常用数学符号
常用数学符号大全
1、几何符号ⅷⅶ↋ↆↄ△2、代数符号ⅴⅸⅹ~ⅼↅↇↈↃⅵↀ3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(ⅻ),交集(ⅺ),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(ⅼ),曲线积分(ⅽ)等。
4、集合符号ⅻⅺⅰ5、特殊符号ⅲπ(圆周率)6、推理符号|a| ↂ△ⅶⅺⅻↅↆ±ↈↇⅰⅬⅭⅮⅯ↖↗↘↙ⅷⅸⅹ&; §←↑→↓↔↕↖↗ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰⅱⅲ↚ⅳⅴⅵ↛ⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↀↁↂↃↄ↝ↅↆↇↈ↞↟↉↊⊕↋↠℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“Ↄ”是近似符号,“ↅ”是不等号,“>”是大于符号,“<”是小于符号,“ↈ”是大于或等于符号(也可写作“↉”),“ↇ”是小于或等于符号(也可写作“↊”),。
“Ⅾ”表示变量变化的趋势,“ↂ”是相似符号,“ↄ”是全等号,“ⅷ”是平行符号,“”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(ⅶ),ⅿ因为,(一个脚站着的,站不住)ⅾ所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n个元素中每次取出r 个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120C-Combination- 组合A-Arrangement-排列13、离散数学符号├断定符(公式在L中可证)╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算ⅸ命题的“合取”(“与”)运算ⅹ命题的“析取”(“或”,“可兼或”)运算Ⅾ命题的“条件”运算A<=>B 命题A与B 等价关系A=>B 命题A与B的蕴涵关系A* 公式A的对偶公式wff 合式公式iff 当且仅当Ⅽ命题的“与非”运算(“与非门”)Ⅿ命题的“或非”运算(“或非门”)□模态词“必然”◇模态词“可能”θ空集ⅰ属于(??不属于)P(A)集合A的幂集|A| 集合A的点数R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”(或下面加ↅ)真包含ⅻ集合的并运算ⅺ集合的交运算- (~)集合的差运算〡限制[X](右下角R) 集合关于关系R的等价类A/ R 集合A上关于R的商集[a] 元素a 产生的循环群I (i大写) 环,理想Z/(n) 模n的同余类集合r(R) 关系R的自反闭包s(R) 关系的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:XⅮY f是X到Y的函数GCD(x,y) x,y最大公约数LCM(x,y) x,y最小公倍数aH(Ha) H 关于a的左(右)陪集Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合d(u,v) 点u与点v间的距离d(v) 点v的度数G=(V,E) 点集为V,边集为E的图W(G) 图G的连通分支数k(G) 图G的点连通度△(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集N 自然数集(包含0在内)N* 正自然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴+plus 加号;正号-minus 减号;负号±plus or minus 正负号×is multiplied by 乘号÷is divided by 除号=is equal to 等于号≠is not equal to 不等于号≡is equivalent to 全等于号ↄis approximately equal to 约等于≈is approximately equal to 约等于号<is less than 小于号>is more than 大于号≤is less than or equal to 小于或等于≥is more than or equal to 大于或等于%per cent 百分之…∞infinity 无限大号√(square) root 平方根X squared X的平方X cubed X的立方ⅿsince; because 因为ⅾhence 所以ⅶangle 角semicircle 半圆↋circle 圆○circumference 圆周△triangle 三角形perpendicular to 垂直于ⅻintersection of 并,合集∩union of 交,通集∫the integral of …的积分∑(sigma) summation of 总和°degree 度′minute 分〃second 秒#number …号@at 单价。
常用数学符号大全
常用数学符号大全1、几何符号ⅷⅶ↋ↆↄ△2、代数符号ⅴⅸⅹ~ⅼↅↇↈↃⅵↀ3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(ⅻ),交集(ⅺ),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(ⅼ),曲线积分(ⅽ)等。
