2022年北京市高考数学试题(含答案解析)

合集下载

2022年普通高等学校招生全国统一考试(新高考全国Ⅰ卷) 数学真题第22题题目及答案

2022年普通高等学校招生全国统一考试(新高考全国Ⅰ卷) 数学真题第22题题目及答案
设 , ,
当 时, ,当 时, ,
故 在 上为减函数,在 上为增函数,
所以 ,
而 , ,
设 ,其中 ,则 ,
故 在 上为增函数,故 ,
故 ,故 有两个不同的零点,即 的解的个数为2.
设 , ,
当 时, ,当 时, ,
故 在 上为减函数,在 上为增函数,
所以 ,而 , ,有来自个不同的零点即 的解的个数为2.
因此若存在直线 与曲线 、 有三个不同 交点,
故 ,
此时 有两个不同的零点 ,
此时 有两个不同的零点 ,
故 , , ,
所以 即 即 ,
故 为方程 的解,同理 也为方程 的解
又 可化为 即 即 ,
故 为方程 的解,同理 也为方程 的解,
所以 ,而 ,
故 即 .
2022年普通高等学校招生全国统一考试(新高考全国Ⅰ卷)数学真题
第22题题目及答案
22.(12分)
已知函数 和 有相同的最小值.
(1)求a;
(2)证明:存在直线 ,其与两条曲线 和 共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
22.(1)
(2)由(1)可得 和 的最小值为 .
当 时,考虑 的解的个数、 的解的个数.
当 ,由(1)讨论可得 、 仅有一个零点,
当 时,由(1)讨论可得 、 均无零点,
故若存在直线 与曲线 、 有三个不同的交点,
则 .
设 ,其中 ,故 ,
设 , ,则 ,
故 在 上为增函数,故 即 ,
所以 ,所以 在 上为增函数,
而 , ,
故 在 上有且只有一个零点 , 且:
当 时, 即 即 ,
当 时, 即 即 ,

2023年高考数学真题试卷(北京卷)附详细解答

2023年高考数学真题试卷(北京卷)附详细解答

2023年北京市高考数学试卷一、选择题:本题共10小题,每小题4分,共40分.1. 已知集合{20},{10}M x x N x x =+≥=-<∣∣,则M N ⋂=( )A. {21}xx -≤<∣ B. {21}x x -<≤∣ C. {2}x x ≥-∣D. {1}x x <∣2. 在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A. 1B. 1-C.1-+D. 1-3. 已知向量a b ,满足(2,3),(2,1)a b a b +=-=-,则22||||a b -=( ) A. 2-B. 1-C. 0D. 14. 下列函数中,在区间(0,)+∞上单调递增的是( ) A. ()ln f x x =- B. 1()2xf x =C. 1()f x x=-D. |1|()3x f x -=5. 512x x ⎛⎫- ⎪⎝⎭的展开式中x 的系数为( ). A. 80-B. 40-C. 40D. 806. 已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =( )A. 7B. 6C. 5D. 47. 在ABC ∆中,()(sin sin )(sin sin )a c A C b A B +-=-,则C ∠=( ) A.π6B.π3C.2π3D.5π68. 若0xy ≠,则“0x y +=”是“2y xx y+=-”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件9. 坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m,10m AB BC AD ===,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD ,则该五面体的所有棱长之和为( )A. 102mB.112mC. 117mD. 125m10. 已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+=,则( ) A. 当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B. 当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C. 当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D. 当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立二、填空题:本题共5小题,每小题5分,共25分.11. 已知函数2()4log xf x x =+,则12f ⎛⎫=⎪⎝⎭____________.12. 已知双曲线C 的焦点为(2,0)-和(2,0),,则C 的方程为____________. 13. 已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p 为假命题的一组,αβ的值为α=__________,β= _________.14. 我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =___________;数列{}n a 所有项的和为____________.15. 设0a >,函数2,,(),1,.x x a f x a x a x a +<-⎧=-≤≤>⎪⎩,给出下列四个结论:①()f x 在区间(1,)a -+∞上单调递减; ②当1a ≥时,()f x 存在最大值; ③设()()()()()()111222,,,M x f x x a N x f x xa ≤>,则||1MN >;④设()()()()()()333444,,,P x f x x a Q x f x x a <-≥-.若||PQ 存在最小值,则a 的取值范围是10,2⎛⎤ ⎥⎝⎦.其中所有正确结论的序号是____________.三、解答题:本题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤.16. 如图,在三棱锥-P ABC 中,PA ⊥平面ABC,1PA AB BC PC ====,(1)求证:BC ⊥平面P AB ; (2)求二面角A PC B --的大小.17. 设函数π()sin cos cos sin 0,||2f x x x ωϕωϕωϕ⎛⎫=+>< ⎪⎝⎭.(1)若(0)f =求ϕ的值. (2)已知()f x 在区间π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,2π13f ⎛⎫= ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:π3f ⎛⎫=⎪⎝⎭条件①:π13f ⎛⎫-=- ⎪⎝⎭; 条件①:()f x 在区间ππ,23⎡⎤--⎢⎥⎣⎦上单调递减. 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18. 为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.用频率估计概率.(1)试估计该农产品价格“上涨”的概率;(2)假设该农产品每天的价格变化是相互独立的.在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;(3)假设该农产品每天的价格变化只受前一天价格变化的影响.判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)19. 已知椭圆2222:1(0)x y E a b a b +=>>的离心率为3,A 、C 分别是E 的上、下顶点,B ,D分别是E 的左、右顶点,||4AC =. (1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y =-交于点N .求证://MN CD .20. 设函数3()e ax b f x x x +=-,曲线()y f x =在点(1,(1))f 处的切线方程为1+-=x y . (1)求,a b 的值;(2)设函数()()g x f x '=,求()g x 的单调区间; (3)求()f x 的极值点个数.21. 已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈{}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈,定义{}max ,{0,1,2,,}k i k r i B A i m =≤∈∣,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值; (2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=-,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈,满足,,p q s t >> 使得t p s q A B A B +=+.2023年北京市高考数学试卷解析一、选择题:本题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. A解:由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣ 根据交集的运算可知,{|21}M N x x =-≤<.故选:A 2. D解:z 在复平面对应的点是(-,根据复数的几何意义,1z =-+由共轭复数的定义可知,1z =-. 故选:D 3. B解:向量,a b 满足(2,3),(2,1)a b a b +=-=- 所以22||||()()2(2)311a b a b a b -=+⋅-=⨯-+⨯=-.故选:B 4. C解:对于A,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减 所以()ln f x x =-在()0,∞+上单调递减,故A 错误; 对于B,因为2xy =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减 所以()12x f x =在()0,∞+上单调递减,故B 错误; 对于C,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减 所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --===== 显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C. 5. D解:512x x ⎛⎫- ⎪⎝⎭的展开式的通项为()()55521551212rr r rr r r r T C x C x x ---+⎛⎫=-=- ⎪⎝⎭令521r -=得2r =所以512x x ⎛⎫- ⎪⎝⎭的展开式中x 的系数为()252251280C --=故选:D 6. D解:因为抛物线2:8C y x =的焦点()2,0F ,准线方程为2x =-,点M 在C 上所以M 到准线2x =-的距离为MF 又M 到直线3x =-的距离为5 所以15MF +=,故4MF =. 故选:D. 7. B解:因为()(sin sin )(sin sin )a c A C b A B +-=-所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===又0πC <<,所以π3C =. 故选:B. 8. C解:因为0xy ≠,且2x yy x+=- 所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以“0x y +=”是“2x yy x+=-”的充要条件. 故选:C 9. C解:如图,过E 做EO ⊥平面ABCD ,垂足为O ,过E 分别做EG BC ⊥,EM AB ⊥,垂足分别为G ,M ,连接,OG OM由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为EMO ∠和EGO ∠所以5tan tan EMO EGO ∠=∠=. 因为EO ⊥平面ABCD ,BC ⊂平面ABCD ,所以EO BC ⊥ 因为EG BC ⊥,,EO EG ⊂平面EOG ,EO EG E ⋂= 所以BC ⊥平面EOG ,因为OG ⊂平面EOG ,所以BC OG ⊥ 同理:OM BM ⊥,又BM BG ⊥,故四边形OMBG 是矩形所以由10BC =得5OM =,所以EO 所以5OG =所以在直角三角形EOG 中,EG ==在直角三角形EBG 中,5BG OM ==,8EB ===又因为55255515EF AB =--=--=所有棱长之和为2252101548117m ⨯+⨯++⨯=. 故选:C 10.B解:因为()311664n n a a +=-+,故()311646n n a a +=-- 对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤ 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +< 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-< 所以()16694n n a a +--≥,故119634n n a +-⎛⎫-≥ ⎪⎝⎭,故119634n n a +-⎛⎫≤- ⎪⎝⎭若存在常数0M ≤,使得n a M >恒成立,则19634n M -⎛⎫-> ⎪⎝⎭故16934n M --⎛⎫> ⎪⎝⎭,故9461log 3Mn -<+,故n a M >恒成立仅对部分n 成立 故A 不成立. 对于B ,若15,a 可用数学归纳法证明:106n a --≤<即56n a ≤<证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立;设当n k =时,56k a ≤<成立 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤ 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立. 而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列 又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664nn a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立 则164n M ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥ 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立. 而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列 又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫ ⎪⎭≥+⎝若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫ ⎪⎝>+⎭故19643n M -⎛⎫ ⎪⎝>+⎭,故946log 13M n -⎛⎫<+⎪⎝⎭,这与n 的个数有限矛盾,故D 错误. 故选:B.二、填空题:本题共5小题,每小题5分,共25分.11. 1解:函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:112. 22122x y -=解:令双曲线C 的实半轴、虚半轴长分别为,a b ,显然双曲线C 的中心为原点,焦点在x 轴上,其半焦距2c =由双曲线C,得ca=解得a =则b ==所以双曲线C 的方程为22122x y -=.故答案为:22122x y -=13. ①9π4 ① π3解:因为()tan f x x =在π0,2⎛⎫⎪⎝⎭上单调递增,若00π02<<<αβ,则00tan tan <αβ取1020122π,2π,,k k k k =+=+∈Z ααββ则()()100200tan tan 2πtan ,tan tan 2πtan k k =+==+=αααβββ,即tan tan αβ<令12k k >,则()()()()102012002π2π2πk k k k -=+-+=-+-αβαβαβ因为()1200π2π2π,02k k -≥-<-<αβ,则()()12003π2π02k k -=-+->>αβαβ 即12k k >,则αβ>. 不妨取1200ππ1,0,,43k k ====αβ,即9ππ,43αβ==满足题意. 故答案为:9ππ;43. 14. ① 48 ① 384解:设前3项的公差为d ,后7项公比为0q >则4951921612a q a ===,且0q >,可得2q则53212a a d q=+=,即123d +=,可得1d = 空1:可得43733,48a a a q ===空2:()127693121233232338412a a a -=+++⨯+⋅⋅⋅+⨯=+=-+++15. ②③解:依题意,0a >当x a <-时,()2f x x =+,易知其图像为一条端点取不到值的单调递增的射线; 当a x a -≤≤时,()f x =易知其图像是,圆心为()0,0,半径为a 的圆在x 轴上方的图像(即半圆);当x a >时,()1f x =,易知其图像是一条端点取不到值的单调递减的曲线; 对于①,取12a =,则()f x 的图像如下显然,当(1,)x a ∈-+∞,即1,2x ⎛⎫∈-+∞ ⎪⎝⎭时,()f x 在1,02⎛⎫- ⎪⎝⎭上单调递增,故①错误;对于②,当1a ≥时当x a <-时,()221f x x a =+<-+≤;当a x a -≤≤时,()f x =a ;当x a >时,()112f x =<≤- 综上:()f x 取得最大值a ,故②正确;对于③,结合图像,易知在1x a =,2x a >且接近于x a =处,()()()()()()111222,,,M x f x x a N x f x x a ≤>的距离最小当1x a =时,()10y f x ==,当2x a >且接近于x a =处,()221y f x =<此时,1211MN y y >->>,故③正确;对于④,取45a =,则()f x 的图像如下因为()()()()()()333444,,,P x f x xa Q x f x x a <-≥-结合图像可知,要使PQ 取得最小值,则点P 在()425f x x x ⎛⎫=+<-⎪⎝⎭上,点Q 在()4455f x x ⎫=-≤≤⎪⎭ 同时PQ 的最小值为点O 到()425f x x x ⎛⎫=+<-⎪⎝⎭的距离减去半圆的半径a 此时,因为()425f x y x x ⎛⎫==+<-⎪⎝⎭的斜率为1,则1OP k =-,故直线OP 的方程为y x =-联立2y x y x =-⎧⎨=+⎩,解得11x y =-⎧⎨=⎩,则()1,1P -显然()1,1P -在()425f x x x ⎛⎫=+<-⎪⎝⎭上,满足PQ 取得最小值 即45a =也满足PQ 存在最小值,故a 的取值范围不仅仅是10,2⎛⎤⎥⎝⎦,故④错误. 故答案为:②③.三、解答题:本题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤.16. (1)证明见解析 (2)π3【小问1详解】因为PA ⊥平面,ABC BC ⊂平面ABC所以PA BC ⊥,同理PA AB ⊥ 所以PAB 为直角三角形又因为PB ==,1,BC PC ==所以222PB BC PC +=,则PBC 为直角三角形,故BC PB ⊥ 又因为BC PA ⊥,PA PB P =所以BC ⊥平面PAB . 【小问2详解】由(1)BC ⊥平面PAB ,又AB ⊂平面PAB ,则BC AB ⊥以A 为原点,AB 为x 轴,过A 且与BC 平行的直线为y 轴,AP 为z 轴,建立空间直角坐标系如图则(0,0,0),(0,0,1),(1,1,0),(1,0,0)A P C B所以(0,0,1),(1,1,0),(0,1,0),(1,1,1)AP AC BC PC ====-设平面PAC 的法向量为()111,,m x y z =,则0m AP m AC ⎧⋅=⎪⎨⋅=⎪⎩ 即1110,0,z x y =⎧⎨+=⎩令11x =,则11y =-,所以(1,1,0)m =- 设平面PBC 的法向量为()222,,x n y z =,则0n BC n PC ⎧⋅=⎪⎨⋅=⎪⎩,即222200y x y z =⎧⎨+-=⎩ 令21x =,则21z =,所以(1,0,1)n =所以11cos ,22m n m n m n⋅===⨯又因为二面角A PC B --为锐二面角 所以二面角A PC B --的大小为π3. 17. (1)π3ϕ=-. (2)条件①不能使函数()f x 存在;条件②或条件①可解得1ω=,π6ϕ=-. 【小问1详解】因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()()(0)sin 0cos cos 0sin sin f ωϕωϕϕ=⋅+⋅== 因为π||2ϕ<,所以π3ϕ=-. 【小问2详解】因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()π()sin ,0,||2f x x ωϕωϕ=+><,所以() f x 的最大值为1,最小值为1-.若选条件①:因为()()sin f x x ωϕ=+的最大值为1,最小值为1-,所以π3f ⎛⎫= ⎪⎝⎭故条件①不能使函数()f x 存在; 若选条件②:因为() f x 在π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,且2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭所以2πππ233T ⎛⎫=--= ⎪⎝⎭,所以2πT =,2π1Tω== 所以()()sin f x x ϕ=+又因为π13f ⎛⎫-=- ⎪⎝⎭,所以πsin 13ϕ⎛⎫-+=- ⎪⎝⎭所以ππ2π,Z 32k k ϕ-+=-+∈ 所以π2π,Z 6k k ϕ=-+∈,因为||2ϕπ<,所以π6ϕ=-.所以1ω=,π6ϕ=-;若选条件③:因为() f x 在π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,在ππ,23⎡⎤--⎢⎥⎣⎦上单调递减 所以() f x 在π3x =-处取得最小值1-,即π13f ⎛⎫-=- ⎪⎝⎭. 以下与条件②相同. 18. (1)0.4 (2)0.168 (3)不变 【小问1详解】根据表格数据可以看出,40天里,有16个+,也就是有16天是上涨的 根据古典概型的计算公式,农产品价格上涨的概率为:160.440= 【小问2详解】在这40天里,有16天上涨,14天下跌,10天不变,也就是上涨,下跌,不变的概率分别是0.4,0.35,0.25于是未来任取4天,2天上涨,1天下跌,1天不变的概率是22142C 0.4C 0.350.250.168⨯⨯⨯⨯=【小问3详解】由于第40天处于上涨状态,从前39次的15次上涨进行分析,上涨后下一次仍上涨的有4次.不变的有9次,下跌的有2次. 因此估计第41次不变的概率最大.19. (1)22194x y +=(2)证明见解析 【小问1详解】依题意,得c e a ==,则c =又,A C 分别为椭圆上下顶点,4AC =,所以24b =,即2b = 所以2224a c b -==,即22254499a a a -==,则29a = 所以椭圆E 的方程为22194x y +=.【小问2详解】因为椭圆E 的方程为22194x y +=,所以()()()()0,2,0,2,3,0,3,0A C B D --因为P 为第一象限E 上的动点,设()(),03,02P m n m n <<<<,则22194m n +=易得022303BC k +==---,则直线BC 的方程为223y x =--033PDn n k m m -==--,则直线PD 的方程为()33n y x m =--联立()22333y x n y x m ⎧=--⎪⎪⎨⎪=-⎪-⎩,解得()332632612326n m x n m n y n m ⎧-+=⎪⎪+-⎨-⎪=⎪+-⎩,即 ()332612,326326n m n M n m n m -+⎛⎫- ⎪+-+-⎝⎭而220PA n n k m m --==-,则直线PA 的方程为22n y x m-=+ 令=2y -,则222n x m --=+,解得42m x n -=-,即4,22m N n -⎛⎫-⎪-⎝⎭又22194m n +=,则22994n m =-,2287218m n =- 所以()()()()()()12264122326332696182432643262MNnn m n n m k n m n m n m n m m n m n -+-+--+-==-+-+-++---+--222222648246482498612369612367218n mn m n mn m n m mn m n m n n m -+-+-+-+==++---++-- ()()22222324126482429612363332412n mn m n mn m n mn m n mn m -+-+-+-+===-+-+-+-+ 又022303CD k +==-,即MN CD k k = 显然,MN 与CD 不重合,所以//MN CD . 20. (1)1,1a b =-= (2)答案见解析 (3)3个 【小问1详解】 因为3R ()e,ax bf x x x x +=-∈,所以()()2313e ax bf x a x x ++'=-因为()f x 在(1,(1))f 处的切线方程为1+-=x y 所以(1)110f =-+=,(1)1f '=-则()311e 013e 1a b a ba ++⎧-⨯=⎪⎨-+=-⎪⎩,解得11a b =-⎧⎨=⎩ 所以1,1a b =-=. 【小问2详解】由(1)得()()()()231R 13e x g f x x xx x -+'-==∈-则()()1266ex x g x x x -+'+-=-令2660x x -+=,解得3x =±不妨设13x =23x =,则120x x << 易知1e 0x -+>恒成立.所以令()0g x '<,解得10x x <<或2x x >;令()0g x '>,解得0x <或12x x x<<;所以()g x 在()10,x ,()2,x +∞上单调递减,在(),0∞-,()12,x x 上单调递增即()g x 的单调递减区间为(0,3和()3++∞,单调递增区间为(),0∞-和(3.【小问3详解】 由(1)得()31R ()ex f x x x x -+=-∈,()()23113e x f x x x -+'-=-由(2)知()f x '在()10,x ,()2,x +∞上单调递减,在(),0∞-,()12,x x 上单调递增当0x <时,()24011e f '-=<-,()010f '=>,即()()010f f ''-<所以()f x '在(),0∞-上存在唯一零点,不妨设为3x ,则310x -<<此时,当3<x x 时,()0f x '<,则()f x 单调递减;当30x x <<时,0)('>x f ,则()f x 单调递增;所以()f x 在(),0∞-上有一个极小值点; 当()10,x x ∈时,()f x '在()10,x 上单调递减则()(()131120f x f f '''=<=-<,故()()100f f x ''< 所以()f x '在()10,x 上存在唯一零点,不妨设为4x ,则410x x <<此时,当40x x <<时,0)('>x f ,则()f x 单调递增;当41x x x <<时,()0f x '<,则()f x 单调递减;所以()f x 在()10,x 上有一个极大值点; 当()12,x x x ∈时,()f x '在()12,x x 上单调递增则()(()23310f x f f '''=>=>,故()()120f x f x ''< 所以()f x '在()12,x x 上存在唯一零点,不妨设为5x ,则152x x x <<此时,当15x x x <<时,()0f x '<,则()f x 单调递减;当52x x x <<时,()0f x '<,则()f x 单调递增;所以()f x 在()12,x x 上有一个极小值点;当233x x >=>时,()232330x x x x -=-<所以()()231013ex f x x x-+'=->-,则()f x 单调递增所以()f x 在()2,x +∞上无极值点;综上:()f x 在(),0∞-和()12,x x 上各有一个极小值点,在()10,x 上有一个极大值点,共有3个极值点.21. (1)00r =,11r =,21r =,32r = (2),n r n n =∈N (3)证明见详解 【小问1详解】由题意可知:012301230,2,3,6,0,1,4,7A A A A B B B B ======== 当0k =时,则0000,,1,2,3i B A B A i ==>=,故00r =; 当1k =时,则01111,,,2,3i B A B A B A i <<>=,故11r =; 当2k =时,则22232,0,1,,,i B A i B A B A ≤=>>故21r =; 当3k =时,则333,0,1,2,i B A i B A ≤=>,故32r =; 综上所述:00r =,11r =,21r =,32r =. 【小问2详解】由题意可知:n r m ≤,且n r ∈N因为1,1n n a b ≥≥,则111,1n n A a B b ≥=≥=,当且仅当1n =时,等号成立 所以010,1r r ==又因为112i i i r r r -+≤+,则11i i i i r r r r +--≥-,即112101m m m m r r r r r r ----≥-≥⋅⋅⋅≥-= 可得11i i r r +-≥反证:假设满足11n n r r +->的最小正整数为11j m ≤≤- 当i j ≥时,则12i i r r +-≥;当1i j ≤-时,则11i i r r +-=则()()()112100m m m m m r r r r r r r r ---=-+-+⋅⋅⋅+-+()22m j j m j ≥-+=-又因为11j m ≤≤-,则()2211mr m j m m m m ≥-≥--=+> 假设不成立,故11n n r r +-=即数列{}n r 是以首项为1,公差为1的等差数列,所以01,n r n n n =+⨯=∈N .【小问3详解】(①)若m m A B ≥,构建,1n n n r S A B n m =-≤≤,由题意可得:0n S ≥,且n S 为整数 反证,假设存在正整数K ,使得K S m ≥ 则1,0K K K r K r A B m A B +-≥-<,可得()()111K K K K K r r r K r K r b B B A B A B m +++=-=---> 这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≤-. ①若存在正整数N ,使得0N N N r S A B =-=,即N N r A B = 可取0,,N r p q N s r ====,使得p s q r B B A A +=+; ①若不存在正整数N ,使得0N S = 因为{}1,2,1n S m m ∈⋅⋅⋅-,且1n m ≤≤ 所以必存在1X Y m ≤<≤,使得X Y S S = 即X Y X r Y r A B A B -=-,可得Y X X r Y r A B A B +=+ 可取,,,Y X p X s r q Y r r ====,使得p s q r B B A A +=+; (①)若m m A B <,构建,1n n r n S B A n m =-≤≤,由题意可得:0n S ≤,且n S 为整数 反证,假设存在正整数K ,使得K S m ≤- 则1,0K K r K r K B A m B A +-≤--> 可得()()111K K K K K r r r r K r K b B B B A B A m +++=-=---> 这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≥-. ①若存在正整数N ,使得0N N r N S B A =-=,即N N r A B = 可取0,,N r p q N s r ====,使得p s q r B B A A +=+;②若不存在正整数N ,使得0N S = 因为{}1,2,,1n S m ∈--⋅⋅⋅-,且1n m ≤≤ 所以必存在1X Y m ≤<≤,使得X Y S S = 即X Y r X r Y B A B A -=-,可得Y X X r Y r A B A B +=+ 可取,,,Y X p X s r q Y r r ====,使得p s q r B B A A +=+;综上所述:存在0,0p q m r s m ≤<≤≤<≤使得ps q r B B A A +=+.。

