北京海淀区高考二模数学试卷分析
北京海淀高三二模数学解析
2020年北京市海淀区高三二模数学考试逐题解析2020.6 本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时长120分钟。
考生务必将答案写在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第I 卷(选择题 共40分)一、选择题:共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 若全集,{|1},{|1}U A x x B x x ==<=>−R ,则 (A )A B ⊆ (B )B A ⊆ (C )UB A ⊆(D )UA B ⊆【答案】D【解析】本题考查集合的运算. 由题意:{|1},{|1}UA x xB x x =≥=>−,不难看出UA B ⊆.故选D.2. 下列函数中,值域为[0,)+∞且为偶函数的是 (A )2y x = (B )|1|y x =− (C )cos y x =(D )ln y x =【答案】A【解析】本题考查函数值域与奇偶性.A 选项,值域为[0,)+∞,满足()()f x f x −=,是偶函数;B 选项,值域为[0,)+∞,不满足()()f x f x −=,不是偶函数;C 选项,值域为[1,1]−,满足()()f x f x −=,是偶函数;D 选项,值域为R ,不满足()()f x f x −=,不是偶函数. 故选A.3. 若抛物线212y x =的焦点为F ,点P 在此抛物线上且横坐标为3,则||PF 等于 (A )4 (B )6 (C )8(D )10【答案】B【解析】本题考查抛物线. 因为抛物线的方程为212y x =,所以212p =,准线方程为32px =−=−.根据抛物线的性质:抛物线上的点到焦点的距离等于到准线的距离, 所以||3362P pPF x =+=+=. 故选B.4. 已知三条不同的直线,,l m n 和两个不同的平面,αβ,下列四个命题中正确的为 (A )若//,//m n αα,则//m n (B )若//,l m m α⊂,则//l α (C )若//,//l l αβ,则//αβ(D )若//,l l αβ⊥,则αβ⊥【答案】D【解析】本题考查空间位置关系.A 选项,若//,//m n αα,则m 与n 可相交、平行或异面,故A 选项错误;B 选项,若//,l m m α⊂,则//l α或l α⊂,故B 选项错误;C 选项,若//,//l l αβ,则α与β相交或平行,故C 选项错误;D 选项,若//,l l αβ⊥,则αβ⊥,故D 选项正确. 故选D.5. 在ABC 中,若17,8,cos 7a b B ===−,则A ∠的大小为(A )π6(B )π4(C )π3(D )π2【答案】C【解析】本题考查解三角形. 方法一:因为1cos 07B =−<,所以π(,π)2B ∈,所以sin 0B >, 即3sin 7B =.由正弦定理sin sin a b A B =,得7sin 437A =,得到3sin 2A =. 又因为π(0,)2A ∈,所以π3A =.故选C. 方法二:根据余弦定理222249641cos 2147a cbc B ac c +−+−===−,解得123,5c c ==−(舍)222649491cos 2482b c a A bc +−+−===.所以π3A =. 故选C.6. 将函数π()sin(2)6f x x =−的图象向左平移π3个单位长度,得到函数()g x 的图象,则()g x =(A )πsin(2)6x +(B )2πsin(2)3x +(C )cos2x (D )cos2x −【答案】C【解析】本题考查三角函数图象变换.由题可知ππππ()()sin[2()]sin(2)cos23362g x f x x x x =+=+−=+=故选C.7. 某三棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,那么该三棱锥的体积为(A )23(B )43(C )2(D )4【答案】A【解析】本题考查三视图.三棱锥的直观图如图所示:由图可知,该三棱锥体积为11122123323ABCV Sh =⨯⨯=⨯⨯⨯⨯=, 故选A.8. 对于非零向量,a b ,“2()2+⋅=a b a a ”是“=a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】B【解析】本题考查平面向量数量积.充分条件:由2222(22⋅=⇒+⋅=⇒⋅=a +b)a a a a b a a b a2||||cos ||||cos ||⇒⋅⋅〈⋅〉=⇒⋅〈⋅〉=a b a b a b a b a所以充分条件不成立;必要条件:2()()22=⇒⋅=⋅⇒⋅=a b a +b a a +a a a a a 所以必要条件成立; 所以是必要不充分条件. 故选B.9. 如图,正方体1111ABCD A B C D −的棱长为2,,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动.若1D O OP ⊥,则11D C P 面积的最大值为(A )255(B )455(C )5(D )25【答案】C【解析】本题考查立体几何空间向量.以D 为原点,分别以1,,DA DC DD 为x 轴,y 轴,z 轴,如图建立空间直角坐标系,1(0,0,2)D ,1(0,2,2)C ,(1,1,0)O ,点O 为底面ABCD 中心,设00(,2,)P x z ,所以1(1,1,2)D O =−,00(1,1,)OP x z =−, 因为1D O OP ⊥,所以1000011220D O OP x z x z ⋅=−+−=−=. 所以002x z =.令0,z a =则02(01)x a a =≤≤ 所以(2,2,)P a a , 所以1(2,0,2)C P a a =−,2221216||(2)0(2)5()55C P a a a =++−=−+. 因为01a ≤≤,所以当1a =时,1||C P 取得最大值. 此时1||5C P =1111111||||2522D C PS D C C P =⨯⨯=⨯⨯, 故选C.10. 为了预防新型冠状病毒的传染,人员之间需要保持一米以上的安全距离.某公司会议室共有四行四列座椅,并且相邻两个座椅之间的距离超过一米,为了保证更加安全,公司规定在此会议室开会时,每一行、每一列均不能有连续三人就座.例如下图中第一列所示情况不满足条件(其中“√”表示就座人员).根据该公司要求,该会议室最多可容纳的就座人数为 (A )9 (B )10 (C )11(D )12【答案】C【解析】本题考查逻辑推理.如图编号,行为,,,a b c d ,列为1,2,3,4.1 2 3 4 a√ √ √ b√ √ √ c√ √ d√√√尽可能多坐人时,每行最多3人. 坐法1,2,4或1,3,4.①若a 行坐124,,a a a 、且b 坐124,,b b b , 那么c 行只能坐3c ,d 行最多坐124,,d d d , 共计10人.②若a 行坐124,,a a a 、且b 坐134,,b b b , 那么c 行能坐23,c c ,d 行可坐124,,d d d , 共计11人.其它座位分布情况同理,故最多11人. 故选C.第II 卷(非选择题 共110分)二、填空题:共5小题,每小题5分,共25分。
2022北京市海淀区高三二模数学试卷(含答案)
2022北京市海淀区高三二模数学试卷2022.05本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}01A x x x =<>或,则A =R ð (A ){}01x x << (B ){}01x x ≤<(C ){}01x x <≤(D ){}01x x ≤≤(2)在()312x −的展开式中,x 的系数为 (A )2−(B )2(C )6−(D )6(3)已知双曲线2222:1x y C a b−=的渐近线经过点(1,2),则双曲线的离心率为(A (B (C )2(D (4)已知,x y ∈R ,且0x y +>,则 (A )110x y+> (B )330x y +>(C )lg()0x y +> (D )sin()0x y +>(5)若,0()1,0x a x f x bx x +<⎧=⎨−>⎩是奇函数,则(A )11a b ==−,(B )11a b =−=, (C )11a b ==, (D )11a b =−=−,(6)已知F 为抛物线24y x =的焦点,点()(),1,2,3n n n P x y n =L ,在抛物线上。
若11n n P F P F +−=,则 (A ){}n x 是等差数列 (B ){}n x 是等比数列 (C ){}n y 是等差数列(D ){}n y 是等比数列(7)已知向量(1,0)a =,(b =−。
若,,c a c b <>=<>,则c 可能是(A )2a b −(B )a b +(C )2a b +(D b +(8)设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+− 无零点”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(9)从物理学知识可知,图中弹簧振子中的小球相对平衡位置的位移y 与时间t (单位:s )的关系符合函数()()sin 100y A wt ϕω=+<。
北京市海淀区2023-2024学年高三下学期期末练习(二模)数学试题(解析版)
海淀区2023—2024学年第二学期期末练习高三数学2024.05本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,0,1,2,{3}A B x a x =-=≤<∣.若A B ⊆,则a 的最大值为()A.2 B.0C.1- D.-2【答案】C 【解析】【分析】根据集合的包含关系可得1a ≤-求解.【详解】由于A B ⊆,所以1a ≤-,故a 的最大值为1-,故选:C2.在52()x x-的展开式中,x 的系数为()A.40B.10C.40-D.10-【答案】A 【解析】【分析】利用二项式定理的性质.【详解】设52(x x-的通项1k T +,则()5115C 2k k k k T x x --+=-,化简得()5215C 2k kk k T x -+=⋅-⋅,令2k =,则x 的系数为()225C 240-=,即A 正确.故选:A3.函数()3,0,1,03x x x f x x ⎧≤⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩是()A.偶函数,且没有极值点B.偶函数,且有一个极值点C.奇函数,且没有极值点D.奇函数,且有一个极值点【答案】B 【解析】【分析】根据函数奇偶性定义计算以及极值点定义判断即可.【详解】当0x ≤时,0x ->,则1()(3()3xx f x f x --===,当0x >时,0x -<,则1()3()()3xx f x f x --===,所以函数()f x 是偶函数,由图可知函数()f x 有一个极大值点.故选:B.4.已知抛物线24x y =的焦点为F ,点A 在抛物线上,6AF =,则线段AF 的中点的纵坐标为()A.52B.72C.3D.4【答案】C 【解析】【分析】根据抛物线定义求得点A 的纵坐标,再求AF 中点纵坐标即可.【详解】抛物线24x y =的焦点()0,1F ,又16A AF y =+=,解得5A y =,故线段AF 的中点的纵坐标为1532+=.故选:C.5.在ABC 中,34,5,cos 4AB AC C ===,则BC 的长为()A.6或32B.6C.3+D.3【答案】A 【解析】【分析】根据余弦定理即可求解.【详解】由余弦定理可得222222543cos 2104AC CB ABCB C AC BCBC+-+-===⋅,故22151806CB BC BC -+=⇒=或32,故选:A6.设,R,0a b ab ∈≠,且a b >,则()A.b a a b< B.2b a a b+>C.()sin a b a b -<- D.32a b>【答案】C 【解析】【分析】举反例即可求解ABD,根据导数求证()sin ,0,x x x <∈+∞即可判断C.【详解】对于A ,取2,1a b ==-,则122b aa b=->=-,故A 错误,对于B ,1,1a b ==-,则2b aa b+=,故B 错误,对于C ,由于()sin 0,cos 10y x x x y x '=->-≤=,故sin y x x =-在()0,∞+单调递减,故sin 0x x -<,因此()sin ,0,x x x <∈+∞,由于a b >,所以0a b ->,故()sin a b a b -<-,C 正确,对于D,3,4a b =-=-,则11322716a b =<=,故D 错误,故选:C7.在ABC 中,π,2C CA CB ∠===,点P 满足()1CP CA CB λλ=+- ,且4CP AB ⋅= ,则λ=()A.14-B.14C.34-D.34【答案】B 【解析】【分析】用CB ,CA 表示AB ,根据0CA CB ⋅=,结合已知条件,以及数量积的运算律,求解即可.【详解】由题可知,0CA CB ⋅=,故CP AB ⋅()()()()2211881168CA CB CB CA CA CB λλλλλλλ⎡⎤=+-⋅-=-+-=-+-=-+⎣⎦,故1684λ-+=,解得14λ=.故选:B.8.设{}n a 是公比为()1q q ≠-的无穷等比数列,n S 为其前n 项和,10a >.则“0q >”是“n S 存在最小值”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件、必要条件的判定以及等比数列前n 项和公式判断即可【详解】若10a >且公比0q >,则110n n a a q -=>,所以n S 单调递增,n S 存在最小值1S ,故充分条件成立.若10a >且12q =-时,11112211013212n nn a S a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-->⎢⎥ ⎪⎛⎫⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭,当n 为奇数时,121132nn S a ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,n S 单调递减,故最大值为1n =时,11S a =,而123n S a <,当n 为偶数时,121132n n S a ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,n S 单调递增,故最小值为2n =,122aS =,所以n S 的最小值为112a ,即由10a >,n S 存在最小值得不到公比0q >,故必要性不成立.故10a >公比“0q >”是“n S 存在最小值”的充分不必要条件.故选:A9.设函数()f x 的定义域为D ,对于函数()f x 图象上一点()00,x y ,若集合()(){}0,k k x x y f x x D ≤∈-+∀∈R∣只有1个元素,则称函数()f x 具有性质0x P .下列函数中具有性质1P 的是()A.