九年级(上册)初中数学定理知识点汇总
九年级上册数学总结知识点
九年级上册数学总结知识点一、集合的概念与运算1. 集合的定义和表示方法2. 集合间的包含关系3. 集合的运算:并集、交集、差集、补集4. 集合的性质:全集、空集、互斥集、互不相交集二、函数与方程1. 函数的定义和性质2. 函数图像的基本性质3. 一次函数与二次函数4. 方程的基本概念:根、解、方程的种类5. 方程的解法:代入法、消元法、配方法、因式分解法三、三角形与相似1. 三角形的分类与性质:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形2. 直角三角形的勾股定理和斜边定理3. 相似三角形的判定条件4. 相似三角形的性质:比例关系、类比比例、全等定理四、函数的图像与性质1. 函数图像的基本变换:平移、伸缩、翻转2. 二次函数的图像特征:顶点、对称轴、开口方向3. 绝对值函数和分段函数的图像特征4. 函数的单调性与极值点的求解五、平面坐标系与图形1. 平面直角坐标系的建立与使用2. 线段的长度计算3. 点和直线的位置关系:同一直线、垂直、平行、相交等4. 常见图形的性质与计算:矩形、正方形、三角形、圆六、数据的处理与统计1. 数据的收集和整理2. 统计量的计算:平均数、中位数、众数、极差3. 数据的图表展示:条形图、折线图、散点图4. 概率的基本概念与计算七、圆的性质与计算1. 圆的基本概念与性质:圆心、半径、直径、弧长、扇形面积2. 圆的相关角和切线的性质3. 弧度制与度数制的换算4. 圆的计算问题:弧长问题、扇形面积问题八、空间图形与几何体1. 空间图形的投影与视图2. 空间中的点、线、面的性质与判定3. 空间中的几何体:正方体、长方体、圆柱体、圆锥体、球体4. 空间几何体的计算:体积、表面积等以上是九年级上册数学的主要知识点总结,通过掌握这些知识,可以帮助学生更好地理解和应用数学知识,提升数学解题能力。
通过反复练习和思考,相信学生们能够更加熟练地掌握这些知识,取得更好的成绩。
九年级上册数学考试常用定理
九年级上册数学考试常用定理数学是一门需要理解和掌握一定规则和定理的学科。
在九年级上册的数学考试中,一些常用的定理经常被考察。
本文将介绍九年级上册数学考试中常用的定理,并详细解释它们的应用。
一、平行线定理平行线定理是几何学中最基本的定理之一。
在几何图形中,如果两条直线在同一平面内,且没有交点,那么这两条直线被称为平行线。
下面是与平行线相关的常用定理:1. 同位角定理:当一条直线被一对平行线切割时,同侧的对应角相等。
2. 内错角定理:当一条直线被两条平行线切割时,内错角互补(即和为180度)。
3. 外错角定理:当一条直线被两条平行线切割时,外错角相等。
二、相似三角形定理相似三角形定理是解决三角形相似性问题的重要定理。
相似三角形定理有以下几种形式:1. AA相似定理:如果两个三角形的两个角相等,那么它们是相似的。
2. SSS相似定理:如果两个三角形的三个边成比例,那么它们是相似的。
3. SAS相似定理:如果两个三角形一对对应的边成比例,并且夹角也相等,那么它们是相似的。
三、直角三角形定理直角三角形是一个角为90度的三角形。
直角三角形定理是解决直角三角形问题的重要定理。
下面是直角三角形定理的常见形式:1. 勾股定理:在直角三角形中,直角边的平方等于其他两条边平方的和。
2. 正弦定理:在任意三角形中,三角形的边长和其对应的角的正弦值成比例。
3. 余弦定理:在任意三角形中,三角形的边长和其对应的角的余弦值成比例。
四、圆的定理圆是平面上一组等距离的点的集合,圆的定理主要涉及到圆的弧、弦和角的关系。
下面是与圆相关的一些常用定理:1. 圆心角定理:圆心角等于它所对应的弧的中心角。
2. 弧长定理:圆心角等于它所对应的弧的长度与圆的半径的比值。
3. 弦切线定理:当一条切线和一条弦相交时,切线与弦的交点两侧的弦段乘积相等。
以上介绍了九年级上册数学考试中常用的定理。
掌握这些定理对于解答几何题和三角函数题非常重要。
希望同学们在备考过程中能够理解并熟练应用这些定理,取得优异的成绩。
初一到初三数学必记重要公式定理汇总(大全)