2022年新高考全国Ⅰ卷数学高考真题试卷(含答案)

2022年新高考全国Ⅰ卷数学高考真题试卷(含答案)

2022年普通高等学校招生全国统一考试(新高考全国Ⅰ卷)数学本试卷共4页,22小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若集合{4},{31}M x x N x x =<=≥∣∣,则M N =( ) A. {}02x x ≤< B. 123x x ⎧⎫≤<⎨⎬⎩⎭ C. {}316x x ≤< D. 1163x x ⎧⎫≤<⎨⎬⎩⎭2.若i(1)1z -=,则z z +=( )A .2-B .1-C .1D .23.在ABC △中,点D 在边AB 上,2BD DA =.记CA CD ==,m n ,则CB =( ) A .32-m n B .23-+m n C .32+m n D .23+m n4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,增加的水量约为7 2.65≈)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12 D .23 6.记函数π()sin (0)4f x x b ωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若2ππ3T <<,且()y f x =的图像关于点3π,22⎛⎫ ⎪⎝⎭中心对称,则π2f ⎛⎫= ⎪⎝⎭( ) A .1 B .32 C .52D .3 7.设0.110.1e ,ln 0.99a b c ===-,,则( ) A .a b c << B .c b a << C .c a b << D .a c b <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤锥体积的取值范围是( )A .8118,4⎡⎤⎢⎥⎣⎦ B .2781,44⎡⎤⎢⎥⎣⎦ C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27] 二、选择题:本题共4小题,每小题5分,共20分。