4、集合符号ⅻⅺⅰ5、特殊符号ⅲπ(圆周率)6、推理符号|a| ↂ△ⅶⅺⅻↅↆ±ↈↇⅰⅬⅭⅮⅯ↖↗↘↙ⅷⅸⅹ&; §←↑→↓↔↕↖↗ΓΓΘΛΞΟΠΦΥΦΧαβγδεδεζηθικλμνπξζηυθχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰⅱⅲ↚ⅳⅴⅵ↛ⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↀↁↂↃↄ↝ↅↆↇↈ↞↟↉↊⊕↋↠℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“Ↄ”是近似符号,“ↅ”是不等号,“>”是大于符号,“<”是小于符号,“ↈ”是大于或等于符号(也可写作“↉”),“ↇ”是小于或等于符号(也可写作“↊”),。
“Ⅾ”表示变量变化的趋势,“ↂ”是相似符号,“ↄ”是全等号,“ⅷ”是平行符号,“”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(ⅶ),ⅿ因为,(一个脚站着的,站不住)ⅾ所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n个元素中每次取出r 个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120C-Combination- 组合A-Arrangement-排列13、离散数学符号├断定符(公式在L中可证)╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算ⅸ命题的“合取”(“与”)运算ⅹ命题的“析取”(“或”,“可兼或”)运算Ⅾ命题的“条件”运算A<=>B 命题A 与B 等价关系A=>B 命题A与B的蕴涵关系A* 公式A 的对偶公式wff 合式公式iff 当且仅当Ⅽ命题的“与非”运算(“与非门”)Ⅿ命题的“或非”运算(“或非门”)□模态词“必然”◇模态词“可能”θ空集ⅰ属于(??不属于)P(A)集合A的幂集|A| 集合A的点数R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”(或下面加ↅ)真包含ⅻ集合的并运算ⅺ集合的交运算- (~)集合的差运算〡限制[X](右下角R) 集合关于关系R的等价类A/ R 集合A上关于R的商集[a] 元素a 产生的循环群I (i大写) 环,理想Z/(n) 模n的同余类集合r(R) 关系R的自反闭包s(R) 关系的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:XⅮY f是X到Y的函数GCD(x,y) x,y最大公约数LCM(x,y) x,y最小公倍数aH(Ha) H 关于a的左(右)陪集Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合d(u,v) 点u与点v间的距离d(v) 点v的度数G=(V,E) 点集为V,边集为E的图W(G) 图G的连通分支数k(G) 图G的点连通度△(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集N 自然数集(包含0在内)N* 正自然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴常用数学符号读法大全大写小写英文注音国际音标注音中文注音Αα alpha alfa 阿耳法Ββ beta beta 贝塔Γγ gamma gamma 伽马Γδ deta delta 德耳塔Δε epsilon epsilon 艾普西隆Εδ zeta zeta 截塔Ζε eta eta 艾塔Θζ theta ζita 西塔Ηη iota iota 约塔Κθ kappa kappa 卡帕ⅸι lambda lambda 兰姆达Μκ mu miu 缪Νλ nu niu 纽Ξμ xi ksi 可塞Ον omicron omikron 奥密可戎ⅱπ pi pai 派Ρξ rho rou 柔ⅲζ sigma sigma 西格马Ση tau tau 套Τυ upsilon jupsilon 衣普西隆Φθ phi fai 斐Υχ chi khai 喜Φψ psi psai 普西Χω omega omiga 欧米伽。
常用数学符号总结
常用数学符号总结数学符号在数学领域中是非常重要的,不仅可以简洁地表示数学概念和关系,还能帮助我们在解决问题时进行推导和计算。
下面是对一些常用数学符号的总结:1. 加法 (+):表示两个数的相加。
例如 2 + 3 = 5。
2. 减法 (-):表示两个数的相减。
例如 5 - 2 = 3。
3. 乘法 (*):表示两个数的相乘。
例如 2 * 3 = 6。
4. 除法 (/):表示两个数的相除。
例如 6 / 2 = 3。
5. 等号 (=):表示两个数或表达式相等。
例如 2 + 3 = 5。
6. 大于 (>)/大于等于 (>=):表示一个数是否大于或大于等于另一个数。
例如 5 > 3。
7. 小于 (<)/小于等于 (<=):表示一个数是否小于或小于等于另一个数。
