2017北师大版七年级上册§1.2展开与折叠.doc

合集下载

七年级数学上册 第一章 2展开与折叠例题与讲解 北师大版

七年级数学上册 第一章 2展开与折叠例题与讲解 北师大版

2 展开与折叠1.棱柱的表面展开图棱柱是由两个完全相同的多边形底面和一些长方形侧面围成的.沿棱柱表面不同的棱剪开就可以得到不同的表面展开图.如图是棱柱的一种展开图.棱柱的表面展开图是两个完全相同的多边形(底面)和几个长方形(侧面).【例1】如图,请你在横线上写出哪种立体图形的表面能展开成下面的图形.解析:(1)三棱柱两个底面是三角形(2)六棱柱两个底面是六边形(3)长方体两个底面是长方形(4)三棱柱两个底面是三角形答案:三棱柱2.圆柱、圆锥的表面展开图(1)圆柱的表面展开图沿着圆柱的一条高把圆柱剪开,就得到圆柱的表面展开图.圆柱的表面展开图是两个圆(底面)和一个长方形(侧面),如图所示.如果两个底面圆在长方形的同一侧(如图所示),折叠后上端没有底,下端有两个底,则它不能折叠成圆柱.(2)圆锥的表面展开图如图所示,圆锥的表面展开图是一个圆(底面)和一个扇形(侧面).【例2】如图所示图形都是几何体的展开图,你能说出这些几何体的名称吗?分析:主要根据顶点、棱、面的数量及侧面展开图的形状进行判断.解:圆锥、圆柱、五棱柱.3.平面图形的折叠平面图形沿某些直线折叠可以围成一定形状的立体图形,与立体图形展开成平面图形是一个互逆过程.我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.根据平面展开图判断立体图形的方法:(1)能够折叠成棱柱的特征:①棱柱的底面边数=侧面的个数.②棱柱的两个底面要分别在侧面展开图的两侧.(2)圆柱的表面展开图一定是两个相同的圆形和一个长方形.(3)圆锥的表面展开图一定是一个圆形和一个扇形.(4)能够折叠成正方体的特征:①6个面都是完全相同的正方形.②正方体展开图连在一起的(指在同一条直线上的)正方形最多只能为4个.③以其中1个为底面,前、后、左、右、上面都有,且不重叠.4.正方体展开图上的数字问题正方体是立体图形的展开与折叠的代表图形,与正方体的展开图有关的数字问题主要是相对面的找法,确定了三组相对面,数字问题便可迎刃而解.正方体的平面展开图共有11种,可分为四类:(1)1-4-1型相对面的确定:①第一行与第三行的正方形是相对面;②中间一行的4个正方形中,相隔一个是相对面.(2)1-3-2型相对面的确定:①第一行的正方形与第三行的左边第1个正方形是相对面;②中间一行第1个与第3个为相对面;第2个与第三行第2个为相对面.(3)2-2-2型相对面的确定:①第一行的第1个与第二行的第2个是相对面;②第二行第1个与第三行的第2个是相对面;③第三行的第1个与第一行的第2个为相对面.(4)3-3型相对面的确定:①第一行的第1个与第3个为相对面;②第二行的第1个与第3个为相对面;③第一行的第2个与第二行的第2个为相对面.【例3-1】如图所示,哪些图形经过折叠可以围成一个棱柱?分析:(1)底面是四边形,侧面有3个,显然与三棱柱、四棱柱的特征不符;(3)的两个底面在侧面同侧,折叠后也不能围成棱柱;(2)(4)折叠后可以围成棱柱.解:(2)(4)可以.【例3-2】生活中我们经常可以见到各种各样的包装盒,你能用线将图中的实物和它的平面展开图连接起来吗?分析:根据能折叠成不同几何体的特征去判断即可.解:如图所示.【例4-1】如图所示,假定用A,B表示正方体相邻的两个面,用字母C表示与A相对的面,请在下面的正方体展开图中填写相应的字母.分析:先判断属于哪种类型,再确定相对面.前三种的相对面都是隔一个即可;第四种的A与上面第一行中的第2个是相对面.解:如图所示.【例4-2】要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,则x=__________,y=__________.解析:这里关键是要找到相对的面,折叠之后可知,x与1相对,所以x=5,y与3相对,所以y=3.答案:5 3【例4-3】小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图可能是( ).___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________解析:这个正方体的平面展开图属于1-4-1型的,根据规律可知,第一行的与第三行的为相对面,中间一行的第1个与第3个、第2个与第4个为相对面,故应选A.答案:A5.表面展开图的应用正方体与图案正方体前面、上面、右面有不同的图案,按不同的类型展开后,其图案也会发生相应的变化.根据展开图判断是否与模型对应的方法:(1)三个面上的不同图案不会对立,所以可排除三种图案对立的情况;(2)位置判断:相邻三个面的图案位置是否一致.当前面和上面的图案确定位置后,另一个图案是在左面还是右面,图案放置的角度是否正确.【例5】图中给出的是哪个正方体的展开图?( ).解析:显然带有黑色的面是相对的面,所以A,B错误.又因为两个黑色小正方形应该是相对的,所以选D.答案:D。