初中数学定理公式大全1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1关于某条直线对称的两个图形是全等形43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1平行四边形的对角相等53、平行四边形性质定理2平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3平行四边形的对角线互相平分56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3对角线互相平分的四边形是平行四边形59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形60、矩形性质定理1矩形的四个角都是直角61、矩形性质定理2矩形的对角线相等62、矩形判定定理1有三个角是直角的四边形是矩形63、矩形判定定理2对角线相等的平行四边形是矩形64、菱形性质定理1菱形的四条边都相等65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1四边都相等的四边形是菱形68、菱形判定定理2对角线互相垂直的平行四边形是菱形69、正方形性质定理1正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1关于中心对称的两个图形是全等的72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2相似三角形周长的比等于相似比98、性质定理3相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
数学九年级上册每章知识点
数学九年级上册每章知识点第一章:有理数1. 有理数的概念和分类- 有理数的定义- 正数、负数和零的分类- 有理数的大小比较2. 有理数的加法和减法- 有理数的加法原则- 有理数的减法原则3. 有理数的乘法和除法- 有理数的乘法原则和性质- 有理数的除法原则和性质4. 有理数的运算性质- 加法和减法的交换律、结合律和分配律- 乘法和除法的交换律、结合律和分配律第二章:线性方程和一次不等式1. 变量和代数式- 变量的概念- 代数式的概念和性质2. 一元一次方程- 一元一次方程的定义和基本形式- 解一元一次方程的方法3. 一元一次不等式- 一元一次不等式的定义和基本形式- 解一元一次不等式的方法4. 实际问题与一元一次方程或不等式- 将实际问题转化成一元一次方程或不等式- 解决实际问题的步骤和方法第三章:多项式与因式分解1. 代数式的加减法- 代数式的加法原则和性质- 代数式的减法原则和性质2. 一元多项式- 一元多项式的定义和基本形式- 一元多项式的加减法原则3. 一元多项式的乘法- 一元多项式的乘法原则和性质- 一元多项式的乘法公式4. 因式分解- 因式分解的定义和基本方法- 因式分解的应用第四章:平面直角坐标系与图形初步1. 平面直角坐标系- 平面直角坐标系的概念和构造- 坐标表示和坐标轴上的点2. 点、线和线段- 点的坐标和图形的位置关系- 直线和线段的定义和表示3. 直角和垂线- 直角的概念和判定条件- 垂线的概念和判定条件4. 三角形和四边形- 三角形的分类和性质- 四边形的分类和性质第五章:相似与全等1. 平行线与比例- 平行线的概念和判定条件- 比例的概念和性质2. 相似三角形- 相似三角形的定义和判定条件- 相似三角形的性质和应用3. 全等三角形- 全等三角形的定义和判定条件- 全等三角形的性质和应用4. 相似和全等图形的应用- 利用相似和全等图形求解实际问题- 利用相似和全等图形进行图形的设计以上是数学九年级上册每章的知识点概述。
九年级上册数学知识点
九年级上册数学知识点一、有理数1. 整数2. 分数3. 小数二、代数表达式和简单方程1. 代数表达式的定义与运算2. 一元一次方程3. 方程的解4. 解一元一次方程的基本方法三、图形的性质和变换1. 空间几何图形- 三角形- 四边形- 多边形2. 平面镜像与旋转- 线对称与点对称- 图形的旋转四、概率和统计1. 概率的定义与计算- 随机事件- 事件发生的概率计算 2. 统计与表示- 数据的收集与整理- 平均数与中位数五、函数1. 函数的概念与表示2. 线性函数- 函数的增减性与最值 - 线性函数的图像与性质六、几何初步1. 直线、射线和线段2. 角及其性质3. 平行线和平行四边形七、相似与全等三角形1. 相似三角形- 相似三角形的判定与性质 - 相似三角形的应用2. 全等三角形- 全等三角形的判定与性质 - 全等三角形的应用八、立体几何初步1. 空间几何体的性质- 点、线、面的关系- 空间几何体的视图2. 投影与截面- 立体图形的投影- 立体图形的截面九、二次根式与实数1. 二次根式的性质与运算- 平方根与立方根- 二次根式的四则运算2. 实数的定义与运算- 有理数与无理数的概念- 实数的加减乘除运算十、解直角三角形1. 直角三角形的概念与性质2. 利用三角函数解直角三角形以上是九年级上册数学的主要知识点,通过对这些知识的系统学习,你将掌握数学中的基本概念、方法和技巧。