()1f x x =- B.()lg f x x=C.()3f x x = D.()πsin2f x x =-【答案】D 【解析】【分析】根据性质1P 的定义,结合各个函数的图象,数形结合,即可逐一判断各选择.【详解】根据题意,要满足性质1P ,则()f x 的图象不能在过点()()1,1f 的直线的上方,且这样的直线只有一条;对A :()1f x x =-的图象,以及过点()1,0的直线,如下所示:数形结合可知,过点()1,0的直线有无数条都满足题意,故A 错误;对B :()lg f x x =的图象,以及过点()1,0的直线,如下所示:数形结合可知,不存在过点()1,0的直线,使得()f x 的图象都在该直线的上方,故B 错误;对C :()3f x x =的图象,以及过点()1,1的直线,如下所示:数形结合可知,不存在过点()1,1的直线,使得()f x 的图象都在该直线的上方,故C 错误;对D :()πsin2f x x =-的图象,以及过点()1,1-的直线,如下所示:数形结合可知,存在唯一的一条过点()1,1-的直线1y =-,即0k =,满足题意,故D 正确.故选:D.10.设数列{}n a 的各项均为非零的整数,其前n 项和为n S .若()*,j i i j -∈N为正偶数,均有2ji aa ≥,且20S =,则10S 的最小值为()A.0B.22C.26D.31【答案】B 【解析】【分析】因为2120S a a =+=,不妨设120,0a a ><,由题意求出3579,,,a a a a 的最小值,46810,,,a a a a 的最小值,10122S a =,令11a =时,10S 有最小值.【详解】因为2120S a a =+=,所以12,a a 互为相反数,不妨设120,0a a ><,为了10S 取最小值,取奇数项为正值,取偶数项为负值,且各项尽可能小,.由题意知:3a 满足312a a ≥,取3a 的最小值12a ;5a 满足51531224a a a a a ≥⎧⎨≥≥⎩,因为1110,42a a a >>,故取5a 的最小值14a ;7a 满足717317531224248a a a a a a a a a≥⎧⎪≥≥⎨⎪≥≥≥⎩,取7a 的最小值18a ;同理,取9a 的最小值116a ;所以135791111112481631a a a a a a a a a a a ++++=++++=,4a 满足422a a ≥,取4a 的最小值22a ;6a 满足62642224a a a a a ≥⎧⎨≥≥⎩,因为20a <,所以2224a a >,取6a 的最小值12a ;8a 满足828418641224248a a a a a a a a a≥⎧⎪≥≥⎨⎪≥≥≥⎩,因为20a <,所以222482a a a >>,取8a 的最小值12a ;同理,取10a 的最小值12a ;所以24681022222222229a a a a a a a a a a a ++++=++++=,所以101211131931922S a a a a a =+=-=,因为数列{}n a 的各项均为非零的整数,所以当11a =时,10S 有最小值22.故选:B【点睛】关键点点睛:10S 有最小值的条件是确保各项最小,根据递推关系2j i a a ≥分析可得奇数项的最小值与偶数项的最小值,从而可得10S 的最小值.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.若()2(i)2i R x x +=∈,则x =__________.【答案】1【解析】【分析】利用复数的四则运算,结合复数相等的性质得到关于x 的方程组,解之即可得解.【详解】因为2(i)2i x +=,所以222i i 2i x x ++=,即212i 2i x x -+=,所以21022x x ⎧-=⎨=⎩,解得1x =.故答案为:1.12.已知双曲线22:14x C y -=,则C 的离心率为__________;以C 的一个焦点为圆心,且与双曲线C 的渐近线相切的圆的方程为__________.(写出一个即可)【答案】①.②.22(1x y ++=或(22(1x y +=)【解析】【分析】根据离心率的定义求解离心率,再计算焦点到渐近线的距离,结合圆的标准方程求解即可.【详解】22:14x C y -==,又渐近线为12y x =,即20x y -=,故焦点)与()到20x y -=1=,则以C 的一个焦点为圆心,且与双曲线C 的渐近线相切的圆的方程为22(1xy ++=或22(1x y -+=,故答案为:2;22(1xy ++=或(22(1x y +=)13.已知函数()2cos sin f x x a x =+.(i )若0a =,则函数()f x 的最小正周期为__________.(ii )若函数()f x 在区间()0,π上的最小值为2-,则实数=a __________.【答案】①.π②.2-【解析】【分析】根据二倍角公式即可结合周期公式求解,利用二次函数的性质即可求解最值.【详解】当0a =时,()2cos 21cos 2x f x x +==,所以最小正周期为2ππ2T ==,()2222cos sin sin sin 1sin 124a a f x x a x x a x x ⎛⎫=+=-++=--++⎪⎝⎭,当()0,πx ∈时,(]sin 0,1x ∈,且二次函数开口向下,要使得()f x 在区间()0,π上的最小值为2-,则需要1022a a-≥-,且当sin 1x =时取最小值,故112a -++=-,解得2a =-,故答案为:π,2-14.二维码是一种利用黑、白方块记录数据符号信息的平面图形.某公司计划使用一款由()2*nn ∈N 个黑白方块构成的n n ⨯二维码门禁,现用一款破译器对其进行安全性测试,已知该破译器每秒能随机生成162个不重复的二维码,为确保一个n n ⨯二维码在1分钟内被破译的概率不高于1512,则n 的最小值为__________.【答案】7【解析】【分析】根据题意可得21615260122n⨯≤,即可由不等式求解.【详解】由题意可知n n ⨯的二维码共有22n 个,由21615260122n⨯≤可得2216153126022602n n -⨯⨯≤⇒≤,故2231637n n -≥⇒≥,由于*n ∈N ,所以7n ≥,故答案为:715.如图,在正方体1111ABCD A B C D -中,P 为棱AB 上的动点,DQ ⊥平面1,D PC Q 为垂足.给出下列四个结论:①1D Q CQ =;②线段DQ 的长随线段AP 的长增大而增大;③存在点P ,使得AQ BQ ⊥;④存在点P ,使得PQ //平面1D DA .其中所有正确结论的序号是__________.【答案】①②④【解析】【分析】根据给定条件,以点D 为原点,建立空间直角坐标系,求出平面1D PC 的法向量坐标,进而求出点Q 的坐标,再逐一计算判断各个命题即得答案.【详解】在正方体1111ABCD A B C D -中,令1AB =,以点D 为原点,建立如图所示的空间直角坐标系,设(01)AP t t =≤≤,则1(0,0,0),(0,1,0),(0,0,1),(1,,0)D C D P t ,1(0,1,1),(1,1,0)CD CP t =-=-,令平面1D PC 的法向量(,,)n x y z = ,则10(1)0n CD y z n CP x t y ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,取1y =,得(1,1,1)n t =- ,由DQ ⊥平面1D PC 于Q ,得((1),,)DQ n t λλλλ==-,即((1),,)Q t λλλ-,((1),1,)CQ t λλλ=-- ,显然2(1)10CQ n t λλλ⋅=-+-+=,解得21(1)2t λ=-+,于是222111(,,)(1)2(1)2(1)2t Q t t t --+-+-+,对于①,222222221||(1)(1)(1)(1)||D Q t t CQ λλλλλλ=-++--+-+,①正确;对于②,2221||(1)11(1)2(1)2DQ t t t =-++-+-+在[0,1]上单调递增,②正确;对于③,而(1,0,0),(1,1,0)A B ,((1)1,,),((1)1,1,)AQ t BQ t λλλλλλ=--=---,若2222[(1)1](1)(23)(32)10AQ BQ t t t t λλλλλλ⋅=--+-+=-+--+=,显然22(32)4(23)430t t t t ∆=---+=--<,即不存在[0,1]t ∈,使得0AQ BQ ⋅=,③错误;对于④,平面1D DA 的一个法向量(0,1,0)DC =,而((1)1,,)PQ t t λλλ=--- ,由0PQ DC t λ⋅=-=,得t λ=,即21(1)2t t =-+,整理得322310t t t -+-=,令32()231,[0,1]f t t t t t =-+-∈,显然函数()f t 在[0,1]上的图象连续不断,而(0)10,(1)10f f =-<=>,因此存在(0,1)t ∈,使得()0f t =,此时PQ ⊄平面1D DA ,因此存在点P ,使得//PQ 平面1D DA ,④正确.所以所有正确结论的序号是①②④.故答案为:①②④【点睛】思路点睛:涉及探求几何体中点的位置问题,可以建立空间直角坐标系,利用空间向量证明空间位置关系的方法解决.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知函数2()2cos(0)2xf x x ωωω=+>,从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在且唯一确定.(1)求ω的值;(2)若不等式()2f x <在区间()0,m 内有解,求m 的取值范围.条件①:(2π)3f =;条件②:()y f x =的图象可由2cos2y x =的图象平移得到;条件③:()f x 在区间ππ(,36-内无极值点,且ππ()2(263f f -=-+.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)条件选择见解析,2ω=;(2)π(,)3+∞.【解析】【分析】(1)选条件①,由ππ1cos()332ω-=的解不唯一,此条件不符合题意;选条件②,由周期求出ω;选条件③,由给定等式确定最大最小值条件,求出周期范围,由给定区间内无极值点求出周期即可.(2)由(1)求出函数()f x 的解析式,再借助不等式有解列式求解即得.【小问1详解】依题意,π()cos 12cos()13f x x x x ωωω=++=-+,选条件①,由(2π)3f =,得ππ2cos()1233ω-+=,即ππ1cos()332ω-=,于是πππ2π,N 333k k ω-=+∈或πππ2π,N 333k k ω*-=-+∈,显然ω的值不唯一,因此函数()f x 不唯一,不符合题意.选条件②,()y f x =的图象可由2cos2y x =的图象平移得到,因此()y f x =的最小正周期为函数2cos2y x =的最小正周期π,而0ω>,则2ππω=,所以2ω=.选条件③,()f x 在区间ππ(,36-内无极值点,且ππ()2(263f f -=-+,则ππ(()463f f --=,即函数()f x 分别在ππ,63x x ==-时取得最大值、最小值,于是()f x 的最小正周期ππ2[(π63T ≤⨯--=,由()f x 在区间ππ(,36-内无极值点,得()f x 的最小正周期ππ2[()]π63T ≥⨯--=,因此πT =,而0ω>,所以2π2Tω==.【小问2详解】由(1)知π()2cos(213f x x =-+,由(0,)x m ∈,得πππ2(,2)333x m -∈--,由不等式()2f x <在区间(0,)m 内有解,即π1cos(2)32x -<在区间(0,)m 内有解,则有ππ233m ->,解得π3m >,所以m 的取值范围是π(,)3+∞.17.在三棱锥-P ABC 中,2,AB PB M ==为AP 的中点.(1)如图1,若N 为棱PC 上一点,且MN AP ⊥,求证:平面BMN ⊥平面PAC ;(2)如图2,若O 为CA 延长线上一点,且PO ⊥平面,2ABC AC ==,直线PB 与平面ABC 所成角为π6,求直线CM 与平面PBC 所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)根据BM AP ⊥和,MN AP ⊥可证线面垂直,即可求证面面垂直,(2)根据线面角的几何法可得π6PBO ∠=,建立空间直角坐标系,利用法向量与方向向量的夹角即可求解.【小问1详解】连接,,BM MN BN.因为,AB PB M =为AP 的中点,所以BM AP ⊥.又,MN AP ⊥,,MN BM M MN BM ⋂=⊂平面BMN ,所以AP ⊥平面BMN .因为AP ⊂平面,PAC 所以平面BMN ⊥平面PAC .【小问2详解】因为PO ⊥平面,ABC OB ⊂平面,ABC OC ⊂平面ABC ,所以,,PO OB PO OC PBO ∠⊥⊥为直线PB 与平面ABC 所成的角.因为直线PB 与平面ABC 所成角为π6,所以π6PBO ∠=.因为2PB =,所以1,PO OB ==.2=,所以1OA =.又2AB =,故222AB OB OA =+.所以OB OA ⊥.如图建立空间直角坐标系O xyz -.则())0,1,0,A B,()()0,3,0,0,0,1C P ,110,,22M ⎛⎫⎪⎝⎭.所以()0,3,1PC =-,()BC = ,510,,22MC ⎛⎫=- ⎪⎝⎭.设平面PBC 的法向量为(),,n x y z =,则0,0,n PC n BC ⎧⋅=⎪⎨⋅=⎪⎩即30,330.y z x y -=⎧⎪⎨+=⎪⎩令1y =,则)3,1,3n = .设CM 与平面PBC 所成角为θ,则2sin cos ,132511344MC n MC n MC nθ⋅====⋅+⋅.所以直线CM 与平面PBC 所成角的正弦值为213.18.图象识别是人工智能领域的一个重要研究方向.某中学人.工智能兴趣小组研发了一套根据人脸照片识别性别的程序.在对该程序的一轮测试中,小组同学输入了200张不同的人脸照片作为测试样本,获得数据如下表(单位:张):识别结果真实性别男女无法识别男902010女106010假设用频率估计概率,且该程序对每张照片的识别都是独立的.(1)从这200张照片中随机抽取一张,已知这张照片的识别结果为女性,求识别正确的概率;(2)在新一轮测试中,小组同学对3张不同的男性人脸照片依次测试,每张照片至多测一次,当首次出现识别正确或3张照片全部测试完毕,则停止测试.设X 表示测试的次数,估计X 的分布列和数学期望EX ;(3)为处理无法识别的照片,该小组同学提出上述程序修改的三个方案:方案一:将无法识别的照片全部判定为女性;方案二:将无法识别的照片全部判定为男性;方案三:将无法识别的照片随机判定为男性或女性(即判定为男性的概率为50%,判定为女性的概率为50%).现从若干张不同的人脸照片(其中男性、女性照片的数量之比为1:1)中随机抽取一张,分别用方案一、方案二、方案三进行识别,其识别正确的概率估计值分别记为123,,p p p .试比较123,,p p p 的大小.