北师大版七年级数学(上)《1.2展开与折叠》教案

北师大版七年级数学(上)《1.2展开与折叠》教案

北师大版七年级数学(上)《1.2展开与折叠》教案一. 教材分析《1.2展开与折叠》这一节主要让学生了解和掌握展开与折叠的概念,学会如何将立体图形展开成平面图形,并能够进行实际操作。

通过这一节的学习,学生能够更好地理解立体图形的结构和特点,提高空间想象能力。

二. 学情分析七年级的学生已经初步掌握了平面图形的知识和简单的几何概念,但对于立体图形的认识还不够深入。

因此,在教学过程中,教师需要引导学生从平面图形入手,逐步过渡到立体图形,并通过实际操作,让学生感受和理解展开与折叠的概念。

三. 教学目标1.了解展开与折叠的概念,理解展开与折叠之间的关系。

2.能够将简单的立体图形展开成平面图形,并能够进行实际操作。

3.提高空间想象能力,培养观察和动手能力。

四. 教学重难点1.重难点:展开与折叠的概念及其应用。

2.难点:如何将立体图形正确地展开成平面图形。

五. 教学方法1.采用直观演示法,让学生通过观察教师的实际操作,了解和理解展开与折叠的概念。

2.采用实践操作法,让学生亲自动手进行展开和折叠操作,提高动手能力。

3.采用问题驱动法,引导学生思考和探索展开与折叠之间的关系,提高空间想象能力。

六. 教学准备1.准备一些简单的立体图形,如正方体、长方体等。

2.准备展开图,让学生进行实际操作。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)教师通过向学生展示一些生活中的展开与折叠现象,如折纸、包装等,引导学生思考和讨论展开与折叠的概念。

2.呈现(10分钟)教师向学生介绍展开与折叠的概念,并通过实物和图片进行展示,让学生理解和掌握。

3.操练(10分钟)教师引导学生动手操作,将一些简单的立体图形展开成平面图形。

学生两人一组,互相合作,完成操作。

4.巩固(10分钟)教师通过提问和讨论的方式,巩固学生对展开与折叠概念的理解。

同时,教师可以出示一些练习题,让学生进行巩固练习。

5.拓展(10分钟)教师引导学生思考和探索展开与折叠之间的关系,如如何通过展开图还原立体图形等。

北师大版数学七年级上册 1.2 展开与折叠

北师大版数学七年级上册 1.2 展开与折叠

2展开与折叠第1课时正方体的展开与折叠1.进一步认识立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形.2.经历展开与折叠、模型制作等活动发展空间观念,积累数学活动经验,形成较为规范的语言.3.在操作活动中揭发学生自主学习的热情和积极思考的习惯,体验学习数学的乐趣。

【教学重点】在操作活动中,发展空间观念、积累数学活动经验.【教学难点】根据几何体的展开图判断能折叠成什么样的几何体.一、情境导入,初步认识在生活中,我们经常见到正方体形状的盒子.为了设计和制作这样的盒子,我们需要了解这种盒子展开后的平面图形.1.正方体有多少个面?多少条棱?多少个顶点?2.请同学们将自己准备的纸盒剪开,看看展开后的形状是怎样的?【教学说明】学生很容易得出正方体有6个面、12条棱、8个顶点,让学生自己动手操作有利于学生直观地了解正方体的展开图.二、思考探究,获取新知1.正方体的展开图问题 1 将小正方形纸盒沿某些棱任意剪开,你能得到哪些形状的平面图形?能否将得到的平面图形分类?【教学说明】学生进行裁剪,教师巡视.把学生剪好的平面图形贴在黑板上(重复的不再贴),再让学生讨论怎样分类.【归纳结论】将正方体沿不同的棱展开可得到不同的表面展开图,共有如下11种情形,可分为四类.141型(共6种)231型(共3种)33型(1种)222型(1种)问:一个正方体要将其展开成一个平面图形,必须沿几条棱剪开?学生分组进行讨论,得出结论.【归纳结论】由于正方体有12条棱,6个面,将其表面展成一个平面图形,面与面之间相连的棱有5条(即未剪开的棱),因此需要剪开7条棱.2.平面图形的折叠问题2下图中的图形经过折叠能否围成一个正方体?【教学说明】学生动手实际操作,激发学生的积极性和主动性,有助于学生得出正确的结论,发展学生的几何直观性.【归纳结论】若是正方体11种展开图的平面图形就能折叠成一个正方体,否则不能折叠成一个正方体.三、运用新知,深化理解1.(四川巴中中考)如图是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的2.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“您”相对的面上的字是________.【答案】1.D 2.年四、师生互动,课堂小结1.正方体的展开图.2.通过这节课的学习,学到了哪些新知识?【教学说明】教师引导学生回顾本节课所学知识,加深对新知识的理解.【板书设计】1.布置作业:从教材“习题1.3”中选取.2.完成练习册中本课时的相应作业.本节课通过学生自己动手操作,感受正方体的展开与折叠.第2课时棱柱、圆柱、圆锥的展开与折叠1.了解棱柱、圆柱、圆锥的侧面展开图.2.经历展开与折叠、模型制作等活动发展空间观念,在动手实践制作过程中学会与他人合作.3.通过识图想物,看物想图,画图制作等活动,培养学生学数学,做数学,爱数学的情感,体会生活中的数学美.【教学重点】掌握和识别棱柱、圆柱、圆锥等几何体的展开图.【教学难点】能根据展开图判断和制作简单立体模型.一、情境导入,初步认识同学们,在我们日常生活中,随处可见各种五花八门的图形,说出几种你常见到的图形名称并说出它们由哪些平面图形构成?1.牛奶盒拆开后会展成什么样的平面图形?2.谷堆可由什么样的平面图形组成?【教学说明】利用学生感兴趣的生活中常见的实物,激发学生的求知欲.二、思考探究,获取新知1.正棱柱的展开图问题1将下面的几何体沿某些棱剪开,展开成一个平面图形,能得到哪些形状的平面图形?【教学说明】强化学生的空间想象力,通过棱柱展开图加深对知识的理解.2.圆柱、圆锥的侧面展开问题2 教材第10页“做一做”的内容【教学说明】学生动手实际操作,能直观地得出结论.【归纳结论】圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形. 三、运用新知,深化理解1.上图中经过折叠能围成棱柱的是________(填序号).2.画出下面棱柱的一种展开图.【教学说明】学生自主完成,加深对新学知识的掌握和理解.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(2)(4)2.四、师生互动,课堂小结1.正方体的展开图,圆柱、圆锥的侧面展开图.2.通过这节课的学习,学到了哪些新知识?【教学说明】鼓励学生积极动手探索,体验棱柱、圆锥、圆柱展开变化的过程.【板书设计】1.布置作业:从教材“习题1.4”中选取.2.完成练习册中本课时的相应作业.了解圆柱、圆锥、棱柱的侧面展开图,了解几何体与它展开的平面图形的对应关系.根据给出的展开图准确还原几何体,提高学生的空间想象能力.。

