3.2 简单的三角恒等变换(3个课时)1
3.2.2简单的三角恒等变换②
必修4
第三章
三角恒等变换
栏目导引
[题后感悟] 除了本题中的思路,“1”化为 sin2θ +cos2θ 后也常与 2sinθcosθ 凑成完全平方式,或 π 者化为 tan 的形式利用正切公式进行变形化简. 4
必修4
第三章
三角恒等变换
栏目导引
1.化简 2 1-sin 8+ 2+2cos 8.
π π 3sin2x-6 +2sin2x-12
(x∈R). (1)求函数 f(x)的最小正周期; (2)求使函数 f(x)取得最大值的 x 的集合.
必修4
第三章
三角恒等变换
栏目导引
[策略点睛]
必修4
第三章
三角恒等变换
栏目导引
[解题过程]
(1)∵f(x)=
2cos
必修4
第三章
三角恒等变换
栏目导引
3 3.函数 y= 3sin x· x+3cos x- 的最小值为 cos 2 ________.
2
31+cos x 3 3 解析: y= sin 2x+ - 2 2 2 1 3 = 3 sin 2x+ cos 2x 2 2 π = 3sin2x+3 ymin=- 3.
3.2
简单的三角恒等变换(二)
必修4
第三章
三角恒等变换
栏目导引
1.巩固三角恒等 变换的基本技 能. 2.掌握三角恒等 变换在三角函 数图象与性质 中的应用.
1.灵活运用三角公式,特别是 倍角公式进行三角恒等变 换.(重点) 2.利用半角公式时的符号.(易 混点) 3.利用三角恒等变换解决实际 问题.(难点)
π 3sin2x-6 +1-
第三章 3.2 简单的三角恒等变换
§3.2 简单的三角恒等变换学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一 半角公式思考 半角公式对任意角都适用吗? 答案 不是,要使得式子有意义的角才适用. 知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=ba1.若α≠k π,k ∈Z ,则tan α2=sin α1+cos α=1-cos αsin α恒成立.( √ )2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ所在的象限由a ,b 的符号决定,φ与点(a ,b )同象限.( √ )3.sin x +3cos x =2sin ⎝⎛⎭⎫x +π6.( × ) 提示 sin x +3cos x =2⎝⎛⎭⎫12sin x +32cos x =2sin ⎝⎛⎭⎫x +π3.题型一 应用半角公式求值例1 已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值解 ∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.∵5π4<θ2<3π2,∴cos θ2=-1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思感悟 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正弦、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算. (4)下结论:结合(2)求值. 跟踪训练1 已知cos α=33,α为第四象限角,则tan α2的值为________. 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案2-62解析 方法一 ⎝⎛⎭⎪⎫用tan α2=±1-cos α1+cos α来处理因为α为第四象限角,所以α2是第二或第四象限角.所以tan α2<0.所以tan α2=-1-cos α1+cos α=-1-331+33 =-2-3=-128-4 3 =-12(6-2)2=2-62.方法二 ⎝⎛⎭⎫用tan α2=1-cos αsin α来处理因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63. 所以tan α2=1-cos αsin α=1-33-63=2-62.方法三 ⎝⎛⎭⎫用tan α2=sin α1+cos α来处理因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63. 所以tan α2=sin α1+cos α=-631+33=-63+3=2-62.题型二 三角函数式的化简 例2 化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α.考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 解 2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α=cos 2α2cos ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4+α·sin 2⎝⎛⎭⎫π4+α =cos 2αsin ⎝⎛⎭⎫π2+2α=cos 2αcos 2α=1. 反思感悟 三角函数式化简的要求、思路和方法(1)化简的要求:①能求出值的应求出值.②尽量使三角函数种数最少.③尽量使项数最少.④尽量使分母不含三角函数.⑤尽量使被开方数不含三角函数.(2)化简的思路:对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用.另外,还可以用切化弦、变量代换、角度归一等方法.跟踪训练2 化简:(1-sin α-cos α)⎝⎛⎭⎫sin α2+cos α22-2cos α(-π<α<0).考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值解 原式=⎝⎛⎭⎫2sin 2α2-2sin α2cos α2⎝⎛⎭⎫sin α2+cos α22×2sin2α2=2sin α2⎝⎛⎭⎫sin α2-cos α2⎝⎛⎭⎫sin α2+cos α22⎪⎪⎪⎪sin α2=sin α2⎝⎛⎭⎫sin 2α2-cos 2α2⎪⎪⎪⎪sin α2=-sin α2cos α⎪⎪⎪⎪sin α2.因为-π<α<0,所以-π2<α2<0,所以sin α2<0,所以原式=-sin α2cos α-sinα2=cos α.题型三 三角函数式的证明例3 求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ.考点 三角恒等式的证明 题点 三角恒等式的证明 证明 要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ.∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ =2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ,∴左边=右边, ∴原式得证.反思感悟 证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练3 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .考点 三角恒等式的证明 题点 三角恒等式的证明 证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2 x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2=sin x2sin 2 x 2=cos x 2sin x 2=2cos 2x 22sin x 2cosx 2=1+cos xsin x=右边.