2024年北京市高考数学试卷

2024年北京市高考数学试卷

2024年北京市高考数学试卷A.{x|-1≤x<1}B.{x|x>-3}C.{x|-3<x<4}D.{x|x<4}A.-1-iB.-1+iC.1-iD.1+iA.B.2C.3D.3(2024•北京)已知集合M={x|-3<x<1},N={x|-1≤x<4},则M∪N=( )答案:C解析:结合并集的定义,即可求解.解答:解:集合M={x|-3<x<1},N={x|-1≤x<4},则M∪N={x|-3<x<4}.故选:C.(2024•北京)若复数z满足=-1-i ,则z=( )z i答案:C解析:结合复数的四则运算,即可求解.解答:解:=-1-i,则z=i(-1-i)=1-i.故选:C.z i(2024•北京)圆x 2+y 2-2x+6y=0的圆心到x-y+2=0的距离为( )√2√2答案:D解析:求解圆的圆心坐标,利用点到直线的距离公式求解即可.解答:解:圆x 2+y 2-2x+6y=0的圆心(1,-3),圆x 2+y 2.故选:D.√2A.6B.-6C.12D.-12A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2024•北京)在的展开式中,x 3的系数为( )(x -)√x 4答案:A解析:利用二项式定理,求解即可.解答:解:的通项公式为:(-1)r •,4-r +=3,可得r=2,二项展开式中x 3的系数:•(-1)2=6.故选:A.(x -)√x4C 4r •x 4-r x r2r 2C 42(2024•北京)设a ,b 是向量,则“(a +b )•(a -b )=0”是“a =-b 或a =b ”的( )→→→→→→→→→→答案:B解析:根据已知条件,依次判断充分性,必要性的判断,即可求解.解答:解:(a +b )•(a -b )=0,则-=0,即|a |=|b |,|a |=|b |不能推出a =b 或a =-b ,充分性不成立,a =b 或a =-b 能推出|a |=|b |,必要性成立,故“(a +b )•(a -b )=0”是“a =b 或a =-b ”的必要不充分条件.故选:B.→→→→a →2b →2→→→→→→→→→→→→→→→→→→→→→→(2024•北京)设函数f(x)=sinωx(ω>0).已知f(x 1)=-1,f(x 2)=1,且|x 1-x 2|的最小值为,则ω=( )π2A.1B.2C.3D.4A.3N 2=2N 1B.2N 2=3N 1C.=D.=答案:B解析:由已知结合正弦函数的性质即可直接求解.解答:解:因为f(x)=sinωx,则f(x 1)=-1为函数的最小值,f(x 2)=1为函数的最大值,又|-==,所以T=π,ω=2.故选:B.x 1x 2|minπ2T 2(2024•北京)生物丰富度指数d =是河流水质的一个评价指标,其中S,N分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数S没有变化,生物个体总数由N 1变为N 2,生物丰富度指数由2.1提高到3.15,则( )S -1lnNN 22N 13N 23N 12答案:D解析:根据已知条件可得=2.1,=3.15,化简即可求解.S -1lnN 1S -1lnN 2解答:解:根据个体总数由N 1变为N 2可列式,=2.1,=3.15,所以2.1lnN 1=3.15lnN 2,约分可得2lnN 1=3lnN 2,故=,所以=.故选:D.S -1lnN 1S -1lnN 2lnN 12lnN 23N 12N 23(2024•北京)如图,在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,PA=PB=4,PC=PD=2,该棱锥的高为( )√2A.1B.2C.D.A.lo <C.lo <+D.lo >+√2√3答案:D解析:根据题意分析可知平面PEF⊥平面ABCD,可知PG⊥平面ABCD,再结合等体积法,即可求解.解答:解:由题意知△PAB为正三角形,因为PC 2+PD 2=CD 2,所以PC⊥PD,分别取AB,CD的中点E,F,连接PE,EF,PF,则PE=2,PF=2,EF=4,则PE 2+PF 2=EF 2,所以PE⊥PF,过点P作PG⊥EF,垂足为G.易知CD⊥PF,CD⊥EF,EF,PF ⊂平面PEF,且EF∩PF=F,所以CD⊥平面PEF.又PG ⊂平面PEF,所以CD⊥PG.又PG⊥EF,CD,EF ⊂平面ABCD,CD∩EF=F,所以PG⊥平面ABCD,所以PG为四棱锥P-ABCD的高,因为PE •PF =EF •PC ,所以PG ===.故选:D.√31212PE •PF EF 2×2√34√3(2024•北京)已知(x 1,y 1),(x 2,y 2)是函数y=2x 的图象上两个不同的点,则( )g 2+y 1y 22+x 1x 22g 2+y 1y 22x 1x 2g 2+y 1y 22x 1x 2答案:BA.d=3,S<1B.d=3,S>1C.d =,S <1D.d =,S >1解析:根据已知条件,结合基本不等式的公式,以及对数的运算性质,即可求解.解答:解:(x 1,y 1),(x 2,y 2)是y=2x 上的点,则=,=,+≥2=2,当且仅当x 1=x 2时,等号成立,故>,两边同时取对数可得,lo >.故选:B.y 12x1y 22x22x12x2√•2x 12x 2√2+x 1x 2+y 1y 222+x 1x22g 2+y 1y 22+x 1x 22(2024•北京)已知M={(x,y)|y=x+t(x 2-x),1≤x≤2,0≤t≤1}是平面直角坐标系中的点集.设d是M中两点间的距离的最大值,S是M表示的图形的面积,则( )√10√10答案:C解析:根据已知条件,作出图象,结合图象即可得出答案.解答:解:集合{y|y=x+t(x 2-x),0≤t≤1,1≤x≤2}表示的图形如下图阴影部分所示,由图象可知,d =|AB |==,S <=×(4-2)×(2-1)=1.故选:C.√(2-1+(4-1)2)2√10S △ABC 12(2024•北京)抛物线y 2=16x的焦点坐标为 (4,0).答案:见试题解答内容解析:根据抛物线的标准方程计算可得.解答:解:抛物线y2=16x的焦点坐标是(4,0).故答案为:(4,0).(2024•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于原点对称.若α∈[,],则cosβ的最大值为.π6π3答案:见试题解答内容解析:先求出β的范围,再结合余弦函数的单调性,即可求解.解答:解:α与β的终边关于原点对称可得,α+π+2kπ=β,k∈Z,cosβ=cos(α+π+2kπ)=-cosα,α∈[,],cosα∈[,],,-],故当α=,β=2kπ+,k∈Z时,cosβ的最大值为-.故答案为:-.π6π312√32212π34π31212(2024•北京)若直线y=k(x-3)与双曲线-=1只有一个公共点,则k的一个取值为x24y2答案:见试题解答内容解析:根据已知条件,设出直线方程,再与双曲线方程联立,再分类讨论,并结合判别式,即可求解.解答:解:联立,化简可得(1-4k2)x2+24k2x-36k2-4=0,因为直线y=k(x-3)与双曲线-=1只有一个公共点,故1-4k2=0,或Δ=(24k2)2+4(1-4k2)(36k2+4)=0,解得k=±或k无解,{-=1y=k(x-3)x24y2x24y212当k=±时,符合题意.故答案为:(或-).121212(2024•北京)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325 mm,且斛量器的高为230mm,则斗量器的高为 23mm,升量器的高为 57.5mm.(不计量器的厚度)答案:见试题解答内容解析:根据题意求出斛量器的体积和斗量器、升量器的体积,再求对应圆柱的高.解答:解:斛量器的体积为V 3=π••230,则斗量器的体积为V 2=V 3=π••23,所以斗量器的高为23mm;设升量器的高为h,由升量器的体积为V 1=V 2=π••2.3=π••h,解得h=57.5,所以升量器的高为57.5mm;所以升量器、斗量器的高度分别57.5mm,23mm.故答案为:23,57.5.()32522110()32522110()32522()6522(2024•北京)设{a n }与{b n }是两个不同的无穷数列,且都不是常数列.记集合M={k|a k =b k ,k∈N*},给出下列四个结论:①若{a n }与{b n }均为等差数列,则M中最多有1个元素;②若{a n }与{b n }均为等比数列,则M中最多有2个元素;③若{a n }为等差数列,{b n }为等比数列,则M中最多有3个元素;④若{a n }为递增数列,{b n }为递减数列,则M中最多有1个元素.其中正确结论的序号是 ①③④.答案:见试题解答内容解析:根据散点图的特征可判断①④的正误,举出反例可判断②的正误,由通项公式的特征以及反证法,即可判断③的正误.解答:解:对于①,{a n },{b n }均为等差数列,M={k|a k =b k },{a n },{b n }不为常数列且各项均不相同,故它们的散点图分布在直线上,而两条直线至多有一个公共点,所以M中至多一个元素,故①正确;对于②,令=,=-(-2,满足{a n },{b n }均为等比数列,但当n为偶数时,===-(-2,此时M中有无穷多个元素,故②错误;对于③,设=A (Aq ≠0,q ≠±1),a n =kn+b(k≠0),若M中至少四个元素,则关于n的方程Aq n =kn+b至少有4个不同的正数解,若q<0,q≠±1,考虑关于n的方程Aq n =kn+b奇数解的个数和偶数解的个数,当Aq n =kn+b有偶数解,此方程即为A|q|n =kn+b,方程至多有两个偶数解,且有两个偶数解时Akln|q|>0,否则Akln|q|<0,因为y=A|q|n ,y=kn+b单调性相反,方程A|q|n =kn+b至多一个偶数解,当Aq n =kn+b有奇数解,此方程即为-A|q|n =kn+b,方程至多有两个奇数解,且有两个奇数解时-Akln|q|>0,即Akln|q|<0,否则Akln|q|>0,因为y=-A|q|n ,y=kn+b单调性相反,方程A|q|n =kn+b至多一个奇数解,因为Akln|q|>0,Akln|q|<0不可能同时成立,若q>0,q≠1,则由y=Aq n 和y=kn+b的散点图可得关于n的方程Aq n =kn+b至多有两个不同的解,矛盾;故Aq n =kn+b不可能有4个不同的正数解,故③正确.对于④,因为{a n }为单调递增,{b n }为递减数列,M={k|a k =b k },{a n },{b n }不为常数列且各项均不相同,前者散点图呈上升趋势,后者的散点图呈下降趋势,两者至多一个交点,故④正确.故答案为:①③④.a n 2n -1b n )n -1a n 2n -1b n )n -1b n q n (2024•北京)在△ABC中,内角A,B,C的对边分别为a,b,c,∠A为钝角,a=7,sin 2B.(1)求∠A;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使得△ABC存在,求△ABC的面积.条件①:b=7;条件②:cosB=;条件③:csinA=.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.7131452√3答案:(1);(2)条件①不符合要求;选②,;选③,.2π315√3415√34解析:(1)由已知等式结合二倍角公式和正弦定理求得sinA,即可得到A;(2)分析选条件①不符合要求;选条件②,由已知结合正弦定理求得b,由sinC=sin(A+B)可求得sinC,再由三角形面积公式求解即可;选条件③,由(1)及已知可求得c,结合余弦定理求得b,再由三角形面积公式求解即可;.解答:解:(1)因为sin 2B=2sinBcosB,因为A为钝角,所以B为锐角,cosB≠0,在△ABC中,由正弦定理得=,因为A为钝角,所以A=.(2)若选条件①,因为b=7,a=7,所以B=A=,与A+B+C=π矛盾,此时△ABC不存在,故条件①不符合要求,不选①;若选条件②,因为cosB=,所以sinB==在△ABC中,由正弦定理得=,所以b=•sinB=×+(-)×所以△ABC的面积为S=absinC=×7×3×若选条件③,由(1)知A=,因为csinA=,所以c=5,由余弦定理得a 2=b 2+c 2-2bccosA,714a sinAb sinB22π32π31314√1-B cos 214a b a sinA7sin 2π3141312141412121442π352√3即72=b 2+52-2b×5×cos ,解得b=3,所以△ABC的面积为S=bcsinA=×3×5×sin =.2π312122π315√34(2024•北京)如图,在四棱锥P-ABCD,BC∥AD,AB=BC=1,AD=3,点E在AD上,且PE⊥AD,DE=PE=2.(1)若F为线段PE的中点,求证:BF∥平面PCD.(2)若AB⊥平面PAD,求平面PAB与平面PCD夹角的余弦值.答案:见试题解答内容解析:(1)设M为PD的中点,连接FM,CM,证明四边形BCMF为平行四边形,即可得BF∥CM,由线面平行的判定定理即可证明;(2)易得CE⊥平面PAD,以E为坐标原点,建立空间直角坐标系,利用向量法即可求解.解答:(1)证明:如图,设M为PD的中点,连接FM,CM,因为F是PE中点,所以FM∥ED,且FM=ED,因为AD∥BC,AB=BC=1,AD=3,DE=PE=2,所以四边形ABCE为平行四边形,BC∥ED,且BC=ED,所以FM∥BC,且FM=BC,即四边形BCMF为平行四边形,所以BF∥CM,因为BF ⊄平面PCD,CM ⊂平面PCD,所以BF∥平面PCD.(2)解:因为AB⊥平面PAD,所以CE⊥平面PAD,EP,ED,EC相互垂直,以E为坐标原点,建立如图所示的空间直角坐标系,1212则P(0,0,2),A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,2,0),所以AB =(1,0,0),AP =(0,1,2),PC =(1,0,-2),CD =(-1,2,0),设平面PAB的一个法向量为m =(x 1,y 1,z 1),则,取z 1=-1,则m =(0,2,-1),设平面PCD的一个法向量为n =(x 2,y 2,z 2),则,取z 2=1,则n =(2,1,1),设平面PAB与平面PCD夹角为θ,则cosθ===→→→→→⎧⎨⎩m •AB ==0m •AP =+2=0→→x 1→→y 1z1→→⎧⎨⎩n •PC =-2=0n •CD =-+2=0→→x 2z 2→→x 2y 2→m •n →→|m |•|n |→→2-1×√5√630(2024•北京)某保险公司为了解该公司某种保险产品的索赔情况,从合同保险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:索赔次数1234保单份数800100603010假设:一份保单的保费为0.4万元;前三次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i)记X为一份保单的毛利润,估计X的数学期望EX;(ii)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i)中EX估计值的大小,(结论不要求证明)答案:见试题解答内容解析:(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(i)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3,用频率估计概率后可求得分布列及数学期望,从而可求E(X);(ii)先算出下一期保费的变化情况,结合(i)的结果可求E(Y).