新北师大版初中数学七年级上册 (初一)第1章第2节展开与折叠 两个课时课件

新北师大版初中数学七年级上册 (初一)第1章第2节展开与折叠 两个课时课件
花花一一样样美美丽丽,,感感谢谢你你的的阅阅读读。。 87、天勇放下气眼兴通前亡往方,天匹堂只夫,要有怯我责懦们。通继往续20地,:28狱收2。获0:2的80季:3208节72.就01:42在.82前:0320方07T.。1u42e.0s2.d07a2.1y0,4TJ2uu0el.ys7d.11a44y,2,20J0u.72ly.01144。, 2020年7月14日星期二二〇二〇年七月十 四日 8、拥有梦想只是一种智力,实现梦想才是一种能力。20:2820:28:307.14.2020Tuesday, July 14, 2020
下列图形哪个不是长方体的表面展开图?
A C
B E
D
活动三
将下图中五角星状的图形沿虚线折叠,得 到一个几何体,你在生活中见过和这个几 何体形状类似的物体吗?
把左图中长方体的
E
F
表面展开图,折叠成一 A B C D
G
个长方体,那么与字母
J重合的点是哪几个?
NM
LI
H
KJ
有一正方体木块,它的六个面分别标上 数字1——6,下图是这个正方体木块从不同 面所观察到的数字情况。请问数字1和5对面 的数字各是多少?
这个棱柱有几个侧面,侧面的形状是什么图形
底面
2、棱柱的侧面形状都是长方形;
这个棱柱有几条侧棱,它们的长度之 间有什么关系?
侧面
3、棱柱的侧棱的长度都相等。
侧棱
这个棱柱侧面的个数与底面图形的边数 有什么关系?
棱柱侧面的个数和它底面图形的边 数相等
你还想到了什么结论?
棱柱的特点
(1)棱柱的所有侧棱长都相等。 (2)棱柱的上、下底面形状相同,大小相等。 (3)棱柱的侧面的形状都是长方形。 (4)侧面的个数和底面图形的边数相等。

最新北师大版数学七年级上册《1.2 展开与折叠(第2课时 )》精品教学课件

最新北师大版数学七年级上册《1.2 展开与折叠(第2课时 )》精品教学课件

课堂小结
名称
常见几何体的表面展开图 立体 表面 底面 侧面 图形 展开图 形状 形状
侧面展开 图的形状
正方体
正方形 正方形 长方形
长方体
长方形 长方形 长方形
圆柱
圆 曲面 长方形
圆锥
圆 曲面
扇形
课后研讨
1.说一说本节课的收获。 2.谈谈在解决实际问题中有哪些需要 注意或不太懂的地方。
请以课堂反思的方式写 一写你的收获。




探究新知 知识点 2 圆柱、圆锥的展开图
圆柱展开后的平面图形是什么样的?
思考1 圆柱侧面展开后,得到的平面图形是什么样的?
探究新知
思考2 圆柱展开后的平面图形是什么样的?
结论:圆柱展开图是由两个等圆 和一个长方形组成,其中侧面展 开图的一边的长是底面圆的周长, 另一边的长是圆柱的高.
探究新知
连接中考
如图,一个几何体上半部为正四棱锥,下半部为立方体,且有 一个面涂有颜色,该几何体的表面展开图是( B )
A.
B.
C.
D.
课堂检测
基础巩固题
1. 如图是某个几何体的展开图,该几何体是( A )
A. 三棱柱 B.圆锥 C.四棱柱 D.圆柱
课堂检测
基础巩固题
2. 如果圆柱的母线长为5cm,底面半径为2cm,那么这 个圆柱的侧面积是( D )
布置作业
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
总结点评 同学们,我们今天的探索很成
功,但探索远还没有结束,让我们 在今后的学习生涯中一起慢慢去发 现新大陆吧!
再见
下列图形中可以作为三棱柱的展开图的是( A )