(结论不要求证明)【答案】(1)34(2)分布列见解析;()2116E X =(3)231p p p >>【解析】【分析】(1)利用用频率估计概率计算即可(2)由题意知X 的所有可能取值为1,2,3,分别求出相应的概率,然后根据期望公式求出即可(3)分别求出方案一、方案二、方案三进行识别正确的概率,然后比较大小可得【小问1详解】根据题中数据,共有206080+=张照片被识别为女性,其中确为女性的照片有60张,所以该照片确为女性的概率为603804=.【小问2详解】设事件:A 输入男性照片且识别正确.根据题中数据,()P A 可估计为9031204=.由题意知X 的所有可能取值为1,2,3.()()()31331111,2,3444164416P X P X P X ====⨯===⨯=.所以X 的分布列为X123P34316116所以()331211234161616E X =⨯+⨯+⨯=.【小问3详解】231p p p >>.19.已知椭圆E 的焦点在x 轴上,中心在坐标原点.以E 的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为(1)求栯圆E 的方程;(2)设过点()2,0M 的直线l (不与坐标轴垂直)与椭圆E 交于不同的两点,A C ,与直线16x =交于点P .点B 在y 轴上,D 为坐标平面内的一点,四边形ABCD 是菱形.求证:直线PD 过定点.【答案】(1)22186x y +=(2)证明见解析【解析】【分析】(1)根据焦点三角形的周长以及等边三角形的性质可得22a c +=且12c a =,即可求解,,a b c 得解,(2)联立直线与椭圆方程得韦达定理,进而根据中点坐标公式可得2286,3434t N t t ⎛⎫-⎪++⎝⎭,进而根据菱形的性质可得BD 的方程为22683434t y t x t t ⎛⎫+=-- ⎪++⎝⎭,即可求解220,34t B t ⎛⎫ ⎪+⎝⎭,221614,3434t D t t ⎛⎫- ⎪++⎝⎭.进而根据点斜式求解直线PD 方程,即可求解.【小问1详解】由题意可设椭圆E 的方程为22222221(0),x y a b c a b a b+=>>=-.因为以E 的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为所以22a c +=且12c a =,所以a c ==.所以26b =.所以椭圆E 的方程为22186x y +=.【小问2详解】设直线l 的方程为()20x ty t =+≠,令16x =,得14y t =,即1416,P t ⎛⎫ ⎪⎝⎭.由223424,2x y x ty ⎧+=⎨=+⎩得()223412120t y ty ++-=.设()()1122,,,A x y C x y ,则1212221212,3434t y y y y t t +=-=-++.设AC 的中点为()33,N x y ,则12326234y y ty t +==-+.所以3328234x ty t =+=+.因为四边形ABCD 为菱形,所以N 为BD 的中点,AC BD ⊥.所以直线BD 的斜率为t -.所以直线BD 的方程为22683434t y t x t t ⎛⎫+=-- ⎪++⎝⎭.令0x =得222862343434t t t y t t t =-=+++.所以220,34t B t ⎛⎫ ⎪+⎝⎭.设点D 的坐标为()44,x y ,则4343222162142,2343434t t x x y y t t t ===-=-+++,即221614,3434t D t t ⎛⎫-⎪++⎝⎭.所以直线PD 的方程为()221414143416161634tt t y x t t ++-=--+,即()746y x t =-.所以直线PD 过定点()4,0.【点睛】方法点睛:圆锥曲线中定点问题的两种解法:(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.20.已知函数()()ln 0)f x x a a =-+>.(1)若1a =,①求曲线()y f x =在点()()22f ,处的切线方程;②求证:函数()f x 恰有一个零点;(2)若()ln 2f x a a ≤+对(),3x a a ∈恒成立,求a 的取值范围.【答案】(1)①2y =;②证明见解析(2)[)1,+∞【解析】【分析】(1)①求导,即可求解斜率,进而可求直线方程,②根据函数的单调性,结合零点存在性定理即可,(2)求导后构造函数()()(),,3g x x a x a a =-∈,利用导数判断单调性,可得()f x 的最大值为()()()000ln 2f x x a x a =-+-,对a 分类讨论即可求解.【小问1详解】当1a =时,()()ln 1f x x =-+.①()11f x x =--'.所以()()22,20f f =='.所以曲线()y f x =在点()()22f ,处的切线方程为2y =.②由①知()()(]()1ln 11,3,1f x x x f x x =-=-'+∈,且()20f '=.当()1,2x ∈时,因为111x >>-()0f x ¢>;当()2,3x ∈时,因为111x <<-,所以()0f x '<.所以()f x 在区间()1,2上单调递增,在区间()2,3上单调递减.因为()()()322,3ln20,1e 330f f f -==>+=-+<-+<.所以函数()f x 恰有一个零点.【小问2详解】由()()ln f x x a =-+得()f x -='.设()()(),,3g x x a x a a =-∈,则()10g x '=-<.所以()g x 是(),3a a 上的减函数.因为()()0,320g a g a a =>=-<,所以存在唯一()()()000,3,0x a a g x x a ∈=-=.所以()f x '与()f x 的情况如下:x()0,a x 0x ()0,3x a ()f x '+-()f x极大所以()f x 在区间(),3a a 上的最大值是()()()()0000ln ln 2f x x a x a x a =-+=-+-.当1a ≥时,因为()20g a a =-≤,所以02x a ≤.所以()()()0ln 222ln 2f x a a a a a a ≤-+-=+.所以()()0ln 2f x f x a a ≤≤+,符合题意.当01a <<时,因为()20g a a =>,所以02x a >.所以()()()0ln 222ln 2f x a a a a a a >-+-=+,不合题意.综上所述,a 的取值范围是[)1,+∞.【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.21.设正整数2n ≥,*,i i a d ∈N ,(){}1,1,2,i i i A x x a k d k ==+-= ,这里1,2,,i n = .若*12n A A A ⋃⋃⋃=N ,且()1i j A A i j n ⋂=∅≤<≤,则称12,,,n A A A 具有性质P .(1)当3n =时,若123,,A A A 具有性质P ,且11a =,22a =,33a =,令123m d d d =,写出m 的所有可能值;(2)若12,,,n A A A 具有性质P :①求证:()1,2,,i i a d i n ≤= ;②求1nii ia d =∑的值.【答案】(1)27或32(2)①证明见解析②12n +【解析】【分析】(1)对题目中所给的12,,,n A A A ,我们先通过分析集合中的元素,证明()1,2,,i i a d i n ≤= ,111ni i d ==∑,以及112ni i i a n d =+=∑,然后通过分类讨论的方法得到小问1的结果;(2)直接使用(1)中的这些结论解决小问2即可.【小问1详解】对集合S ,记其元素个数为S .先证明2个引理.引理1:若12,,,n A A A 具有性质P ,则()1,2,,i i a d i n ≤= .引理1的证明:假设结论()1,2,,i i a d i n ≤= 不成立.不妨设11a d >,则正整数111a d A -∉,但*12n A A A ⋃⋃⋃=N ,故11a d -一定属于某个()2i A i n ≤≤,不妨设为2A .则由112a d A -∈知存在正整数k ,使得()11221a d a k d -=+-.这意味着对正整数1112c a d d d =-+,有()111212111c a d d d a d d A =-+=+-∈,()()11122212212211c a d d d a k d d d a k d d A =-+=+-+=++-∈,但12A A =∅ ,矛盾.所以假设不成立,从而一定有()1,2,,i i a d i n ≤= ,从而引理1获证.引理2:若12,,,n A A A 具有性质P ,则111ni i d ==∑,且112ni i ia n d =+=∑.证明:取集合{}121,2,...,...n T d d d =.注意到关于正整数k 的不等式()1201...i i n a k d d d d <+-≤等价于12...11i i n i i ia a d d dk d d d -<≤-+,而由引理1有i i a d ≤,即011iia d ≤-<.结合12...n i d d d d 是正整数,知对于正整数k ,12...11i i n i i i a a d d d k d d d -<≤-+当且仅当12...n i iT d d dk d d ≤=,这意味着数列()()11,2,...k i i x a k d k =+-=恰有iT d 项落入集合T ,即i iT T A d ⋂=.而12,,,n A A A 两两之间没有公共元素,且并集为全体正整数,故T 中的元素属于且仅属于某一个()1i A i n ≤≤,故12...n T A T A T A T ⋂+⋂++⋂=.所以1212......n nT T T T A T A T A T d d d +++=⋂+⋂++⋂=,从而12111...1nd d d +++=,这就证明了引理2的第一个结论;再考虑集合T 中全体元素的和.一方面,直接由{}121,2,...,...n T d d d =知T 中全体元素的和为()1212 (12)n n d d d d d d +,即()12T T +.另一方面,i T A ⋂的全部iT d 个元素可以排成一个首项为i a ,公差为i d 的等差数列.所以i T A ⋂的所有元素之和为11122i i i i i i i iTT TT T a a d T d d d d d ⎛⎫⎛⎫⋅+-=+- ⎪ ⎪⎝⎭⎝⎭.最后,再将这n 个集合()1,2,...,i T A i n ⋂=的全部元素之和相加,得到T 中全体元素的和为112ni i i i T Ta T d d =⎛⎫⎛⎫+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑.这就得到()11122ni i i i T T T Ta T d d =⎛⎫+⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑,所以有()221111111222222nnn ni i i i i i i i i iiiT T T TTn TTn T a a a T TT d d d d d ====⎛⎫+⎛⎫=+-=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑.即1122ni i iT T na d =+-=+∑,从而112ni i i a n d =+=∑,这就证明了引理2的第二个结论.综上,引理2获证.回到原题.将123,,d d d 从小到大排列为123r r r ≤≤,则123123m d d d r r r ==,由引理2的第一个结论,有1231231111111r r r d d d ++=++=.若13r ≥,则1231111111111311r r r r r r r =++≤++=≤,所以每个不等号都取等,从而1233r r r ===,故12327m r r r ==;情况1:若11r =,则23111110r r r +=-=,矛盾;情况2:若12r =,则231111112r r r +=-=,所以232221111122r r r r r =+≤+=,得24r ≤.此时如果22r =,则3211102r r =-=,矛盾;如果24r =,则32111124r r =-=,从而34r =,故12332m r r r ==;如果23r =,由于12r =,设()()123123,,,,i i i r r r d d d =,{}{}123,,1,2,3i i i =,则12i d =,23i d =.故对于正整数对()()2121212112331212211i i i i i i i i k a a a a k a a a a ⎧=+--+--⎪⎨=+--+--⎪⎩,有2112231i i k k a a -=--,从而12121223i i i i a k a k A A +=+∈⋂,这与12i i A A ⋂=∅矛盾.综上,m 的取值只可能是27或32.当()()123,,3,3,3d d d =时,27m =;当()()123,,4,2,4d d d =时,32m =.所以123m d d d =的所有可能取值是27和32.【小问2详解】①由引理1的结论,即知()1,2,,i i a d i n ≤= ;②由引理2的第二个结论,即知112nii ia n d=+=∑.【点睛】关键点点睛:本题的关键点在于,我们通过两个方面计算了一个集合的各个元素之和,从而得到了一个等式,这种方法俗称“算二次”法或富比尼定理.。
2020年6月北京海淀区高三二模数学试卷讲评分析与评分细则
其中所有正确结论的序号是
2020/6/4
25
简易逻辑语言
若数列an 满足 a1 = 2 ,则“ p ,r N ,apr apar ”是“ an 为等比数列”的
(A)充分而不必要条件
(B)必要而不充分条件
(C)充分必要条件
(D)既不充分也不必要条件
对于非零向量 a,b ,“ (a b) a 2a2 ”是“ a = b ”的
回看高考 试题简析 教学建议
2020/6/4
2
回看高考 试题简析 教学建议
2020/6/4
3
2019年高考试题特点 注重基础,保持稳定和连续性,突出通性通法的考查
保持稳定,适度创新,增强试题的选择性和开放性
体现数学文化,展示数学之美,落实立德树人
渗透模型思想,提升数学应用意识,感悟数学的价值
A.对任意实数 a, (2,1) A C.当且仅当 a<0 时, (2,1) A
B.对任意实数 a, (2,1) A D.当且仅当 a 3 时, (2,1) A
2
2020/6/4
9
数学中有许多形状优美、寓意美好的曲线,曲线 C : x2 y2 1 | x | y 就是其中之一(如图).给
所以 x12 y12 x22 y22 .
因为
x12 4
y12
1,
x22 4
y22
1,
所以
3x12 4
3x22 4
,即
x1
x2 .
所以点 B 在坐标轴上,矛盾.
2020/6/4
14
设函数 f (x) xeax bx ,曲线 y f (x) 在点 (2, f (2)) 处的切线方程为 y (e 1)x 4 . (Ⅰ)求 a, b 的值; (Ⅱ)求 f (x) 的单调区间.
