二进程同步算法模拟

合集下载

国家开放大学《操作系统》形考任务(应用题)参考答案

国家开放大学《操作系统》形考任务(应用题)参考答案

国家开放大学《操作系统》形考任务(应用题)参考答案1.用如图所示的进程状态转换图能够说明有关处理机管理的大量内容。

图进程状态转换图试回答:①什么事件引起每次显著的状态变迁?②下述状态变迁因果关系能否发生?为什么?参考答案:①就绪→运行:CPU空闲,就绪态进程被调度程序选中。

运行→就绪:正在运行的进程用完了本次分配给它的CPU时间片。

运行→阻塞:运行态进程因某种条件未满足而放弃对CPU的占用,如等待读文件。

阻塞→就绪:阻塞态进程所等待的事件发生了,例如读数据的操作完成。

②下述状态变迁:(A)2→1:可以。

运行进程用完了本次分配给它的时间片,让出CPU,从就绪队列中选一个进程投入运行。

(B)3→2:不可以。

任何时候一个进程只能处于一种状态,它既然由运行态变为阻塞态,就不能再由运行态变为就绪态。

(C)4→1:可以。

某一阻塞态进程等待的事件出现了,而且此时就绪队列为空,该进程进入就绪队列后马上又被调度运行。

2.系统中只有一台打印机,有三个用户的程序在执行过程中都要使用打印机输出计算结果。

设每个用户程序对应一个进程。

问:这三个进程间有什么样的制约关系?试用P、V操作写出这些进程使用打印机的算法。

参考答案:因为打印机是一种临界资源,所以这三个进程只能互斥使用这台打印机,即一个用户的计算结果打印完之后,另一个用户再打印。

设三个进程分别为A、B和C。

设一个互斥信号量mutex,其初值为1。

3.判断下列同步问题的算法是否正确?若有错,请指出错误原因并予以改正。

①设A,B两个进程共用一个缓冲区Q,A向Q写入信息,B从Q读出信息,算法框图如图左侧所示。

②设A,B为两个并发进程,它们共享一个临界资源。

其运行临界区的算法框图如图右侧所示。

参考答案:①这个算法不对。

因为A、B两个进程共用一个缓冲区Q,如果A先运行,且信息数量足够多,那么缓冲区Q中的信息就会发生后面的冲掉前面的,造成信息丢失,B就不能从Q中读出完整的信息。

改正:A、B两进程要同步使用缓冲区Q。

信号量在进程同步中的应用及实现

信号量在进程同步中的应用及实现
和着力解决的首要问题。
解决进程同步 问题 的算法构架 如下 :
到其他合作进程发 来的消息 之前则阻 与 进程 的互斥 不 同 , 进程 同步时 的信
塞 自己, 直到其他合作进程 给出协调信 号 量 只 与 制 约进 程 及 被制 约 进 程 有
其 号后被唤醒而继续执行 。 进程之间的这 关 而不 是与整 组并 发进 程有 关 , 称
种相互合作等 待对 方消息 的协 调关系 之 为私有 信号量 。 私有 信号量 赋初 为
学 术 纵 横
FZA ・UsU0G EG AHNX EH ZNH N
信号量在进程同步中的应用及实现
口 逯 广 义

要: 本文在阐述进程 同步基本 创建 的先后次序也都是不确定的 , 这就 互 斥信 号量 与所有 的并 发进 程有 关 , 个合作进程到达协调点后 , 在没有得 了公有 资 源 的数 量 ,初值 通 常 为 1 。

其二 : 由于进 程访问临界资 源 概念。进程就是进程实体的运行过程 , 值 只能由定义 在信号量上 的 P操 作原 对 出现 ;
而 界区 , 任何时刻只能 是系统进行 资源分配和调度 的一个独 语 和 V操 作原语来 改变 , Q是 个初 的那段资源称为I 所以在 立单位。 进程具有异 步性 即进程按各 自 始状 态为空 的队列 ,即信号量表 示某 有一个 进程进入 自己的临界 区。 独立的、不可预知的速度 向前推进 , 在 类 资源实体与进程 队列 有关 的整 形变 每个进程进 入临界 区之前 调用 P操作 争用临界资源时会 给系统造成混乱 , 于 量 。 根 据 进 程 是引入进程 同步 , 进程同步的主要任务 的制 约关 系信

w i s w i s= on- p a (): he < d o o ; t

练习题汇总-无答案

练习题汇总-无答案

进程管理(Part 2)一、填空题1.进程的“同步”和“互斥”反映了进程间①和②的关系。

2.死锁产生的原因是①和②。

3.产生死锁的四个必要条件是①、②、③、④。

4.在操作系统中,信号量是表示①的物理实体,它是一个与②有关的整型变量,其值仅能由③原语来改变。

5.每执行一次P原语,信号量的数值S减1。

如果S>=0,该进程①;若S<0,则②该进程,并把它插入该③对应的④队列中。

6.每执行一次V原语,信号量的数值S加1。

如果①,进程继续执行;如果S <=0,则从对应的②队列中移出一个进程R,该进程状态变为③。

7.利用信号量实现进程的①,应为临界区设置一个信号量mutex。

其初值为②,表示该资源尚未使用,临界区应置于③和④原语之间。

8.在多道环境下,由于进程的并发执行,一段程序为多个进程①时,要求在执行的过程中,该段程序的指令和数据不能被②,这样的程序段称为③。

二、单项选择题1.在非剥夺调度方式下,运行进程执行V原语之后,其状态。

(A)不变(B)要变(C)可能要变(D)可能不变2.两个进程争夺同一个资源。

(A)一定死锁(B)不一定死锁(C)不死锁(D)以上说法都不对3.①是一种只能由P操作和V操作进行访问的特殊变量,可以用来实现异步并行进程间的②以排它地访问共享数据,还可以用来实现③,实现进程间在逻辑上的相互制约关系。