在实际应用中,这些知识将为你提供解决问题的工具和途径。
希望你能够认真学习,不断提高自己的数学能力。
九年级上册数学知识点归纳
九年级上册数学知识点归纳一、代数基础1.1 代数式与多项式•代数式的概念和基本性质•多项式的定义、次数、最高次项、最高次系数和降次1.2 整式运算•基本运算法则(加、减、乘、除)•多项式的因式分解1.3 方程与不等式•一元一次方程的定义、解法及应用一元二次方程的定义、解法及应用•一元一次不等式和一元二次不等式的定义、解法及应用二、平面几何2.1 点、直线、角、三角形•点、直线、射线、线段的定义•角的概念、性质和分类•三角形的定义、分类、性质(三角形角度定理、三角形边长关系定理)2.2 四边形和多边形•四边形的定义、性质(平行四边形、菱形、矩形、正方形、梯形)•多边形的定义和性质(对称性、全等性、相似性)2.3 圆的基本性质•圆的定义、圆心、半径、直径、弦、弧、圆周角•圆的切线和切点的概念和性质三、立体几何3.1 空间图形的概念和性质•空间图形的分类(点、线、面、体)•空间图形的基本性质(包括线段长度、角度大小、面积和体积)3.2 空间坐标系的建立和应用•空间坐标系的建立(右手法则)•空间坐标系中点、距离、中点公式、斜率公式3.3 空间几何体的计算•立体图形的表面积和体积的计算方法(包括长方体、正方体、棱锥、棱台、球)四、数与函数4.1 实数的概念和性质•实数的分类、基本性质(包括代数性质、有序性、完备性)4.2 一次函数的概念和性质•一次函数的定义、函数图像、图像特征、斜率、截距、变化规律和应用4.3 二次函数的概念和性质•二次函数的定义、函数图像、图像特征、参数的关系及其应用•二次函数解析式的确定方法五、统计与概率5.1 数据的收集和整理•数据的收集方法及其优缺点•数据的整理方法(频率分布表、直方图、折线图、饼图)5.2 概率的概念和基本性质•随机性和概率、概率的基本性质•事件及其概率的计算方法、频率和概率5.3 统计量•数值型数据的统计量(包括极差、平均数、中位数、众数、标准差)•统计推断的基本思想和应用(区间估计、假设检验)以上是九年级上学期数学知识点的归纳,希望对大家有所帮助。
九年级上册数学知识点
九年级上册数学知识点九年级上册数学知识点概述一、实数1. 有理数和无理数的概念2. 实数的分类和性质3. 实数的四则运算4. 绝对值的概念和性质5. 根号的计算和性质二、代数式1. 单项式和多项式的定义2. 同类项和合并同类项3. 多项式的加减法4. 多项式的乘法5. 因式分解6. 代数式的简化三、方程与不等式1. 一元一次方程的解法2. 一元二次方程的解法3. 二元一次方程组的解法4. 不等式的基本性质5. 一元一次不等式的解法6. 一元一次不等式的解集表示四、函数1. 函数的概念2. 函数的表示方法3. 正比例函数和反比例函数4. 一次函数和二次函数5. 函数的图像和性质6. 函数的应用问题五、几何1. 平行线的性质2. 三角形的基本概念和性质3. 特殊三角形(等腰三角形、等边三角形、直角三角形)4. 平行四边形的性质5. 圆的基本性质6. 圆的性质应用(圆周角、圆心角、弦、弧等)六、统计与概率1. 统计的基本概念2. 数据的收集和整理3. 频数和频率4. 概率的基本概念5. 简单事件的概率计算七、三角函数1. 三角函数的定义2. 正弦、余弦、正切函数的性质3. 三角函数的图像4. 三角函数的应用八、数列1. 数列的概念2. 等差数列的定义和性质3. 等比数列的定义和性质4. 数列的求和公式请注意,以上内容是根据一般九年级的数学课程大纲概括的知识点,具体教材可能会有所不同。
教师和学生应根据所在地区的具体教学大纲和教材内容进行调整。
九年级数学上册知识点归纳总结
九年级数学上册知识点归纳总结九年级数学上册的知识点主要包括以下内容:一、整数和有理数1. 整数的概念和性质:自然数、负整数、零、对等原则等。
2. 整数的四则运算:加法、减法、乘法和除法。
3. 有理数的概念和性质:有理数的定义、有理数的相等性。
4. 有理数的加减法:有理数的加法、减法和整数的乘法。
5. 有理数的乘法和除法:有理数的乘法、除法和除不尽的情况。
二、一次函数和一次方程1. 一次函数的概念和性质:自变量、因变量、函数图像、斜率和截距等。
2. 一次函数的图像和运算:一次函数的图像特征、函数的运算与图像的变换。
3. 一次方程及其应用:方程的定义、等式变形、方程的解和方程的应用。
三、平面图形的认识1. 角的概念及其性质:角的定义、角的分类、同位角、对顶角等。
2. 三角形的概念和性质:三角形的定义、三角形的分类、三角形的性质等。