北京市海淀区2022届高三下学期二模数学试题 (解析版)
北京市海淀区2022届高三下学期二模数学试题一、单选题1.已知集合{}01A x x x =或,则A =R ð( )A .{}01x x <<B .{}01x x ≤<C .{}01x x <≤D .{}01x x ≤≤2.在()312x -的展开式中,x 的系数为( )A .2-B .2C .6-D .6【答案】C【分析】直接由二项展开式求含x 的项即可求解.【详解】由题意知:含x 的项为()13C 26x x ⋅-=-,故x 的系数为6-.故选:C.3.已知双曲线2222:1x y C a b -=的渐近线经过点()1,2,则双曲线的离心率为( )AB C .2D4.已知,x y ∈R ,且0x y +>,则( )A .11x y +>B .330x y +>C .lg()0x y +>D .sin()0x y +>5.若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则( )A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-6.已知F 为抛物线24y x =的焦点,点()(),1,2,3n n n P x y n =L ,在抛物线上.若11n n P F P F +-=,则( )A .{}n x 是等差数列B .{}n x 是等比数列C .{}n y 是等差数列D .{}n y 是等比数列【答案】A【分析】根据抛物线的定义:抛物线上的点到焦点的距离等于到准线的距离,即可求解.【详解】由题可知,抛物线的焦点为(1,0)F ,准线为=1x -,点()(),1,2,3n n n P x y n =L ,在抛物线上,由抛物线的定义可知,,7.已知向量(1,0)a =r ,(b =-.若,,c a c b =,则c r可能是( )A .2a b -r rB .a b+rrC .2a b+r r D b+r8.设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】由()f x 是R 上的增函数得()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之若对任意0a >,()()f x a f x +<,满足()()y f x a f x =+-无零点,但不满足()f x 是R 上的增函数,不满足必要性,即可判断.【详解】若()f x 是R 上的增函数,则对任意0a >,显然x a x +>,故()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之,若对任意0a >,()()f x a fx +<,即()()0f x a f x +<-,满足()()y f x a f x =+-无零点,但()f x 是R 上的减函数,不满足必要性,故“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的充分而不必要条件.故选:A.9.从物理学知识可知,图中弹簧振子中的小球相对平衡位置的位移y 与时间t (单位:s )的关系符合函数()()sin 100y A t ωϕω=+<.从某一时刻开始,用相机的连拍功能给弹簧振子连拍了20张照片.已知连拍的间隔为0.01s ,将照片按拍照的时间先后顺序编号,发现仅有第5张、第13张、第17张照片与第1张照片是完全一样的,请写出小球正好处于平衡位置的所有照片的编号为( )A .9、15B .6、18C .4、11、18D .6、12、1810.在正方体ABCD A B C D -''''中,E 为棱DC 上的动点,F 为线段B E '的中点.给出下列四个①B E AD ''⊥;②直线D F '与平面ABB A ''所成角不变;③点F 到直线AB 的距离不变;④点F 到,,A D D A '',四点的距离相等.其中,所有正确结论的序号为( )A .②③B .③④C .①③④D .①②④【答案】C【点睛】(1)判定和动点相关的问题时,只要找出动点的轨迹,行判断;(2)判定与动直线相关的位置关系问题时,可找出动直线所在的平面进行判定;(3)根据定义作出线面角可用来解决运动型的问题二、填空题11.已知,a b 均为实数.若()i i i b a +=+,则a b +=_________.【答案】0【分析】直接由复数的乘法及复数相等求解即可.【详解】()i i i i 1b a a ==++-,故1,1a b ==-,0a b +=.故答案为:0.12.不等式112x⎛⎫> ⎪⎝⎭的解集为_________.13.在现实世界,很多信息的传播演化是相互影响的.选用正实数数列{}n a ,{}n b 分别表示两组信息的传输链上每个节点处的信息强度,数列模型:11(2,21,2)n n n n n n a a b b a b n ++=+=+=L ,描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足11a b >,则在该模型中,关于两组信息,给出如下结论:①*,n n n a b ∀∈>N ;②*11,,n n n n n a a b b ++∀∈>>N ;③*k ∃∈N ,使得当n k >时,总有10110nna b --<④*k ∃∈N ,使得当n k >时,总有101210n na a -+-<.其中,所有正确结论的序号是_________三、解答题14.如图,已知四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠=︒,PA ⊥底面ABCD ,2PA =,点E 是PC 的中点.(1)求证://DC 面ABE ;(2)求DC 到平面ABE 的距离.由(1)知//DC 面ABE ,故DC 到平面连接,AE AC ,取AC 中点F ,连接BF 易得EF PA ∥且1=12EF PA =,则EF 2,23AC BD ==,故12ABC ABCD S S =V 又113,122BF BD AF AC ====,故15.在ABC V 中,76cos a b B =.(1)若3sin 7A =,求B ∠;(2)若8c =,从条件①、条件②这两个条件中选择一个作为已知,使ABC V 存在.求ABC V 的面积条件①:sin 47A =; 条件②:sin B16.PMI值是国际上通行的宏观经济监测指标之一,能够反映经济的变化趋势.下图是国家统计局发布的某年12个月的制造业和非制造业PMI值趋势图.将每连续3个月的PMI值做为一个观测组,对国家经济活动进行监测和预测(1)现从制造业的10个观测组中任取一组,(ⅰ)求组内三个PMI 值至少有一个低于50.0的概率;(ii )若当月的PMI 值大于上一个月的PMI 值,则称该月的经济向好.设X 表示抽取的观测组中经济向好的月份的个数(由已有数据知1月份的PMI 值低于去年12月份的PMI 值),求X 的分布列与数学期望;(2)用1,2)1(2j b j =L ,,表示第j 月非制造业所对应的PMI 值,b 表示非制造业12个月PMI 值的平均数,请直接写出j b b -取得最大值所对应的月份.所以随机变量X 的数学期望()121301225105E X =⨯+⨯+⨯=.(2)8月份,理由如下由某年12个月的非制造业PMI 值趋势图中的数据,得52.451.456.354.955.253.553.347.553.252.452.352.752.912b +++++++++++=≈根据某年12个月的非制造业PMI 值趋势图,可知当8j =时,j b b -取得最大值为847.552.9 5.4b b -=-=.17.椭圆2222:1(0)x y M a b a b +=>>的左顶点为()2,0A -(1)求椭圆M 的方程;(2)已知经过点⎛ ⎝的直线l 交椭圆M 于,B C 两点,D 是直线4x =-上一点.若四边形ABCD 为平行四边形,求直线l 的方程.2a )11224,),(,),(,)t B x y C x y -,又(2,0)A -,故AD k =-18.已知函数1()ln 2x af x x -=+.(1)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(2)当12a =-时,求函数()f x 的单调区间;(3)当0x <时,()12f x ≥恒成立,求a 的取值范围.19.已知有限数列{}n a 共M 项(4)M ≥,其任意连续三项均为某等腰三角形的三边长,且这些等腰三角形两两均不全等.将数列{}n a 的各项和记为S .(1)若{1,2}(1,2,,)n a n M ∈=L ,直接写出,M S 的值;(2)若{}1,2,3,2,()1,n a n M ∈=L ,求M 的最大值;(3)若*(1,2,,),16n a n M M ∈==N L ,求S 的最小值【答案】(1)4,7M S ==;(2)8;(3)50【分析】(1)直接列举出数列{}n a ,即可求得,M S ;(2)先构造数列使8M =,再说明不同的等腰三角形只有6个,故628M ≤+=,即可求得M 的最大值;(3)先构造数列使50S =,再设T 为数列的每一组连续三项的和的和,得116215322S T a a a a =++++,列举出不同的等腰三角形,使T 和11621522a a a a +++最小,进而得到50S ≥,即可求解.【详解】(1)边长为1或2的等腰三角形只有1,1,1;1,2,2;2,2,2;若前三项为1,1,1,则该数列只有3项,不合题意;所以50S ≥.⑤由①④,S 的最小值为50.【点睛】本题关键点在于设T 为数列的每一组连续三项的和的和,得116215322S T a a a a =++++,将S 最小,转化为T 和11621522a a a a +++最小,列举出不同的等腰三角形,使T 和11621522a a a a +++最小,进而得到50S ≥,再构造数列使50S =即可求解.四、双空题20.已知圆22:20C x y x ++=,则圆C 的半径为_________;若直线y kx =被圆C 截得的弦长为1,则k =_________.21.已知()sin cos f x x x =+的图象向右平移()0a a >个单位后得到()g x 的图象,则函数()g x 的最大值为_________;若()()f x g x +的值域为{}0,则a 的最小值为_________.。
海淀二模数学试题分析与复习建议
海淀“二模”数学试题分析与复习建议唐大昌一、命题意图:1、 对备考学生将近一年的数学总复习效果做一个较全面的检测,同时要鼓励学生再接再厉迎接高考。
在难度的控制上,力求比“一模”稍易一点,希望全区平均分达到82分左右。
我们设想,其中“一模”115分---130分的考生这次提高10—15分应是正常的,“一模”80分左右的考生应提高5分左右,而对“一模”数学50—60分的考生如果还是50—60分,其实也有所提高了。
2、 坚持重点内容重点考查。
3、 与海淀区“一模”数学试题一起,共同形成对数学知识、技能、方法作一次覆盖。
比如“一模”第(16)题试是从函数的角度考查三角有关知识的题目,而“二模”(14)题则是在三角形中考查三角的有关知识,情境、知识与方法都有所不同,又比如对立体几何的考查,在“一模”试题(17)题中是以“折叠问题”出现的,而在“二模”的(17)题中则是放在棱柱中考查线面位置关系,再比如对应用问题的考角度和方法两次试题也是不同的,请考生注意。
4、 解答题的赋分值多少可能会与高考不一致,这里也提请考生注意,比如立体几何“一模”、“二模”都是16分,但高考可能是14或15分。
二、试题分析:1、 选择题:本题考查基本知识和基本运算。
每小题5分,满分60分。
(1) 考查复数的基本概念和基本运算,选D; 提示:i i i AB 323212321-=⎪⎪⎭⎫ ⎝⎛+----=−→− (2) 理科:考查反三角函数的基本概念和半角的正切公式,选A ;文科:考查函数的基本概念,选A;(3) 考查数列的基本概念,选D; 提示:⎩⎨⎧=+=+91312111q a q a q a a 两式相除,可得 3,3,92-===q q q ;(4) 考查函数图像平移、奇函数的性质、应用。
选B; 提示:由)()(;)1(3)(x f x f a x x f -=-++=,列方程,可解出a = - 1(5) 理科:考查极坐标的基本概念;选A ;提示:可考虑数形结合;文科::选A ;提示:直线应过圆心。
北京海淀区高三二模数学 文科 试卷及答案解析
又因为 BC AD , BC CE 1, AD=3 所以四边形 BCEF 为正方形, AF FE ED 1 ,得 AE 2 所以 BC AE, BC= 1 AE
2 在图 2 中设点 M 为线段 D1E 的中点,连结 MG, MC , 因为点 G 是 AD1 的中点, 所以 GM AE, GM = 1 AE
2 所以 GM BC,GM =BC ,所以四边形 MGBC 为平行四边形 所以 BG CM 又因为 CM 平面 D1EC , BG 平面 D1EC 所以 BG 平面 D1EC (Ⅱ) 因为平面 D1EC 平面 ABCE ,
平面 D1EC 平面 ABCE EC , D1E EC, D1E 平面 D1EC , 所以 D1E 平面 ABCE 又因为 AB 平面 ABCE 所以 D1E AB 又 AB 2, BE 2, AE 2 ,满足 AE2 AB2 BE2 , 所以 BE AB 又 BE D1E E 所以 AB 平面 D1EB (Ⅲ) CE D1E,CE AE , AE D1E E
又因为 BF EC , EC 平面 D1EC , BF 平面 D1EC 所以 BF 平面 D1EC
又因为 GF BF F 所以平面 BFG 平面 D1EC 又因为 BG 面GFB ,所以 BG 平面 D1EC 方法 3: 在图 1 的等腰梯形 ABCD 内,过 B作 AE 的垂线,垂足为 F , 因为 CE AD ,所以 BF EC
an1 an2 2 3n2 an2 an3 2 3n3
2 / 13
a3 a2 2 32
a2 a1 2 31 把上面 n 1 个等式叠加,得到
海淀区高考二模试卷讲评课件
要点二
详细描述
考生在材料分析部分普遍能够提取有效信息,但在分析深 度和答案组织上存在一定问题。部分考生在分析材料时缺 乏深度,不能全面把握问题的本质和要点;同时,部分考 生的答案组织不够合理,条理不够清晰,导致失分。因此, 考生需要加强对材料的分析和解读能力,提高答案组织的 规范性和条理性。
合理规划时间
制定复习计划
根据自身情况和科目难易程度, 制定合理的复习计划。
科学分配时间
对每个科目和知识点进行科学的时 间分配,确保复习进度和质量。
适时调整计划
根据复习进度和自身情况,适时调 整复习计划,以达到最佳效果。
THANKS
感谢观看
试卷结构
试卷由10个单选题(每题2分)、5个 多选题(每题3分)、3个简答题(每 题10分)和2个综合题(每题20分) 组成。
试卷难度分析
总体难度
本次试卷难度较为适中,考查内容均为学科核心知识点,但部分题目涉及较为 灵活的应用和综合分析能力,需要学生具备较高的思维能力和解决问题的能力。
各题型难度
单选题难度较低,多选题难度适中,简答题难度较高,综合题难度最高。其中, 简答题和综合题需要学生具备较高的知识整合能力和应用能力,是本次考试的 难点。
详细描述:阅读部分整体难度适中,但时间控制较为关键, 部分同学因阅读速度慢导致时间分配不合理,失分较多。
总结词:注重细节
详细描述:部分题目细节性较强,需要仔细阅读并理解文 意才能作答,部分同学在这一点上存在不足。
总结词:全文理解
详细描述:部分同学在理解全文大意的题型上存在困难, 容易因为对文章的整体把握不足而失分。
填空题部分
2025届北京市海淀区高考数学二模试卷含解析