北师版七年级数学上册 1.2 展开与折叠

北师版七年级数学上册 1.2 展开与折叠

2展开与折叠【教学目标】知识与技能1.了解正方体的表面展开图的概念.2.会在简单的情况下判断一个平面图形是不是正方体的表面展开图.3.会画正方体的表面展开图.4.能根据展开图判断和制作立体模型.过程与方法通过动手操作与观察培养学生的操作能力与观察能力.情感、态度与价值观培养学生的空间想象能力.【教学重难点】重点:会认和画正方体的表面展开图.难点:表面展开图的辨认.【教学过程】一、创设情境,引入新课师:有一个由铁丝折成的立方体框,立方体的边长为2 cm,在框的A处有一只蚂蚁,在B处有一粒糖,蚂蚁想吃到糖,要使所走的路程最短,蚂蚁该如何走呢?分析:学生很容易解决本题.师:其他条件不变,把糖在B处换成糖在C处,又会怎样?如果将立方体铁丝框改成立体纸盒,上述两题的结论又该如何?我们可以把正方体展开,今天这节课我们就来学习立体图形的展开与折叠.二、合作交流,探索新知1.形成概念.师:请同学们将事先准备好的立方体纸盒沿某些棱剪开,且使六个面连在一起,然后铺平,你能得到怎样的图形?请同学们展示一下.请4位学生出示,最好有意挑选4个不同的展开图作为样本,然后给出立方体的表面展开图的定义,将立方体沿某些棱剪开后铺平,且六个面连在一起,这样的图形叫做立方体的表面展开图.2.合作交流.师:以学习小组为单位,得出一个立方体的表面展开图共有几种情况?学生交流后,请学习小组代表总结本组的情况,出示图形如下:师:同学们表现得很好!通过探索,同学们能回答下面这两个问题吗?1.立方体相对两个面在其展开图中的位置有什么关系?2.立方体的几种展开图之间有什么关系?学生分小组交流讨论,并由代表发言,教师予以点评.三、例题讲解【例1】图1是一个立方体的表面展开图吗?如果是,请分别用1,2,3,4,5,6中的同一个数字表示立方体和它的展开图中各对对应的面(只要求给出一种表示法).分析:可以先用折叠的方法试一试,看它能否折成一个立方体.解:图1是一个立方体的表面展开图,各对应面上的数字表示如图2与图3所示.【例2】有一种牛奶软包装盒如图所示,为了生产这种包装盒,需要先画出展开图纸样.(1)如图,给出三种纸样,它们都正确吗?(2)从已知正确的纸样中选出一种,标注上尺寸;(3)利用你所选的一种纸样,求出包装盒的侧面积和表面积(侧面积与两个底面积的和).解:(1)图中,因为表示底面的两个长方形不可能在同一侧,所以图乙不正确.图甲和图丙都正确;(2)根据上图,若选图甲,可得表面展开图及尺寸标注如图所示;(3)由右图得包装盒的侧面积为S侧=(b+a+b+a)h=2ah+2bh;S表=S侧+2S底=2ah+2bh+2ab.四、课堂小结师:本节课你有什么收获?合作交流后总结:1.立方体的表面展开图.2.立方体相对两个面在展开图中的位置关系.3.立方体的展开图之间的联系.。

2017年秋北师大版数学七年级上册教案1.2展开与折叠

2017年秋北师大版数学七年级上册教案1.2展开与折叠
三、教学难点与重点
1.教学重点
-理解并掌握展开与折叠的基本概念,能够识别和绘制常见立体图形的展开图。
-掌握展开图与立体图形之间的关系,能够运用展开图解决实际问题,如计算表面积、体积等。
-培养学生的空间想象力、几何直观和逻辑推理生能够理解正方体、长方体等立体图形展开成平面图形的过程,并能够独立绘制出这些图形的展开图。
最后,课后我要认真批改学生的作业,了解他们在学习过程中的困惑和问题,及时调整教学方法,确保他们在本章节的学习中能够真正理解和掌握展开与折叠的知识。
-对于空间想象力较弱的学生,如何引导他们通过折叠和展开活动来增强空间感。
举例解释:
-难点一:对于圆柱和圆锥的展开图,学生需要理解如何将曲面展开成平面,以及展开后如何与原来的立体图形对应起来。
-难点二:在计算立体图形的表面积时,学生可能会忽略某些面的面积,或者在处理曲面时不知道如何计算其展开后的面积。
首先,我发现学生们在识别和绘制展开图方面存在一定难度,特别是对于不规则立体图形。在今后的教学中,我需要更多地借助实物模型和信息技术工具,如三维建模软件,让学生更直观地感受立体图形与展开图之间的关系。
其次,在小组讨论环节,有些学生表现得不够积极,可能是因为他们对这个话题的兴趣不够浓厚或者不知道如何表达自己的观点。为了激发学生的兴趣,我可以在选择讨论主题时更加贴近他们的生活实际,同时加强引导,鼓励他们大胆说出自己的想法。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如折叠一个正方形纸片来制作一个立方体,观察折叠过程中边和角的变化。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“展开与折叠在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