例如 3 < 5。
8. 不等于 (!=):表示两个数或表达式不相等。
例如 2 +3 != 6。
9. 求和(∑):表示把一系列数相加的操作。
例如∑(1, 2, 3) = 1 + 2 + 3 = 6。
10. 求积(∏):表示把一系列数相乘的操作。
例如∏(1, 2, 3) = 1 * 2 * 3 = 6。
11. 开方(√):表示一个数的平方根。
例如√9 = 3。
12. 平方 (^2):表示一个数的平方。
例如 3^2 = 9。
13. 立方 (^3):表示一个数的立方。
例如 3^3 = 27。
14. 无穷(∞):表示一个数没有上界或下界。
例如∞ + 1 = ∞。
15. 取整数部分 (⌊x⌋):表示将一个实数向下取整。
例如⌊ 3.8⌋ = 3。
16. 向上取整 (⌈x⌉):表示将一个实数向上取整。
例如⌈ 3.2⌉ = 4。
17. 绝对值 (|x|):表示一个数的非负值。
例如 |-3| = 3。
18. 百分号 (%):表示一个数的百分比。
例如 50% = 0.5。
19. 除尽 (//):表示整数除法,结果是整数部分,舍去小数部分。
常用数学符号大全、关系代数符号-公式符号大全
常用数学符号大全、关系代数符号1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏∑∕√∝∞∟∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用数学符号大全
常用数学符号大全点击查看>>数学实用工具:数学符号大全1、几何符号ⅷⅶ△2、代数符号ⅴⅸⅹ~ⅵ?3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(?),交集(?),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(?),曲线积分(?)等。
4、集合符号ⅰ5、特殊符号ⅲπ(圆周率)6、推理符号|a| ??△ⅶ±??ⅰ?↖↗↘↙ⅷⅸⅹ&; §←↑→↓??↖↗ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹⅰⅱⅲ?ⅳⅴⅵ? ⅶ?ⅷⅸⅹ⊕??℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“?”是近似符号,“?”是不等号,“>”是大于符号,“<”是小于符号,“?”是大于或等于符号(也可写作“?”),“?”是小于或等于符号(也可写作“?”),。
“? ”表示变量变化的趋势,“?”是相似符号,“?”是全等号,“ⅷ”是平行符号,“?”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f (x)),极限(lim),角(ⅶ),因为,(一个脚站着的,站不住)所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n 个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
数学中常用的符号
数学中常用的符号
数学中常用的符号有很多,以下列举一些常见的:
1. 数字:0, 1, 2, 3, 4, 5, 6, 7, 8, 9
2. 基本运算符号:
- 加法:+
- 减法:-
- 乘法:*
- 除法:/
- 等于:=
- 不等于:≠
- 大于:>
- 小于:<
- 大于等于:≥
- 小于等于:≤
3. 数学函数符号:
- 圆周率:π
- 开根号:√
- 绝对值:| |
- 平方:²
- 立方:³
- 对数:log
4. 集合符号:
- 元素属于:∈
- 元素不属于:∉
- 空集:∅
- 子集:⊆
- 真子集:⊂
5. 集合运算符号:
- 并集:∪
- 交集:∩
- 补集:'
- 差集:\
- 符号集合:ℝ(实数集),ℕ(自然数集),ℤ(整数集),ℚ(有理数集),S(复数集)
6. 三角函数符号:
- 正弦:sin
- 余弦:cos
- 正切:tan
7. 极限符号:
- 极限:lim
8. 微积分符号:
- 导数:d/dx
- 积分:∫
- 偏导数:∂/∂x
9. 概率统计符号:
- 同等于:≈
- 和:Σ
- 均值:μ
- 方差:σ²
10. 集合论符号:
- 内含于:⊂
- 并集:⋃
- 交集:⋂
- 全集:U
- 子集:⊆
以上只是一些常见的符号,实际中还有很多其他符号,如矩阵符号、微分方程符号等。
数学中的符号非常丰富,灵活运用可以简洁地表示数学概念和运算关系。
常用数学符号大全
1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f (x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用数学符号大全
常用数学符号大全1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
数学常用符号集
CP 命题演绎的定理(CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则(全称量词引入规则)
US 全称特指规则(全称量词消去规则)
R 关系
r 相容关系
R○S 关系 与关系 的复合
domf 函数 的定义域(前域)
ranf 函数 的值域