2025届北京市海淀区高考数学二模试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .2.已知实数0,1a b >>满足5a b +=,则211a b +-的最小值为( ) A 322+B 342+C 322+D 342+ 3.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A 必须排在前三项执行,且执行任务A 之后需立即执行任务E ,任务B 、任务C 不能相邻,则不同的执行方案共有( ) A .36种B .44种C .48种D .54种4.已知i 为虚数单位,若复数12z i =+,15z z ⋅=,则||z = A .1 B 5C .5D .555.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( ) A .15︒ B .30︒C .45︒D .60︒6.231+=-ii ( ) A .15i 22-+ B .1522i -- C .5522i + D .5122i - 7.2021年部分省市将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A .18B .14 C .16D .128.已知集合{}2lgsin 9A x y x x==+-,则()cos22sin f x x x x A =+∈,的值域为( )A .31,2⎡⎤⎢⎥⎣⎦B .31,2⎛⎤ ⎥⎝⎦C .11,2⎛⎤- ⎥⎝⎦D .2,22⎛⎫⎪ ⎪⎝⎭9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F ,,过2F 作一条直线与双曲线右支交于A B ,两点,坐标原点为O ,若22215OA a b BF a =+=,,则该双曲线的离心率为( ) A .152B .102C .153D .10310.已知平面向量a b ,满足21a b a =,=,与b 的夹角为2 3π,且)2(()a b a b λ⊥+-,则实数λ的值为( ) A .7-B .3-C .2D .311.如图,在圆锥SO 中,AB ,CD 为底面圆的两条直径,AB ∩CD =O ,且AB ⊥CD ,SO =OB =3,SE 14SB =.,异面直线SC 与OE 所成角的正切值为( )A 22B 5C .1316D 11 12.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩,则32y x --的取值范围为( )A .3,42⎡⎤⎢⎥⎣⎦B .(1,2]C .(,0][2,)-∞+∞D .(,1)[2,)-∞⋃+∞二、填空题:本题共4小题,每小题5分,共20分。
北京海淀区高考二模数学试卷分析
北京海淀区高考二模数学试卷分析题的否定(以往多为充要条件),第3题考察参数方程(以往多为极坐标),第6题考察图像变换(以往多为图像性质),第9题考察几何概型(以往多为古典概型),第10题考察二项式定理(以往多为排列组合)。
可以说,命题人用这份试卷督促学生“查漏补缺”的思想非常明显,旨在提醒学生全面复习,而不要试图押题押规律。
当然,因为这种“突破题”占的比重过大,很多学生被这种“刻意造成的意外”打乱了节奏,增加了学生完成小题的时间,间接地提高了大题的难度。
客观的说,在高考中,是一定会有对以往试卷的突破和创新的,但是北京高考的宗旨一向是“稳中求变”,所以不会像这份试卷变革的那么汹涌,大家一方面可以放心,保持心态平稳,另一方面也要重视复习的广度,保证知识点不遗漏。
(二)注重知识的灵活应用和计算能力。
对于常规的知识点,这份试卷大多数题目考查的都比较灵活,这也是为了趋近北京的命题风格。
例如第1题,对三角函数考查的不死板;第5题,也是可想可算的题目,如果注意到了椭圆的对称性,就几乎没有计算量了;第7题三视图,罕见的考察了“凹体”,对学生的空间想象能力是极大的考验。
小题值得一说的是8,13,14这几个题,都是对北京考卷8,14题的模仿。
其中第8题明显模仿了09年北京高考8题,考察解析几何图像性质,但计算量偏大;13题模仿了10年北京高考14题,结合图像考察函数的性质,这道题无论是题型、难度还是考点,都非常接近高考真题,模仿的最好;14题模仿了11年高考14题,考察解析几何新定义,但同样计算量偏大,有违北京高考“多想少算”的原则,参考价值偏低。
同时我们也发现,14道题中创新题不是2道而是3道,也是很多学生小题做的不爽的主要原因。
这份试卷的大题,则偏重了计算能力的考察。
首先第15题罕见的在理科试卷中出现了数列题,其第一问非常常规,相当于小题难度,但是第二问用到的裂项会给一部分学生造成困难,并且答案繁琐。
不过对于数列熟悉的同学,应该不会有任何问题,可以在5-7分钟内得到满分。
北京市海淀区2023-2024学年高三下学期期末练习(二模)数学试卷(含解析)
北京市海淀区2023-2024学年高三下学期期末练习(二模)数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知集合,.若,则a 的最大值为( )A.2 B.0 C. D.-22.在的展开式中,x 的系数为( )A.40 B.10 C. D.3.函数是( )A.偶函数,且没有极值点B.偶函数,且有一个极值点C.奇函数,且没有极值点D.奇函数,且有一个极值点4.已知抛物线,则线段的中点的纵坐标为( )C.3D.45.在中,,,的长为( )6.设a ,,,且,则( )C. D.7.在中,,且,则( )A.C.8.设是公比为的无穷等比数列,为其前n 项和,.则“”是“存在最小值”的( ){}1,0,1,2A =-{3}B xa x =≤<∣A B ⊆1-52(x x-40-10-()3,01,03x x x f x x ⎧≤⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩24x =6AF ABC △4AB =5AC =cos C =+b ∈R 0ab ≠a b ><2a b >()sin a b a b -<-32a b>ABC △C ∠=CB ==()1CA CB λλ=+- 4CP AB ⋅= λ={}n a ()1q q ≠-n S 10a >0q >n SA.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设函数的定义域为D ,对于函数图象上一点,若集合只有1个元素,则称函数具有性质.下列函数中具有性质的是( )A.C. D.10.设数列的各项均为非零的整数,其前n 项和为.若为正偶数,均有,且,则的最小值为( )A.0B.22C.26D.31二、填空题11.若,则12.已知函数.①若,则函数②若函数在区间上的最小值为,则实数13.二维码是一种利用黑、白方块记录数据符号信息的平面图形.某公司计划使用一款由个黑白方块构成的二维码门禁,现用一款破译器对其进行安全性测试,已知该破译器每秒能随机生成个不重复的二维码,为确保一个二维码在114.如图,在正方体中,P 为棱上的动点,平面,Q 为垂足.给出下列四个结论:①;()f x ()f x ()00,x y ()(){}00,k k x x y f x x D ∈-+∀∈≤R ∣()f x 0x P 1P ()f x x =-()lg f x x =()3f x x =()πsin 2f x x =-{}n a n S ()*,j i i j -∈N 2j i a a ≥20S =10S ()2(i)2i x x +=∈R x ()2cos sin f x x a x =+0a =(f x ()f x ()0,π2-a ()2*n n ∈N n n ⨯162n n ⨯1111ABCD A B C D -AB DQ ⊥1D PC 1D Q CQ =②线段的长随线段的长增大而增大;③存在点P ,使得;④存在点P ,使得平面.三、双空题15.已知双曲线四、解答题16.已知函数,从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在且唯一确定.(1)求的值;(2)若不等式在区间内有解,求m 的取值范围.条件①:;条件②:的图象可由的图象平移得到;条件③:在区间内无极值点,且.17.在三棱锥中,,M 为的中点.(1)如图1,若N 为棱上一点,且,求证:平面平面;(2)如图2,若O 为延长线上一点,且平面,直线与平面与平面所成角的正弦值.DQ AP AQ BQ ⊥//PQ 1D DA 22:4x C y -=2()2cos (0)2xf x x ωωω=>()f x ω()2f x <()0,m (2π)3f =()y f x =2cos2y x =()f x ππ(,36-ππ(2(263f f -=-+P ABC -2AB PB ==AP PC MN AP ⊥BMN ⊥PAC CA PO ⊥ABC 2AC ==PB ABC PBC18.图象识别是人工智能领域的一个重要研究方向.某中学人工智能兴趣小组研发了一套根据人脸照片识别性别的程序.在对该程序的一轮测试中,小组同学输入了200张不同的人脸照片作为测试样本,获得数据如下表(单位:张):(1)从这200张照片中随机抽取一张,已知这张照片的识别结果为女性,求识别正确的概率;(2)在新一轮测试中,小组同学对3张不同的男性人脸照片依次测试,每张照片至多测一次,当首次出现识别正确或3张照片全部测试完毕,则停止测试.设X 表示测试的次数,估计X 的分布列和数学期望;(3)为处理无法识别的照片,该小组同学提出上述程序修改的三个方案:方案一:将无法识别的照片全部判定为女性;方案二:将无法识别的照片全部判定为男性;方案三:将无法识别的照片随机判定为男性或女性(即判定为男性的概率为50%,判定为女性的概率为).现从若干张不同的人脸照片(其中男性、女性照片的数量之比为)中随机抽取一张,分别用方案一、方案二、方案三进行识别,其识别正确的概率估计值分别记为,,.试比较,,的大小.(结论不要求证明)19.已知椭圆E 的焦点在x 轴上,中心在坐标原点.以E的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为(1)求栯圆E 的方程;(2)设过点的直线l (不与坐标轴垂直)与椭圆E 交于不同的两点A ,C ,与直EX 50%1:11p 2p 3p 1p 2p 3p ()2,0M线交于点P .点B 在y 轴上,D 为坐标平面内的一点,四边形是菱形.求证:直线过定点.20.已知函数.(1)若,①求曲线在点处的切线方程;②求证:函数恰有一个零点;(2)若对恒成立,求a 的取值范围.21.设正整数,,,,这里,2,…,n .若,且,则称,,…,具有性质P .(1)当时,若,,具有性质P ,且,,,令,写出m 的所有可能值;(2)若,,…,具有性质P :①求证:;②求16x =ABCD PD ()()ln 0)f x x a a =-+>1a =()y f x =()()2,2f ()f x ()ln 2f x a a ≤+(),3x a a ∈2n ≥i a *i d ∈N (){}1,1,2,i i i A x x a k d k ==+-= 1i =*12n A A A =N ()1i j A A i j n =∅≤<≤ 1A 2A n A 3n =1A 2A 3A 11a =22a =33a =123m d d d =1A 2A n A ()1,2,,i i a d i n ≤= 1n i =参考答案1.答案:C 解析:由于,所以,故a 的最大值为,故选:C.2.答案:A 解析:设的通项,则,化简得,令,则x 的系数为,即A 正确.故选:A.3.答案:B 解析:当时,,则,当时,,则,所以函数是偶函数,由图可知函数有一个极大值点.故选:B.4.答案:C 解析:抛物线的焦点,解得,故线段.故选:C.5.答案:A解析:由余弦定理可得,A B ⊆1a ≤-1-52(x x-1k T +()5115C 2k k k k T x x --+=-()5215C 2k k k k T x -+=⋅-⋅2k =()225C 240-=0x ≤0x ->1()()3()3x x f x f x --===0x >0x -<1()3()()3x x f x f x --===()f x ()f x 24x y =(0,1F 6A y +=5A y =AF 3=222222543cos 2104AC CB ABCB C AC BC BC +-+-===⋅故选:A.6.答案:C解析:对于A ,取,,故A 错误,对于B ,,,故B 错误,对于C ,由于,,故在单调递减,故,因此,,由于,所以,故,C 正确,对于D ,,,则故选:C.7.答案:B 解析:由题可知,,故,故,解得故选:B.8.答案:A 解析:若且公比,则,所以单调递增,存在最小值,故充分条件成立.若且,当n 为奇数时,,单调递减,故最大值为时,,而15180BC BC +=⇒=2a =b =-122a b =->=-1a =b =-2a b=()sin 0y x x x =->cos 10y x '-≤=sin y x x =-()0,+∞sin 0x x -<sin x x <()0,x ∈+∞a b >0a b ->()sin a b a b -<-3a =-4b =-13227a b =<0CA CB ⋅= CP AB⋅ ()()()()2211881168CA CB CB CA CA CB λλλλλλλ⎡⎤=+-⋅-=-+-=-+-=-+⎣⎦ 1684λ-+=λ=10a >0q >110n n a a q -=>n S n S 1S 10a >q =11112211013212n n n a a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-->⎢⎥ ⎪⎛⎫⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭121132n n S a ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦n S 1n =11S a =,当n 为偶数时,,单调递增,故最小值为,所以,即由,存在最小值得不到公比,故必要性不成立.故公比“”是“存在最小值”的充分不必要条件.故选: A.9.答案:D解析:根据题意,要满足性质,则的图象不能在过点的直线的上方,且这样的直线只有一条;对A :的直线,如下所示:数形结合可知,过点的直线有无数条都满足题意,故A 错误;对B :的图象,以及过点的直线,如下所示:数形结合可知,不存在过点的直线,使得的图象都在该直线的上方,故B 错误;对C :的图象,以及过点的直线,如下所示:123n S a <121132n n S a ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦n S 2n =2S =S 110a >n S 0q >10a >0q >n S 1P ()f x ()()1,1f ()f x x =-)1,0()1,0()lg f x x =()1,0()1,0()f x ()3f x x =()1,1数形结合可知,不存在过点的直线,使得的图象都在该直线的上方,故C 错误;对D :的图象,以及过点的直线,如下所示:数形结合可知,存在唯一的一条过点的直线,即,满足题意,故D 正确.故选:D.10.答案:B 解析:因为,所以,互为相反数,不妨设,,为了取最小值,取奇数项为正值,取偶数项为负值,且各项尽可能小,由题意知:满足,取的最小值;满足,因为,,故取的最小值;满足,取的最小值;同理,取的最小值;所以,满足,取的最小值;()1,1()f x ()πsin 2f x x =-()1,1-()1,1-1y =-0k =2120S a a =+=1a 2a 10a >20a <10S 3a 312a a ≥3a 12a 5a 51531224a a a a a ≥⎧⎨≥≥⎩10a >1142a a >5a 14a 7a 717317531224248a a a a a a a a a ≥⎧⎪≥≥⎨⎪≥≥≥⎩7a 18a 9a 116a 135791111112481631a a a a a a a a a a a ++++=++++=4a 422a a ≥4a 22a满足,因为,所以,取的最小值;满足,因为,所以,取的最小值;同理,取的最小值;所以,所以,因为数列的各项均为非零的整数,所以当时,有最小值22.故选:B.11.答案:1解析:因为,所以,即,所以,解得.故答案为:1.12.答案:①π;②解析:当时,,当时,,且二次函数开口向下,要使得在区间上的最小值为,则需要,且当时取最小值,故,解得,故答案为:π,.13.