北师大版七年级上册1.2《展开与折叠》课件

北师大版七年级上册1.2《展开与折叠》课件

⒉ 棱柱的顶点、棱、侧棱、侧面数量之间的关系
顶点 棱
面 侧棱 侧面
(个) (条) (个) (条) (个)
三棱柱 6
95 3 3
四棱柱 8
12
64
4
五棱柱 10 15
7
5
5
பைடு நூலகம்
六棱柱 12 18 8
6
6
……
n棱柱 2n 3n n+2 n n
动手操作、认识棱柱
问题1
你能马上说出十棱柱的顶点数、棱数、面数吗?
3.侧面的个数和底面图形 侧棱 的边数相等.
4. 所有侧棱长都相等.
侧面
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?




1:你有办法将图形(1)、(3)修改后使能折叠成棱柱?
2:图形(2)、(4)是不同的平面图形,折叠出同 样的棱柱,从中你得到了什么启示?
2.如图所示六棱柱,底面边长都是5,侧棱长4。观察并回答 问题:
一、观察思考
1.冰淇淋筒
展开
2.长方形纸
折叠
猜一猜
将下面四个图形折叠,你能说出这 些多面体的名称吗?
交流归纳:
有些立体图形
展开
平面图形
有些平面图形
折叠
立体图形
二. 折叠后你能说出这些多面体的名称吗?
2.棱柱结构特征: 底面
议一议
1.棱柱有上下两个底面, 它们的形状大小相同.
2.侧面的形状都是长方形.
1)这六棱柱共多少个面?它们分别是什么形状?哪些面 的形 状和面积完全相同?
2 )这六棱柱一共有多少条棱?它们的长度分别是多少?
马上考你!
D1 A1

最新北师大版数学七年级上册《1.2 展开与折叠(第1课时)》精品教学课件

最新北师大版数学七年级上册《1.2 展开与折叠(第1课时)》精品教学课件

A CDE
F
方法点拨:在正方体的表面展开图中,我们可以看出,在同一 个方向间隔一个面的两个面相对(前与后,左与右,上与下).
巩固练习
变式训练
下面是正方体的表面展开图,每个面内都标注了数字.数字 6所对的数字是几?
1 2 345
6 (1)
12 34 5 6
(2)
123 4 56
(3)
12 34 56 (4)
北师大版 数学 七年级 上册
1.2 展开与折叠 第1课时
导入新知
在生活中,我们经常见到正方体形状的盒子,为了 设计和制作的需要,我们应了解正方体盒子展开后的平 面图形.
将纸盒完全展开后 形状是怎样的?
导入新知 做一做 下面图形中,都能围成一个正方体吗?
(1)
(2)
(3)
(1)、(2)可以围成一个正方体,(3)不能
探究新知 需要七刀才能剪开
思考 同一种正方体纸盒沿不同顺 序先后剪开棱展开的平面图形是 否相同?
探究新知
正方体的11种不同的展开图
思考 你能找到规律进行分类吗?
探究新知
第一类:中间四个面,两边各一面.
2
3
4 51
6
4 5632 1
4 5632
1
4 5632
1
4 5632
1
一四一型
4 5632
1

×
探究新知
想一想 下图中的图形可以折成一个正方体形的盒子,折好以 后,与1相邻的数字是什么?相对的数是什么?
4 5 1 23 6
与1相邻的数字是:2、4、5、6. 与1相对的数字是:3.
探究新知
注意:正方体的表面展开图中不能出现的类型

北师大版数学七年级上册1.2《展开与折叠》(第1课时)教案

北师大版数学七年级上册1.2《展开与折叠》(第1课时)教案

北师大版数学七年级上册1.2《展开与折叠》(第1课时)教案一. 教材分析《展开与折叠》是北师大版数学七年级上册第1.2节的内容,本节课主要让学生了解并掌握展开与折叠的概念,学会如何将立体图形展开成平面图形,并能够运用展开与折叠的知识解决实际问题。