f:X→Y f是X到Y的函数
GCD(x,y) x,y最大公约数
LCM(x,y) x,y最小公倍数
aH(Ha) H 关于a的左(右)陪集
Ker(f) 同态映射f的核(或称 f同态核)
[1,n] 1到n的整数集合
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算( “与非门” )
↓ 命题的“或非”运算( “或非门” )
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴
- (~) 集合的差运算
〡 限制
[X](右下角R) 集合关于关系R的等价类
A/ R 集合A上关于R的商集
[a] 元素a 产生的循环群
I (i大写) 环,理想
Z/(n) 模n的同余类集合
r(R) 关系 R的自反闭包
s(R) 关系 的对称闭包
ξ ο π ρ σ τ υ φ χ ψ ω
100个常用数学符号
≼ 等于或等于或等于或等于或等于或不等于符号
85
≽ 不等于或不等于或不等于或不等于或不等于或等于符号
86
≾ 等于或等于或不等于或等于或等于或等于符号
87
≿ 不等于或不等于或等于或不等于或不等于或不等于符号
88
⊀ 等于或不等于或等于或等于或等于或等于符号
89
⊁ 不等于或等于或不等于或不等于或不等于或不等于符号
19
∁ 补集符号
20
∐ 全集符号
21
≤ 小于等于符号
22
≥ 大于等于符号
23
< 小于符号
24
> 大于符号
25
≠ 不等于符号
26
≡ 等价于符号Leabharlann 27≈ 约等于符号28
≅ 关于符号
29
≃ 大约相当于符号
30
≄ 不约等于符号
31
≆ 大约不等于符号
32
≇ 不等式大于符号
33
≈ 不等式小于符号
34
≉ 不等式大于或等于符号
35
≊ 不等式小于或等于符号
36
≋ 不等式不大于符号
37
≌ 不等式不小于符号
38
≍ 不等式不大于或等于符号
39
≎ 不等式不小于或等于符号
40
≏ 不等式不等于符号
41
≐ 不等式等于符号
42
≑ 不等式等于或不等于符号
43
≒ 不等式大于或小于符号
44
≓ 不等式大于或不等于符号
45
≔ 不等式小于或不等于符号
90
⊂ 包含符号
91
⊃ 包含或等于符号
92
⊄ 不包含符号
93
常用的数学符号
常用的数学符号数学符号在数学领域中起着重要的作用,用于表示数学概念、表达数学关系和进行数学运算。
下面是一些常见的数学符号及其用法。
1. 加法符号 (+)加法符号用于表示两个数的相加。
例如,2 + 3 = 5,表示2和3相加等于5。
2. 减法符号 (-)减法符号用于表示两个数的相减。
例如,5 - 3 = 2,表示5减去3等于2。
3. 乘法符号(×)乘法符号用于表示两个数的相乘。
例如,2 × 3 = 6,表示2乘以3等于6。
4. 除法符号(÷)除法符号用于表示一个数除以另一个数。
例如,6 ÷ 2 = 3,表示6除以2等于3。
5. 等号 (=)等号用于表示两个数或表达式的相等关系。
例如,3 + 2 = 5,表示3加2等于5。
6. 不等号(≠)不等号用于表示两个数或表达式不相等的关系。
例如,3 + 2 ≠ 6,表示3加2不等于6。
7. 大于号 (>)大于号用于表示一个数大于另一个数。
例如,5 > 3,表示5大于3。
8. 小于号 (<)小于号用于表示一个数小于另一个数。
例如,3 < 5,表示3小于5。
9. 大于等于号(≥)大于等于号用于表示一个数大于或等于另一个数。
例如,5 ≥ 3,表示5大于或等于3。
10. 小于等于号(≤)小于等于号用于表示一个数小于或等于另一个数。
例如,3 ≤ 5,表示3小于或等于5。
11. 括号 ()括号用于改变运算的优先级或表示一个数的集合。
例如,2 × (3 + 4) = 14,表示先计算括号中的加法,再进行乘法运算。
12. 上标 (^)上标用于表示一个数的指数。
例如,2^3 = 8,表示2的3次方等于8。
13. 下标 (_)下标用于表示一个数的索引或序号。
例如,a_1 + a_2 = a_3,表示第一个数加上第二个数等于第三个数。
这些是一些常见的数学符号,它们在数学中起着非常重要的作用,帮助我们清晰地表达数学概念和进行数学运算。
数学字母符号
数学字母符号数学领域有许多非常重要的符号,这些符号在数学研究中起着至关重要的作用。
下面,我将简单地介绍一些常见的数学字母符号。
一、希腊字母符号:1. α (alpha):希腊字母中的第一个字母,往往用于表示角度、系数等。
2. β (beta):希腊字母中的第二个字母,往往用于表示系数、角度等。
3. γ (gamma):希腊字母中的第三个字母,往往用于表示角度、系数等。
4. δ (delta):希腊字母中的第四个字母,往往用于表示差异、微小变化等。
5. ε (epsilon):希腊字母中的第五个字母,往往用于表示误差、极小量等。
6. ζ (zeta):希腊字母中的第六个字母,往往用于表示函数中的变量。
7. η (eta):希腊字母中的第七个字母,往往用于表示数据中的变量。
8. θ (theta):希腊字母中的第八个字母,往往用于表示角度、温度等。
9. ι (iota):希腊字母中的第九个字母,往往用于表示一个很小的数字。
10. κ (kappa):希腊字母中的第十个字母,往往用于表示系数、角度等。