解答:解:(1)设A为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得P (A )==;(2)(i)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3,由题可得P (ξ=0)==,P (ξ=0.8)==,P (ξ=1.6)==,P (ξ=2.4)==,P (ξ=3)==,所以E (ξ)=0×+0.8×+1.6×+2.4×+3×=0.278,因为毛利润是保费与赔偿金额之差,故E(X)=0.4-0.278=0.122(万元);(ii)由(i)知未赔偿的概率为P (ξ=0)==,至少赔偿一次的概率为1-=,故保费的变化为0.4××(1-4%)+0.4××(1+20%)=0.4032,设Y为保单下一保险期的毛利润,故E(Y)=0.122+0.4032-0.4=0.1252(万元).所以E(X)<E(Y).60+30+10800+100+60+30+10110800100045100100011060100035030100031001010001100451103503100110080010004545154515(2024•北京)已知椭圆方程E:+=1(a >b >0),以椭圆E的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点(0,t)(t>)且斜率存在的直线与椭圆E交于不同的两点A,B,过点A和C(0,1)的直线AC与椭圆E的另一个交点为D.(1)求椭圆E的方程及离心率;(2)若直线BD的斜率为0,求t的值.x 2a 2y 2b 2√2答案:见试题解答内容解析:(1)根据已知条件,结合勾股定理,求出b,c,再结合椭圆的性质,即可求解;(2)先设出直线AB的方程,并与椭圆的方程联立,再结合韦达定理,以及判别式,即可求解.解答:解:(1)椭圆方程C:+=1(a >b >0),焦点和短轴端点构成边长为2的正方形,则b =c,故a 2=b 2+c 2=2,解得a =;a ==2,所以椭圆方程为+=1,离心率为e(2)显然直线AB斜率存在,否则B,D重合,直线BD斜率不存在与题意矛盾,同样直线AB斜率不为0,否则直线AB与椭圆无交点,矛盾,设AB:y=kx+t,(t >),A(x 1,y 1),B(x 2,y 2),联立,化简并整理得(1+2k 2)x 2+4ktx+2t 2-4=0,由题意可知,Δ=16k 2t 2-8(2k 2+1)(t 2-2)=8(4k 2+2-t 2)>0,即k,t应满足4k 2+2-t 2>0,由韦达定理可知,+=,=,若直线BD斜率为0,由椭圆的对称性可设D(-x 2,y 2),故AD :y =(x -)+,令x=0,则====+t ==1,解得t=2,此时k满足,解得k>或k<-,综上所述,t=2满足题意,此时k的取值范围为{k|k <kx 2a 2y 2b 2√2√2√+b 2c 2x 24y 222√2{y =kx +t +=1x 24y 22x 1x 2-4kt 1+2k 2x 1x 22-4t 22+1k 2-y 1y 2+x 1x 2x 1y 1y C+x 1y 2x 2y 1+x 1x 2(k +t )+(k +t )x 1x 2x 2x 1+x 1x 22k +t (+)x 1x 2x 1x 2+x 1x 24k (-2)t 2-4kt2t {k ≠04+2-=4-2>0k 2t 2k 2√22√2222(2024•北京)设函数f(x)=x+kln(1+x)(k≠0),直线l是曲线y=f(x)在点(t,f(t))(t >0)处的切线.(1)当k=-1,求f(x)单调区间;(2)证明:l不经过(0,0);(3)当k=1时,设点A(t,f(t))(t>0),C(0,f(t)),O(0,0),B为l与y轴的交点,S △ACO 与S △ABO 分别表示△ACO和△ABO的面积.是否存在点A使得2S △ACO =15S △ABO 成立?若存在,这样的点A有几个?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)答案:见试题解答内容解析:(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y -f (t )=(1+)(x -t )(t >0),将(0,0)代入再设新函数F (t )=ln (1+t )-,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S △ABO 得到13ln (1+t )-2t -15=0,再设新函数h (t )=13ln (1+t )-2t -(t >0)研究其零点即可.k 1+tt 1+tt 1+t15t 1+t 解答:解:(1)f(x)=x-ln(1+x),f ′(x )=1-=(x >-1),当x∈(-1,0)时,f′(x)<0,f(x)在(-1,0)上单调递减,当x∈(0,+∞),f′(x)>0,f(x)在(0,+∞)上单调递增,则f(x)的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f ′(x )=1+,l的斜率为1+,故切线方程为y -f (t )=(1+)(x -t )(t >0),代入(0,0),-f (t )=-t (1+),f (t )=t (1+),t +kln (1+t )=t +t ,则ln (1+t )=,ln (1+t )-=0,令F (t )=ln (1+t )-,若l过(0,0),则F(t)在t∈(0,+∞)存在零点.F ′(t )=-=>0,故F(t)在(0,+∞)上单调递增,F(t)>F(0)=0,不满足假设,故l不过(0,0).(3)k=1,f(x)=x+ln(1+x),f ′(x )=1+=>0,=tf (t ),设l与y轴交点B为(0,q),t>0时,若q<0,则此时l与f(x)必有交点,与切线定义矛盾.由(2)知q≠0,∴q>0,则切线l的方程为y -t -ln (t +1)=(1+)(x -t ),令x=0,则y =q =ln (1+t )-,11+x x 1+xk 1+x k 1+tk 1+tk 1+t k 1+tk 1+t t 1+t t 1+tt 1+t11+t 1+t -t (1+t )2t (1+t )211+xx +21+x S △ACO 1211+tt t +1A.{x|-1≤x<1}B.{x|x>-3}C.{x|-3<x<4}D.{x|x<4}A.-1-iB.-1+iC.1-iD.1+i∵2S △ACO =15S △ABO ,则2tf (t )=15t [ln (1+t )-],∴13ln (1+t )-2t -15×=0,记h (t )=13ln (1+t )-2t -(t >0),∴满足条件的A有几个即h(t)有几个零点. h′(t)=-2-===,t ∈(0,)时,h′(t)<0,h(t)单调递减;t ∈(,4)时,h′(t)>0,h(t)单调递增;t∈(4,+∞)时,h′(t)<0,h(t)单调递减;∵h(0)=0,h()<0,h(4)=13ln5-20>13×1.6-20=0.8>0,h (24)=13ln 25-48-=26ln 5-48-<26×1.61-48-=-20.54<0,∴由零点存在性定理及h(t)的单调性,h(t)在(,4)上必有一个零点,在(4,24)上必有一个零点.综上所述,h(t)有两个零点,即满足2S ACO =15S ABO 的A有两个.t t +1t 1+t15t 1+t 131+t 15(t +1)213t +13-2(+2t +1)-15t 2(t +1)2-2+9t -4t 2(t +1)2(-2t +1)(t -4)(t +1)212121215×242572572512(2024•北京)已知集合M={x|-3<x<1},N={x|-1≤x<4},则M∪N=( )答案:C解析:结合并集的定义,即可求解.解答:解:集合M={x|-3<x<1},N={x|-1≤x<4},则M∪N={x|-3<x<4}.故选:C.(2024•北京)若复数z满足=-1-i ,则z=( )z i答案:CA.B.2C.3D.3A.6B.-6C.12D.-12A.充分不必要条件B.必要不充分条件解析:结合复数的四则运算,即可求解.解答:解:=-1-i ,则z=i(-1-i)=1-i.故选:C.zi(2024•北京)圆x 2+y 2-2x+6y=0的圆心到x-y+2=0的距离为( )√2√2答案:D解析:求解圆的圆心坐标,利用点到直线的距离公式求解即可.解答:解:圆x 2+y 2-2x+6y=0的圆心(1,-3),圆x 2+y 2.故选:D.√2(2024•北京)在的展开式中,x 3的系数为( )(x -)√x 4答案:A解析:利用二项式定理,求解即可.解答:解:的通项公式为:(-1)r •,4-r +=3,可得r=2,二项展开式中x 3的系数:•(-1)2=6.故选:A.(x -)√x4C 4r •x 4-r x r2r 2C 42(2024•北京)设a ,b 是向量,则“(a +b )•(a -b )=0”是“a =-b 或a =b ”的( )→→→→→→→→→→C.充要条件D.既不充分也不必要条件A.1B.2C.3D.4A.3N 2=2N 1B.2N 2=3N 1C.=D.=答案:B解析:根据已知条件,依次判断充分性,必要性的判断,即可求解.解答:解:(a +b )•(a -b )=0,则-=0,即|a |=|b |,|a |=|b |不能推出a =b 或a =-b ,充分性不成立,a =b 或a =-b 能推出|a |=|b |,必要性成立,故“(a +b )•(a -b )=0”是“a =b 或a =-b ”的必要不充分条件.故选:B.→→→→a →2b →2→→→→→→→→→→→→→→→→→→→→→→(2024•北京)设函数f(x)=sinωx(ω>0).已知f(x 1)=-1,f(x 2)=1,且|x 1-x 2|的最小值为,则ω=( )π2答案:B解析:由已知结合正弦函数的性质即可直接求解.解答:解:因为f(x)=sinωx,则f(x 1)=-1为函数的最小值,f(x 2)=1为函数的最大值,又|-==,所以T=π,ω=2.故选:B.x 1x 2|minπ2T 2(2024•北京)生物丰富度指数d =是河流水质的一个评价指标,其中S,N分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数S没有变化,生物个体总数由N 1变为N 2,生物丰富度指数由2.1提高到3.15,则( )S -1lnNN 22N 13N 23N 12A.1B.2C.D.答案:D解析:根据已知条件可得=2.1,=3.15,化简即可求解.S -1lnN 1S -1lnN 2解答:解:根据个体总数由N 1变为N 2可列式,=2.1,=3.15,所以2.1lnN 1=3.15lnN 2,约分可得2lnN 1=3lnN 2,故=,所以=.故选:D.S -1lnN 1S -1lnN 2lnN 12lnN 23N 12N 23(2024•北京)如图,在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,PA=PB=4,PC=PD=2,该棱锥的高为( )√2√2√3答案:D解析:根据题意分析可知平面PEF⊥平面ABCD,可知PG⊥平面ABCD,再结合等体积法,即可求解.解答:解:由题意知△PAB为正三角形,因为PC 2+PD 2=CD 2,所以PC⊥PD,分别取AB,CD的中点E,F,连接PE,EF,PF,则PE=2,PF=2,EF=4,则PE 2+PF 2=EF 2,所以PE⊥PF,√3A.lo <C.lo <+D.lo >+A.d=3,S<1B.d=3,S>1C.d =,S <1D.d =,S >1过点P作PG⊥EF,垂足为G.易知CD⊥PF,CD⊥EF,EF,PF ⊂平面PEF,且EF∩PF=F,所以CD⊥平面PEF.又PG ⊂平面PEF,所以CD⊥PG.又PG⊥EF,CD,EF ⊂平面ABCD,CD∩EF=F,所以PG⊥平面ABCD,所以PG为四棱锥P-ABCD的高,因为PE •PF =EF •PC ,所以PG ==.故选:D.1212PE •PF EF 4√3(2024•北京)已知(x 1,y 1),(x 2,y 2)是函数y=2x 的图象上两个不同的点,则( )g 2+y 1y 22+x 1x 22g 2+y 1y 22x 1x 2g 2+y 1y 22x 1x 2答案:B解析:根据已知条件,结合基本不等式的公式,以及对数的运算性质,即可求解.解答:解:(x 1,y 1),(x 2,y 2)是y=2x 上的点,则=,=,+≥2=2,当且仅当x 1=x 2时,等号成立,故>,两边同时取对数可得,lo >.故选:B.y 12x1y 22x22x12x2√•2x12x2√2+x 1x2+y 1y 222+x 1x22g 2+y 1y 22+x 1x 22(2024•北京)已知M={(x,y)|y=x+t(x 2-x),1≤x≤2,0≤t≤1}是平面直角坐标系中的点集.设d是M中两点间的距离的最大值,S是M表示的图形的面积,则( )√10√10答案:C解析:根据已知条件,作出图象,结合图象即可得出答案.解答:解:集合{y|y=x+t(x 2-x),0≤t≤1,1≤x≤2}表示的图形如下图阴影部分所示,由图象可知,d =|AB |==,S <=×(4-2)×(2-1)=1.故选:C.√(2-1+(4-1)2)2√10S△ABC 12(2024•北京)抛物线y 2=16x的焦点坐标为 (4,0).答案:见试题解答内容解析:根据抛物线的标准方程计算可得.解答:解:抛物线y 2=16x的焦点坐标是(4,0).故答案为:(4,0).(2024•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于原点对称.若α∈[,],则cosβ的最大值为 .π6π3答案:见试题解答内容解析:先求出β的范围,再结合余弦函数的单调性,即可求解.解答:解:α与β的终边关于原点对称可得,α+π+2kπ=β,k∈Z,cosβ=cos(α+π+2kπ)=-cosα,α∈[,],cosα∈[,,-],π6π3122212故当α=,β=2k π+,k∈Z时,cosβ的最大值为-.故答案为:-.π34π31212(2024•北京)若直线y=k(x-3)与双曲线-=1只有一个公共点,则k的一个取值为x 24y 2答案:见试题解答内容解析:根据已知条件,设出直线方程,再与双曲线方程联立,再分类讨论,并结合判别式,即可求解.解答:解:联立,化简可得(1-4k 2)x 2+24k 2x-36k 2-4=0,因为直线y=k(x-3)与双曲线-=1只有一个公共点,故1-4k 2=0,或Δ=(24k 2)2+4(1-4k 2)(36k 2+4)=0,解得k=±或k无解,当k=±时,符合题意.故答案为:(或-).{-=1y =k (x -3)x 24y 2x 24y 212121212(2024•北京)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325 mm,且斛量器的高为230mm,则斗量器的高为 23mm,升量器的高为 57.5mm.(不计量器的厚度)答案:见试题解答内容解析:根据题意求出斛量器的体积和斗量器、升量器的体积,再求对应圆柱的高.解答:解:斛量器的体积为V 3=π••230,则斗量器的体积为V 2=V 3=π••23,所以斗量器的高为23mm;设升量器的高为h,由升量器的体积为V 1=V 2=π••2.3=π••h,()32522110()32522110()32522()6522解得h=57.5,所以升量器的高为57.5mm;所以升量器、斗量器的高度分别57.5mm,23mm.故答案为:23,57.5.(2024•北京)设{a n }与{b n }是两个不同的无穷数列,且都不是常数列.