本节课的内容是学生学习立体几何的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。

二. 学情分析七年级的学生已经学习了平面几何的基本知识,对于图形的性质和变换有一定的了解。

但是,对于立体图形的展开与折叠,学生可能还比较陌生,需要通过实例和操作来加深理解。

此外,学生的空间想象力程度不同,对于一些复杂图形的展开可能会感到困难。

三. 教学目标1.了解展开与折叠的概念,理解展开与折叠的原理。

2.学会如何将立体图形展开成平面图形,并能够熟练运用。

3.培养学生的空间想象能力和抽象思维能力。

4.能够运用展开与折叠的知识解决实际问题。

四. 教学重难点1.展开与折叠的概念和原理的理解。

2.将立体图形展开成平面图形的方法。

3.运用展开与折叠的知识解决实际问题。

五. 教学方法1.采用直观演示法,通过实物和模型展示展开与折叠的过程。

2.采用操作实践法,让学生亲自动手操作,加深对展开与折叠的理解。

3.采用问题驱动法,引导学生思考和探索展开与折叠的方法和原理。

4.采用小组合作学习法,让学生通过讨论和合作解决问题。

六. 教学准备1.准备展开与折叠的实物和模型,如纸盒、塑料几何体等。

2.准备展开图的示例,如六面体、长方体等。

3.准备练习题和实际问题,用于巩固和拓展学生的知识。

七. 教学过程导入(5分钟)教师通过展示一些日常生活中的展开与折叠现象,如折纸、包装等,引导学生思考展开与折叠的概念。

学生分享对展开与折叠的理解,教师总结并板书课题。

呈现(10分钟)教师展示一些立体图形的实物或模型,如纸盒、塑料几何体等,引导学生观察和描述其展开的过程。

学生尝试将立体图形展开成平面图形,并展示给全班。

七年级数学上册 第一章 丰富的图形世界 2 展开与折叠课件 (新版)北师大版

七年级数学上册 第一章 丰富的图形世界 2 展开与折叠课件 (新版)北师大版

图1-2-5
答案 A 由题图中几何体的特征知含有数字4、6、8的三个面两两相 邻,故折叠后三个面一定相交于一点.只有A选开图,若将其围成正方体,则与点P重合的两 点应该是 ( )
图1-2-6 A.S和Z B.T和Y C.U和Y D.T和V 答案 D 结合图形知,围成立体图形后Q与S重合,P与T重合,很显然P 又与V重合,故选D.(也可以动手操作一下)
解析 如图1-2-3所示.
图1-2-3
题型一 观察猜想题 例1 在下列四个正方体中,只有一个是用图1-2-4所示的纸片折叠而成 的,那么这个正方体是 ( )
解析 选项A、B的正方体展开后,黑点所在的面分别在小三角形所在 面的上面和右边,与所给纸片不符,所以可排除A和B;对于C,小圆圈的上 面和右边是空白的,同样与所给纸片不符,也可排除.故选D. 答案 D 点拨 根据展开后的平面图形确定立体图形,需分清有标记的面与其他 面之间的位置关系.
1.(2013浙江宁波中考)下列四张正方形硬纸片,剪去阴影部分后,如果沿 虚线折叠,可以围成一个封闭的长方体包装盒的是 ( )
答案 C A剪去阴影部分后,可围成无盖的正方体,故此选项不合题意; B剪去阴影部分后,无法围成长方体,故此选项不合题意;C剪去阴影部分 后,能围成长方体,故此选项正确;D剪去阴影部分后,显然不能围成长方 体,故此选项不合题意.故选C.
知识点一 正方体的展开与折叠 1.图1-2-1是一个正方体,它的表面展开图可以是 ( )
图1-2-1
答案 B B选项是“一四一”型,故选B.
2.(2015山东济宁中考)一个正方体的每个面都有一个汉字,其平面展开 图如图1-2-2所示,那么在该正方体中和“值”字相对的字是 ( )
图1-2-2 A.记 B.观 C.心 D.间 答案 A 可以自己动手折一下.

北师版七年级上册 1.2.2展开与折叠(共39张PPT)

北师版七年级上册 1.2.2展开与折叠(共39张PPT)
想一想:它的展开图是什么样子?
上 后 左下右 前
长方形纸
折叠
下图中的那些图形可以沿虚线折叠成长 方体包装盒,先想一想,再折一折。
下列图形哪个不是长方体的表面 展开图?
B A
C
D
议一议
(1)这个棱柱的上下底面一样吗?
(2)这个棱柱有几个侧面?侧面 的形状是什么图形?
(3)侧面的个数与底面图形的边 数有什么关系?
1)这六棱柱共多少个面?它们分别是什么形 状?哪些面的形状和面积完全相同?
2)这六棱柱一共有多少条棱?它们的长度分 别是多少?
26
27
想一想、试一试
1、你能否设计一个四棱柱的展开图,涂上你 喜欢的颜色。画出草图,让同座来验证。
2、同学们猜一猜,这个 图形能围成什么?
思考题
(1)A与B两点沿着侧面的最短路线是什么?
图形?
(1)
(2)
想一想、折一折 图中的两个图形经过折叠能否围成棱柱?
(1)
(2)
折叠后你能说出这些多面体的名称吗?
想一想、折一折
你能用一张纸片,通过剪一剪、 折一折,制作一个棱柱形的盒子。
棱柱的顶点、棱、侧棱、侧面数量之间的关系
6 95 3 3 8 12 6 4 4 10 15 7 5 5 12 18 8 6 6
过程与方法:通过数学活动经历和体验图形的变 化过程,培养学生动手实践和解决问题能力及语言归 纳能力,发展空间观念。
情感态度与价值观:让学生主动探索,勇于发现, 敢于表达,合作交流感受数学活动的生动魅力,激发 学生学习数学的兴趣。
二、教学重点、难点:
重点:通过数学活动认识棱柱的特征, 能感受到研究空间问题的思维方法。
⒉认识棱柱的展开与折叠。