11. λ (lambda):希腊字母中的第十一个字母,往往用于表示常数、波长等。
12. μ (mu):希腊字母中的第十二个字母,往往用于表示平均数、质量等。
13. ν (nu):希腊字母中的第十三个字母,往往用于表示频率、速度等。
14. ξ (xi):希腊字母中的第十四个字母,往往用于表示未知数、角度等。
15. π (pi):希腊字母中的第十五个字母,往往用于表示圆的周长与直径之比。
16. ρ (rho):希腊字母中的第十六个字母,往往用于表示电阻、电导率等。
17. σ (sigma):希腊字母中的第十七个字母,往往用于表示标准差、总体方差等。
18. τ (tau):希腊字母中的第十八个字母,往往用于表示时间常数、力矩等。
19. υ (upsilon):希腊字母中的第十九个字母,往往用于表示平均速度、位移等。
常用数学符号大全
常⽤数学符号⼤全 1、⼏何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫ ≠ ≤ ≥ ≈ ∞ ∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),⽐(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑ π(圆周率)6、推理符号|a| ⊥∽△∠∩∪ ≠ ≡ ± ≥ ≤ ∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩Γ Δ ΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλ µ νξοπρστυφχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏ ∑ ⁄ √ ∝ ∞ ∟∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒ ≠ ≡ ≤ ≥ ≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,⾃然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是⼤于符号,“<”是⼩于符号,“≥”是⼤于或等于符号(也可写作“≮”),“≤”是⼩于或等于符号(也可写作“≯”),。
“→ ”表⽰变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平⾏符号,“⊥”是垂直符号,“∝”是成正⽐符号,(没有成反⽐符号,但可以⽤成正⽐符号配倒数当作成反⽐)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如⼩括号“()”中括号“[]”,⼤括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三⾓形(△),直⾓三⾓形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),⾓(∠),∵因为,(⼀个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用数学符号大全
常用数学符号大全1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用数学符号大全
常用数学符号大全1、几何符号∻‖ⅶ∼∺∵∳△©|a| ∻∱ⅶ↛‖|2、代数符号? ⅴ∧∨~∫∶∷∲ⅵ∯〔〕〈〉《》「」『』】【〖3、运算符号¬÷ⅳª∴∵∸∹4、集合符号∪∩ⅰΦ? ¢⊕⊆⊂⊇⊃5、特殊符号ⅲπ(圆周率)@#◌○◈◊◉◇◆□■▓⊿※¥ΓΔΘ∧ΞΟⅱⅲΦΧΨΩⅱ6、推理符号ⅬⅭⅮⅯ↖↗↘↙∭∮∯∰T ? ü7、标点符号` ˉˇ¨、«‘’8、其他& ; §℃№$£¥‰℉◎◍∽∾∿≀≁≂≃≄≅≆ΓΔΘ∧ΞΟⅱⅲΦΧΨΩαβ γ δ ε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰⅱⅲ↚ⅳⅴⅵ↛ⅶ↜‖∧∨∩∪∫∬∭∮∯∰∱∲∳∲∴∵∶∷∶∷∸∹∺∻⊿∼指数0123:o123 〃? ? ?符号意义ⅵ无穷大PI 圆周率|x| 函数的绝对值∪集合并∩集合交∷大于等于∶小于等于∵恒等于或同余ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分ⅲ[1∶k∶n]f(k) 对n进行求和,可以拓广至很多情况,如:ⅲ[n is prime][n < 10]f(n)ⅲⅲ[1∶i∶j∶n]n^2lim f(x) (x->?) 求极限C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除n(m,n)=1 m与n互质a ⅰA a属于集合ACard(A) 集合A中的元素个数|a| ∻∱△ⅶ∩∪∴∮∭∵ª∷∶ⅰⅬⅭⅮⅯ↖↗↘↙‖∧∨¼½ ¾§∽∾∿≀≁≂≃≄≅≆αβ γ δ ε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ωⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰⅱⅲ↚ⅳⅴⅵ↛ⅶ↜‖∧∨∩∪∫∬∭∮∯∰∱∲∳∲∴∵∶∷∶∷∸∹⊕∺∻⊿∼为了方便,也做些约定!x的平方,可以打成x^2 (其它的以此类推)x+1的开方,可以打成ⅳ(x+1),记住加括号;x分之一,可以输入1/x;如果是x+1分之一,请输入1/(x+1),分子、分母请加括号<> 或>< 表示不等于例:a<>b 即a不等于b;<= 表示小于等于(不大于)例:a<=b 即a不大于b;>= 表示大于等于(不小于)例:a>=b 即a不小于b;^ 表示乘方例:a^b 即a的b次方, 也可用于开根号,例:a^(1/2) 表示a的平方根* 表示乘……/ 表示浮点除例:3/2=1.5\ 表示整除例:3\2=1……1()广义括号,允许多重嵌套,无大、中、小之分,优先级最高。