3. 四边形的概念和性质:四边形的定义、四边形的分类、四边形的性质等。
4. 平行四边形和矩形的性质:平行四边形的性质、矩形的性质等。
5. 直线和角的性质:平行线、垂直线、相交线、同位角等。
四、数据的理解和应用1. 统计图表的读取和应用:频数表、条形图、折线图、饼图等。
2. 数据的描述和分析:中心趋势、离散程度等。
3. 概率的概念和计算:随机事件、试验、样本空间、事件概率等。
五、函数的概念和应用1. 函数的定义和性质:函数的定义、定义域、值域、函数的线性性质等。
2. 函数的图像和运算:函数的图像特征、函数的运算与图像的变换。
3. 一元一次方程的解和应用:一元一次方程的解法及实际应用。
4. 函数的应用:函数的实际问题和应用。
六、三角形的相似性1. 三角形的相似性及其性质:相似三角形的定义、相似三角形的性质等。
2. 三角形的相似性应用:相似三角形的面积比、两平行线之间的截线定理等。
3. 平行线与三角形的相似性:平行线切割三角形的性质、应用等。
九年级数学上册的知识点主要包括整数和有理数、一次函数和一次方程、平面图形的认识、数据的理解和应用、函数的概念和应用、三角形的相似性等内容。
九年级上册数学各章节知识点总结(最新最全)
九年级上册数学各章节知识点总结(最新
最全)
1. 有理数与整式有理数与整式
- 有理数的概念及表示方法
- 有理数的大小比较
- 有理数的加法、减法、乘法、除法运算法则
- 整式的定义和基本运算
2. 方程与不等式方程与不等式
- 一元一次方程的概念、解法及应用
- 恒等方程和条件方程
- 一元一次不等式的概念及解法
- 一元一次方程与不等式的综合应用
3. 函数与图像函数与图像
- 函数的概念及表示
- 函数的增减性和奇偶性
- 函数的概率和函数的平移、翻折、对称变换
- 函数图像的特点和简单的函数图像绘制
4. 图形的性质图形的性质
- 平行线与相交线
- 三角形的定义及分类
- 三角形的性质与判定
- 常见四边形的性质及判定
5. 相似与全等相似与全等
- 相似的概念及相似三角形的判定
- 相似比的计算
- 全等的概念及全等三角形的判定
- 全等三角形的性质和应用
6. 三角函数三角函数
- 角的概念及角的度量
- 反义函数、同角三角函数特殊值
- 三角函数的图像
- 三角函数的性质及简单的计算与应用7. 圆圆
- 圆的定义和性质
- 圆上的弧和弦
- 切线与圆的位置关系
- 圆的周长和面积的计算
以上是九年级上册数学各章节知识点的总结,请根据具体情况进行查阅和复习。
九年级数学全册知识点总结一览
九年级数学全册知识点总结一览九年级数学全册知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
9、中,A(x1,y1)、B(x2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
九年级上册数学复习知识点
九年级上册数学复习知识点一、代数与方程式1. 一元一次方程式1.1 解一元一次方程式的基本方法1.2 利用一元一次方程式解实际问题2. 二元一次方程式2.1 消元法解二元一次方程式2.2 代入法解二元一次方程式2.3 应用解二元一次方程式的方法解实际问题3. 不等式3.1 线性不等式的解及图示3.2 用不等式表示实际问题,并求解4. 平方根与平方差4.1 定义和性质4.2 求解平方根的方法4.3 解平方差的方法5. 平方根与二次方程5.1 二次方程的定义和性质 5.2 二次方程的解及图示5.3 利用二次方程解实际问题二、几何1. 平面图形1.1 三角形及其性质1.2 四边形及其性质1.3 多边形及其性质2. 圆与圆周角2.1 圆的定义和性质2.2 圆周角的定义和计算3. 相似与全等3.1 相似三角形的性质及判定3.2 全等三角形的性质及判定4. 三视图与投影4.1 顶视图、正视图和侧视图的概念 4.2 通过三视图还原物体的形状和尺寸5. 三角函数5.1 正弦、余弦和正切的概念及计算 5.2 利用三角函数解实际问题三、数据与统计1. 数据的整理和分析1.1 数据的收集和整理方法1.2 数据的图示和分析方式2. 概率与事件2.1 事件的概念和性质2.2 用树状图表示事件的组合和概率3. 线段与角度的测量3.1 利用直尺和量角器测量线段和角度 3.2 利用比例关系计算线段和角度的长度四、函数与图像1. 函数的概念与性质1.1 定义和符号化1.2 函数的性质及分类2. 一元一次函数2.1 函数关系及表达式的表示2.2 函数的图像和性质3. 一元二次函数3.1 函数关系及表达式的表示 3.2 函数的图像和性质4. 