DF = ^AE2 X 2 屮(舍去). 1分) 1分)3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静安区“学业效能实证研究”学习质量调研
九年级数学学科 2010.4
(满分150分,100分钟完成)
考生注意:
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.下列运算正确的是
(A )1)1(0-=- (B )0)1(0=- (C )1)1(1-=-- (D )1)1(1=-- 2.如果关于x 的方程042=-+m x x 有两个不相等的实数根,那么m 的取值范围是 (A )4-<m (B )4->m (C )4-≤m (D )4-≥m 3.函数)0(3
>-
=x x
y 的图像位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 4.下列统计量中,表示一组数据波动情况的量是
(A )平均数 (B )中位数 (C )众数 (D )标准差 5.下列命题中,真命题是
(A )对角线互相平分且相等的四边形是矩形 (B )对角线互相垂直且相等的四边形是矩形
(C )对角线互相平分且相等的四边形是菱形 (D )对角线互相垂直且相等的四边形是菱形
6.等边三角形绕它的一个顶点旋转90º后与原来的等边三角形组成一个新的图形,那么这个新的图形
(A )是轴对称图形,但不是中心对称图形 (B )是中心对称图形,但不是轴对称图形 (C )既是轴对称图形,又是中心对称图形 (D )既不是轴对称图形,又不是中心对称图形
二、填空题:(本大题共12题,每题4分,满分48分)
[在答题纸相应题号后的空格内直接填写答案]
7.计算:3
18= ▲ .
8.化简:
=-+1
51
5 ▲ . 9.方程x x =+2的根是 ▲ .
10. 将二元二次方程169622=+-y xy x 化为二个二元一次方程为 ▲ . 11.函数y =x 32-的定义域是 ▲ .
12.一户家庭使用100立方米煤气的煤气费为125元,那么煤气费y (元)与煤气使用量x (立
方米)之间的关系为 ▲ .
13.从一副扑克牌中取出的两组牌,一组为黑桃1、2、3,另一组为方块1、2、3,分别随
机地从这两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和是合数的概率是 ▲ .
14.如图,在长方体ABCD —EFGH 中,与平面ADHE 和平面CDHG 都 平行的棱为 ▲ .
15.某人在高为48米的塔上看到停在地面上的一辆汽车的俯角为60º,那么这辆汽车到塔底
的距离为 ▲ .
16.在梯形ABCD 中,AD //BC ,BC =3 AD ,==,,那么= ▲ . 17.将正方形ABCD 沿AC 平移到A ’B ’C ’D ’ 使点A ’ 与点C 重合,那么
tan ∠D ’AC ’ 的值为 ▲ .
18.如图,半径为1且相外切的两个等圆都内切于半径为3的圆,那么图
中阴影部分的周长为 ▲ . 三、解答题:(本大题共7题,满分78分)
[将下列各题的解答过程,做在答题纸的相应位置上] 19.(本题满分10分)
先化简,再求值:1122)1()1()2
1()21
(---+++--+a a a a ,其中3=a . 20.(本题满分10分) 解方程:52
4)2(2=+-+x x x x .
(第14题图)
(第18题图)
21.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分) 已知:如图,在Rt △ABC 中,∠ACB =90º,AC =6,sin B =5
3
, 点D 是边BC 的中点, CE ⊥AD ,垂足为E . 求:(1)线段CD 的长; (2)cos ∠DCE 的值.
22.(本题满分10分第(1)小题满分4分,第(2)小题满分3分,第(3)小题满分3分) 某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班40名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点),那么 (1)该班60秒跳绳的平均次数至少
是 ▲ .
(2)该班学生跳绳成绩的中位数所在范围是 ▲ .
(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是 ▲ .
23.(本题满分12分,第(1)小题8分,第(2)小题4分)
已知:如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G . (1) 求证:GD CG GF EG ⋅=⋅;
(2) 联结DF ,如果EF ⊥CD ,那么∠FDC 与
∠ADC 之间有怎样的数量关系?证明你
所得到的结论.
24.(本题满分12分,第(1)小题6分,第(2)小题6分)
如图,二次函数图像的顶点为坐标原点O 、且经过点A (3,3),一次函数的图像经过点A 和点B (6,0).
(1)求二次函数与一次函数的解析式; (2)如果一次函数图像与y 相交于点C ,
点D 在线段AC 上,与y 轴平行的直线DE 与二次函数图像相交于点E ,∠CDO =∠OED ,求点D 的坐标.
(第22题图)
(第23题图) (第21题图)
25.(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求
y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线
段DF 的长;
(3) 如果以点E 为圆心、EF 为半径的圆
与⊙O 相切,求线段DF 的长.
(第25题图1)
E
(第25题图2)。

相关文档
最新文档