常用数学符号大全特殊字符特殊符号
常⽤数学符号⼤全特殊字符特殊符号1、⼏何符号 ⊥∥∠⌒⊙≡≌△⊆⊇ Δ ΛΣ∅⋅ ◊ ο◦ 2、代数符号 ∝∧∨~∫ ≠ ≤ ≥ ≈ ∞ ∶ 3、运算符号 如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),⽐(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号 ∪∩∈ 5、特殊符号 ∑ π(圆周率) 6、推理符号 |a| ⊥∽△∠∩∪ ≠ ≡ ± ≥ ≤ ∈← ↑→↓↖↗↘↙∥∧∨ &; § ①②③④⑤⑥⑦⑧⑨⑩ Γ Δ ΘΛΞΟΠΣΦΧΨΩ αβγδεζηθικλ µ ν ξοπρστυφχψω ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ ∈∏ ∑ ⁄ √ ∝ ∞ ∟∠∣∥∧∨∩∪∫∮ ∴∵∶∷∽≈≌≒ ≠ ≡ ≤ ≥ ≦≧≮≯⊕⊙⊥ ⊿⌒℃ 指数0123:o123 7、数量符号 如:i,2+i,a,x,⾃然对数底e,圆周率π。
8、关系符号 如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是⼤于符号,“<”是⼩于符号,“≥”是⼤于或等于符号(也可写作“≮”),“≤”是⼩于或等于符号(也可写作“≯”),。
“→ ”表⽰变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平⾏符号,“⊥”是垂直符号,“∝”是成正⽐符号,(没有成反⽐符号,但可以⽤成正⽐符号配倒数当作成反⽐)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号 如⼩括号“()”中括号“[]”,⼤括号“{}”横线“—” 10、性质符号 如正号“+”,负号“-”,绝对值符号“| |”正负号“±” 11、省略符号 如三⾓形(△),直⾓三⾓形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),⾓(∠), ∵因为,(⼀个脚站着的,站不住) ∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、几何符号
ⅷⅶ↋ↆↄ△
2、代数符号
ⅴⅸⅹ~ⅼↅↇↈↃⅵↀ
3、运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(ⅻ),交集(ⅺ),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(ⅼ),曲线积分(ⅽ)等。
4、集合符号
ⅻⅺⅰ
5、特殊符号
ⅲπ(圆周率)
6、推理符号
|a| ↂ△ⅶⅺⅻↅↆ±ↈↇⅰⅬ
ⅭⅮⅯ↖↗↘↙ⅷⅸⅹ
&; §
←↑→↓↔↕↖↗
ΓΔΘΛΞΟΠΣΦΧΨΩ
αβγδεδεζηθικλ
μνπξζηυθχψω
ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ
ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ
ⅰⅱⅲ↚ⅳⅴⅵ↛ⅶ↜ⅷⅸⅹⅺⅻⅼⅽ
ⅾⅿↀↁↂↃↄ↝ↅↆↇↈ↞↟↉↊⊕↋
↠℃
指数0123:o123
7、数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号
如“=”是等号,“Ↄ”是近似符号,“ↅ”是不等号,“>”是大于符号,“<”是小于符号,“ↈ”是大于或等于符号(也可写作“↉”),“ↇ”是小于或等于符号(也可写作“↊”),。
“Ⅾ”表示变量变化的趋势,“ↂ”是相似符号,“ↄ”是全等号,“ⅷ”是平行符号,“”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。
9、结合符号
如小括号“()”中括号“[]”,大括号“{}”横线“—”
10、性质符号
如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
11、省略符号
如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(ⅶ),
ⅿ因为,(一个脚站着的,站不住)
ⅾ所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n个元素中每次取出r 个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘,如5!=5×4×3×2×1=120 C-Combination- 组合
A-Arrangement-排列。