特殊函数的图像4.1 绝对值函数的图像和性质 4.2 反比例函数的图像和性质五、立体几何1. 空间图形的表示1.1 空间图形的名称和性质 1.2 空间图形的展开图2. 空间几何体的计算2.1 空间几何体的表面积计算2.2 空间几何体的体积计算3. 空间几何体的相交关系3.1 空间几何体的轴对称关系3.2 利用空间几何体的相交关系解实际问题六、整式与分式1. 整式的加减乘除1.1 整式的加减法运算1.2 整式的乘法运算1.3 整式的除法运算2. 分式的加减乘除2.1 分式的加减法运算2.2 分式的乘法运算2.3 分式的除法运算3. 整式与分式的应用3.1 利用整式解实际问题3.2 利用分式解实际问题以上是九年级上册数学的复习知识点,通过系统地了解和掌握这些知识点,可以有效提高数学学科的学习成绩,为下一阶段的学习打下坚实的基础。
九年级(上册)初中数学定理知识点汇总
九年级(上册)初中数学定理知识点汇总第一章 证明(二)一 两个三角形有关公理与定理:1。
.公理:三边对应相等的两个三个形全等(SSS )2。
.公理:两边及其夹角对应相等的两个三个形全等(SAS )3。
.公理:两角及其夹边对应相等的两个三个形全等(ASA )4。
公理:全等三个形的对应角相等及对应边相等5。
推论:两角及其中一角的对边对应相等的两个三个形全等(AAS )。
二 一个三角形有关公理与定理:1。
定理:等腰三角形的两个底角相等(简述:等边对等角)2。
推论:等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。
3。
等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半。
4。
有一个角等于60º的等腰三角形是等边三角形。
5。
等腰三角形的两个底角的平分线相等;等腰三角形的两腰上的中线相等;等腰三角形的两腰上的高相等。
6。
如果知道一个三角形为直角三角形 首先要想的定理有:①勾股定理:222c b a =+(注意区分斜边与直角边)②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半。
③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现)7。
垂直平分线.....是垂直于一条线段..并且平分这条线段的直线..。
(注意着重号的意义) <直线与射线有垂线,但无垂直平分线>8。
线段垂直平分线上的点到这一条线段两个端点距离相等。
9。
线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
10。
三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。
(如图1所示,AO=BO=CO ,点o 叫外心)11。
角平分线上的点到角两边的距离相等。
12。
角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
人教版九年级数学上册知识点整理(完整版)
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
初三上册最新数学知识点归纳总结
初三上册最新数学知识点归纳总结初三上册数学知识点归纳(一)不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法。
不等式基本性质1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以或除以同一个正数,不等号的方向不变。
3、不等式两边都乘以或除以同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1.一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法1分别求出不等式组中各个不等式的解集。
2利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
初中数学公式定理大全九年级(上册)
初中数学公式定理大全:九年级(上册)第二十一章 二次根式21.1 二次根式用基本运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式(algebraic expression )。
21.2 二次根式的乘除 如22,103,aa 2等,可以发现这些式子中的二次根式有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式。