记集合M={k|a k =b k ,k∈N*},给出下列四个结论:①若{a n }与{b n }均为等差数列,则M中最多有1个元素;②若{a n }与{b n }均为等比数列,则M中最多有2个元素;③若{a n }为等差数列,{b n }为等比数列,则M中最多有3个元素;④若{a n }为递增数列,{b n }为递减数列,则M中最多有1个元素.其中正确结论的序号是 ①③④.答案:见试题解答内容解析:根据散点图的特征可判断①④的正误,举出反例可判断②的正误,由通项公式的特征以及反证法,即可判断③的正误.解答:解:对于①,{a n },{b n }均为等差数列,M={k|a k =b k },{a n },{b n }不为常数列且各项均不相同,故它们的散点图分布在直线上,而两条直线至多有一个公共点,所以M中至多一个元素,故①正确;对于②,令=,=-(-2,满足{a n },{b n }均为等比数列,但当n为偶数时,===-(-2,此时M中有无穷多个元素,故②错误;对于③,设=A (Aq ≠0,q ≠±1),a n =kn+b(k≠0),若M中至少四个元素,则关于n的方程Aq n =kn+b至少有4个不同的正数解,若q<0,q≠±1,考虑关于n的方程Aq n =kn+b奇数解的个数和偶数解的个数,当Aq n =kn+b有偶数解,此方程即为A|q|n =kn+b,方程至多有两个偶数解,且有两个偶数解时Akln|q|>0,否则Akln|q|<0,因为y=A|q|n ,y=kn+b单调性相反,方程A|q|n =kn+b至多一个偶数解,当Aq n =kn+b有奇数解,此方程即为-A|q|n =kn+b,方程至多有两个奇数解,且有两个奇数解时-Akln|q|>0,即Akln|q|<0,否则Akln|q|>0,因为y=-A|q|n ,y=kn+b单调性相反,方程A|q|n =kn+b至多一个奇数解,因为Akln|q|>0,Akln|q|<0不可能同时成立,若q>0,q≠1,则由y=Aq n 和y=kn+b的散点图可得关于n的方程Aq n =kn+b至多有两个不同的解,矛盾;故Aq n =kn+b不可能有4个不同的正数解,故③正确.对于④,因为{a n }为单调递增,{b n }为递减数列,M={k|a k =b k },{a n },{b n }不为常数列且各项均不相同,a n 2n -1b n )n -1a n 2n -1b n )n -1b n q n前者散点图呈上升趋势,后者的散点图呈下降趋势,两者至多一个交点,故④正确.故答案为:①③④.(2024•北京)在△ABC中,内角A,B,C的对边分别为a,b,c,∠A为钝角,a=7,sin 2B =bcosB .(1)求∠A;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使得△ABC存在,求△ABC的面积.条件①:b=7;条件②:cosB=;条件③:csinA=.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.√37131452√3答案:(1);(2)条件①不符合要求;选②,;选③,.2π315√3415√34解析:(1)由已知等式结合二倍角公式和正弦定理求得sinA,即可得到A;(2)分析选条件①不符合要求;选条件②,由已知结合正弦定理求得b,由sinC=sin(A+B)可求得sinC,再由三角形面积公式求解即可;选条件③,由(1)及已知可求得c,结合余弦定理求得b,再由三角形面积公式求解即可;.解答:解:(1)因为sin 2B=2sinBcosB,因为A为钝角,所以B为锐角,cosB≠0,在△ABC中,由正弦定理得=,因为A为钝角,所以A=.(2)若选条件①,因为b=7,a=7,所以B=A=,与A+B+C=π矛盾,714a sinAb sinB22π32π3此时△ABC不存在,故条件①不符合要求,不选①;若选条件②,因为cosB=,所以sinB==在△ABC中,由正弦定理得=,所以b=•sinB=×+(-)×所以△ABC的面积为S=absinC=×7×3×若选条件③,由(1)知A=,因为csinA=,所以c=5,由余弦定理得a 2=b 2+c 2-2bccosA,即72=b 2+52-2b×5×cos ,解得b=3,所以△ABC的面积为S=bcsinA=×3×5×sin =.1314√1-B cos 214a b a sinA7sin 2π3141312141412121442π352√32π312122π315√34(2024•北京)如图,在四棱锥P-ABCD,BC∥AD,AB=BC=1,AD=3,点E在AD上,且PE⊥AD,DE=PE=2.(1)若F为线段PE的中点,求证:BF∥平面PCD.(2)若AB⊥平面PAD,求平面PAB与平面PCD夹角的余弦值.答案:见试题解答内容解析:(1)设M为PD的中点,连接FM,CM,证明四边形BCMF为平行四边形,即可得BF∥CM,由线面平行的判定定理即可证明;(2)易得CE⊥平面PAD,以E为坐标原点,建立空间直角坐标系,利用向量法即可求解.解答:(1)证明:如图,设M为PD的中点,连接FM,CM,因为F是PE中点,所以FM∥ED,且FM=ED,因为AD∥BC,AB=BC=1,AD=3,DE=PE=2,所以四边形ABCE为平行四边形,BC∥ED,且BC=ED,所以FM∥BC,且FM=BC,即四边形BCMF为平行四边形,1212所以BF∥CM,因为BF ⊄平面PCD,CM ⊂平面PCD,所以BF∥平面PCD.(2)解:因为AB⊥平面PAD,所以CE⊥平面PAD,EP,ED,EC相互垂直,以E为坐标原点,建立如图所示的空间直角坐标系,则P(0,0,2),A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,2,0),所以AB =(1,0,0),AP =(0,1,2),PC =(1,0,-2),CD =(-1,2,0),设平面PAB的一个法向量为m =(x 1,y 1,z 1),则,取z 1=-1,则m =(0,2,-1),设平面PCD的一个法向量为n =(x 2,y 2,z 2),则,取z 2=1,则n =(2,1,1),设平面PAB与平面PCD夹角为θ,则cosθ===→→→→→⎧⎨⎩m •AB ==0m •AP =+2=0→→x 1→→y 1z1→→⎧⎨⎩n •PC =-2=0n •CD =-+2=0→→x 2z 2→→x 2y 2→m •n →→|m |•|n |→→2-1×√5√630(2024•北京)某保险公司为了解该公司某种保险产品的索赔情况,从合同保险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:索赔次数1234保单份数800100603010假设:一份保单的保费为0.4万元;前三次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i)记X为一份保单的毛利润,估计X的数学期望EX;(ii)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i)中EX估计值的大小,(结论不要求证明)答案:见试题解答内容解析:(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(i)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3,用频率估计概率后可求得分布列及数学期望,从而可求E(X);(ii)先算出下一期保费的变化情况,结合(i)的结果可求E(Y).解答:解:(1)设A为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得P (A )==;(2)(i)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3,由题可得P (ξ=0)==,P (ξ=0.8)==,P (ξ=1.6)==,P (ξ=2.4)==,P (ξ=3)==,所以E (ξ)=0×+0.8×+1.6×+2.4×+3×=0.278,因为毛利润是保费与赔偿金额之差,故E(X)=0.4-0.278=0.122(万元);(ii)由(i)知未赔偿的概率为P (ξ=0)==,至少赔偿一次的概率为1-=,故保费的变化为0.4××(1-4%)+0.4××(1+20%)=0.4032,设Y为保单下一保险期的毛利润,故E(Y)=0.122+0.4032-0.4=0.1252(万元).所以E(X)<E(Y).60+30+10800+100+60+30+10110800100045100100011060100035030100031001010001100451103503100110080010004545154515(2024•北京)已知椭圆方程E:+=1(a >b >0),以椭圆E的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点(0,t)(t>)且斜率存在的直线与椭圆E交于不同的两点A,B,过点A和C(0,1)的直线AC与椭圆E的另一个交点为D.(1)求椭圆E的方程及离心率;(2)若直线BD的斜率为0,求t的值.x 2a 2y 2b 2√2答案:见试题解答内容解析:(1)根据已知条件,结合勾股定理,求出b,c,再结合椭圆的性质,即可求解;(2)先设出直线AB的方程,并与椭圆的方程联立,再结合韦达定理,以及判别式,即可求解.解答:解:(1)椭圆方程C:+=1(a >b >0),焦点和短轴端点构成边长为2的正方形,则b =c,故a 2=b 2+c 2=2,解得a =;a ==2,所以椭圆方程为+=1,离心率为e(2)显然直线AB斜率存在,否则B,D重合,直线BD斜率不存在与题意矛盾,同样直线AB斜率不为0,否则直线AB与椭圆无交点,矛盾,设AB:y=kx+t,(t >),A(x 1,y 1),B(x 2,y 2),联立,化简并整理得(1+2k 2)x 2+4ktx+2t 2-4=0,由题意可知,Δ=16k 2t 2-8(2k 2+1)(t 2-2)=8(4k 2+2-t 2)>0,即k,t应满足4k 2+2-t 2>0,由韦达定理可知,+=,=,若直线BD斜率为0,由椭圆的对称性可设D(-x 2,y 2),故AD :y =(x -)+,令x=0,则====+t ==1,解得t=2,此时k满足综上所述,t=2满足题意,此时k的取值范围为{k|k <-或k >}.x 2a 2y 2b 2√2√2√+b 2c 2x 24y 222√2{y =kx +t+=1x 24y 22x 1x 2-4kt 1+2k 2x 1x 22-4t 22+1k 2-y 1y 2+x 1x 2x 1y 1y C+x 1y 2x 2y 1+x 1x 2(k +t )+(k +t )x 1x 2x 2x 1+x 1x 22k +t (+)x 1x 2x 1x 2+x 1x 24k (-2)t 2-4kt2t {k ≠04+2-=4-2>0k 2t 2k 222√22√22(2024•北京)设函数f(x)=x+kln(1+x)(k≠0),直线l是曲线y=f(x)在点(t,f(t))(t >0)处的切线.(1)当k=-1,求f(x)单调区间;(2)证明:l不经过(0,0);(3)当k=1时,设点A(t,f(t))(t>0),C(0,f(t)),O(0,0),B为l与y轴的交点,S △ACO 与S △ABO 分别表示△ACO和△ABO的面积.是否存在点A使得2S △ACO =15S △ABO 成立?若存在,这样的点A有几个?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)答案:见试题解答内容解析:(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y -f (t )=(1+)(x -t )(t >0),将(0,0)代入再设新函数F (t )=ln (1+t )-,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S △ABO 得到13ln (1+t )-2t -15=0,再设新函数h (t )=13ln (1+t )-2t -(t >0)研究其零点即可.k 1+tt 1+tt 1+t15t 1+t 解答:解:(1)f(x)=x-ln(1+x),f ′(x )=1-=(x >-1),当x∈(-1,0)时,f′(x)<0,f(x)在(-1,0)上单调递减,当x∈(0,+∞),f′(x)>0,f(x)在(0,+∞)上单调递增,则f(x)的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f ′(x )=1+,l的斜率为1+,故切线方程为y -f (t )=(1+)(x -t )(t >0),代入(0,0),-f (t )=-t (1+),f (t )=t (1+),t +kln (1+t )=t +t ,则ln (1+t )=,ln (1+t )-=0,令F (t )=ln (1+t )-,若l过(0,0),则F(t)在t∈(0,+∞)存在零点.F ′(t )=-=>0,故F(t)在(0,+∞)上单调递增,F(t)>F(0)=0,不满足假设,故l不过(0,0).(3)k=1,f(x)=x+ln(1+x),f ′(x )=1+=>0,11+x x 1+xk 1+x k 1+tk 1+tk 1+t k 1+tk 1+t t 1+t t 1+tt 1+t11+t 1+t -t (1+t )2t (1+t )211+xx +21+x=tf (t ),设l与y轴交点B为(0,q),t>0时,若q<0,则此时l与f(x)必有交点,与切线定义矛盾.由(2)知q≠0,∴q>0,则切线l的方程为y -t -ln (t +1)=(1+)(x -t ),令x=0,则y =q =ln (1+t )-,∵2S △ACO =15S △ABO ,则2tf (t )=15t [ln (1+t )-],∴13ln (1+t )-2t -15×=0,记h (t )=13ln (1+t )-2t -(t >0),∴满足条件的A有几个即h(t)有几个零点. h′(t)=-2-===,t ∈(0,)时,h′(t)<0,h(t)单调递减;t ∈(,4)时,h′(t)>0,h(t)单调递增;t∈(4,+∞)时,h′(t)<0,h(t)单调递减;∵h(0)=0,h()<0,h(4)=13ln5-20>13×1.6-20=0.8>0,h (24)=13ln 25-48-=26ln 5-48-<26×1.61-48-=-20.54<0,∴由零点存在性定理及h(t)的单调性,h(t)在(,4)上必有一个零点,在(4,24)上必有一个零点.综上所述,h(t)有两个零点,即满足2S ACO =15S ABO 的A有两个.S △ACO 1211+tt t +1t t +1t 1+t15t 1+t131+t 15(t +1)213t +13-2(+2t +1)-15t 2(t +1)2-2+9t -4t 2(t +1)2(-2t +1)(t -4)(t +1)212121215×242572572512(2024•北京)已知集合M={(i,j,k,w)|i∈{1,2},j∈{3,4},k∈{5,6},w∈{7,8},且i+j+k+w为偶数}.给定数列A:a 1,a 2,…,a 8和序列Ω:T 1,T 2,…,T s ,其中T t =(i t ,j t ,k t ,w t )∈M(t=1,2,…,s),对数列A进行如下变换:将A的第i 1,j 1,k 1,w 1项均加1,其余项不变,得到的数列记作T 1(A);将T 1(A)的第i 2,j 2,k 2,w 2项均加1,其余项不变,得到的数列记作T 2T 1(A);……;以此类推,得到数列T s ⋯T 2T 1(A),简记为Ω(A).(1)给定数列A:1,3,2,4,6,3,1,9和序列Ω:(1,3,5,7),(2,4,6,8),(1,3,5,7),写出Ω(A);(2)是否存在序列Ω,使得Ω(A)为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4?若存在,写出一个Ω,若不存在,请说明理由;。