(A)调度(B)类程(C)进程(D)互斥(E)信号量(F)控制变量(G)同步(H)共享变量(I)规程(J)分配4.可以被多个进程在任一时刻共享的代码必须是。

(A)不能自身修改的纯码(B)顺序代码(C)无转移指令的代码(D)汇编语言编制的代码5.当对信号量进行V原操作之后,。

(A)当S<0,进程继续执行(B)当S>0,要唤醒一个就绪进程(C)当S<=0,要唤醒一个等待进程(D)当S<=0,要唤醒一个就绪进程6.在下列叙述中,错误的一条是。

(A)进程被撤消时,只需释放该进程的PCB就可以了,因为PCB是进程存在的唯一标志(B)进程的互斥和同步都能用P/V原语实现(C)用户程序中执行系统调用命令时,处理机的状态字将发生改变(D)设备独立性是指用户在编程时,所使用的设备与实际设备无关7.正在运行的进程在信号量S上作P操作之后,当S<0,进程将进入信号量的。

第二章进程同步典型习题

第二章进程同步典型习题

east() {
p(emutex); if e=0 then p(wait); e++; v(emutex); 车辆过桥; p(emutex); e--; if e=0 then v(wait); v(emutex);
west() {
p(wmutex); if w=0 then p(wait); w++; v(wmutex); 车辆过桥; p(wmutex); w--; if w=0 then v(wait); v(wmutex);
process E->W; ; begin …… P(S1); ( ); 过桥; 过桥; V(S2); ( ); …… end; ;
process W->E; ; begin …… P(S2); ( ); 过桥; 过桥; V(S1); ( ); …… end; ;
3.设有三个进程A、B、C,其中A与B构成一 3.设有三个进程A、B、C,其中A 设有三个进程A、B、C,其中 对生产者和消费者,共享一个由1个缓冲区组 对生产者和消费者,共享一个由1 成的缓冲池;B与C也构成一对生产者和消费 成的缓冲池;B与 ;B 者,共享另一个由1个缓冲区组成的缓冲池。 共享另一个由1个缓冲区组成的缓冲池。 用PV操作描述它们的同步关系。 PV操作描述它们的同步关系。 操作描述它们的同步关系
1.答: 答 1)各进程之间的关系是互斥 ) 2)可定义一个互斥信号量 S,S的初值为 1。用 PV操作管理时 S可能 ) , 的初值为 。 操作管理时 可能 的取值为 1、0及<0, 、 及 , 这些值的含义是: 这些值的含义是: S=1时表示无车辆在 段行驶,若有某车辆欲进人AB段则立即可以 时表示无车辆在AB段行驶,若有某车辆欲进人 段则立即可以 时表示无车辆在 段行驶 进入。 进入。 S=0时表示已有一车辆正在 AB段行驶,这时任何其它车辆欲进入 段行驶, 时表示已有一车辆正在 段行驶 AB段都必须等待。 段都必须等待。 段都必须等待 S<0时其绝对值 表示在 A点等待进入 AB段行驶的车辆数。 时其绝对值|S|表示在 点等待进入 段行驶的车辆数。 时其绝对值 段行驶的车辆数 3)用PV操作管理时进程的程序如下: 操作管理时进程的程序如下: ) 操作管理时进程的程序如下 begin 到达A点 到达 点; P(S); ( ) 段行驶; 在AB段行驶; 段行驶 驶出B点 驶出 点; V(S); ( ) end

计算机操作系统进程同步算法习题选

计算机操作系统进程同步算法习题选

s
t
解:
设置四个信号量Sin=1,Sout=0,Tin=1,Tout=0; get: while(1) { wait(Sin); 将数放入S; signal (Sout); } copy: while(1) { wait (Sout); wait (Tin); 将数从S取出放入T; signal (Tout); signal (Sin); } put: while(1) { wait (Tout); 将数从T取走; signal(Tin); }

A1: while (1) { wait(Sin[1]); wait(Sin[2]); 将数据放入缓冲区 signal(Sout[1]); signal(Sout[2]); }
Bi: while (1) { wait(Sout[i]); 从缓冲区取数 signal(Sin[i]); }
向目标前进一步:
司机进程: while(1) { 启动车辆
正常驾驶 到站停车 }…
售票 员 进程 : while(1) { 关门
售票
}…
开门
分析:
为保证车辆行驶安全,售票员必须关好车门, 然后通知司机启动车辆,在行驶过程中售票员不 能打开车门,待车到站停稳后,司机通知售票员 才能打开车门,如此不断重复。为此,须设置两 个信号量S1,S2用来控制司机和售票员的行为, 初值都为0。
解:
算法如下: 司机进程: while(1) { wait(S1) 启动车辆 正常驾驶 到站停车 signal(S2) }… 售票员进 程: while(1) { 关门 signal(S1)
售票
wait(S2) 开门 }…
【例题2】
1.用wait、signal操作解决下图之同步问题 提示:分别考虑对缓冲区S和T的同步,再 合并考虑 get copy put