答案:7解析:由题意可知的二维码共有个,,故,6a 62642224a a a a a ≥⎧⎨≥≥⎩20a <2224a a >6a 12a 8a 828418641224248a a a a a a a a a ≥⎧⎪≥≥⎨⎪≥≥≥⎩20a <222482a a a >>8a 12a 10a 12a 24681022222222229a a a a a a a a a a a ++++=++++=101211131931922S a a a a a =+=-={}n a 11a =10S 2(i)2i x +=222i i 2i x x ++=212i 2i x x -+=21022x x ⎧-=⎨=⎩1x =2-0a =()2cos f x x ==2ππ2==()222cos sin sin sin 1sin 12a f x x a x x a x x ⎛⎫=+=-++=--++ ⎪⎝⎭()0,πx ∈(]sin 0,1x ∈()f x ()0,π2-1022a a -≥-sin 1x =112a -++=-2a =-2-n n ⨯22n ≤221615316022602n n -⨯⨯≤⇒≤2231637n n -≥⇒≥由于,所以,故答案为:7.14.答案:①②④解析:在正方体中,令,以点D 为原点,建立如图所示的空间直角坐标系,设,则,,,,,,令平面的法向量,则,取,得,由平面于Q ,得,即,,显然,解得于是,对于①,,①正确;对于②,上单调递增,②正确;对于③,而,,,,若,显然,即不存在,使得,③错误;对于④,平面的一个法向量,而,*n ∈N 7n ≥1111ABCD A B C D -1AB =(01)AP t t =≤≤(0,0,0)D (0,1,0)C 1(0,0,1)D (1,,0)P t 1(0,1,1)CD =-(1,1,0)CP t =-1D PC (,,)n x y z = 10(1)0n CD y z n CP x t y ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩1y =(1,1,1)n t =-DQ ⊥1D PC ((1),,)DQ n t λλλλ==-((1),,)Q t λλλ-((1),1,)CQ t λλλ=-- 2(1)10CQ n t λλλ⋅=-+-+=λ=222111(,,)(1)2(1)2(1)2t Q t t t --+-+-+1||||D Q CQ ===||DQ ==(1,0,0)A (1,1,0)B ((1)1,,)AQ t λλλ=-- ((1)1,1,)BQ t λλλ=---2222[(1)1](1)(23)(32)10AQ BQ t t t t λλλλλλ⋅=--+-+=-+--+=22(32)4(23)430t t t t ∆=---+=--<[0,1]t ∈0AQ BQ ⋅= 1D DA (0,1,0)DC = ((1)1,,)PQ t t λλλ=---由,得,即,令,,显然函数在上的图象连续不断,而,,因此存在,使得,此时平面,因此存在点P ,使得平面,④正确.所以所有正确结论的序号是①②④.故答案为:①②④.;或()解析:,即,故焦点与到,则以C 的一个焦点为圆心,且与双曲线C 的渐近线相切的圆的方程为或,或().16.答案:(1)条件选择见解析,(2)解析:(1)依题意,,选条件①,由,得,即,,,显然的值不唯一,因此函数不唯一,不符合题意.选条件②,的图象可由的图象平移得到,因此的最小正周期为函数的最小正周期π,而,0PQ DC t λ⋅=-=t λ=t =322310t t -+-=32()231f t t t t =-+-[0,1]t ∈()f t [0,1](0)10f =-<(1)10f =>(0,1)t ∈()0f t =PQ ⊄1D DA //PQ 1D DA 22(1x y ++=22(1x y +=22:4x C y -==12y x =20x y -=)()2x y -=122(1x y ++=22(1x y -+=221x y +=22(1x y -+=2ω=π(,)3+∞π()cos 12cos(13f x x x x ωωω=+=-+(2π)3f =ππ2cos()1233ω-+=ππcos(33ω-=ππ2π33k -=+k ∈N ππ2π33k -=-+k ∈*N ω()f x ()y f x =2cos 2y x =()y f x =2cos 2y x =ω>π=所以.选条件③,在区间内无极值点,且,则,即函数分别在时取得最大值、最小值,于是的最小正周期,由在区间内无极值点,得的最小正周期,因此,而,所以.(2)由(1)知,由,得,由不等式在区间内有解,即内有解,则有所以m 的取值范围是.17.答案:(1)证明见解析解析:(1)连接,,.因为,M 为的中点,所以.又,,,平面,所以平面.因为平面,所以平面平面.(2)因为平面,平面,平面,所以,,为直线与平面所成的角.2ω=()f x ππ(,36-ππ(2(263f f -=-+ππ(()463f f --=()f x x =π3x =-()f x ππ2[()]π63T ≤⨯--=()f x ππ(,)36-()f x ππ2[(π63T ≥⨯--=πT =0ω>2π2Tω==π()2cos(213f x x =-+(0,)x m ∈πππ2(,2333x m -∈--()2f x <(0,)m πcos(23x -<)m π23m ->>π(,)3+∞BM MN BN AB PB =AP BM AP ⊥MN AP ⊥MN BM M = MN BM ⊂BMN AP ⊥BMN AP ⊂PAC BMN ⊥PAC PO ⊥ABC OB ⊂ABC OC ⊂ABC PO OB ⊥PO OC ⊥PBO ∠PB ABC因为直线与平面所以因为,所以,,所以.又,故.所以.如图建立空间直角坐标系.则,,,,.所以,,.设平面的法向量为,则即令,则.设与平面所成角为,则所以直线与平面.(2)分布列见解析;(3)PB ABC PBO ∠=2PB =1PO =OB =2=1OA =2AB =222AB OB OA =+OB OA ⊥O xyz -()0,1,0A )B()0,3,0C ()0,0,1P 110,,22M ⎛⎫⎪⎝⎭()0,3,1PC =- ()BC = 510,,22MC ⎛⎫=- ⎪⎝⎭PBC (),,n x y z =00n PC n BC ⎧⋅=⎪⎨⋅=⎪⎩3030y z y -=⎧⎪⎨+=⎪⎩1y =)n = CM PBC θsin cos ,MC n MC n MC nθ⋅====⋅ CM PBC ()2116E X =231p p p >>解析:(1)根据题中数据,共有张照片被识别为女性,其中确为女性的(2)设事件输入男性照片且识别正确.根据题中数据,由题意知X 的所有可能取值为1,2,3.所以X 的分布列为.(3).(2)证明见解析,.因为以E 的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为所以所以..(2)设直线l 的方程为,令,得.由得.206080+==:A ()P A =()1P X ==()13244X ==⨯=()11344P X ==⨯=312123161616⨯+⨯=231p p p >>216y +=221(0)y a b b+=>>222c a b =-22a c +==a ==26=216y +=()20x ty t =+≠16x =y =1416,t ⎛⎫ ⎪⎝⎭2234242x y x ty ⎧+=⎨=+⎩()223412120t y ty ++-=设,,则设的中点为,则所以因为四边形为菱形,所以N 为的中点,.所以直线的斜率为.所以直线的方程为.令得.设点D 的坐标为,则,即.所以直线的方程为,即.所以直线过定点.20.答案:(1)①;②证明见解析()11,A x y ()22,C x y 12y y +=12y y =AC ()33,N x y 1232y y y +==332x ty =+=ABCD BD AC BD ⊥BD t -BD 22683434t y t x t t ⎛⎫+=-- ⎪++⎝⎭0x =22863434t t y t t =-=++220,34t t ⎛⎫ ⎪+⎝⎭()44,x y 43216234x x t ==+4322234t y y t =-=+221614,3434t D t t ⎛⎫- ⎪++⎝⎭PD ()221414143416161634t t t y x t t ++-=--+()746y x t=-PD ()4,02y =(2)解析:(1)当时,.①所以,.所以曲线在点处的切线方程为.②由①知,.当,所以;当.所以在区间上单调递增,在区间上单调递减.因为,,,所以函数恰有一个零点.(2)由设,,则.所以是上的减函数.因为,,所以存在唯一,.所以与的情况如下:[)1,+∞1a =()()ln 1f x x =-+()11f x x =-'()22f =()20f '=()y f x =()()2,2f 2y =()()ln 1f x x =-+(]1,3x ∈()11f x x =-'()20f '=()1,2x ∈1>>()0f x '>(2,3x ∈1<<()0f x '<()f x ()1,2()2,3()22f =()3ln20f =>()31e 330f -+=-+<-+<()f x ()()ln f x x a =-+()f x '=()()g x x a =--(),3x a a ∈()10g x -'=<()g x (),3a a ()0g a =>()320g a a =-<()0,3x a a ∈()()000g x x a =-=()f x '()f x.当时,因为,所以.所以.所以,符合题意.当时,因为,所以.所以,不合题意.综上所述,a 的取值范围是.21.答案:(1)27或32引理1:若,,…,具有性质P ,则.引理1的证明:假设结论不成立.不妨设,则正整数,但,故一定属于某个,不妨设为.则由知存在正整数k ,使得.这意味着对正整数,有,,但,矛盾.所以假设不成立,从而一定有,从而引理1获证.引理2:若,,…,具有性质P ,则,且证明:取集合.注意到关于正整数k 的不等式等价于而由引理1有,即.()()()()0000ln ln 2f x x a x a x a =-+=-+-1a ≥()20g a a =-≤02x a ≤()()()0ln 222ln 2f x a a a a a a ≤-+-=+()()0ln 2f x f x a a ≤≤+01a <<()20g a a =>02x a >()()()0ln 222ln 2f x a a a a a a >-+-=+[)1,+∞1A 2A n A ()1,2,,i i a d i n ≤= ()1,2,,i i a d i n ≤= 11a d >111a d A -∉*12n A A A =N 11a d -()2i A i n ≤≤2A 112a d A -∈()11221a d a k d -=+-1112c a d d d =-+()111212111c a d d d a d d A =-+=+-∈()()11122212212211c a d d d a k d d d a k d d A =-+=+-+=++-∈12A A =∅ ()1,2,,i i a d i n ≤= 1A 2A n A 111ni i d ==∑1ni i ia d ==∑{}121,2,...,...n T d d d =()1201...i i n a k d d d d <+-≤11i i i i a a k d d -<≤-i i a d ≤011iia d ≤-<这意味着数列而,,…,两两之间没有公共元素,且并集为全体正整数,故T 中的元素属于且仅属于某一个,这就证明了引理2的第一个结论;再考虑集合T 中全体元素的和.一方面,直接由另一方面,,公差为的等差数列.所以的所有元素之和为.最后,再将这n 个集合的全部元素之和相加,得到T 中全体元素的和为.,所以有综上,引理2获证.1i i i i a a k d d -<≤-+12...n i d d d k d ≤()(11,2,...k i i x a k d k =+-=1A 2A n A (1i A i n ≤≤12...A T A T +++ 12......nT T A T A T d +=+++ 211...1nd d +++={121,2,...,...n T d d d =T A i i d i T A 11122i i i i i i i i TT TT T a a d T d d d d d ⎛⎫⎛⎫⋅+-=+- ⎪ ⎪⎝⎭⎝⎭()1,2,...,i T A i n = 112ni i i i T T a T d d =⎛⎫⎛⎫+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑112ni i i i T T a T d d =⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑()22111111122222nnn ni i i i i i i i i iiiT T T T Tn TTa a a T TT d d d d d ====⎛⎫+⎛⎫=+-=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑1n i i ia d ==∑1ni i i a d ==回到原题.将,,从小到大排列为,则,.若,则,所以每个不等号都取等,从而,故;情况1:若,矛盾;情况2:若.此时如果,矛盾;如果,故;如果,由于,设,,则,.故对于正整数对,有,从而,这与矛盾.综上,m 的取值只可能是27或32.当时,;当时,.所以的所有可能取值是27和32.(2)①由引理1的结论,即知;②由引理2的第二个结论,即知1d 2d 3d 123r r r ≤≤123123m d d d r r r ==23123111111r r d d d +=++=13r ≥1231111111111311r r r r r r r =++≤++=≤1233r r r ===12327m r r r ==1r =311110r r +=-=1r =31111r r =-=23221111r r r r =+≤+=24≤2r =21102r =-=2r =2112r =-=34=12332m r r r ==23r =12r =()()123123,,,,i i i r r r d d d ={}{}123,,1,2,3i i i =12i d =23i d =()()2121212112331212211i i i i i i i i k a a a a k a a a a ⎧=+--+--⎪⎨=+--+--⎪⎩2112231i i k k a a -=--12121223i i i i a k a k A A +=+∈ 12i i A A =∅ ()()123,,3,3,3d d d =27m =()()123,,4,2,4d d d =32m =123m d d d =()1,2,,i i a d i n ≤= 1ni i i a d ==∑。
2020年6月北京海淀区高三二模 16-21题数学试卷讲评分析与评分细则
−k 2 + 13k
.
令 Sk = S1 = 12 ,即 −k 2 + 13k = 12 .
整理得 k2 −13k +12 = 0 .解得 k = 1或 k =12 . 2分 因为 k > 1,所以 k =12 . 2分
所以当 k = 12 时, Sk = S1 .
…………2 分 …………5 分
…………………………………………...……..7分
…………………………………………...……..10分
Sn
如果没有给出 的增减性或者 相关说理,扣2分
…………………………………………...…….12分 …………………………………………...……..14分
选择条件②,存在正整数 k = 12 ,使得 Sk = S1 .
又因为 BC =1,所以 DE = BC .
在梯形 ABCD 中, DE // BC ,
方法(一)
所以四边形 BCDE 为平行四边形.
所以 BE // CD .
…………1 分
平行四边 形证错 扣1分
又因为 BE ⊄ 平面 PCD ,且 CD ⊂ 平面 PCD ,
所以 BE // 平面 PCD.
…………2 分
2分 1分 所以 an = a1 + (n − 1)d = 4 + 2(n − 1) = 2n + 2 .
2分 又因为 Sn+1 − Sn = an+1 > 0 ,
…………12 分
所以数列{Sn} 为递增数列. 即 ∀k >1,都有 Sk > S1 . 所以不存在正整数 k(k > 1) ,使得 Sk = S1 .