所以原等式成立. 题型四 辅助角公式的应用例4 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1,有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z . 反思感悟 (1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)的正弦、余弦、正切公式、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,以便于讨论函数性质. 跟踪训练4 已知函数f (x )=cos ⎝⎛⎭⎫π3+x ·cos ⎝⎛⎭⎫π3-x ,g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)f (x )=⎝⎛⎭⎫12cos x -32sin x ·⎝⎛⎭⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π.(2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎫2x +π4, 当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )有最大值22.此时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π-π8,k ∈Z .利用半角公式化简求值典例 已知等腰三角形的顶角的余弦值为725,则它的底角的余弦值为( )A.34B.35C.12D.45考点 简单的三角恒等变换的综合应用题点 三角恒等变换与三角形的综合应用 答案 B解析 设等腰三角形的顶角为α,底角为β,则cos α=725.又β=π2-α2,所以cos β=cos ⎝⎛⎭⎫π2-α2=sin α2=1-7252=35,故选B. [素养评析] 从实际问题提炼出等腰三角形底角、顶角间的关系,利用半角公式进行恒等变换化简,进而求值,这正是数学核心素养数学抽象的具体体现.1.若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B .-63 C .±63 D .±33考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 由题意知α2∈⎝⎛⎭⎫0,π2,∴cos α2>0,cos α2=1+cos α2=63. 2.已知sin θ=-35,3π<θ<72π,则tan θ2的值为( )A .3B .-3 C.13 D .-13考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 B解析 ∵3π<θ<7π2,sin θ=-35,∴cos θ=-45,tan θ2=sin θ1+cos θ=-3.3.已知2sin α=1+cos α,则tan α2等于( )A.12B.12或不存在 C .2D .2或不存在考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值答案 B解析 2sin α=1+cos α,即4sin α2cos α2=2cos 2α2,当cos α2=0时,tan α2不存在,当cos α2≠0时,tan α2=12.4.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果为( )A .tan αB .tan 2αC .1D .2 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 B解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α.5.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( ) A.π6 B.π3 C.π2 D.2π3考点 利用简单的三角恒等变换化简求值 题点 利用辅助角公式化简求值 答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ) =2sin ⎝⎛⎭⎫2x +π3+θ. 当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x 是奇函数.6.已知在△ABC 中,sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B ,求证:sin A +sin C =2sin B .考点 三角恒等式的证明 题点 三角恒等式的证明证明 由sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B ,得sin A ·1+cos C 2+sin C ·1+cos A 2=32sin B ,即sin A +sin C +sin A ·cos C +sin C ·cos A =3sin B , ∴sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C +sin(π-B )=3sin B , 即sin A +sin C +sin B =3sin B , ∴sin A +sin C =2sin B .1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式. 2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ满足: ①φ与点(a ,b )同象限; ②tan φ=b a ⎝ ⎛⎭⎪⎫或sin φ=b a 2+b 2,cos φ=a a 2+b 2.3.研究形如f (x )=a sin x +b cos x 的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a ,b 应熟练掌握, 例如sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4; sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.一、选择题1.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π,∴α2∈⎝⎛⎭⎫3π4,π, sin α2=1-cos α2=105. 2.设α是第二象限角,tan α=-43,且sin α2<cos α2,则cos α2等于( )A .-55 B.55 C.35 D .-35考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 因为α是第二象限角,且sin α2<cos α2,所以α2为第三象限角,所以cos α2<0.因为tan α=-43,所以cos α=-35,所以cos α2=-1+cos α2=-55. 3.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <bD .b <c <a考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用 答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°, b =2sin 13°cos 13°=sin 26°,c =sin 25°, ∵当0°≤x ≤90°时,y =sin x 是单调递增的, ∴a <c <b .4.