过程控制仿真实验

过程控制仿真实验

过程控制仿真实验1.背景在现代计算机系统中,多任务操作系统可以同时运行多个进程或任务。

这些进程之间可能存在资源竞争和冲突,并需要操作系统进行合理的调度和控制。

过程控制是指操作系统对这些进程的控制和管理,以确保它们按照一定的顺序和优先级进行执行,达到系统的稳定和高效运行。

因此,了解和掌握过程控制的原理和机制对于设计和优化计算机操作系统至关重要。

2.目的过程控制仿真实验的目的是通过模拟和仿真操作系统的过程控制流程来深入理解和掌握过程控制的原理和机制。

通过实际操作和观察,可以更好地理解和分析进程的调度、同步和通信等问题,从而提高操作系统的性能和可靠性。

3.方法3.1设计实验任务首先需要确定实验的任务和目标。

例如,可以设计一个进程调度实验,要求模拟操作系统对多个进程进行调度的过程。

3.2编写模拟程序根据实验任务,编写一个模拟程序,该程序包含多个进程或任务。

每个进程都有自己的优先级、执行时间和资源需求等属性。

同时,编写相应的调度算法,如先来先服务(FCFS)、最短作业优先(SJF)或轮转调度(RR)等。

3.3运行模拟程序在计算机上运行模拟程序,并观察和记录每个进程的执行情况。

可以使用图形界面或命令行界面显示进程状态、执行时间和资源占用等信息。

3.4分析和讨论结果根据模拟程序的运行结果,分析和讨论进程的调度和执行顺序。

比较不同调度算法的性能和效果,并提出改进意见和建议。

4.结果4.1不同调度算法的性能差异通过比较模拟程序在不同调度算法下的运行结果,可以分析和比较它们的性能差异。

例如,FCFS算法可能导致一些进程等待时间过长,而RR算法可以较好地平衡进程的执行时间。

4.2进程同步和通信的问题在模拟程序中,可以设置一些资源竞争和冲突的情况,以测试操作系统对进程同步和通信的处理能力。

通过观察和分析进程之间的互动和通信情况,可以发现潜在的问题和改进的方向。

4.3操作系统的优化建议通过实验结果和分析,可以提供一些针对操作系统的优化建议。

华科操作系统实验报告

华科操作系统实验报告

华科操作系统实验报告一、实验目的操作系统是计算机系统的核心组成部分,对于理解计算机的工作原理和提高计算机应用能力具有重要意义。

本次华科操作系统实验的主要目的是通过实际操作和实践,深入理解操作系统的基本概念、原理和功能,掌握操作系统的核心技术和应用方法,提高我们的实践能力和问题解决能力。

二、实验环境本次实验使用的操作系统为Windows 10 和Linux(Ubuntu 2004),开发工具包括 Visual Studio Code、GCC 编译器等。

实验硬件环境为个人计算机,配置为英特尔酷睿 i7 处理器、16GB 内存、512GB 固态硬盘。

三、实验内容1、进程管理进程创建与销毁进程调度算法模拟进程同步与互斥2、内存管理内存分配与回收算法实现虚拟内存管理3、文件系统文件操作与管理文件系统的实现与优化4、设备管理设备驱动程序编写设备分配与回收四、实验步骤及结果1、进程管理实验进程创建与销毁首先,使用 C 语言编写程序,通过系统调用创建新的进程。

在程序中,使用 fork()函数创建子进程,并在子进程和父进程中分别输出不同的信息,以验证进程的创建和执行。

实验结果表明,子进程和父进程能够独立运行,并输出相应的信息。

进程调度算法模拟实现了先来先服务(FCFS)、短作业优先(SJF)和时间片轮转(RR)三种进程调度算法。

通过模拟多个进程的到达时间、服务时间和优先级等参数,计算不同调度算法下的平均周转时间和平均等待时间。

实验结果显示,SJF 算法在平均周转时间和平均等待时间方面表现较好,而 RR 算法能够提供较好的响应时间和公平性。

进程同步与互斥使用信号量和互斥锁实现了进程的同步与互斥。

编写了生产者消费者问题的程序,通过信号量控制生产者和消费者对缓冲区的访问,避免了数据竞争和不一致的情况。

实验结果表明,信号量和互斥锁能够有效地实现进程间的同步与互斥,保证程序的正确性。

2、内存管理实验内存分配与回收算法实现实现了首次适应(First Fit)、最佳适应(Best Fit)和最坏适应(Worst Fit)三种内存分配算法。

进程的调度实验报告(3篇)

进程的调度实验报告(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。

二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。

2. 实现三种调度算法:FCFS、RR和DP。

3. 创建一个进程队列,用于存储所有进程。

4. 实现调度函数,根据所选算法选择下一个执行的进程。

5. 模拟进程执行过程,打印进程执行状态和就绪队列。

四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。

操作系统计算题总结

操作系统计算题总结

操作系统计算题总结
操作系统计算题总结
1、引言
操作系统是计算机系统中最核心的软件之一,负责管理计算机的硬件资源,并为用户应用程序提供运行环境。

在学习操作系统的过程中,计算题是对理论知识的实际应用和验证,能够帮助我们深入理解操作系统的原理和机制。

本文将总结一些常见的操作系统计算题,以及解答思路和步骤。

2、进程管理
2.1 进程调度
- 先来先服务调度算法
- 短作业优先调度算法
- 最短剩余时间优先调度算法
- 时间片轮转调度算法
- 多级反馈队列调度算法
2.2 进程同步
- 互斥量实现进程同步
- 信号量实现进程同步
- 条件变量实现进程同步
- 读写锁实现进程同步
2.3 进程通信
- 管道实现进程通信
- 消息队列实现进程通信
- 共享内存实现进程通信
- 套接字实现进程通信
3、内存管理
3.1 页面置换算法
- 先进先出算法(FIFO)
- 最近最久未使用算法(LRU)- 时钟算法
3.2 分页和分段
- 分页内存管理
- 分段内存管理
- 分页和分段的组合
3.3 虚拟内存管理
- 页面置换算法
- 页面调度算法
- 页面替换算法
4、文件系统
4.1 文件组织
- 索引结构
- 目录结构
- 文件块组织
4.2 文件分配
- 连续分配
- 分配
- 索引分配
4.3 文件权限和保护
- 用户标识和权限位
- 文件保护和访问控制列表(ACL)附件:
该文档没有涉及到附件。