我们把满足上述两个条件的二次根式,叫做最简二次根式。
21.3 二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
如:8+18=22+23=2)32(+=25。
第二十二章 一元二次方程2BC BC AC = 即 BC 2=2AC (黄金分割?) 22.1 一元二次方程4x 2=9,x 2+3x=0,3y 2-5y=7,像这样,等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程(quadratic equation in one unknown )。
一元二次方程的解也叫做一元二次方程的根(root )。
22.2.1 配方法把一个一元二次方程“降次”,转化为两个一元一次方程,比较容易得到一元二次方程的根。
X 2+6x-16=0,得x 2+6x=16,得x 2+6x+9=16+9,得(x+3)2=25……像这样,通过配成完全平方形式来解一元二次方程的方法,叫做配方法。
22.2.2 公式法任何一元二次方程都可以写成一般形式:ax 2+bx+c=0(a ≠0)。
移项,得:ax 2+bx=-c ①。
配方:22222⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛++a b a c a b x a b x ,即222442a ac b a b x -=⎪⎭⎫ ⎝⎛+ ②。
因为a ≠0,所以4a 2>0。
式子b 2-4ac 的值有以下三种情况:(1)b 2-4ac>0,由②得:aac b a b x 2422-±=+。
九年级上册知识点大全数学
九年级上册知识点大全数学一、有理数1. 整数的概念和性质2. 正负数的比较和大小3. 有理数的加减法运算4. 有理数的乘法运算5. 有理数的除法运算6. 有理数的混合运算7. 有理数的运算定律二、代数式与方程式1. 代数式的定义和性质2. 代数式的加减法运算3. 代数式的乘法运算4. 一元一次方程的概念和解法5. 一元一次方程的应用6. 一元一次方程组的概念和解法7. 一元一次方程组的应用三、几何图形1. 点、线、面的概念2. 平行线和垂直线的性质3. 三角形的分类和性质4. 四边形的分类和性质5. 五线图形的分类和性质6. 直角三角形和勾股定理7. 圆的概念和性质四、图形的相似与等腰三角形1. 图形的相似性判定2. 相似三角形的性质和判定3. 图形的放缩与相似比例4. 等腰三角形的概念和性质5. 等腰三角形的判定和性质应用五、数列与函数1. 数列的概念和性质2. 数列的通项公式和前n项和公式3. 等差数列与等差数列的求和公式4. 等比数列与等比数列的求和公式5. 函数的概念和性质6. 一次函数和一次函数图像7. 一次函数的斜率和截距六、数据统计与概率1. 统计调查和数据收集2. 数据的整理、分析和展示3. 平均数和中位数的计算4. 概率的基本概念和计算5. 事件的概率与互斥事件6. 概率分布和频率分布7. 抽样和抽样调查在九年级上册数学学习中,这些知识点的掌握对于解决数学问题和应用数学知识具有重要意义。
通过对整数、代数式和方程式、几何图形、相似与等腰三角形、数列与函数、数据统计与概率等知识的学习,可以锻炼学生的逻辑思维能力、问题解决能力和数学运算技巧。
同时,在学习的过程中,要注意理论与实践的结合,通过大量的练习和实际问题的应用,培养学生的数学思维和实际解决问题的能力。
此外,在学习数学的过程中,要注重培养学生的数学思维方法和逻辑推理能力,提高解决问题的能力和创新意识。
九年级上册数学知识点的掌握将为学生在中学和高中的数学学习打下坚实的基础,为今后对数学的深入研究和应用打下良好的基础。
初中九年级上册数学知识点总结
九年级上册数学知识点总结归纳1 第二十一章一元二次方程第二十二章二次函数第二十三章旋转第二十四章圆第二十五章概率初步第二十一章 一元二次方程知识点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
知识点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程. ⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去x +4。
九年级上册数学公式大全总结
九年级上册数学公式大全总结
九年级上册数学涉及的公式非常丰富,包括代数、几何、概率统计等多个方面。
以下是九年级上册数学公式的总结:
1. 代数部分:
一次函数的标准方程,y = kx + b.