2024年北京市高考数学真题试卷及解析

2024年北京市高考数学真题试卷及解析

2024年普通高等学校招生全国统一考试(北京卷)数学一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|41}M x x =-<≤,{|13}N x x =-<<,则M N = ()A.{|43}x x -<<B.{|11}x x -<≤ C.{0,1,2}D.{|14}x x -<<2.已知1,izi =-则z =().A.1i- B.i- C.1i-- D.l3.求圆22260x y x y +-+=的圆心到20x y -+=的距离()A.B.24.(4x -的二项展开式中3x 的系数为()A.15B.6C.-4D.-135.已知向量,a b ,则“()()0a b a b +-= ”是“a b = 或a b =- ”的()条件.A.必要而不充分条件B.充分而不必要条件C.充分且必要条件D.既不充分也不必要条件6.已知()()()()1212rin sin 0,1,1,,2f x x f x f x x x πωω=>=-=-=∣∣则ω=()A.1B.2C.3D.47.记水的质量为1ln S d n-=,并且d 越大,水质量越好.若S 不变,且122.1, 2.2,d d ==,则1n与2n 的关系为()A.12n n <B.12n n >C.若1S <,则12;n n <若1S >,则12;n n >D 若1S <,则12n n >;若1S >,则12n n <;8.已知以边长为4的正方形为底面的四棱锥,四条侧棱分别为4,4,则该四棱锥的高为()A.2B.2C.9.已知()()1122,,,x y x y 是函数2x y =图象上不同的两点,则下列正确的是()A.12122log 22y y x x ++> B.12122log 22y y x x ++<C.12212log 2y y x x +>+ D.12212log 2y y x x +<+10.若集合(){}2,(),01,12x y y x t x x t x =+-≤≤≤≤∣表示的图形中,两点间最大距离为d ,面积为S ,则()A.3d =,1S < B.3d =,1S > C.d =1S < D.d =1S >第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.已知抛物线216y x =,则焦点坐标为_______.12.已知,63ππα⎡⎤∈⎢⎥⎣⎦,且α与β的终边关于原点对称,则cos β的最大值为_______.13.已知双曲线2214x y -=,则过()3,0且和双曲线只有一个交点的直线的斜率为_______.14.已知三个圆柱的体积为公比为10的等比数列.第一个圆柱的直径为65mm,第二、三个圆柱的直径为325mm,第三个圆柱的高为230mm,求前两个圆柱的高度分别为_______.15.已知{}k k M ka b ==∣,n a ,n b 不为常数列且各项均不相同,下列正确的是___________.①,n n a b 均为等差数列,则M 中最多一个元素;②,n n a b 均为等比数列,则M 中最多三个元素;③n a 为等差数列,n b 为等比数列,则M 中最多三个元素.④n a 单调递增,n b 单调递减,则M 中最多一个元素三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC ∆中,7,a A =为钝角,sin 2cos 7B B =.(1)求A ∠;(2)从条件①,条件②和条件③中选择一个作为已知,求ABC ∆的面积.①7b =,②13cos 14B =;③sin c A =注:如果选择条件①,条件②和条件③分别解答,按第一个解答计分.17.已知四棱锥,//P ABCD AD BC -,1AB BC ==,3AD =,2DE PE ==,E $是AD 上一点PE AD⊥.BF平面PCD.(1)若F是PE中点,证明://(2)若AB⊥平面PED,求平面PAB与平面PCD夹角的余弦值.18.已知某险种的保费为0.4万元,前3次出险每次赔付0.8万元,第4次赔付0.6万元赔偿次数01234单数800100603010在总体中抽样100单,以频率估计概率:(1)求随机抽取一单,赔偿不少于2次的概率.(2)(i)毛利润是保费与赔偿金额之差.设毛利润为X,估计X的数学期望.(ü)若未赔偿过的保单下一保险期的保费下降4%,已赔偿过的增加20%.估计保单下一保险期毛利润的数学期望.19.已知椭圆方程()2222:10x y C a b a b+=>>,焦点和短轴端点构成边长为2的正方形,过((0,)t t >的直线l 与椭圆交于,,(0,1)A B C ,连接AC 交椭圆于D .(1)求椭圆的离心率和方程.(2)若直线BD 的斜率为0,求t .20.已知()()ln 1f x x k x =++在(,())(0)t f t t >处切线为l .(1)若l 的斜率1k =-,求()f x 单调区间.(2)证明:切线l 不经过()0,0O .(3)已知()1,,()k A t f t =,()0,()C f t ,()0,0O ,其中0t >,切线l 与y 轴交于点B 时.当215ACO ABO S S ∆= ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)21.设集合{}(,,,)|{1,2},{3,4},{5,6},{7,8},2|().M i j s t i j s t i j s t =∈∈∈∈+++对于给定有穷数列:{}(18)n A a n ≤≤,及序列12:,,....,x ωωωΩ,(),,,k k k k k i j s t M ω=∈,定义变换:T 将数列A 的第1111,,,i j s t 项加1,得到数列1()T A ;将数列1()T A 的第2222,,,i j s t 列加1,得到数列21()T T A ⋯;重复上述操作,得到数列21..()s T T T A ,记为()A Ω,若1357a a a a +++为偶数,证明:“存在序列Ω,使得()A Ω为常数列”的充要条件为“12345673a a a a a a a a +=+=+=+”.2024年普通高等学校招生全国统一考试(北京卷)数学答案解析第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】A【解析】由题意得()4,3M N =- 故选:A.2.【答案】C【解析】由题意得()11, z i i i =-=--故选:C.3.【答案】C【解析】由题意得22260x y x y +-+=,即()()221310x y -++=则其圆心坐标为(1,3)-,则圆心到直线20x y -+==故选:C.4.【答案】B【解析】(4x的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r Txxr --+==-=令432r -=,解得2r =,故所求即为()2241 6.-= 故选:B.5.【答案】A【解析】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b= 可知()()0a b a b +⋅-= 等价于a b=若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立.若()()0a b a b +⋅-= ,即a b = ,无法得出a b = 或$a b=- 综上所述,“()()0a b a b +⋅-= ”是“a b ≠ 且a b ≠-”的必要不充分条件故选:A.6.【答案】B【解析】由题意可知:1x 为()f x 的最小值点,2x 为()f x 的最大值点则12min22T x x π-==,即T π=且0ω>,所以$22Tπω==.故选:B.7.【答案】C【解析】由题意可得11221 2.1ln 1 2.2ln S d n S d n -⎧==⎪⎪⎨-⎪==⎪⎩解得12111222e eS S n n -⋅-⋅⎧=⎪⎪⎨⎪⎪=⎩若1S >,则112.1 2.2S S -->,可得112.1 2.2e e S S -->,即12n n >;若1S =,则1102.1 2.2S S --==,可得121;n n ==若1S <,则112.1 2.2S S --<,可得112.1 2.2e e S S --<,即12;n n <故选:C.8.【答案】D【解析】如图,底面PEF 为正方形当相邻的棱长相等时,不妨设4,PA PB AB PC PD =====分别取,AB CD 的中点,E F ,连接,,PE PF EF则,PE AB EF AB ⊥⊥,且PE EF E = ,,PE EF ⊂平面PEF 可知AB ⊥平面PEF ,且AB ⊂平面ABCD 所以平面PEF ⊥平面ABCD过P 作EF 的垂线,垂足为O ,即PO EF ⊥由平面PEF 平面,ABCD EF PO =⊂平面PEF 所以PO ⊥平面PEF由题意可得:2222,4,PE PF EF PE PF EF ===+=∴,即PE PF⊥则1122PE PF PO EF ⋅=⋅,可得PO =当相对的棱长相等时,不妨设4,PA PC PB PD ====因为BD PB PD ==+,此时不能形成三角形PBD ,与题意不符,这样情况不存在故选:D.9.【答案】A【解析】对于选项AB:可得121222222x x x x ++>=,即1212222x x y y++>>根据函数2log y x =是增函数,所以121212222log log 222x x y yx x +++>=,故A 正确,B 错误.对于选项C:例如120,1x x ==,则121,2y y ==可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故C 错误对于选项D:例如121,2x x =-=-,则1211,24y y ==可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故D 错误故选:A.10.【答案】C【解析】对任意给定] [1,2x ∈则2(1)0x x x x -=-≥,且][0,1t ∈可知222()x x t x x x x x x ≤+-≤+-=,即2x y x ≤≤再结合x 的任意性,所以所求集合表示的图形即为平面区域212y x y xx ⎧≤⎪≥⎨⎪≤≤⎩如图阴影部分所示,其中()1,1A ,()2,2B ,)(2,4C 可知任意两点间距离最大值10d AC ==阴影部分面积11212ABC S S <=⨯⨯= .故选:C二、填空题共5小题,每小题5分,共25分.11.【答案】 (4,0)【解析】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0.12.【答案】12-【解析】由题意2,k k βαππ=++∈ ,从而()cos cos 2cos k βαππα=++=-因为,63ππα⎡⎤∈⎢⎣⎦,所以cos α的取值范围是13,,cos 22β⎡⎢⎣⎦的取值范围是31,22⎡⎤--⎢⎥⎣⎦当且仅当3πα=,即423k πβπ=+,k Z ∈时,cos β取得最大值,且最大值为12-故答案为:1.2-13.【答案】12±【解析】联立3x =与2214x y -=,解得52y =±,这表明满足题意的直线斜率一定存在设所求直线斜率为k ,则过点(3,0)且斜率为k 的直线方程为()3y k x =-,联立()22143x y y k x ⎧-=⎪⎨⎪=-⎩,化简并整理得:()222214243640k x k x k -+--=,由题意得2140k -=或()()()2222244364140k k k ∆=++-=解得12k =±或无解,即12k =±,经检验,符合题意.故答案为:1.2±14.【答案】1152mm,23mm 【解析】设第一个圆柱的高为1h ,第二个圆柱的高为2h ,则222221232532523022106532522h h h ππππ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭故223h =mm 1115,2h =mm,故答案为:1152mm,23mm.15.【答案】①③④【解析】对于①{},{}n n a b 均为等差数列,故它们的散点图分布在直线上而两条直线至多有一个公共点,故M 中至多一个元素,故①正确对于②,取()112,2n n n n a b --==--,则{}{},n n a b 均为等比数列,但当n 为偶数时,有()1122n n n n b α--===--,此时M 中有无穷多个元素,故②错误.对于③设()0,1nn b Aq Aq q =≠≠±,()0n a kn b k =+≠若M 中至少四个元素,则关于n 的方程n Aq kn b =+至少有4个不同的正数解若0,1q q >≠,则由n y Aq =和y kn b =+的散点图可得关于n 的方程n Aq kn b =+至多有两个不同的解,矛盾.若0,1q q <≠±,考虑关于n 的方程n Aq kn b =+奇数解的个数和偶数解的个数当n Aq kn b =+有偶数解,此方程即为nA q kn b =+方程至多有两个偶数解,且有两个偶数解时ln ||0Ak q >否则ln ||0Ak q <,因||,n y A q y kn b ==+单调性相反方程nA q kn b =+至多一个偶数解当n Aq kn b =+有奇数解,此方程即为||n A q kn b-=+方程至多有两个奇数解,且有两个奇数解时ln ||0Ak q ->即ln ||0Ak q <否则ln ||0Ak q >,因||,n y A q y kn b =-=+单调性相反方程n A q kn b =+至多一个奇数解因为ln ||0,ln ||0Ak q Ak q ><不可能同时成立故n Aq kn b =+不可能有4个不同的正数解,故③正确对于(4),因为{}n a 为单调递增,{}n b 为递减数列,前者散点图呈上升趋势后者的散点图呈下降趋势,两者至多一个交点,故④正确.故答案为:①③④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.【答案】(1)2;3A π=(2)选择①无解;选择②和③ABC ∆面积均为153.4【小问1解析】由题意得2sin cos cos 7B B B =,因为A 为钝角则cos 0B ≠,则32sin 7B =,则7sin sin sin 37b a BA A ===,解得3sin 2A =因为A 为钝角,则23A π=由题意得32sin cos cos 7B B B =,因为A 为钝角则cos 0B ≠,则32sin 7B =,则7sin sin sin 37b a BA A ===,解得3sin 2A =因为A 为钝角,则23A π=【小问2解析】由题意得2sin cos cos 7B B B =,因为A 为钝角则cos 0B ≠,则32sin 7B =,则7sin sin sin 37b a BA A ===,解得3sin 2A =因为A 为钝角,则23A π=.选择①7b =,则333sin 714142B ===,因为23A π=,则B 为锐角,则3B π=此时A B π+=,不合题意,舍弃.选择②13cos 14B =,因为B 为三角形内角,则33sin 14B ==则代入32sin 7B =得3332147b ⨯=,解得3b =()222sin sin sin sin cos cos sin 333C A B B B Bπππ⎛⎫=+=+=+ ⎪⎝⎭131********⎛⎫=+-⨯= ⎪⎝⎭则11sin 73.22144ABC S ab C ∆==⨯⨯⨯=选择③sin c A =则有2c ⨯=,解得5c =则由正弦定理得,sin sin a c A C=5,sin sin 1432C C ==⇒因为C 为三角形内角,则11cos 14C ==则()222sin sin sin sin cos sin 333B A C C C C πππ⎛⎫=+=+=+ ⎪⎝⎭3111533321421414⎛⎫=+-⨯= ⎪⎝⎭则1133153sin 7522144ABC S ac B ∆==⨯⨯⨯=17.【答案】(1)见解析(2)3030【小问1解析】取PD 的中点为S ,连接,SF SC ,则1//,12SF ED SF ED ==而//,2ED BC ED BC =,故//,SF BC SF BC =,故四边形SFBC 为平行四边形故//BF SC ,而BF ⊄平面,PCD SC ⊂平面PCD 所以//BF 平面PCD 【小问2解析】因为2ED =,故1AE =,故//,AE BC AE BC=故四边形2ED =$AECB$为平行四边形,故//CE AB ,所以CE ⊥平面PAD而,PE ED ⊂平面PAD ,故,CE PE CE ED ⊥⊥,而PE ED ⊥故建立如图所示的空间直角坐标系则()()()()()0,1,0,1,1,0,1,0,0,0,2,0,0,0,2A B C D P --()()()()0,1,2,1,1,2,1,0,2,0,2,2,PA PB PC PD ∴=--=--=-=-设平面PAB 的法向量为(,,)m x y z =则由()0200,2,1,200m PA y z m x y z m PB ⎧⋅=--=⎧⎪⇒⇒=-⎨⎨--=⋅=⎩⎪⎩ 取()0,2,1m =- 设平面PCD 的法向量为(),,n a b c =则由00n PC n PD ⎧⋅=⎪⎨⋅=⎪⎩ 可得20220a b b c -=⎧⎨-=⎩,取(2,1,1)n =30cos <,>30m n ==-故平面PAB 与平面PCD 夹角的余弦值为303018.【答案】(1)110(2)(i)0.122万元(ii)0.1252万元【小问1解析】设A 为“随机抽取一单,赔偿不少于2次”由题设中的统计数据可得()6030101.80010060301010P A ++==++++【小问2解析】(i)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3由题设中的统计数据可得()()800410010,0.810005100010P P ξξ======603( 1.6)100050P ξ===,303( 2.4)1000100P ξ===101(3)1000100P ξ===()4133100.8 1.6 2.430.27851050100100E ξ∴=⨯+⨯+⨯+⨯+⨯=故()0.40.2780.122E X =-=(万元)(ii)由题设保费的变化为410.496%0.4 1.20.403255⨯⨯+⨯⨯=故()0.1220.40320.40.1252E Y =+-=(万元)19.【答案】(1)2221,422x y e +==(2)2t =【小问1解析】由题意b c ===,从而2a ==,所以椭圆方程为22142x y +=,离心率为2;2e =【小问2解析】显然直线AB 斜率存在,否则BD 重合,直线BD 斜率不存在与题意不符.同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾.从而设(:,AB y kx t t =+>,()()1122,,,A x y B x y 联立()222221,12424042x y k x ktx t kx t ν⎧+=⎪⇒+++-=⎨⎪=+⎩由题意()()()2222221682128420k t k t k t ∆=-+-=+->,即,k t 应满足22420k t +->所以2121222424,1221kt t x x x x k k --+==++若直线BD 斜率为0,由椭圆的对称性可设()22,D x y -所以()121113:y y AD y x x y x x -=-++,在直线方程AD 中令0x =,得()()()()2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x ktt-++++++===+==+++-所以2t =此时k 应满足222424200k t k k ⎧+-=->⎨≠⎩,即k 应满足22k <-或22k >综上所述,2t =满足题意,此时22k <-或2.2k >20.【答案】(1)单调递减区间为(-1,0),单调递增区间为(0,)+∞(2)证明见解析(3)2【小间1解析】1()ln(1),()11)11x f x x x f x x x x'=-+=-=>-++当(1,0)x ∈-时,()0;f x '<当(0,),()0x f x '∈+∞>()f x ∴在(-1,0)上单调递减,在(0,)+∞上单调递增则()f x 的单调递减区间为(-1,0),单调递增区间为(0,).+∞【小问2解析】.()11k f x x '=++,切线l 的斜率为11k t++则切线方程为()1()(0)1k y f t x t t t ⎛⎫-=+-> ⎪+⎝⎭将(0,0)代入则()1,()111k k f t t f t t t t ⎛⎫⎛⎫-=-+=+ ⎪ ⎪++⎝⎭⎝⎭即ln(1)t k t t t++=+1k t +,则ln(1)1t t t +=+,ln(1)01t t t +-=+令()ln(1)1tF t t t=+-+假设l 过(0,0),则()F t 在(0,)t ∈+∞存在零点.()()2211()0,()111t t t F t F t t t t +-'=-=>∴+++在()0,+∞上单调递增,()(0)0F t F >=()F t ∴在(0,)+∞无零点,∴与假设矛盾,故直线l 不过(0,0)【小问3解析】1k =时,12()ln(1),()10.11x f x x x f x x x'+=++=+=>++1()2ACO S tf t ∆=,设l 与y 轴交点B 为(0,)q 0t >时,若0q <,则此时l 与()f x 必有交点,与切线定义矛盾由(2)知0q ≠.所以0q >则切线l 的方程为()()1ln 111y t t x t t ⎛⎫--+=+- ⎪+⎝⎭令0x =,$则$ln(1).1t y q y t t ===+-+215ACO ABO S S ∆= ,则2()15ln(1)1t tf t t t t ⎡⎤=+-⎢+⎣⎦13ln(1)21501t t t t ∴+--=+,记15()13ln(1)2(0)1t h t t t t t =+-->+∴满足条件的A 有几个即()h t 有几个零点.()()()()()2222221313221151315294(21)(4)()211111t t t t t t t h t t t t t t '+-++-+--+-=--===+++++当10,2t ⎛⎫∈ ⎪⎝⎭时,()0h t '<\,此时()h t 单调递减当1,42t ⎛⎫∈ ⎪⎝⎭时,()0h t '>,此时()h t 单调递增;当()4,t ∈+∞时,()0h t '<,此时()h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802(h h h ==-⨯-=>〈〉15247272(24)13ln 254826ln 548261.614820.540,2555h ⨯=--=--<⨯--=-<所以由零点存在性定理及()h t 的单调性,()h t 在1,42⎛⎫ ⎪⎝⎭上必有一个零点,在()4,24上必有一个零点.综上所述,()h t 有两个零点,即满足215ACO ABO S S =的A 有两个.21.【解析】我们设序列21...()k T T T A 为,{}(18)k n a n ≤≤,特别规定()0,18.n n a a n =≤≤若存在序列12:,,...,s ωωωΩ,使得()A Ω为常数列.则,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a =======所以,2,3,4,5,6,7,8,1.s s s s s s s s a a a a a a a a +=+=+=+根据21...()k T T T A 的定义,显然有,21,21,2,11,2k j k j k j k ja a a a ----+=+这里1,2,3,4,1,2,....j k ==所以不断使用该式就得到,12345678a a a a a a a a +=+=+=+,必要性得证.若12345678.a a a a a a a a +=+=+=+由已知,1357a a a a +++为偶数,而12345678a a a a a a a a +=+=+=+,所以()()24681213574a a a a a a a a a a +++=+-+++也是偶数我们设21...()s T T T A 是通过合法的序列Ω的变换能得到的所有可能的数列()A Ω中,使得,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-最小的一个.上面已经证明,21,21,211,2k j k j k j k j a a a a ----+=+,这里1,2,3,4,1,2,....j k ==从而由12345678a a a a a a a a +=+=+=+可得,1,2,3,4,5,6,7,8.s s s s s s s s a a a a a a a a +=+=+=+同时,由于k k k k i j s t +++总是偶数,所以,1,3,5,7k k k k a a a a +++和,4,6,8,2k k k k a a a a +++的奇偶性保持不变从而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数.下面证明不存在1,2,3,4j =使得,21,22s j s j a a --≥.假设存在,根据对称性,不妨设1j =,,21,22s j s j a a --≥,即,1,22s s a a -≥情况1:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+-=,则由,1,3,5,7s s s s a a a a +++和,4,6,8,2s s s s a a a a +++都是偶数,知,1,2 4.s s a a -≥对该数列连续作四次变换(2,3,5,8),(2,4,6,8),(2,3,6,7),(2,4,5,7)后,新的4,14,24,34,44,54,64,74,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-减少4,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.情况2:若,4,5,6,7,8,30s s s s s s a a a a a a -+-+->,不妨设,4,30s s a a ->情况2-1:如果,3,41s s a a -≥,则对该数列连续作两次变换(2,4,5,7),(2,4,6,8)后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.情况2-2:如果,4,31s s a a -≥,则对该数列连续作两次变换(2,3,5,8),(2,3,6,7)后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾这就说明无论如何都会导致矛盾,所以对任意的1,2,3,4j =都有,21,2 1.s j s j a a --≤假设存在1,2,3,4j =使得,21,21s j s j a a --=,则,21,2s j s j a a -+是奇数,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+都是奇数,设为2 1.N +则此时对任意1,2,3,4j =,由,21,2,1s j s j a a --≤可知必有{}{},21,2,,1.s j s j a a N N -=+而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,故集合{},|s m m N α=中的四个元素,,,i j s t 之和为偶数,对该数列进行一次变换(),,,i j s t ,则该数列成为常数列,新的1,11,21,31,41,51,61,71,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-等于零,比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-更小这与,2,3,4,5,6,7,1s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.综上,只可能(),21,201,2,3,4s j s j j αα--==而,2,3,4,5,6,7,8,1s s s s s s s s a a a a a a a a +=+=+=+,故{}(),s n a A =Ω是常数列.充分性得证.。