法律名词及注释:
无。

进程的管理实验报告结论

进程的管理实验报告结论

一、实验背景及目的进程是操作系统中基本的活动单位,进程管理是操作系统核心功能之一。

为了深入理解进程的概念、进程状态转换、进程同步与互斥等知识,我们进行了进程管理实验。

本次实验旨在通过编写程序,模拟进程的创建、调度、同步与互斥等操作,加深对进程管理的理解。

二、实验内容及方法1. 进程创建与状态转换(1)使用系统调用fork()创建子进程,观察父进程和子进程的状态转换过程。

(2)使用系统调用exec()替换子进程的内容,观察子进程状态变化。

2. 进程调度(1)编写进程调度程序,实现最高优先数优先调度算法和先来先服务调度算法。

(2)模拟进程就绪队列,观察调度算法对进程执行顺序的影响。

3. 进程同步与互斥(1)使用信号量实现进程同步,观察进程同步效果。

(2)使用互斥锁实现进程互斥,观察进程互斥效果。

4. 进程通信(1)使用管道实现进程间通信,观察通信效果。

(2)使用共享内存实现进程间通信,观察通信效果。

三、实验结果与分析1. 进程创建与状态转换实验结果显示,使用fork()创建子进程后,父进程和子进程的状态均为运行态。

当父进程调用exec()替换子进程内容后,子进程状态变为僵尸态,父进程状态变为运行态。

这说明进程在创建和替换过程中,其状态发生了相应的变化。

2. 进程调度实验结果显示,最高优先数优先调度算法和先来先服务调度算法均能正确执行。

最高优先数优先调度算法下,优先级高的进程先执行;先来先服务调度算法下,先到达的进程先执行。

这说明两种调度算法均能实现进程的合理调度。

3. 进程同步与互斥实验结果显示,使用信号量实现进程同步时,进程能正确地按照规定的顺序执行;使用互斥锁实现进程互斥时,进程能正确地实现互斥访问共享资源。

这说明信号量和互斥锁在进程同步与互斥方面具有重要作用。

4. 进程通信实验结果显示,使用管道实现进程间通信时,进程能正确地接收和发送数据;使用共享内存实现进程间通信时,进程能正确地访问共享内存中的数据。

操作系统:编程模拟多进程共享临界资源linux-c语言

操作系统:编程模拟多进程共享临界资源linux-c语言

一、课程设计目的本课程设计是学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,通过课程设计,让学生更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强学生的动手能力。

二、课程设计要求从课程设计的目的出发,通过设计工作的各个环节,达到以下教学要求:每位同学从所给题目中任选一个(如自拟题目,需经教师同意),且必须独立完成课程设计,不能相互抄袭。

设计完成后,将所完成的作品交由老师检查。

要求写出一份详细的设计报告。

三、课程设计题目编程模拟多进程共享临界资源四、课程设计功能和目标1、要求产生至少3个进程:2、两个进程模拟需要进入临界区的用户进程,当需要进入临界区时,显示:“进程x请求进入临界区…”,同时向管理进程提出申请;在临界区中等待一段随机时间,并显示:“进程x正在临界区…”;当时间结束,显示:“进程x退出临界区…”,同时向管理进程提出退出申请。

3、一个进程作为原语级管理进程,接受其他进程的临界区进入请求:如果允许进入,则设置相应变量,然后返回;如果不允许进入,则进入循环等待,直到允许为止;4、对临界区的访问应遵循空闲让进、忙则等待、有限等待、让权等待的准则。

5、进程间通信可以采用信号、消息传递、管道或网络通信方式。

五、课程设计实现原理通过编写,创建两个进程模拟需要进入临界区,另外编写一个进程作为原语的管理进程,其负责两个进程的进入!接着设置一个临界区,让其进程在其中访问遵循空闲让进、忙则等待、有限等待、让权等待的准则。