二次函数的一般式,y = ax^2 + bx + c.
因式分解公式,a^2 b^2 = (a+b)(a-b)。
二次方程的求根公式,x = (-b ± √(b^2 4ac)) / (2a)。
等差数列通项公式,an = a1 + (n-1)d.
等比数列通项公式,an = a1 r^(n-1)。
2. 几何部分:
直角三角形斜边长度公式,c = √(a^2 + b^2)。
同位角相等,∠A = ∠C, ∠B = ∠D.
勾股定理,a^2 + b^2 = c^2。
三角形面积公式,S = 1/2 底高。
圆的面积公式,S = πr^2。
圆的周长公式,C = 2πr.
3. 概率统计部分:
事件发生的概率公式,P(A) = n(A) / n(S)。
互斥事件概率公式,P(A∪B) = P(A) + P(B)。
条件概率公式,P(A|B) = P(A∩B) / P(B)。
期望公式,E(X) = x1p1 + x2p2 + ... + xnpn.
以上是九年级上册数学涉及的一些重要公式的总结。
这些公式在学习数学过程中非常重要,需要牢记并灵活运用。
希望这些内容能够帮助到你。
初三上册数学知识点
初三上册数学知识点初三上册数学知识点1一、圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
①定理有三方面的意义:a.圆心角和圆周角在同一个圆或等圆中;(相关知识点如何证明四点共圆 )b.它们对着同一条弧或者对的两条弧是等弧c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.二、圆周角定理的推论推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等推论2:半圆(或直径)所对的圆周角等于90°;90°的圆周角所对的弦是直径推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形三、推论解释说明圆周角定理在九年级数学知识点中属于几何部分的重要内容。
①推论1是圆中证明角相等最常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个.②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.初三上册数学知识点21、必然事件、不可能事件、随机事件的区别2、概率一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability),记作P(A)=p.注意:(1)概率是随机事件发生的可能性的大小的数量反映。
(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同。
3、求概率的方法(1)用列举法求概率(列表法、画树形图法)(2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(上册)初中数学定理知识点汇总第一章 证明(二)一 两个三角形有关公理与定理:1。
.公理:三边对应相等的两个三个形全等(SSS )2。
.公理:两边及其夹角对应相等的两个三个形全等(SAS )3。
.公理:两角及其夹边对应相等的两个三个形全等(ASA )4。
公理:全等三个形的对应角相等及对应边相等5。
推论:两角及其中一角的对边对应相等的两个三个形全等(AAS )。
二 一个三角形有关公理与定理:1。
定理:等腰三角形的两个底角相等(简述:等边对等角)2。
推论:等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。
3。
等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半。
4。
有一个角等于60º的等腰三角形是等边三角形。
5。
等腰三角形的两个底角的平分线相等;等腰三角形的两腰上的中线相等;等腰三角形的两腰上的高相等。
6。
如果知道一个三角形为直角三角形 首先要想的定理有:①勾股定理:222c b a =+(注意区分斜边与直角边)②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半。
③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现)7。
垂直平分线.....是垂直于一条线段..并且平分这条线段的直线..。
(注意着重号的意义) <直线与射线有垂线,但无垂直平分线>8。
线段垂直平分线上的点到这一条线段两个端点距离相等。
9。
线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
10。
三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。
(如图1所示,AO=BO=CO ,点o 叫外心)11。
角平分线上的点到角两边的距离相等。
12。
角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
角平分线是到角的两边距离相等的所有点的集合。
13。
三角形三条角平分线交于一点,并且交点到三边距离相等,交点o 即为三角形的内心。
(如图2所示,OD=OE=OF )AC B O 图1 图2 O A C BDE F第二章 一元二次方程1。
一元二次方程定义:只含有一个未知数的整式方程,且都可以化为02=++c bx ax (a 、b 、c 为常数,a ≠0)的形式,这样的方程叫一元二次方程......。
2。
一元二次方程的一般形式:把02=++c bx ax (a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项。
3。
解一元二次方程的方法:①配方法: <即将其变为0)(2=+m x 的形式>②公式法: aac b b x 242-±-= (注意在找abc 时须先把方程化为一般形式)③分解因式法: 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”)4。
配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式; ②将二次项系数化成1;③把常数项移到方程的右边; ④两边加上一次项系数的一半的平方; ⑤把方程转化成a m x =+2)(的形式; ⑥两边开方求其根。
5。
根与系数的关系:当b 2-4ac>0时,方程有两个不等的实数根;当b 2-4ac=0时,方程有两个相等的实数根;当b 2-4ac<0时,方程无实数根。
6。
如果一元二次方程02=++c bx ax 的两根分别为x 1、x 2,则有:ac x x a bx x =⋅-=+2121。
7。