海淀二模数学试题分析与复习建议
海淀“二模”数学试题分析与复习建议1、命题意图:1、对备考学生将近一年的数学总复习效果做一个较全面的检测,同时要鼓励学生再接再厉迎接高考。
在难度的控制上,力求比“一模”稍易一点,希望全区平均分达到82分左右。
我们设想,其中“一模”115分---130分的考生这次提高10—15分应是正常的,“一模”80分左右的考生应提高5分左右,而对“一模”数学50—60分的考生如果还是50—60分,其实也有所提高了。
2、坚持重点内容重点考查。
3、与海淀区“一模”数学试题一起,共同形成对数学知识、技能、方法作一次覆盖。
比如“一模”第(16)题试是从函数的角度考查三角有关知识的题目,而“二模”(14)题则是在三角形中考查三角的有关知识,情境、知识与方法都有所不同,又比如对立体几何的考查,在“一模”试题(17)题中是以“折叠问题”出现的,而在“二模”的(17)题中则是放在棱柱中考查线面位置关系,再比如对应用问题的考角度和方法两次试题也是不同的,请考生注意。
4、解答题的赋分值多少可能会与高考不一致,这里也提请考生注意,比如立体几何“一模”、“二模”都是16分,但高考可能是14或15分。
2、试题分析:1、选择题:本题考查基本知识和基本运算。
每小题5分,满分60分。
(1)考查复数的基本概念和基本运算,选D;提示:(2)理科:考查反三角函数的基本概念和半角的正切公式,选A;文科:考查函数的基本概念,选A;(3)考查数列的基本概念,选D; 提示:两式相除,可得;(4)考查函数图像平移、奇函数的性质、应用。
选B;提示:由,列方程,可解出a = - 1(5)理科:考查极坐标的基本概念;选A;提示:可考虑数形结合;文科::选A;提示:直线应过圆心。
(6)考查排列、组合的有关知识,选B;提示:可考虑=112(7)考查直线与平面的位置关系:选D;提示:依题意画出图形,排除(1)、从而淘汰A,C,再画图可知(3)也错,进而淘汰B,故应选D;(8)考查函数的单调性等有关知识;选A;提示:运用数形结合,作图较快;(9)考查双曲线的基本概念和数列的基础知识以及方程的思想方法。
2023年北京海淀区高三二模数学试卷【含答案】
2023年北京海淀区高三二模数学试卷一、单选题1、已知集合,,则()A. B. C. D.2、在平面直角坐标系中,角以为始边,其终边经过点,则()A. B. C.2 D.3、若的展开式中常数项为,则()A.5B.6C.7D.84、下列函数中,既是奇函数又在区间上单调递增的是()A. B. C. D.5、已知等差数列的前项和为,,,则的最大值为()A.7B.6C.5D.46、抛物线,经过点P的任意一条直线与C均有公共点,则点P的坐标可以为()A. B. C. D.7、芯片是科技产品中的重要元件,其形状通常为正方形.生产芯片的原材料中可能会存在坏点,而芯片中出现坏点即报废,通过技术革新可以减小单个芯片的面积,这样在同样的原材料中可以切割出更多的芯片,同时可以提高芯片生产的产品良率..在芯片迭代升级过程中,每一代芯片的面积为上一代的.图是一块形状为正方形的芯片原材料,上面有个坏点,若将其按照图的方式切割成个大小相同的正万形,得到块第代芯片,其中只有一块无坏点,则由这块原材料切割得到第代芯片的产品良率为.若将这块原材料切割成个大小相同的正方形,得到块第代芯片,则由这块原材料切割得到第代芯片的产品良率为()A. B. C. D.8、已知正方形ABCD所在平面与正方形CDEF所在平面互相垂直,且,P是对角线CE的中点,Q是对角线BD上一个动点,则P,Q两点之间距离的最小值为()A.1B.C.D.9、已知是平面内两个非零向量,那么“”是“存在,使得”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10、已知动直线与圆交于,两点,且.若与圆相交所得的弦长为,则的最大值与最小值之差为()A. B.1 C. D.2二、填空题11、在复平面内,复数所对应的点为,则.12、已知双曲线经过点,渐近线方程为,则的标准方程为.13、如图,在中,是边上一点,,,,则;的面积为.14、设函数,①若,则不等式的解集为;②若,且不等式的解集中恰有一个正整数,则的取值范围是.15、在数列中,,.设向量,已知,给出下列四个结论:①;②,;③,;④,.其中所有正确结论的序号是.三、解答题16、已知函数,且.(1)求的值和的最小正周期;(2)求在上的单调递增区间.17、某大学学院共有学生1000人,其中男生640人,女生360人.该学院体育社团为了解学生参与跑步运动的情况,按性别分层抽样,从该学院所有学生中抽取若干人作为样本,对样本中的每位学生在5月份的累计跑步里程进行统计,得到下表.(1)求的值,并估计学院学生5月份累计跑步里程s()在中的男生人数;(2)从学院样本中5月份累计跑步里程不少于的学生中随机抽取3人,其中男生人数记为X,求X的分布列及数学期望;(3)该大学学院男生与女生人数之比为,学院体育社团为了解学生参与跑步运动的情况,也按性别进行分层抽样.已知学院和学院的样本数据整理如下表.5月份累计跑步里程平均值(单位:)设A学院样本中学生5月份累计跑步里程平均值为,B学院样本中学生5月份累计跑步里程平均值为,是否存在,使得?如果存在,求的最大值;如果不存在,说明理由.18、如图,在四棱锥中,平面,底面为菱形,分别为的中点.(1)求证:平面;(2)若,二面角的大小为,再从条件①、条件②这两个条件中选择一个作为已知.求的长.条件①:;条件②:.19、已知椭圆的左顶点为,上、下顶点分别为,,直线的方程为.(1)求椭圆的方程及离心率;(2)是椭圆上一点,且在第一象限内,是点关于轴的对称点.过作垂直于轴的直线交直线于点,再过作垂直于轴的直线交直线于点.求的大小.20、已知函数(1)求曲线在点处的切线方程;(2)求证:;(3)若函数在区间上无零点,求a的取值范围.21、设为整数.有穷数列的各项均为正整数,其项数为m().若满足如下两个性质,则称为数列:①,且;②(1)若为数列,且,求m;(2)若为数列,求的所有可能值;(3)若对任意的数列,均有,求d的最小值.1、【答案】B;【解析】因为,,所以,.故选:2、【答案】A;【解析】【分析】根据三角函数的定义即可求解.【详解】由三角函数的定义可知,故选:A3、【答案】A;【解析】的展开式通项为.故常数项为,得.因此正确答案为:A.4、【答案】D;【解析】【分析】根据函数的奇偶性以及单调性,结合基本初等函数的性质,即可由选项逐一判断.【详解】对于A,的定义域为,定义域不关于原点对称,所以为非奇非偶函数,故A错误,对于B,的定义域为,定义域关于原点对称,又,所以为奇函数,但在单调递减,故B错误,对于C,的定义域为,关于原点对称,又,故为偶函数,故C错误,对于D,由正切函数的性质可知为奇函数,且在单调递增,故D正确,故选:D5、【答案】B;【解析】【分析】设公差为,根据等差数列的通项公式求出,即可得到的通项公式,再令,即可求出的最大值.【详解】设公差为,因为,,所以,解得,所以,令,解得,所以当或时取得最大值,且.故选:B6、【答案】D;【解析】【分析】根据点与抛物线的位置即可求解.【详解】在轴上,所以在抛物线外部,将代入抛物线中,则,所以在抛物线外部,将代入抛物线中,则,所以在抛物线外部,将代入抛物线中,则,所以在抛物线内部,将选项中的点分别在直角坐标系中画出来,只有点在抛物线内部,故当点位于点处,此时经过点P的任意一条直线与C均相交,故均有公共点,故选:D7、【答案】C;【解析】通过题意将这块原材料如下切割得到第代芯片,其中块无坏点,块有坏点,故第代芯片的产品良率为.因此正确答案为:C8、【答案】C;【解析】【分析】根据面面垂直可得线面垂直,进而根据线线垂直得到勾股定理,根据点到直线的距离最小即可求解的最小值.【详解】取边的中点为,连接,P是CE的中点,则,由于,平面平面,平面平面,平面,故平面,平面,故,在直角三角形中,,,要使最小,则最小,故当时,此时最小,故的最小值为,所以,、故选:C9、【答案】C;【解析】若,则存在唯一的实数,使得,故,而,存在使得成立,所以“”是“存在,使得”的充分条件,若且,则与方向相同,故此时,所以“”是“存在,使得”的必要条件,故“”是“存在,使得”的充分必要条件,因此正确答案为:C10、【答案】D;【解析】通过题意可知圆的圆心在圆上,则当动直线经过圆心,即点或与圆心重合时,如下图1所示,,此时弦长取得最大值,且最大值为;设线段的中点为,在中,由,且,则,则动直线在圆上做切线运动,所以当动直线与轴垂直,且点的坐标为时,如下图2所示,,此时弦长取得最小值,且最小值为,所以的最大值与最小值之差为2.因此正确答案为:D.11、【答案】;【解析】通过题意可知,所以,因此正确答案为:12、【答案】;【解析】由已知可得,双曲线的焦点位于轴上,设的标准方程为.因为双曲线经过点,所以,则双曲线的渐近线方程为,所以,所以的标准方程为.因此正确答案为:.13、【答案】;;【解析】在中,由余弦定理,得,即,解得,所以,所以,所以.因此正确答案为:;.14、【答案】;【解析】①当时,和的图象如下图所示,由图像分析可得当时,;②当时,的图象如下图所示,若不等式的解集中恰有一个正整数,则由图像分析可得,即,解得,因此正确答案为:;15、【答案】②③④;【解析】对于①,由已知可得,,所以,.因为,所以有,解得,故①有误;对于②,,,所以,.因为,所以有,解得.同理可知,.所以有,,,.猜想,,有,.(*)显然,当时,(*)式成立;假设时,(*)式成立,即,有,.因为,,,所以,.由已知可得,,所以,所以.又,所以,所以.即,时,式子(*)也成立.所以,猜想正确.即,有,.所以,,.猜想,,.(**)当时,(**)式成立;假设当时,(**)式成立,即,.则,,当且仅当,即时,等号成立.因为,所以.所以,当时,(**)式也成立.所以,,,故②无误;对于③,因为,所以,所以,所以,所以.又,所以.同理可知,.所以,,,故③无误;对于④,由(**)可得,,.所以,,,故④无误.因此正确答案为:②③④.16、【答案】(1),(2),;【解析】【分析】(1)根据代入求出,再利用三角恒等变换公式化简,结合正弦函数的性质计算可得;(2)由正弦函数的性质计算可得.【详解】(1)因为,且,所以,解得,所以,即,所以的最小正周期;(2)由,,解得,,所以的单调递增区间为,,当时的单调递增区间为,当时的单调递增区间为,所以在上的单调递增区间为,.17、【答案】(1),人(2)分布列见解析,(3)存在满足条件的,且的最大值为,;【解析】【分析】(1)首先求出男女生人数之比,即可得到方程,求出的值,再由样本求出估计值;(2)依题意的可能取值为,,,求出所对应的概率,即可得到分布列与数学期望;(3)设学院女生人数为,则男生人数为,求出,,即可得到不等式,解得即可.【详解】(1)依题意,男女生人数之比为,所以,解得,故计学院学生月份跑步里程在中的男生人数为人.(2)依题意的可能取值为,,,所以,,,所以的分布列为所以(3)存在满足条件的,且的最大值为,设学院女生人数为,则男生人数为,则,而,依题意,即,显然,解得,所以的最大值为.18、【答案】(1)证明见解析(2)12.;【解析】(1)取的中点,连接,∵分别为的中点,∴是的中位线,∴且,又为的中点,∴且,∴且,∴四边形是平行四边形,∴平面平面,∴平面.(2)选择条件①:,平面,,平面,平面,平面,,,底面为菱形,为的中点.,是等边三角形,以为轴,为轴,为轴,建立空间直角坐标系,设,则,设平面法向量为,设平面法向量为,,,,令,则,二面角的大小为∴,,选择条件②:.平面,,,取的中点,,平面,平面,平面,,,底面为菱形,为的中点.,是等边三角形,以为轴,以为x轴,以为轴设,则,设平面法向量为,,,,令则,设平面的法向量为,,,,令,则,二面角的大小为∴,,19、【答案】(1),(2);【解析】(1)因为直线的方程为,所以,,即,,所以,所以椭圆方程为,离心率(2)通过题意,设,,则,且点是椭圆上一点,可得,直线的方程为,由,可得,所以,直线的方程为,令,得,即,所以,即直线的倾斜角是,所以.20、【答案】(1)(2)见解析(3);【解析】【分析】(1)求导,即可得,结合,由点斜式即可求解切线方程;(2)将不等式转化为,构造函数,求出最值即可证明结论成立;(3)对分情况讨论,在时,,通过二阶求导,结合即可求解,在时,求导,结合零点存在性定理可得存在使得,进而结合导数即可求解.【详解】(1),则,又,所以曲线在点处的切线方程为,(2)因为所以,要证明,只需要证明,即证.令,则,当时,,此时在上单调递增;当时,,此时在上单调递减,故在取极大值也是最大值,故,所以恒成立,即原不等式成立.(3),当时,,故当时,在区间上恒成立,符合题意;当时,,令,则在区间上恒成立,所以在单调递减,且,①当时,此时,在区间上恒成立,所以在区间单调递减,所以在上恒成立,符合题意,②当时,此时,由于且,所以,所以,故存在使得,故当时,,此时单调递增;当时,,此时单调递减,故时,取极大值也是最大值,故,由,可得,令,得,所以在上存在零点,不符合题意,舍去,综上可知,a的取值范围为.【点睛】本题主要考查导数在函数中的应用,以及函数问题的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.21、【答案】(1)(2)的所有可能取值为全体大于的正整数(3);【解析】(1)通过题意,,所以,,,,,所以.(2)通过题意,,下面证明对于任意的正整数,当时,均存在数列为数列,时,与题意相符,反证,假设存在正整数,当时,不存在数列为数列,设此时的最小值为,即时存在数列,时不存在数列,①当为奇数时,因为存在以为首项的数列,、、、,所以、、、、就是首项为的数列,与假设矛盾,②当为偶数时,因为存在以为首项的数列,、、、,所以、、、、就是首项为的数列,与假设矛盾,综上所述的所有可能取值为全体大于的正整数.(3)通过题意,,,,,先证明与题意相符,即,当时显然成立,当时,对任意,,故,即,(i)当时,由,,所以.(ii)当时,由,,,所以.再证明.对任意的偶数,令,先验证为数列,当时为奇数,,符合②;当时为偶数,,符合②;当时,,符合②;又符合①,所以为数列.下面证明与题意不相符.假设,因为,,所以,,矛盾.综上可得的最小值为.。
2022海淀二模数学命题解读
2022海淀二模数学命题解读第一篇:《2022北京海淀高考二模数学理(含解析)》海淀区高三年级第二学期期末练习数学(理科)2022.5一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合A,(1)(2)0,B0,则AUB ().A.(,0]B.(,1]C.[1,2]D.[1,)2.已知数列an是公比为q的等比数列,且a1a34,a48,则a1q的值为().A.3B.2C.3或2D.3或33.如图,在边长为a的正方形内有不规则图形.向正方形内随机撒豆子,若撒在图形内和正方形内的豆子数分别为m,n,则图形面积的估计值为(A.4.空间几何体的三视图如右图所示,则该几何体的表面积为().A.180B.240C.276D.300俯视图主视图左视图manamanaB.C.D.nmnmuuuruuuruuuruuur5.在四边形ABCD中,“R,使得AB DC,AD BC”是“四边形ABCD为平行四边形”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为().A.32B.36C.42D.487.双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y24焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C的离心率为().A.8.若数列{an}满足:存在正整数T,对于任意正整数n都有an T an成立,则称数列{an}an1,an1,为周期数列,周期为T.已知数列{an}满足a1m(m0),an1=1 ,0a1、n a nB.1C.1D.2则下列结论中错误的是()...A.若a34,则m可以取3个不同的值B.若m{an}是周期为3的数列C.T N且T2,存在m1,{an}是周期为T的数列D.m Q 且m2,数列{an}是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9.在极坐标系中,极点到直线co2的距离为_______.1110.已知a ln,b in,c22,则a,b,c按照从大到小排列为______.....2211.直线l1过点(2,0)且倾斜角为30o,直线l2过点(2,0)且与直线l1垂直,则直线l1与直线l2的交点坐标为________.12.在ABC中,A30o,B45o,a b_____;S ABC—_____.uuuruuur13.正方体ABCD A1B1C1D1的棱长为1,若动点P在线段BD1上运动,则DC AP的取值范围是__________.14.在平面直角坐标系中,动点P(,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W.(I)给出下列三个结论:①曲线W关于原点对称;②曲线W关于直线y对称;③曲线W与轴非负半轴,y轴非负半轴围成的封闭图形的面积小于1;其中,所有正确结论的序号是_____;(Ⅱ)曲线W上的点到原点距离的最小值为______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,15.(本小题满分13分)co2已知函数f()1.)(Ⅰ)求函数f()的定义域;(Ⅱ)求函数f()的单调递增区间.演算步骤或证明过程.福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p,获得50元奖金的概率为2%.(Ⅰ)假设顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率;(Ⅱ)为了能够筹得资金资助福利事业,求p的取值范围.如图1,在直角梯形ABCD中,ABC DAB90o,CAB30o,BC2,把DAC沿对角线AC折起到PAC的位置,如图2所示,使得点P在平面ABCAD4.上的正投影H恰好落在线段AC上,连接PB,点E,F分别为线段PA,AB的中点.(Ⅰ)求证:平面EFH∥平面PBC;(Ⅱ)求直线HE与平面PHB所成角的正弦值;FDECACABFB图1图2第二篇:《2022年北京市_海淀区高三二模数学(理科)含答案》海淀区高三年级第二学期期末练习数学(理科)作答无效。