2022年全国新高考I卷数学试题(选择题部分答案及解析)

2022年全国新高考I卷数学试题(选择题部分答案及解析)

3
3 时,V
81 , 4
所以正四棱锥的体积V 的最小值为 27 , 4
所以该正四棱锥体积的取值范围是
27 4
,64 3
.
故选:C.
二、选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多 项符合题目要求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.


学科网( 北京) 股份有 限公司
A.1
【答案】A 【解析】
B. 3 2
C. 5 2
D. 3
【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.
【详解】由函数的最小正周期 T 满足 2 T ,得 2 2 ,解得 2 3 ,
3
3
又因为函数图象关于点
3 2
学科网( 北京) 股份有 限公司
量约为( 7 2.65 )( )。
A.1.0109 m3 B. 1.2109 m3
C. 1.4109 m3
D. 1.6109 m3
【答案】C
【解析】
【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.
【详解】依题意可知棱台的高为 MN 157.5 148.5 9(m),所以增加的水量即为棱台的体积
学科网( 北京) 股份有 限公司
【详解】将点 A 的代入抛物线方程得1 2 p ,所以抛物线方程为 x2 y ,故准线方程为 y 1 , 4
A 错误;
k AB
1 (1) 1 0
2
,所以直线
AB
的方程为
y
2x
1,
y 2x 1
联立
x2
y
,可得 x2 2x 1 0 ,解得 x 1 ,故 B 正确;

2022年全国新高考II卷数学试题(解析版)

2022年全国新高考II卷数学试题(解析版)

B. 128π
C. 144π
D. 192π
【答案】A 【解析】
【分析】根据题意可求出正三棱台上下底面所在圆面的半径 r1, r2 ,再根据球心距,圆面半径,以及球的半径之间的关系,
即可解出球的半径,从而得出球的表面积.
【详解】设正三棱台上下底面所在圆面的半径
r1,
r2
,所以
2r1
3 sin
3 60
2π 3
,
3π 2
,由正弦函数
y
sin u
图象知
y
f
(x)

0,
5π 12
上是单调递减;

B,当
x
π 12
, 11π 12
时,2x
2π 3
π 2
,
5π 2
,由正弦函数
y

(x)
只有
1
个极值点,由 2x
2π 3
3π 2

解得 x 5π ,即 x 5π 为函数的唯一极值点;
【详解】设 OD1 DC1 CB1 BA1 1,则 CC1 k1, BB1 k2, AA1 k3 ,
依题意,有 k3
0.2
k1, k3
0.1
k2
,且
DD1 OD1
CC1 DC1
BB1 CB1
AA1 BA1
0.725 ,
所以
0.5
3k3 4
0.3
0.725
,故
k3
0.9

故选:D
DD1 OD1
0.5,
CC1 DC1
k1,
BB1 CB1
k2 ,
AA1 BA1
k3 .已知 k1, k2, k3 成公差为 0.1 的等差数列,且直线 OA 的斜率为 0.725,则 k3

2022年全国统一高考数学试卷和答案解析(新高考ⅱ)

2022年全国统一高考数学试卷和答案解析(新高考ⅱ)

2022年全国统一高考数学试卷和答案解析(新高考Ⅱ)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={﹣1,1,2,4},B={x||x﹣1|≤1},则A∩B=()A.{﹣1,2}B.{1,2}C.{1,4}D.{﹣1,4} 2.(5分)(2+2i)(1﹣2i)=()A.﹣2+4i B.﹣2﹣4i C.6+2i D.6﹣2i 3.(5分)图1是中国古代建筑中的举架结构,AA′,BB′,CC′,DD′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为=0.5,=k1,=k2,=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A.0.75B.0.8C.0.85D.0.94.(5分)已知向量=(3,4),=(1,0),=+t,若<,>=<,>,则t=()A.﹣6B.﹣5C.5D.65.(5分)甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有()A.12种B.24种C.36种D.48种6.(5分)若sin(α+β)+cos(α+β)=2cos(α+)sinβ,则()A.tan(α﹣β)=1B.tan(α+β)=1C.tan(α﹣β)=﹣1D.tan(α+β)=﹣17.(5分)已知正三棱台的高为1,上、下底面边长分别为3和4,其顶点都在同一球面上,则该球的表面积为()A.100πB.128πC.144πD.192π8.(5分)已知函数f(x)的定义域为R,且f(x+y)+f(x﹣y)=f(x)f(y),f(1)=1,则f(k)=()A.﹣3B.﹣2C.0D.1二、选择题:本题共4小题,每小题5分,共20分。

2022年全国统一高考新高考数学一卷试题和答案解析

2022年全国统一高考新高考数学一卷试题和答案解析

2022年全国统一高考数学试卷(新高考Ⅰ)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)若集合{|4}M x =<,{|31}N x x =,则(M N = )A .{|02}x x <B .1{|2}3x x <C .{|316}x x <D .1{|16}3x x <2.(5分)若(1)1i z -=,则(z z +=)A .2-B .1-C .1D .23.(5分)在ABC ∆中,点D 在边AB 上,2BD DA =.记CA m = ,CD n = ,则(CB = )A .32m n- B .23m n-+C .32m n+ D .23m n+ 4.(5分)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为2140.0km ;水位为海拔157.5m 时,相应水面的面积为2180.0km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为2.65)(≈)A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯5.(5分)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A .16B .13C .12D .236.(5分)记函数()sin()(0)4f x x b πωω=++>的最小正周期为T .若23T ππ<<,且()y f x =的图像关于点3(2π,2)中心对称,则()(2f π=)A .1B .32C .52D .37.(5分)设0.10.1a e =,19b =,0.9c ln =-,则()A .a b c<<B .c b a <<C .c a b <<D .a c b<<8.(5分)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ,则该正四棱锥体积的取值范围是()A .[18,81]4B .27[4,81]4C .27[4,64]3D .[18,27]二、选择题:本题共4小题,每小题5分,共20分。

2022年新高考全国II卷数学真题含答案解析

2022年新高考全国II卷数学真题含答案解析

a,c
cos b,
c
,即
9
3t16 5c
3
c
t
,解得
t
5
,
故选:C
5. 有甲、乙、丙、丁、戊 5 名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方
式共有( )
A. 12 种
B. 24 种
C. 36 种
D. 48 种
【答案】B
【解析】
【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解
[方法二]:特殊值排除法
解法一:设 β=0 则 sinα +cosα =0,取 = ,排除 A, B; 2
再取 α=0 则 sinβ +cosβ= 2sinβ,取 β = ,排除 D;选 C.
4
[方法三]:三角恒等变换
sin( ) cos( ) 2 sin( )= 2 sin([ ) ]
【答案】B
【解析】
【分析】方法一:求出集合 B 后可求 A B .
【详解】[方法一]:直接法
因为 B x | 0 x 2 ,故 A B 1, 2 ,故选:B.
[方法二]:【最优解】代入排除法
x 1 代入集合 B x x 1 1 ,可得 2 1,不满足,排除 A、D; x 4 代入集合 B x x 1 1 ,可得 3 1 ,不满足,排除 C.
2π 3
,
3π 2
,由正弦函数
y
sin
u
图象知
y
f
(x)

0,
5π 12
上是单
调递减;

B,当
x
π 12
,
11π 12
时,

2022年北京高考数学试卷解析

2022年北京高考数学试卷解析

2022年北京高考数学试卷解析2022年高考数学北京卷坚持"以德为先,能力为重,全面发展"的命题理念,稳妥推进新高考的改革,形成了"一个中心,两个着力点,三个突出,四条路径"的评价体系。

即以立德树人为中心,以数学素养和创新能力为两个着力点;突出对主干知识、思想、问题解决能力的考查;通过优化试卷结构、创新呈现方式、精选试题素材,突出学科本质,达到落实高考育人的目的。

一个中心立德树人北京卷命题坚持以立德树人为根本任务,构建了引导学生德智体美劳全面发展的考试内容体系。

第7题以国家速滑馆"冰丝带"绿色环保场馆为背景,设置二氧化碳所处的状态与温度和压强的关系图,渗透德育。

第18题以学生熟悉的校运动会体育比赛为背景,重点考查统计学中关于数据的收集、估计、预测的基本方法和原理,渗透体育教育。

两个着力点数学素养、创新能力一、数学素养北京卷通过设计现实性和综合性问题,实现对逻辑推理、直观想象、数学运算、数学抽象、数学建模、数据分析六大素养的综合考查。

针对逻辑推理,北京卷设计了至少5道题进行考查。

如第15题,是以一个无穷正数数列来设置,考查数列的基本概念、研究数列的增减性、估计数列项的范围、判断数列是否为等比数列等。

四个选项既考查合情推理,也考查演绎推理。

针对直观想象,北京卷设计了至少4道题进行考查。

如第9题,以正三棱锥为载体、以区域面积为出口,考查空间想象能力。

问题的本质是研究球面和平交所得圆的性质。

针对数学运算,北京卷设计了至少12道题进行考查。

第16题,借助解三角形在考查二倍角公式、余弦定理、三角形面积公式等基础知识的同时,考查学生运算过程的严谨性以及运算的灵活性。

针对数学抽象,北京卷设计了至少2道题进行考查。

如第20题(Ⅲ),考查不等式恒成立问题,它的背景是二阶导数大于0,即具有下凸性质的抽象函数在一定条件下都具有的结论。

此外,数学建模和数据分析也分别设置了不同的问题进行考查。

2022年北京市高考数学试卷和答案解析

2022年北京市高考数学试卷和答案解析

2022年北京市高考数学试卷和答案解析一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(4分)已知全集U={x|﹣3<x<3},集合A={x|﹣2<x≤1},则∁U A=()A.(﹣2,1]B.(﹣3,﹣2)∪[1,3)C.[﹣2,1)D.(﹣3,﹣2]∪(1,3)2.(4分)若复数z满足i•z=3﹣4i,则|z|=()A.1B.5C.7D.253.(4分)若直线2x+y﹣1=0是圆(x﹣a)2+y2=1的一条对称轴,则a=()A.B.C.1D.﹣14.(4分)已知函数f(x)=,则对任意实数x,有()A.f(﹣x)+f(x)=0B.f(﹣x)﹣f(x)=0C.f(﹣x)+f(x)=1D.f(﹣x)﹣f(x)=5.(4分)已知函数f(x)=cos2x﹣sin2x,则()A.f(x)在(﹣,﹣)上单调递减B.f(x)在(﹣,)上单调递增C.f(x)在(0,)上单调递减D.f(x)在(,)上单调递增6.(4分)设{a n}是公差不为0的无穷等差数列,则“{a n}为递增数列”是“存在正整数N0,当n>N0时,a n>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和lgP的关系,其中T表示温度,单位是K;P表示压强,单位是bar.下列结论中正确的是()A.当T=220,P=1026时,二氧化碳处于液态B.当T=270,P=128时,二氧化碳处于气态C.当T=300,P=9987时,二氧化碳处于超临界状态D.当T=360,P=729时,二氧化碳处于超临界状态8.(4分)若(2x﹣1)4=a4x4+a3x3+a2x2+a1x+a0,则a0+a2+a4=()A.40B.41C.﹣40D.﹣41 9.(4分)已知正三棱锥P﹣ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={Q∈S|PQ≤5},则T表示的区域的面积为()A.B.πC.2πD.3π10.(4分)在△ABC中,AC=3,BC=4,∠C=90°.P为△ABC 所在平面内的动点,且PC=1,则•的取值范围是()A.[﹣5,3]B.[﹣3,5]C.[﹣6,4]D.[﹣4,6]二、填空题共5小题,每小题5分,共25分。

2022年全国统一高考数学卷(新高考2卷)含答案解析(原卷版)

2022年全国统一高考数学卷(新高考2卷)含答案解析(原卷版)