当进程和临界区建立好后,临界区的数据传输,受到了系统硬件的支持,不耗费多余的资源;而进程间通信传递,由软件进行控制和实现,需要消耗一定的CPU资源。

从这个意义上讲,临界区更适合频繁和大量的数据传输。

进程信息的传递,自身就带有同步的控制。

当等到信息的时候,进程进入睡眠状态,不再消耗CPU资源。

而共享队列如果不借助其他机制进行同步,接收数据的一方必须进行不断的查询,白白浪费了大量的CPU资源。

进程管理实验报告代码

进程管理实验报告代码

一、实验目的1. 理解进程的概念和进程状态转换。

2. 掌握进程同步与互斥的基本方法。

3. 学习使用信号量实现进程同步与互斥。

4. 熟悉进程调度算法。

二、实验环境1. 操作系统:Windows/Linux2. 编程语言:C/C++3. 开发工具:Visual Studio/Code::Blocks三、实验内容1. 进程状态转换2. 进程同步与互斥3. 信号量实现进程同步与互斥4. 进程调度算法四、实验步骤1. 进程状态转换```c#include <stdio.h>#include <unistd.h>void print_status(int state) {switch (state) {case 1: printf("创建状态\n"); break; case 2: printf("就绪状态\n"); break;case 3: printf("运行状态\n"); break; case 4: printf("阻塞状态\n"); break; case 5: printf("终止状态\n"); break; default: printf("未知状态\n"); break; }}int main() {int state = 1;print_status(state);sleep(1);state = 2;print_status(state);sleep(1);state = 3;print_status(state);sleep(1);state = 4;print_status(state);sleep(1);state = 5;print_status(state);return 0;}```2. 进程同步与互斥```c#include <stdio.h>#include <pthread.h>pthread_mutex_t lock;void thread_func(void arg) {pthread_mutex_lock(&lock);printf("线程 %d 进入临界区\n", (int )arg);sleep(2);printf("线程 %d 离开临界区\n", (int )arg);pthread_mutex_unlock(&lock);return NULL;}int main() {pthread_t tid1, tid2;int arg1 = 1, arg2 = 2;pthread_mutex_init(&lock, NULL);pthread_create(&tid1, NULL, thread_func, &arg1); pthread_create(&tid2, NULL, thread_func, &arg2); pthread_join(tid1, NULL);pthread_join(tid2, NULL);pthread_mutex_destroy(&lock);return 0;}```3. 信号量实现进程同步与互斥```c#include <stdio.h>#include <pthread.h>#include <semaphore.h>sem_t sem;void thread_func(void arg) {sem_wait(&sem);printf("线程 %d 进入临界区\n", (int )arg);sleep(2);printf("线程 %d 离开临界区\n", (int )arg);sem_post(&sem);return NULL;}int main() {pthread_t tid1, tid2;int arg1 = 1, arg2 = 2;sem_init(&sem, 0, 1);pthread_create(&tid1, NULL, thread_func, &arg1); pthread_create(&tid2, NULL, thread_func, &arg2);pthread_join(tid1, NULL);pthread_join(tid2, NULL);sem_destroy(&sem);return 0;}```4. 进程调度算法```c#include <stdio.h>#include <stdlib.h>#include <unistd.h>#define MAX_PROCESSES 5typedef struct {int pid;int arrival_time;int burst_time;int wait_time;int turnaround_time;} Process;int compare(const void a, const void b) {Process proc1 = (Process )a;Process proc2 = (Process )b;return proc1->arrival_time - proc2->arrival_time;}void fcfs(Process processes[], int n) {processes[0].wait_time = 0;processes[0].turnaround_time = processes[0].burst_time;for (int i = 1; i < n; i++) {processes[i].wait_time = processes[i - 1].turnaround_time + processes[i].arrival_time - processes[i].burst_time;processes[i].turnaround_time = processes[i].wait_time + processes[i].burst_time;}}int main() {Process processes[MAX_PROCESSES] = {{1, 0, 3, 0, 0},{2, 1, 6, 0, 0},{3, 4, 4, 0, 0},{4, 6, 5, 0, 0},{5, 8, 2, 0, 0}};qsort(processes, MAX_PROCESSES, sizeof(Process), compare);fcfs(processes, MAX_PROCESSES);for (int i = 0; i < MAX_PROCESSES; i++) {printf("PID: %d, Wait Time: %d, Turnaround Time: %d\n", processes[i].pid, processes[i].wait_time, processes[i].turnaround_time);}return 0;}```五、实验结果与分析通过以上实验,我们了解了进程状态转换、进程同步与互斥、信号量实现进程同步与互斥以及进程调度算法。

进程管理实验报告

进程管理实验报告

进程管理实验报告进程管理实验报告引言:进程管理是操作系统中的重要概念,它负责调度和控制计算机系统中的各个进程,确保它们能够有序地执行。

本实验旨在通过实际操作和观察,深入了解进程管理的原理和方法,并通过实验结果分析其影响因素和优化策略。

实验一:进程创建与终止在本实验中,我们首先进行了进程的创建和终止实验。

通过编写简单的程序,我们能够观察到进程的创建和终止过程,并了解到进程控制块(PCB)在其中的作用。

实验结果显示,当一个进程被创建时,操作系统会为其分配一个唯一的进程ID,并为其分配必要的资源,如内存空间、文件描述符等。

同时,操作系统还会为该进程创建一个PCB,用于存储该进程的相关信息,如进程状态、程序计数器等。

当我们手动终止一个进程时,操作系统会释放该进程所占用的资源,并将其PCB从系统中删除。

这样,其他进程便可以继续使用这些资源,提高系统的效率和资源利用率。

实验二:进程调度算法进程调度算法是决定进程执行顺序的重要因素。

在本实验中,我们通过模拟不同的进程调度算法,比较它们在不同场景下的表现和效果。

我们选择了三种常见的进程调度算法:先来先服务(FCFS)、最短作业优先(SJF)和轮转调度(RR)。

通过设置不同的进程执行时间和优先级,我们观察到不同调度算法对系统吞吐量和响应时间的影响。

实验结果显示,FCFS算法适用于执行时间较短的进程,能够保证公平性,但在执行时间较长的进程出现时,会导致等待时间过长,影响系统的响应速度。

SJF 算法在执行时间较长的进程时表现出色,但对于执行时间较短的进程,可能会导致饥饿现象。

RR算法能够在一定程度上平衡各个进程的执行时间,但对于执行时间过长的进程,仍然会影响系统的响应速度。

实验三:进程同步与互斥在多进程环境中,进程之间的同步和互斥是必不可少的。

在本实验中,我们通过模拟进程间的竞争和互斥关系,观察进程同步与互斥的实现方式和效果。

我们选择了信号量机制和互斥锁机制作为实现进程同步和互斥的方法。

操作系统实验之进程管理实验报告

操作系统实验之进程管理实验报告

操作系统实验之进程管理实验报告一、实验目的本次操作系统实验的主要目的是深入理解进程管理的概念和原理,通过实际操作和观察,掌握进程的创建、调度、同步与互斥等关键机制。

二、实验环境本次实验使用的操作系统为 Windows 10,开发工具为 Visual Studio 2019,编程语言为 C++。

三、实验内容1、进程创建使用系统提供的 API 函数创建新的进程。

观察新进程的资源使用情况和运行状态。

2、进程调度编写程序模拟不同的进程调度算法,如先来先服务(FCFS)、短作业优先(SJF)和时间片轮转(RR)。

比较不同调度算法下的平均周转时间、平均等待时间等性能指标。

3、进程同步与互斥利用信号量、互斥锁等机制实现进程之间的同步与互斥。

设计并发程序,解决生产者消费者问题、读写者问题等经典同步问题。

四、实验步骤1、进程创建实验首先,包含所需的头文件,如`<windowsh>`。

然后,定义创建进程的函数,使用`CreateProcess` 函数创建新进程,并获取进程的相关信息,如进程标识符、线程标识符等。

最后,通过查看任务管理器或其他系统工具,观察新创建进程的资源占用情况。

2、进程调度实验设计不同的调度算法函数,如`FCFSSchedule`、`SJFSchedule` 和`RRSchedule`。

在每个调度算法函数中,模拟进程的到达时间、服务时间等参数,并按照相应的算法进行进程调度。

计算每个进程的周转时间和等待时间,并求出平均周转时间和平均等待时间。

3、进程同步与互斥实验定义信号量或互斥锁变量。

在生产者消费者问题中,生产者在生产产品时获取互斥锁,生产完成后释放互斥锁并通知消费者;消费者在消费产品时获取互斥锁,消费完成后释放互斥锁。

在读写者问题中,读者在读取数据时获取共享锁,读完后释放共享锁;写者在写入数据时获取独占锁,写入完成后释放独占锁。

五、实验结果与分析1、进程创建实验结果成功创建新的进程,并能够获取到进程的相关信息。

模拟进程创建实验报告(3篇)