一元二次方程的根与系数的关系的作用:(a )已知方程的一根,求另一根;(b )不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x -+=+ ②21212111x x x x x x +=+③212212214)()(x x x x x x -+=- ④21221214)(||x x x x x x -+=-⑤||22)(|)||(|2121221221x x x x x x x x +-+=+⑥)(3)(21213213231x x x x x x x x +-+=+ ⑦其他能用21x x +或21x x 表达的代数式。
(c )已知方程的两根x 1、x 2,可以构造一元二次方程:0)(21221=++-x x x x x x (d )已知两数x 1、x 2的和与积,求此两数的问题,可以转化为求一元二次方程0)(21221=++-x x x x x x 的根。
8。
在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
第三章证明(三)图31平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
2平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
3平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
4平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
5菱形的定义:一组邻边相等的平行四边形叫做菱形。
6菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
7菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
8矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
9矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)10矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
11推论:直角三角形斜边上的中线等于斜边的一半。
正方形的定义:一组邻边相等的矩形叫做正方形。
12正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)13正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如下图所示):14梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
15两条腰相等的梯形叫做等腰梯形。
16一条腰和底垂直的梯形叫做直角梯形。
17等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上....的两个内角相等的梯形是等腰梯形。
18三角形的中位线平行于第三边,并且等于第三边的一半。
19夹在两条平行线间的平行线段相等。
20在直角三角形中,斜边上的中线等于斜边的一半。
第四章 视图与投影1.三视图包括:主视图、俯视图和左视图。
三视图之间要保持长对正,高平齐,宽相等。
一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。
主视图:基本可认为从物体正面视得的图象俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象2视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。
3在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。
4在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。
物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影..。
太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影....。
探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中.鹏翔教图3心投影...。
5区分平行投影和中心投影:①观察光源;②观察影子。
眼睛的位置称为视点..;由视点发出的线称为视线..;眼睛看不到的地方称为盲区..。
6从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。
①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度。
③平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状。
第五章 反比例函数1反比例函数的概念:一般地,xk y =(k 为常数,k ≠0)叫做反比例函数,即y 是x 的反比例函数。
(x 为自变量,y 为因变量,其中x 不能为零) 2反比例函数的等价形式:y 是x 的反比例函数 ←→ )0(≠=k x k y ←→ )0(1≠=-k kx y ←→ )0(≠=k k xy ←→ 变量y 与x 成反比例,比例系数为k.3判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即k xy =>。
(通常第二种方法更适用)4反比例函数的图象由两条曲线组成,叫做双曲线5反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;②选取的点越多画的图越准确;③画图注意其美观性(对称性、延伸特征)。
6反比例函数性质:①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; ②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大; ③双曲线的两支会无限接近坐标轴(x 轴和y 轴),但不会与坐标轴相交。
7反比例函数图象的几何特征:(如图4所示)点P(x,y)在双曲线上都有||21||21||||k xy S k xy S AOB OAPB ====∆矩形第六章 频率与概率1在频率分布表里,落在各小组内的数据的个数叫做频数..; 每一小组的频数与数据总数的比值叫做这一小组的频率..; 即:实验次数频数数据总数频数频率== 在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。