北京市海淀区2021届新高考二诊数学试题含解析
北京市海淀区2021届新高考二诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记()[]f x x x =-其中[]x 表示不大于x 的最大整数,0()1,0kx x g x xx≥⎧⎪=⎨-<⎪⎩,若方程在()()f x g x =在[5,5]-有7个不同的实数根,则实数k 的取值范围( ) A .11,65⎡⎤⎢⎥⎣⎦B .11,65⎛⎤⎥⎝⎦C .11,54⎛⎫⎪⎝⎭D .11,54⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】做出函数(),()f x g x 的图象,问题转化为函数(),()f x g x 的图象在[5,5]-有7个交点,而函数(),()f x g x 在[5,0]-上有3个交点,则在[0,5]上有4个不同的交点,数形结合即可求解. 【详解】作出函数(),f x ()g x 的图象如图所示,由图可知方程()()f x g x =在[5,0]-上有3个不同的实数根, 则在[0,5]上有4个不同的实数根, 当直线y kx =经过(4,1)时,14k =; 当直线y kx =经过(5,1)时,15k =, 可知当1154k ≤<时,直线y kx =与()f x 的图象在[0,5]上有4个交点, 即方程()()f x g x =,在[0,5]上有4个不同的实数根. 故选:D. 【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.2.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .【答案】A 【解析】 【分析】 本题采用排除法: 由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ; 根据特殊值502f π⎛⎫> ⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除;对于选项C:因为5522 522522fππππ--⎛⎫=>⎪⎝⎭,故选项C排除;对于选项B:当0x>,且x无限接近于0时,cosx x-接近于10-<,220x x-->,此时()0f x<.故选项B排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.3.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有()A.120种B.240种C.480种D.600种【答案】B【解析】【分析】首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【详解】将周一至周五分为4组,每组至少1天,共有:2115323310C C CA=种分组方法;将四大名著安排到4组中,每组1种名著,共有:4424A=种分配方法;由分步乘法计数原理可得不同的阅读计划共有:1024240⨯=种本题正确选项:B【点睛】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.4.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A .1B .43C .3D .4【答案】A 【解析】 【分析】采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果. 【详解】根据三视图可知:该几何体为三棱锥 如图该几何体为三棱锥A BCD -,长度如上图所以111121,11222MBD DEC BCN S S S ∆∆∆==⨯⨯==⨯⨯= 所以3222BCD MBD DEC BCN S S S S ∆∆∆∆=⨯---=所以113A BCD BCD V S AN -∆=⋅⋅=故选:A 【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.5.已知复数z 满足()11z i i +=-(i 为虚数单位),则z 的虚部为( ) A .i - B .iC .1D .1-【答案】D 【解析】 【分析】根据复数z 满足()11z i i +=-,利用复数的除法求得z ,再根据复数的概念求解. 【详解】因为复数z 满足()11z i i +=-,所以()()()211111i iz i i i i --===-++-, 所以z 的虚部为1-. 故选:D. 【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.6.若x 、y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为( )A .5B .9C .6D .12【答案】C 【解析】 【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出直线在y 轴上的截距最大时对应的最优解,代入目标函数计算即可. 【详解】作出满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩的可行域如图阴影部分(包括边界)所示.由32z x y =+,得322z y x =-+,平移直线322z y x =-+,当直线322zy x =-+经过点()2,0时,该直线在y 轴上的截距最大,此时z 取最大值, 即max 32206z =⨯+⨯=. 故选:C. 【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.7.复数21iz i+=-,i 是虚数单位,则下列结论正确的是 A .5z =B .z 的共轭复数为31+22i C .z 的实部与虚部之和为1 D .z 在复平面内的对应点位于第一象限【答案】D 【解析】 【分析】利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论. 【详解】由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-, 则221310()()22z =+=,z的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D . 【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭为a bi -.8.等腰直角三角形BCD 与等边三角形ABD 中,90C ∠=︒,6BD =,现将ABD △沿BD 折起,则当直线AD 与平面BCD 所成角为45︒时,直线AC 与平面ABD 所成角的正弦值为( )A 3B .22C 3D .33【答案】A 【解析】 【分析】设E 为BD 中点,连接AE 、CE ,过A 作AO CE ⊥于点O ,连接DO ,得到ADO ∠即为直线AD 与平面BCD 所成角的平面角,根据题中条件求得相应的量,分析得到CAE ∠即为直线AC 与平面ABD 所成角,进而求得其正弦值,得到结果. 【详解】设E 为BD 中点,连接AE 、CE ,由题可知AE BD ⊥,CE BD ⊥,所以BD ⊥平面AEC , 过A 作AO CE ⊥于点O ,连接DO ,则AO ⊥平面BDC , 所以ADO ∠即为直线AD 与平面BCD 所成角的平面角,所以sin AOADO AD∠==,可得AO = 在AOE △中可得3OE =, 又132OC BD ==,即点O 与点C 重合,此时有AC ⊥平面BCD , 过C 作CF AE ⊥与点F ,又BD AEC ⊥平面,所以BD CF ⊥,所以CF ⊥平面ABD ,从而角CAE ∠即为直线AC 与平面ABD 所成角,sinCE CAE AE ∠===, 故选:A. 【点睛】该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目. 9.把函数sin()6y x π=+图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移3π个单位,那么所得图象的一个对称中心为( ) A .(,0)3πB .(,0)4πC .(,0)12πD .(0,0)【答案】D 【解析】 【分析】 【详解】试题分析:把函数sin()6y x π=+图象上各点的横坐标伸长为原来的2倍(纵坐标不变),可得1sin()26y x π=+的图象;再将图象向右平移3π个单位,可得11sin[()]sin 2362y x x ππ=-+=的图象,那么所得图象的一个对称中心为(0,0),故选D. 考点:三角函数的图象与性质.10.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1AB 的中点,,M N 分别为线段1AC 和 棱11B C 上任意一点,则22PM MN +的最小值为( )A .22B .2C .3D .2【答案】D 【解析】 【分析】取AC 中点E ,过M 作MF ⊥面1111D C B A ,可得MFN ∆为等腰直角三角形,由APM AEM ∆≅∆,可得PM EM =,当11MN B C ⊥时, MN 最小,由 22MF MN =,故()12222222PM MN PM MN EM MF AA ⎛⎫+=+=+≥= ⎪ ⎪⎝⎭,即可求解. 【详解】取AC 中点E ,过M 作MF ⊥面1111D C B A ,如图:则APM AEM ∆≅∆,故PM EM =,而对固定的点M ,当11MN B C ⊥时, MN 最小.此时由MF ⊥面1111D C B A ,可知MFN ∆为等腰直角三角形,22MF MN =, 故()122222222PM MN PM MN EM MF AA ⎛⎫=+=+≥= ⎪ ⎪⎝⎭.故选:D 【点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.11.函数()2xx e f x x=的图像大致为( )A .B .C .D .【答案】A 【解析】 【分析】根据()0f x >排除C ,D ,利用极限思想进行排除即可. 【详解】解:函数的定义域为{|0}x x ≠,()0f x >恒成立,排除C ,D ,当0x >时,2()xx x e f x xe x ==,当0x →,()0f x →,排除B , 故选:A . 【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.12.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b +的最小值是( ) A .74B .94C .52D .2【答案】B 【解析】 【分析】画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案. 【详解】如图所示,画出可行域和目标函数,根据图像知:当8,10x y ==时,810z a b =+有最大值为40,即81040z a b =+=,故4520a b +=.()()5115112541945252521002020204b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭. 当254b a a b =,即104,33a b ==时等号成立. 故选:B .【点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力. 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京海淀区2019年高考二模数学试卷分析作者:佚名
2019年的二模刚刚结束,高考的志愿填报也快开始,很多同学不知道如何分析和看待自己的二模成绩。
本文将就海淀区的二模数学理科试卷进行分析,希望有助于同学正确的面对自己的问题,备战高考。
这份试卷总体呈现的特点是:命题风格追求创新和突破,注重知识的灵活运用与计算能力,难度整体明显高于高考。
(一)命题风格追求创新和突破。
这点首先体现在题目的结构上,命题人刻意在多处采取了与高考不一致的题目结构。
比如作为第一题出现的不是大家默认的集合、复数,而是三角函数,可以说一上来就定下了“突破”的基调。
大题的第一题也摒弃了传统的三角恒定变换转而考察数列的性质(可以说这在高考中几乎是不可能的)。
在学生最会被拉开差距的18,19题上,试卷也做了较大的改革,更换了解析几何和导数题目的顺序,解析几何题在加大了计算量的前提下,被放在了18题的位置上,让学生非常疲惫,之后的19题导数题非但没有降低难度,还进一步提高难度设三问,这样的设置对学生的心理素质也是极大的考验。
其次创新和突破也体现在考点的选取上,命题人刻意强调了一些前两年不很流行的“冷门”知识点,比如第2题考察命题
的否定(以往多为充要条件),第3题考察参数方程(以往多为极坐标),第6题考察图像变换(以往多为图像性质),第9题考察几何概型(以往多为古典概型),第10题考察二项式定理(以往多为排列组合)。
可以说,命题人用这份试卷督促学生“查漏补缺”的思想非常明显,旨在提醒学生全面复习,而不要试图押题押规律。
当然,因为这种“突破题”占的比重过大,很多学生被这种“刻意造成的意外”打乱了节奏,增加了学生完成小题的时间,间接地提高了大题的难度。
客观的说,在高考中,是一定会有对以往试卷的突破和创新的,但是北京高考的宗旨一向是“稳中求变”,所以不会像这份试卷变革的那么汹涌,大家一方面可以放心,保持心态平稳,另一方面也要重视复习的广度,保证知识点不遗漏。
(二)注重知识的灵活应用和计算能力。
对于常规的知识点,这份试卷大多数题目考查的都比较灵活,这也是为了趋近北京的命题风格。
例如第1题,对三角函数考查的不死板;第5题,也是可想可算的题目,如果注意到了椭圆的对称性,就几乎没有计算量了;第7题三视图,罕见的考察了“凹体”,对学生的空间想象能力是极大的考验。
小题值得一说的是8,13,14这几个题,都是对北京考卷8,14题的模仿。
其中第8题明显模仿了09年北京高考8题,考察解析几何图像性质,但计算量偏大;13题模仿了10年北京高考14题,结合图像考察函数的性质,这道题无论是
题型、难度还是考点,都非常接近高考真题,模仿的最好;14题模仿了11年高考14题,考察解析几何新定义,但同样计算量偏大,有违北京高考“多想少算”的原则,参考价值偏低。
同时我们也发现,14道题中创新题不是2道而是3道,也是很多学生小题做的不爽的主要原因。
这份试卷的大题,则偏重了计算能力的考察。
首先第15题罕见的在理科试卷中出现了数列题,其第一问非常常规,相当于小题难度,但是第二问用到的裂项会给一部分学生造成困难,并且答案繁琐。
不过对于数列熟悉的同学,应该不会有任何问题,可以在5-7分钟内得到满分。
第16题的立体几何则中规中矩,是一个花8-10分钟可以争取满分的题目。
第17题概率大题阅读量偏大,这是一个难点。
第二个难点是学生对第(II)问题意的理解。
第三问数不整,但是不复杂,细心即可。
整体上也是应该在8-10分钟内得满分的题目。
个人以为,此题把第二三问改编成略简单点的一问,更符合高考题的风格。
第18题应该是学生常练的典型题目,内积转化为坐标和韦达定理后,需要处理复杂的代数式计算,非常考察学生的基本计算能力。
考虑到计算量的问题,应为15-20分钟的题目,若用时再多说明这部分掌握的有欠缺,需要多加练习。
结合近两年北京高考的19题来分析,这题计算量偏大,但是思
路偏直接,总体难度略高于北京高考,但是并不过分。
第19题肯定突破了北京历来在导数题考察的难度,其(I)(II)问单独作为一题较为合适。
第(III)问预计得分率很低,因为学生缺少函数在这方面的直观感觉,以及把直观感觉转化为数学语言的能力。
不过可以宽慰的是,这种问法在高考中出现的概率并不高。
学生更应该重视前两问的解题思路,一定要做到轻车熟路、游刃有余。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出
像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
第20题可以说如果从第(II)问中理解了f(n)和f(n+1)的关系,整个题目就迎刃而解了。
在近来一二模的大轴题中,这道题算不上很难的题目。
不过,绝大多数同学无论是在心理上还是考试节奏、时间安排上,已经被前面的题击溃了,所以根本无暇顾及此题,是一件非常可惜的事情。
对于大轴题,希望同学们都一定不要放弃第一问。
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。
有的孩子说“乌云跑得飞快。
”我加以肯
定说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。
雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。
我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。
如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。
通过联想,幼儿能够生动形象地描述观察对象。
从练习而言,如果这份试卷的小题超过了35分钟,说明在知识的掌握层面上还有问题,要针对自己不熟悉的知识点,加强基本题型的练习。
大题要重视16,17,18题和19题的前两问,尤其是解析几何的韦达定理化简、导数中的分类讨论,一定要勤练,做到胸有成竹。
综上所述,这份试卷的难度是明显高于高考的,所以考的不理想的同学也不要气馁,多总结分析自己的问题所在,并在最后的一个月中进行有针对性的练习,能弥补自己的漏洞,解决自己的问题,这份试卷也就达到了其目的。