模拟进程创建实验报告(3篇)

第1篇一、实验目的1. 理解进程的概念和进程创建的基本原理。

2. 掌握使用C语言模拟进程创建的方法。

3. 熟悉进程的属性和进程之间的通信机制。

4. 分析实验结果,加深对进程管理的理解。

二、实验环境1. 操作系统:Windows 102. 编程语言:C语言3. 开发环境:Visual Studio 2019三、实验原理进程是计算机中程序执行的基本单位,是操作系统进行资源分配和调度的一个独立单位。

进程创建是操作系统的一个重要功能,它负责为进程分配必要的资源,并建立进程控制块(PCB)。

在模拟进程创建实验中,我们将使用C语言编写程序,模拟进程的创建、运行和销毁过程。

通过模拟进程的创建,我们可以了解进程的基本属性,如进程ID、进程状态、父进程ID等。

四、实验步骤1. 定义进程结构体,包含进程的基本属性,如进程ID、进程状态、父进程ID等。

```ctypedef struct {int pid; // 进程IDint state; // 进程状态int parent_pid; // 父进程ID// 其他属性} Process;```2. 编写进程创建函数,用于创建新进程。

```cProcess create_process(int parent_pid) {Process new_process;new_process.pid = ...; // 分配进程IDnew_process.state = ...; // 设置进程状态 new_process.parent_pid = parent_pid;// 设置其他属性return new_process;}```3. 编写进程运行函数,用于模拟进程的运行过程。

```cvoid run_process(Process p) {// 模拟进程运行过程// ...}```4. 编写进程销毁函数,用于销毁进程。

```cvoid destroy_process(Process p) {// 销毁进程资源// ...}```5. 编写主函数,模拟进程创建、运行和销毁过程。

操作系统实验讲义---刘波

操作系统实验讲义---刘波

操作系统授课教师:刘波巢湖学院计算机与信息工程学院2013-11-01实验一进程管理【实验目的】1)加深对进程概念及进程管理各部分内容的理解。

2)熟悉进程管理中主要数据结构的设计和进程调度算法、进程控制机构、同步机构、通讯机构的实施。

【实验要求】调试并运行一个允许n 个进程并发运行的进程管理模拟系统。

了解该系统的进程控制、同步及通讯机构,每个进程如何用一个PCB 表示,以及其内容的设置,各进程间的同步关系等;系统在运行过程中显示各进程的状态和有关参数变化情况的意义。

【实验环境】操作系统:Windows XP编译器: VC6.0【实验重点及难点】重点:理解进程的概念,进程管理中主要数据结构的设计和进程调度算法、进程控制机构、同步机构、通讯机构的实施。

难点:实验程序的问题描述、实现算法、数据结构。

【实验内容】一.阅读实验程序程序代码见【实验例程】。

二.编译实验例程用VC6.0编译实验例程。

三.运行程序并对照实验源程序阅读理解实验输出结果的意义。

【实验例程】#include <stdio.h>#define TRUE 1#define FALSE 0#define MAXPRI 100#define NIL -1//进程控制块struct {int id; //进程号char status; //进程状态,'e'-执行态'r'-高就绪态't'-低就绪态'w'-等待态'c'-完成态int nextwr; //等待链指针,指示在同一信号量上等待的下一个等待进程的进程号。

int priority; //进程优先数,值越小,优先级越高。

int c;//进程中断次数}pcb[3];//共3个进程//s1、s2为三个进程共享的变量;seed为随机值;registeri模拟寄存器值,存放计算的重复次数。

int registeri,s1,s2,seed,exe=NIL;//exe为当前运行(占有cpu)的进程号//2个信号量sem[0]、sem[1],分别与共享变量s1、s2相联系。

实验一、二(OS)

实验一、二(OS)

实验一进程同步和互斥(建议4学时)一、实验目的1.掌握临界资源、临界区概念及并发进程互斥、同步访问原理。

2.学会使用高级语言进行多线程编程的方法。

3.掌握利用VC++或Java语言线程库实现线程的互斥、条件竞争,并编码实现P、V 操作,利用P、V操作实现两个并发线程对有界临界区的同步访问。

4.通过该实验,学生可在源代码级完成进程同步互斥方案的分析、功能设计、编程实现,控制进程间的同步、互斥关系。

二、实验要求1.知识基础:学生应在完成进程和线程及调度等章节的学习后进行。

2.开发环境与工具:硬件平台——个人计算机。

软件平台-Windows操作系统,vc++语言或Java语言开发环境。

3.运用高级语言VC++或Java语言线程库及多线程编程技术进行设计实现。

三、实验内容1.实现临界资源、临界区、进程或线程的定义与创建。

2.利用两个并发运行的进程,实现互斥算法和有界缓冲区同步算法。

四、实验方案指导该实验方案由以下几个关键设计项目组成:1.并发访问出错。

即设计一个共享资源,创建两个并发线程,二者并发访问该共享资源。

当没有采用同步算法设计时,线程所要完成的某些操作会丢失。

2.互斥锁。

并发线程使用线程库提供的互斥锁,对共享资源进行访问。

3.软件方法。

设计并编程实现计数信号量、P操作函数、V操作函数,并发线程通过调用P,V操作函数实现线程的互斥。

4.同步访问多缓冲区。

利用上面的软件方法完成P,V操作,可实现两个线程对多缓冲区的同步访问。

五、实验方案实现范例以下是对该项目中包含的部分设计功能的实现方法、实现过程、技术手段的描述,供师生参考。

1.模拟线程并发运行。

假设我们使用POSIX线程库,而POSIX并没有真正提供线程间的并发运行需求。

我们设计的系统应支持符合RR调度策略的并发线程,每个线程运行一段时间后自动挂起,另一个线程开始运行。

这样一个进程内所有线程以不确定的速度并发执行。

2.模拟一个竞争条件——全局变量。

《操作系统课程》实验(实训)指导大纲

《操作系统课程》实验(实训)指导大纲

《操作系统课程》实验(实训)指导大纲课程编号:G611SG0004课程性质:学科基础课适用专业:计算机科学与技术网络工程数字媒体实验学时:16实验教材:自编符合《认证标准》:具有运用工程基础知识和本专业基本理论知识解决问题的能力,具有系统的工程实践学习经历;完成本课程实验(实训)总软件最少行数: 2000实验成绩评价方法:学生每完成一个实验项目,要求独立认真的填写实验报告。