【最新北师大版精选】北师大初中数学七上《1.2 展开与折叠》word教案 (7).doc

【最新北师大版精选】北师大初中数学七上《1.2 展开与折叠》word教案 (7).doc

1.2 展开与折叠〖知识与技能目标:〗1.认识到立体图形与平面图形的关系,了解一些立体图形可由平面图形围成,一些立体图形可展开成平面图形,发展空间观念;2.由观察、折叠等数学活动认识棱柱的某些特征;3.了解直棱柱的侧面展开图,能由侧面展开图想象出棱柱。

〖过程与方法:〗通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。

〖情感态度与价值观:〗让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。

〖教学重点、难点:〗重点:通过数学活动认识棱柱的特征,能感受到研究空间问题的思维方法。

难点:正确判断哪些图形可以折叠成棱柱。

〖教学方法:〗引导发现法【基础知识精讲】1.棱柱的分类我们已经了解了棱柱,那么棱柱之间是否还有区别呢?通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.2.棱柱的特点若有若干几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?(1)棱柱的上、下底面是完全相同且互相平行的多边形.(2)棱柱的侧面都是矩形.(3)棱柱的侧棱长都相等.将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢?(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).图1—9(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).图1—10(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)图1—114.能折成棱柱的平面图形的特征我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.比如:棱柱.若能折成棱柱,一定要符合以下特点:(1)棱柱的底面边数=侧面数.(2)棱柱的两个底面要分别在侧面展开图的两端.(3)四棱柱的平面展开图中只有5条相连的棱.5.正方体的平面展开图在课本中、习题中会经常遇到让大家辨认正方体表面展开图的题目.为了查阅方便,在此列出正方体的十一种展开图,供大家参考.图1—12【学习方法指导】[例1]三棱柱有_______条棱,_______个面,其中侧面是_______形,_______面的形状一定完全相同.点拨:n棱柱的数量特征如下:它有3n条棱,(n+2)个面,侧面一定是长方形.对于完全相同的面则需注意.棱柱的侧棱都是相等的但底面边长不一定相等,因此以底面边长和侧棱为长和宽的侧面的大小不一定相同.如:图1—13易错点:(1)“三棱柱的侧面是三角形.”是常出现的错误,一定要记住:棱柱的侧面是长方形.(2)“侧面都相等.”这也是易犯的错误.侧棱长都相等,易使学生误认为侧面也全都相同.解答:9 5 长方上、下底[例2]一个棱柱有12个顶点,所有侧棱长和为36 cm,求每条侧棱的长.点拨:先根据棱柱的数量特征,由顶点数求出是几棱柱,则相应有几条侧棱,再由侧棱长相等,求出结果.解:有12个顶点的棱柱是六棱柱,有6条侧棱.则每条侧棱长36÷6=6 cm.答:每条侧棱长6 cm.[例3]图1—14所示的平面图形是由哪几种几何体的表面展开的?(1) (2) (3)图1—14点拨:找几何体的表面展开图,关键是看侧面和底面的形状.底面是圆的几何体有圆柱、圆锥、圆台.侧面是扇形的几何体是圆锥.侧面是长方形的几何体是棱柱、圆柱.解答:(1)圆锥;(2)圆柱;(3)圆台.[例4]下面图形经过折叠能否围成棱柱?图1—15点拨:看能否围成棱柱,可参考“内容全解4”中的几条内容,如有不符合,就不能围成棱柱.解答:(1)侧面数(4个)≠底面边数(3条),不能围成棱柱.(2)两底面在侧面展开图的同一端,不在两端,所以也不能围成棱柱.(3)可以折成棱柱.[例5]一个正方体纸盒沿棱剪开,最多剪几条棱?最少呢?点拨:正方体是四棱柱,共有12条棱,要剪开纸盒使每个面相连,必须剪开部分棱,棱的总数不变(即12),若知道剩下未被剪开的棱数,就可以得到剪开的棱数了.解答:由正方体平面展开图知正方体的所有展开图中都只有5条相连的棱,而正方体共有12条棱,那么需要剪开的棱数就是12-5=7条了.【拓展训练】1.矩形、长方形和正方形都可称为矩形.2.圆台与棱锥的展开图.(1)圆台:圆台的展开图是由大小两个圆(作底)和部分扇形(作侧面)组成的.图1—16(2)棱锥:棱锥的展开图是由一个多边形(作底)和几个三角形(作侧面)组成的.图1—17 图1—18。

【最新北师大版精选】北师大初中数学七上《1.2 展开与折叠》word教案 (7).doc

【最新北师大版精选】北师大初中数学七上《1.2 展开与折叠》word教案 (7).doc

1.2 展开与折叠〖知识与技能目标:〗1.认识到立体图形与平面图形的关系,了解一些立体图形可由平面图形围成,一些立体图形可展开成平面图形,发展空间观念;2.由观察、折叠等数学活动认识棱柱的某些特征;3.了解直棱柱的侧面展开图,能由侧面展开图想象出棱柱。