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年普通高等学校招生全国统一考试(新高考2卷)数学副标题学校:___________姓名:___________班级:___________考号:___________题号 一 二 三 四 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知集合A ={−1,1,2,4},B ={x||x −1|≤1},则A ∩B =( ) A. {−1,2}B. {1,2}C. {1,4}D. {−1,4}2. (2+ 2i)(1−2i)=( ) A. −2+4iB. −2−4iC. 6+2iD. 6−2i3. 中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,AA′,BB′,CC′,DD′是桁,DD 1,CC 1,BB 1,AA 1是脊,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的脊步的比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB1CB 1=k 2,AA 1BA 1=k 3,若k 1,k 2,k 3是公差为0.1的等差数列,直线OA 的斜率为0.725,则k 3=( )A. 0.75B. 0.8C. 0.85D. 0.94. 已知向量a ⃗ =(3,4),b ⃗ =(1,0),c ⃗ =a ⃗ +t b ⃗ ,若<a ⃗ ,c ⃗ >=<b ⃗ ,c ⃗ >,则实数t =( )A. −6B. −5C. 5D. 65. 甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有( )A. 12种B. 24种C. 36种D. 48种6. 若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则( ) A. tan(α+β)=−1 B. tan(α+β)=1 C. tan(α−β)=−1D. tan(α−β)=17. 已知正三棱台的高为1,上下底面的边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( )A. 100πB. 128πC. 144πD. 192π8. 若函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f 22k=1(k)=( )A. −3B. −2C. 0D. 1二、多选题(本大题共4小题,共20.0分。

2022年新高考全国Ⅱ卷数学试题(含答案解析)

2022年新高考全国Ⅱ卷数学试题(含答案解析)

绝密★启用前2022年普通高等学校招生全国统一考试数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}{1,1,2,4},|1|1A B x x =-=-≤,则A B =A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-2.(22i)(12i)+-=A .24i -+B .24i --C .62i +D .62i -3.图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是 举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线 OA 的斜率为0.725,则3k =A .0.75B .0.8C .0.85D .0.94.已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则实数t =A .6-B .5-C .5D .65.甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有( ) A .12种B .24种C .36种D .48种6.若sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则A .tan()1αβ+=-B .tan()1αβ+=C .tan()1αβ-=-D .tan()1αβ-=7.已知正三棱台的高为1,上下底面的边长分别为则该球的表面积为 A .100πB .128πC .144πD .192π8.若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑A .3-B .2-C .0D .1二、选择题:本题共4小题,每小题5分,共20分。

2024年北京市高考数学试卷[含答案]

2024年北京市高考数学试卷[含答案]

2024年北京市高考数学试卷一、选择题。

共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合,,则 {|31}M x x =-<<{|14}N x x =-< (M N = )A .B .C .D .{|11}x x -< {|3}x x >-{|34}x x -<<{|4}x x <2.若复数满足,则 z 1zi i=--(z =)A .B .C .D .1i --1i -+1i -1i +3.圆的圆心到的距离为 22260x y x y +-+=20x y -+=()A B .2C .3D .4.在的展开式中,的系数为 4(x 3x ()A .6B .C .12D .6-12-5.设,是向量,则“”是“或”的 ab ()()0a b a b +⋅-= a b =- a b = ()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.设函数.已知,,且的最小值为,则 ()sin (0)f x x ωω=>1()1f x =-2()1f x =12||x x -2π(ω=)A .1B .2C .3D .47.生物丰富度指数是河流水质的一个评价指标,其中,分别表示河流中的生物种类数与生1S d lnN-=S N 物个体总数.生物丰富度指数越大,水质越好.如果某河流治理前后的生物种类数没有变化,生物个d S 体总数由变为,生物丰富度指数由2.1提高到3.15,则 1N 2N ()A .B .C .D .2132N N =2123N N =2321N N =3221N N =8.如图,在四棱锥中,底面是边长为4的正方形,,,该P ABCD -ABCD 4PA PB ==PC PD ==棱锥的高为 ()A .1B .2C D9.已知,,,是函数的图象上两个不同的点,则 1(x 1)y 2(x 2)y 2x y =()A .B .12122log 22y y x x ++<12122log 22y y x x ++>C .D .12212log 2y y x x +<+12212log 2y y x x +>+10.已知,,,是平面直角坐标系中的点集.设是中两点{(M x =2)|()y y x t x x =+-12x 01}t d M 间的距离的最大值,是表示的图形的面积,则 S M ()A .,B .,C .D .3d =1S <3d =1S >1d S =<1d S =>二、填空题。

2023年北京市高考数学试卷含答案解析

2023年北京市高考数学试卷含答案解析

绝密★启用前2023年北京市高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、单选题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合M={x|x+2≥0},N={x|x−1<0}.则M∩N=( )A. {x|−2≤x<1}B. {x|−2<x≤1}C. {x|x≥−2}D. {x|x<1}2.在复平面内,复数z对应的点的坐标是(−1,√ 3),则z的共轭复数z−=( )A. 1+√ 3iB. 1−√ 3iC. −1+√ 3iD. −1−√ 3i3.已知向量a⃗,b⃗⃗满足a⃗⃗+b⃗⃗=(2,3),a⃗⃗−b⃗⃗=(−2,1),则|a⃗⃗|2−|b⃗⃗|2=( )A. −2B. −1C. 0D. 14.下列函数中在区间(0,+∞)上单调递增的是( )A. f(x)=−lnxB. f(x)=12x C. f(x)=−1xD. f(x)=3|x−1|5.(2x−1x)5的展开式中,x的系数是( )A. −40B. 40C. −80D. 806.已知抛物线C:y2=8x的焦点为F,点M在C上,若M到直线x=−3的距离为5,则|MF|=( )A. 7B. 6C. 5D. 47.在△ABC中,(a+c)(sinA−sinC)=b(sinA−sinB),则∠C=( )A. π6B. π3 C. 2π3D. 5π68.若xy≠0,则“x+y=0”是“xy +yx=−2”的( )第1页,共19页A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件9.刍曹是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某屋顶可视为五面体ABCDEF,四边形ABFE和CDEF是全等的等腰梯形,△ADE和△BCF是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的面、等腰三角形所在的面与底面夹角的正切值均为√ 14.为这个模型的轮廓安装灯带(不计损耗),则所需灯带的长度为( )5A. 102mB. 112mC. 117mD. 125m(a n−6)3+6,下列说法正确的是( )10.数列{a n}满足a n+1=14A. 若a1=3,则{a n}是递减数列,∃M∈R,使得n>m时,a n>MB. 若a1=5,则{a n}是递增数列,∃M≤6,使得n>m时,a n<MC. 若a1=7,则{a n}是递减数列,∃M>6,使得n>m时,a n>MD. 若a1=9,则{a n}是递增数列,∃M∈R,使得n>m时,a n<M第II卷(非选择题)二、填空题:本题共5小题,每小题5分,共25分。

2024年北京市高考数学试卷含答案解析

2024年北京市高考数学试卷含答案解析

绝密★启用前2024年北京市高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、单选题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合M={x|−4<x≤1},N={x|−1<x<3},则M∪N=( )A. {x|−4<x<3}B. {x|−1<x≤1}C. {0,1,2}D. {x|−1<x<4}=i−1,则z=( )2.已知ziA. 1−iB. −1C. −1−iD. 13.求圆x2+y2−2x+6y=0的圆心到x−y+2=0的距离( )A. 2√ 3B. 2C. 3√ 2D. √ 64.(x−√ x)4的二项展开式中x3的系数为( )A. 15B. 6C. −4D. −135.已知向量a⃗,b⃗⃗,则“(a⃗⃗+b⃗⃗)⋅(a⃗⃗−b⃗⃗)=0”是“a⃗=b⃗⃗或a⃗⃗=−b⃗⃗”的()条件.A. 必要而不充分条件B. 充分而不必要条件C. 充分且必要条件D. 既不充分也不必要条件,则ω=( )6.已知f(x)=sinωx,f(x1)=−1,f(x2)=1,|x1−x2|min=π2A. 1B. 2C. 3D. 4,并且d越大,水质量越好.若S不变,且d1=2.1,d2=2.2,则n1与n2的关系为( ) 7.记水的质量为d=S−1lnnA. n1<n2B. n1>n2C. 若S<1,则n1<n2;若S>1,则n1>n2D. 若S<1,则n1>n2;若S>1,则n1<n28.已知以边长为4的正方形为底面的四棱锥,四条侧棱分别为4,4,2√ 2,2√ 2,求该四棱锥的高为( )A. √ 22B. √ 32C. 2√ 3D. √ 39.已知(x1,y1),(x2,y2)是函数y=2x图象上不同的两点,则下列正确的是( )A. log2y1+y22>x1+x22B. log2y1+y22<x1+x22C. log2y1+y22>x1+x2 D. log2y1+y22<x1+x210.若集合{(x,y)|y=x+t(x2−x),0≤t≤1,1≤x≤2}表示的图形中,两点间最大距离为d,面积为S,则( )A. d=3,S<1B. d=3,S>1C. d=√ 10,S<1D. d=√ 10,S>1第II卷(非选择题)二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 可得 ,取 ,则当 时, ,
所以,“ 是递增数列” “存在正整数 ,当 时, ”;
若存在正整数 ,当 时, ,取 且 , ,
假设 ,令 可得 ,且 ,
当 时, ,与题设矛盾,假设不成立,则 ,即数列 是递增数列.
所以,“ 是递增数列” “存在正整数 ,当 时, ”.
所以,“ 是递增数列”是“存在正整数 ,当 时, ”的充分必要条件.
A. B. C. D.
【答案】B
【解析】
【分析】求出以 为球心,5为半径的球与底面 的截面圆的半径后可求区域的面积.
【详解】
设顶点 在底面上的投影为 ,连接 ,则 为三角形 的中心,
且 ,故 .
因为 ,故 ,
故 的轨迹为以 为圆心,1为半径的圆,
而三角形 内切圆的圆心为 ,半径为 ,
故 的轨迹圆在三角形 内部,故其面积为
当 , 时,因 ,故此时二氧化碳处于超临界状态,故D正确.
故选:D
8.若 ,则 ()
A. 40B. 41C. D.
【答案】B
【解析】
【分析】利用赋值法可求 的值.
【详解】令 ,则 ,
令 ,则 ,
故 ,
故选:B.
9.已知正三棱锥 的六条棱长均为6,S是 及其内部的点构成的集合.设集合 ,则T表示的区域的面积为()
C.当 , 时,二氧化碳处于超临界状态
D.当 , 时,二氧化碳处于超临界状态
【答案】D
【解析】
【分析】根据 与 的关系图可得正确的选项.
【详解】当 , 时, ,此时二氧化碳处于固态,故A错误.
当 , 时, ,此时二氧化碳处于液态,故B错误.
当 , 时, 与4非常接近,故此时二氧化碳处于固态,
另一方面, 时对应的是非超临界状态,故C错误.
设 , ,
所以 , ,
所以
,其中 , ,
因为 ,所以 ,即 ;
故选:D
第二部分(非选择题共110分)
二、填空题共5小题,每小题5分,共25分.
11.函数 的定义域是_________.
【答案】
【解析】
【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;
【详解】解:因为 ,所以 ,解得 且 ,
故选:C.
7.在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和 的关系,其中T表示温度,单位是K;P表示压强来自单位是 .下列结论中正确的是()
A.当 , 时,二氧化碳处于液态
B.当 , 时,二氧化碳处于气态
【详解】由题意有 ,故 .
故选:B.
3.若直线 是圆 的一条对称轴,则 ()
A. B. C.1D.
【答案】A
【解析】
【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解.
【详解】由题可知圆心为 ,因为直线是圆的对称轴,所以圆心在直线上,即 ,解得 .
故选:A.
4.己知函数 ,则对任意实数x,有()
所以 ,即 ,解得 ;
故答案为:
13.若函数 的一个零点为 ,则 ________; ________.
【答案】①.1②.
【解析】
【分析】先代入零点,求得A的值,再将函数化简为 ,代入自变量 ,计算即可.
【详解】∵ ,∴

故答案为:1,
14.设函数 若 存在最小值,则a的一个取值为________;a的最大值为___________.
【详解】因为 .
对于A选项,当 时, ,则 在 上单调递增,A错;
对于B选项,当 时, ,则 在 上不单调,B错;
对于C选项,当 时, ,则 在 上单调递减,C对;
对于D选项,当 时, ,则 在 上不单调,D错.
故选:C.
6.设 是公差不为0的无穷等差数列,则“ 为递增数列”是“存在正整数 ,当 时, ”的()
2022年普通高等学校招生全国统一考试(北京卷)
数学
本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题共40分)
一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
A. B.
C. D.
【答案】C
【解析】
【分析】直接代入计算,注意通分不要计算错误.
【详解】 ,故A错误,C正确;
,不 常数,故BD错误;
故选:C.
5.已知函数 ,则()
A. 在 上单调递减B. 在 上单调递增
C. 在 上单调递减D. 在 上单调递增
【答案】C
【解析】
【分析】化简得出 ,利用余弦型函数的单调性逐项判断可得出合适的选项.
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】C
【解析】
【分析】设等差数列 的公差为 ,则 ,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.
【详解】设等差数列 的公差为 ,则 ,记 为不超过 的最大整数.
若 为单调递增数列,则 ,
若 ,则当 时, ;若 ,则 ,
1.已知全集 ,集合 ,则 ()
A. B. C. D.
【答案】D
【解析】
【分析】利用补集的定义可得正确的选项.
【详解】由补集定义可知: {x│-3<x≤-2或1<x<3},,即 (-3,-2]∪(1,3)
故选:D.
2.若复数z满足 ,则 ()
A.1B.5C.7D.25
【答案】B
【解析】
【分析】利用复数四则运算,先求出 ,再计算复数的模.
故函数的定义域为 ;
故答案为:
12.已知双曲线 的渐近线方程为 ,则 __________.
【答案】
【解析】
【分析】首先可得 ,即可得到双曲线的标准方程,从而得到 、 ,再跟渐近线方程得到方程,解得即可;
【详解】解:对于双曲线 ,所以 ,即双曲线的标准方程为 ,
则 , ,又双曲线 的渐近线方程为 ,
故选:B
10.在 中, .P为 所在平面内的动点,且 ,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】
【分析】依题意建立平面直角坐标系,设 ,表示出 , ,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;
【详解】解:依题意如图建立平面直角坐标系,则 , , ,
因为 ,所以 在以 为圆心, 为半径的圆上运动,
【答案】①.0(答案不唯一)②.1
【解析】
【分析】根据分段函数中的函数 的单调性进行分类讨论,可知, 符合条件, 不符合条件, 时函数 没有最小值,故 的最小值只能取 的最小值,根据定义域讨论可知 或 , 解得 .
相关文档
最新文档