实验指导教师将根据学生完成实验的态度和表现,结合填写的实验报告评定实验成绩,成绩的评定按百分制评分。

老师根据平时实验的分数之和取平均分,得出综合成绩。

实验(实训)内容:实验一操作系统安装及熟练使用(一)实验目的熟悉Windows//Linux操作系统的安装过程与安装方法,并掌握该操作系统所提供的用户接口环境,并为后续实验做好编程环境准备。

(二)实验项目内容1、熟悉Windows//Linux操作系统的安装过程与安装方法,并掌握该操作系统所提供的用户接口环境,通过系统提供的用户管理程序、查看系统中的用户情况、进程、线程、内存使用情况等,学会使用它进行监视进程的状况、系统资源的使用情况及用户情况。

并为后续实验做好编程环境准备。

2、用C语言编写一小段程序,使其可以通过某个系统调用来获得OS提供的某种服务。

(三)主要仪器设备一台PC机(四)实验室名称计算机中心实验室(五)实验报告撰写(撰写的格式采用教务处所提供的样本见附件)......实验二编程模拟进程间的同步和互斥(一)实验目的通过实验加强对进程同步和互斥的理解,并掌握进程(线程)的创建和调用方法。

学会使用信号量解决资源共享问题。

学生可以自己选择在Windows或Linux系统下编写。

代码不得少于200行。

(二)实验项目内容1.以下为Linux系统下参考程序,请编译、运行并观察程序的输出,并分析实验结果,写出实验报告。

#include<stdio.h>#include<stdlib.h>#include<unistd.h>#include<time.h>#include<sys/types.h>#include<sys/wait.h>#include<linux/sem.h>#define NUM_PROCS 5#define SEM_ID 250#define FILE_NAME "/tmp/sem_aaa"#define DELAY 4000000void update_file(int sem_set_id, char *file_path, int number){struct sembuf sem_op;FILE *file;//等待信号量的数值变为非负数,此处设为负值,相当于对信号量进行P操作sem_op.sem_num=0;sem_op.sem_op=-1;sem_op.sem_flg=0;semop(sem_set_id,&sem_op,1);//写文件,写入的数值是当前进程的进程号file=fopen(file_path,"w");if(file){//临界区fprintf(file,"%d\n",number);printf("%d\n",number);fclose(file);}//发送信号,把信号量的数值加1,此处相当于对信号量进行V操作sem_op.sem_num=0;sem_op.sem_op=1;sem_op.sem_flg=0;semop(sem_set_id,&sem_op,1);}//子进程写文件void do_child_loop(int sem_set_id,char *file_name){ pid_t pid=getpid();int i,j;for(i=0;i<3;i++){update_file(sem_set_id,file_name,pid);for(j=0;j<4000000;j++);}}int main(int argc,char **argv){int sem_set_id; //信号量集的IDunion semun sem_val; //信号量的数值,用于semctl()int child_pid;int i;int rc;// 建立信号量集,ID是250,其中只有一个信号量sem_set_id=semget(SEM_ID,1,IPC_CREAT|0600);if(sem_set_id==-1){perror("main: semget");exit(1);}//把第一个信号量的数值设置为1sem_val.val=1;rc=semctl(sem_set_id,0,SETVAL,sem_val);if(rc==-1){perror("main:semctl");exit(1);}//建立一些子进程,使它们可以同时以竞争的方式访问信号量for(i=0;i<NUM_PROCS;i++){child_pid=fork();switch(child_pid){case -1:perror("fork");case 0: //子进程do_child_loop(sem_set_id,FILE_NAME);exit(0);default: //父进程接着运行break;}}//等待子进程结束for(i=0;i<NUM_PROCS;i++){int child_status;wait(&child_status);}printf("main:we're done\n");fflush(stdout);return 0;}2.写一程序模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二进程同步算法模拟一、实验目的1、模拟设计一种进程调度过程:FCFS、短作业优先、高响应比优先(任选其一)。

2、算法代码实现,模拟数据演示,模拟结果验证。

二、实验学时4课时三、实验环境与平台Windows 2000, C/C++程序开发集成环境(开发语言可自选)四、实验内容及要求1、实验内容:(1)自定义PCB的数据结构;(2)针对资源分配中出现的问题,选择适合的算法,实现资源的合理分配。

2、实验要求:(1)完成规定的实验内容;(2)在实验之前,利用课外时间浏览帮助文件的相关主题内容;(3)实验时保存程序代码;(4)写出实验报告.(实验目的、实验时间、实验设备和实验环境平台、完成的实验内容、实验结果和结论)。