〖过程与方法:〗通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。

〖情感态度与价值观:〗让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。

〖教学重点、难点:〗重点:通过数学活动认识棱柱的特征,能感受到研究空间问题的思维方法。

难点:正确判断哪些图形可以折叠成棱柱。

〖教学方法:〗引导发现法【基础知识精讲】1.棱柱的分类我们已经了解了棱柱,那么棱柱之间是否还有区别呢?通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.2.棱柱的特点若有若干几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?(1)棱柱的上、下底面是完全相同且互相平行的多边形.(2)棱柱的侧面都是矩形.(3)棱柱的侧棱长都相等.将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢?(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).图1—9(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).图1—10(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)图1—114.能折成棱柱的平面图形的特征我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.比如:棱柱.若能折成棱柱,一定要符合以下特点:(1)棱柱的底面边数=侧面数.(2)棱柱的两个底面要分别在侧面展开图的两端.(3)四棱柱的平面展开图中只有5条相连的棱.5.正方体的平面展开图在课本中、习题中会经常遇到让大家辨认正方体表面展开图的题目.为了查阅方便,在此列出正方体的十一种展开图,供大家参考.图1—12【学习方法指导】[例1]三棱柱有_______条棱,_______个面,其中侧面是_______形,_______面的形状一定完全相同.点拨:n棱柱的数量特征如下:它有3n条棱,(n+2)个面,侧面一定是长方形.对于完全相同的面则需注意.棱柱的侧棱都是相等的但底面边长不一定相等,因此以底面边长和侧棱为长和宽的侧面的大小不一定相同.如:图1—13易错点:(1)“三棱柱的侧面是三角形.”是常出现的错误,一定要记住:棱柱的侧面是长方形.(2)“侧面都相等.”这也是易犯的错误.侧棱长都相等,易使学生误认为侧面也全都相同.解答:9 5 长方上、下底[例2]一个棱柱有12个顶点,所有侧棱长和为36 cm,求每条侧棱的长.点拨:先根据棱柱的数量特征,由顶点数求出是几棱柱,则相应有几条侧棱,再由侧棱长相等,求出结果.解:有12个顶点的棱柱是六棱柱,有6条侧棱.则每条侧棱长36÷6=6 cm.答:每条侧棱长6 cm.[例3]图1—14所示的平面图形是由哪几种几何体的表面展开的?(1) (2) (3)图1—14点拨:找几何体的表面展开图,关键是看侧面和底面的形状.底面是圆的几何体有圆柱、圆锥、圆台.侧面是扇形的几何体是圆锥.侧面是长方形的几何体是棱柱、圆柱.解答:(1)圆锥;(2)圆柱;(3)圆台.[例4]下面图形经过折叠能否围成棱柱?图1—15点拨:看能否围成棱柱,可参考“内容全解4”中的几条内容,如有不符合,就不能围成棱柱.解答:(1)侧面数(4个)≠底面边数(3条),不能围成棱柱.(2)两底面在侧面展开图的同一端,不在两端,所以也不能围成棱柱.(3)可以折成棱柱.[例5]一个正方体纸盒沿棱剪开,最多剪几条棱?最少呢?点拨:正方体是四棱柱,共有12条棱,要剪开纸盒使每个面相连,必须剪开部分棱,棱的总数不变(即12),若知道剩下未被剪开的棱数,就可以得到剪开的棱数了.解答:由正方体平面展开图知正方体的所有展开图中都只有5条相连的棱,而正方体共有12条棱,那么需要剪开的棱数就是12-5=7条了.【拓展训练】1.矩形、长方形和正方形都可称为矩形.2.圆台与棱锥的展开图.(1)圆台:圆台的展开图是由大小两个圆(作底)和部分扇形(作侧面)组成的.图1—16(2)棱锥:棱锥的展开图是由一个多边形(作底)和几个三角形(作侧面)组成的.图1—17 图1—18。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2展开与折叠
同步练习2:
1,如图,把左边的图形折叠起来,它会变为()
2,下面图形经过折叠不能围成棱柱的是()
3,如图,把左边的图形折叠起来,它会变成()
4,一个几何体的边面全部展开后铺在平面上,不可能是()
A.一个三角形
B.一个圆
C.三个正方形
D.一个小圆和半个大圆
5,(1)侧面可以展开成一长方形的几何体有;
(2)圆锥的侧面展开后是一个;
(3)各个面都是长方形的几何体是;
(4)棱柱两底面的形状,大小,所有侧棱长都.
6,用一个边长为4cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为cm.
7,用一个边长为10cm的正方形围成一个圆柱的侧面(接缝略去不计),求该圆柱的体积.
8,用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?( 取3.14)
9,如图,在一个正方体木块的两个相距最远的顶点外逗留着1只苍蝇和1只蜘蛛,蜘蛛沿哪条路径去捉苍蝇最快?请说明理由.
第9题图第10题图
10,如图,正方体a的上、前、右三个面上分别注有A,B,C三个字母,它的展开图如图b所示,请用D,E,F三个字母在展开图上分别标注下、后、左三个面.
11,如图,一个长方体的底面是边长为1cm的正方形,侧棱长为2cm,现沿图中粗黑线的棱剪开,请画出展开图。

12,已知圆锥的侧面展开图是一个半圆,求它的侧面积与底面积的比.
答案:1,B 2,D 3,B 4,B 5,(1)圆柱棱柱(2)扇形(3)长方体(4)相同相等相等6,1 7,250 cm38,78.5cm29,略
10,略11,略12,2。

相关文档
最新文档