五、完成的实验内容下例是用C语言编写,用TC2.0调试结果六、实现代码如下:#include "stdio.h"#define getjcb(type) (type*)malloc(sizeof(type))#define NULL 0int n=0,time=0;float eti,ewi;struct jcb{ char name[10]; /* 作业名 */char state; /* 作业状态 */int ts; /* 提交时间 */float super; /* 优先权 */int tb; /* 开始运行时间 */int tc; /* 完成时间 */float ti; /* 周转时间 */float wi; /* 带权周转时间 */int ntime; /* 作业所需运行时间 */ char resource[10]; /* 所需资源 */struct jcb *link; /* 结构体指针 */} *p,*q,*head=NULL;typedef struct jcb JCB;inital(){int i;printf("\nInput jcb num\n");scanf("%d",&n);printf("Input\nname\tts\tntime\tresource\n");for(i=0;i<n;i++){p=getjcb(JCB);scanf("%s\t%d\t%d\t%s",&p->name,&p->ts,&p->ntime,&p->resou rce);p->state='W';p->link=NULL;if(head==NULL) head=q=p;else{ q->link=p; q=p; }}}fileinput(){FILE *fp;int i;if((fp=fopen("os2.txt","r"))==NULL) printf(" open error!") ; fscanf(fp,"%d\n",&n);for(i=0;i<n;i++){p=getjcb(JCB);fscanf(fp,"%s%d%d%s",&p->name,&p->ts,&p->ntime,&p->resource );p->state='W';p->link=NULL;if(head==NULL) head=q=p;else{q->link=p;q=p;}} fclose(fp);}void print(JCB *pr,int m){JCB *p;printf("\ntime=%d",time);if(m==3){printf("\nname\tstate\tts\tntime\tsuper\tsource\ttb\ttc\tti\twi\n");printf("%s\t%c\t%d\t%d\t%4.2f\t%s\t%d\t%d\t%4.2f\t%4.2f\n",pr->name,pr->state,pr->ts,pr->ntime,pr->super,pr->resource,pr->tb,pr->tc,pr->ti,pr->wi);} else {printf("\nname\tstate\tts\tntime\tsource\ttb\ttc\tti\twi\n"); printf("%s\t%c\t%d\t%d\t%s\t%d\t%d\t%4.2f\t%4.2f\n", pr->name,pr->state,pr->ts,pr->ntime,pr->resource,pr->tb,pr->tc,pr->ti,pr->wi); }p=head;do{ if(p->state=='W')if(m==3){printf("%s\t%c\t%d\t%d\t%4.2f\t%s\n",p->name,p->state,p->ts,p->ntime,p->super,p->resource);}else{printf("%s\t%c\t%d\t%d\t%s\n",p->name,p->state,p->ts,p->ntime,p->resource);}p=p->link;}while(p!=NULL);p=head;do{if(p->state=='F')if(m==3){printf("%s\t%c\t%d\t%d\t%4.2f\t%s\t%d\t%d\t%4.2f\t%4.2f\n",p->name,p->state,p->ts,p->ntime,p->super,p->resource,p->tb, p->tc,p->ti,p->wi);}else{printf("%s\t%c\t%d\t%d\t%s\t%d\t%d\t%4.2f\t%4.2f\n",p->name,p->state,p->ts,p->ntime,p->resource,p->tb,p->tc,p-> ti,p->wi);}p=p->link;}while(p!=NULL);}void last(){eti/=n;ewi/=n;printf("\neti=%7.3f\tewi=%7.3f\n",eti,ewi);}super(){JCB *padv;padv=head;do{if(padv->state=='W'&&padv->ts<=time)padv->super=(float)(time-padv->ts+padv->ntime)/padv->ntime; padv=padv->link;}while(padv!=NULL);}void hrn(m){JCB *min;int i,iden;for(i=0;i<n;i++){p=min=head;iden=1;super();do{if(p->state=='W'&&p->ts<=time)if(iden){min=p;iden=0;}else if(p->super>min->super) min=p;p=p->link;}while(p!=NULL);if(iden) {i--;time++;printf("\ntime=%d:\tno JCB submib...wait...",time);if(time>1000){printf("\nruntime is too long...error...");getch();}}else{running(min,m);}}}void sjf(int m){JCB *min;int i,iden;for(i=0;i<n;i++){p=min=head;iden=1;do{if(p->state=='W'&&p->ts<=time)if(iden){min=p;iden=0;}else if(p->ntime<min->ntime) min=p;p=p->link;}while(p!=NULL) ;if(iden) {i--;printf("\ntime=%d:\tno JCB submib...wait...",time);time++;if(time>100){printf("\nruntime is too long...error");getch();}}else{running(min,m);}}}fcfs(int m){int i,iden;printf("\n\nthe jcb is runing...");for(i=0;i<n;i++){p=head;iden=1;do{if(p->state=='W'&&p->ts<=time) iden=0;if(iden)p=p->link;}while(p!=NULL&&iden) ;if(iden) {i--;printf("\ntime=%d:\tno JCB submib...wait...",time);time++;if(time>100){printf("\nruntime is too long...error");getch();}}else{running(p,m);}}}running(JCB *p,int m){p->tb=time;p->state='R';p->tc=p->tb+p->ntime;p->ti=(float)(p->tc-p->ts);p->wi=(float)(p->ti/p->ntime);eti+=p->ti;ewi+=p->wi;print(p,m);time+=p->ntime;p->state='F';printf("\n%s has been finished!\npress any key to continue...\n",p->name);getch();}void runjcb(int m){printf("\n\nstart running jcb...");switch(m){case 1:fcfs(m);break;case 2:sjf(m);break;case 3:hrn(m);break;default:printf("\nrunjcb error...\n");exit();}}fileway(){printf("\nadopts the file way to input the datas...y/n:") ; if(getch()=='y') fileinput();else inital();}start(){int m;char str[100]="\nselect algorithm\n1.FCFS\n2.SJF\n3.HRN\n" ;printf("%s",str);m=getch()-48;fileway();if(1<=m&&m<=3) runjcb(m);else {printf("\nselect error!try again...\n");start();}last();}main(){start();printf("\nfinished!");getch();}六、实验结果七、结论分析本例依次实现了FCFS,SJF,HRN算法,我只对SJF算法即短作业优先调度算法进行了实验按要求输入数据,如上图所示,即:进程个数(jcd num):5执行后,输出周转时间ti、带权周转时间wi,而且是逐次运行。

相关文档
最新文档