若cos α=-45,α是第三象限角,则1+tanα21-tanα2等于( )A .-12 B.12C .2D .-2考点 利用简单的三角恒等变换化简求值 题点 利用弦化切对齐次分式化简求值 答案 A解析 ∵α是第三象限角,cos α=-45,∴sin α=-35.∴1+tan α21-tan α2=1+sinα2cos α21-sin α2cosα2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45=-12.故选A.5.sin x cos x +sin 2x 可化为( ) A.22sin ⎝⎛⎭⎫2x -π4+12 B.2sin ⎝⎛⎭⎫2x +π4-12 C .sin ⎝⎛⎭⎫2x -π4+12 D .2sin ⎝⎛⎭⎫2x +3π4+1 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 A解析 y =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22⎝⎛⎭⎫22sin 2x -22cos 2x +12=22sin ⎝⎛⎭⎫2x -π4+12.故选A. 6.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1,则函数f (x )的单调递增区间为( ) A.⎣⎡⎦⎤2k π-π3,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ) C.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+π3(k ∈Z ) 考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 因为f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎫2x +π6,所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ),故选C. 7.已知sin θ=m -3m +5,cos θ=4-2m m +5⎝⎛⎭⎫π2<θ<π,则tan θ2等于( ) A .-13B .5C .-5或13D .-13或5 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换化简求值答案 B解析 由sin 2θ+cos 2θ=1,得⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1, 解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π. ∴m =0舍去,故m =8,sin θ=513,cos θ=-1213,tan θ2=1-cos θsin θ=1+1213513=5. 二、填空题8.已知α∈⎝⎛⎭⎫0,π2,sin 2α=12,则sin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 32解析 因为1-2sin 2⎝⎛⎭⎫α+π4=cos ⎝⎛⎭⎫2α+π2=-sin 2α, 所以sin 2⎝⎛⎭⎫α+π4=34, 因为α∈⎝⎛⎭⎫0,π2, 所以α+π4∈⎝⎛⎭⎫π4,3π4, 所以sin ⎝⎛⎭⎫α+π4=32. 9.化简:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 tan x 2解析 原式=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x 1+cos x =sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x 1+cos x=sin x 1+cos x=tan x 2. 10.已知cos ⎝⎛⎭⎫α-π4=45,α∈⎝⎛⎭⎫0,π4,则cos 2αsin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 65解析 因为cos ⎝⎛⎭⎫α-π4=45,α∈⎝⎛⎭⎫0,π4,所以sin ⎝⎛⎭⎫α-π4=-35,sin ⎝⎛⎭⎫π4-α=35. 所以cos 2αsin ⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫2α+π2sin ⎝⎛⎭⎫α+π4=2cos ⎝⎛⎭⎫α+π4 =2sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=2sin ⎝⎛⎭⎫π4-α=65. 11.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0,即2sin 2α-cos 2α≤0,所以4sin 2α≤1,所以-12≤sin α≤12. 因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π. 三、解答题12.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x . 考点 三角恒等式的证明题点 三角恒等式的证明证明 ∵左边=tan 3x 2-tan x 2=sin3x 2cos 3x 2-sin x 2cos x 2 =sin3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝⎛⎭⎫3x 2-x 2cos 3x 2cos x 2=sin x cos 3x 2cos x 2=2sin x cos ⎝⎛⎭⎫3x 2+x 2+cos ⎝⎛⎭⎫3x 2-x 2 =2sin x cos x +cos 2x =右边. ∴原等式得证.13.(2018·浙江宁波高三期末)已知函数f (x )=2sin x ·cos x +1-2sin 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值与最小值.考点 简单的三角恒等变换的应用题点 辅助角公式与三角函数的综合应用解 (1)因为f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, 所以f (x )的最小正周期为π.(2)因为-π3≤x ≤π4,所以-5π12≤2x +π4≤3π4. 当2x +π4=π2,即x =π8时,f (x )取得最大值2; 当2x +π4=-5π12,即x =-π3时, f (x )min =f ⎝⎛⎭⎫-π3=sin ⎝⎛⎭⎫-2π3+cos ⎝⎛⎭⎫-2π3=-3+12, 即f (x )的最小值为-3+12.14.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①f (x )=2sin x cos x +1;②f (x )=2sin ⎝⎛⎭⎫x +π4; ③f (x )=sin x +3cos x ;④f (x )=2sin 2x +1.其中是“同簇函数”的有( )A .①②B .①④C .②③D .③④考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 ①式化简后为f (x )=sin 2x +1,③式化简后为f (x )=2sin ⎝⎛⎭⎫x +π3,①④中振幅不同,平移后不能重合.②③振幅、周期相同,平移后可以重合.15.证明:sin 10°·sin 30°·sin 50°·sin 70°=116. 考点 三角恒等式的证明题点 三角恒等式的证明证明 原式=sin 10°·sin 30°·sin 50°·sin 70°=12cos 20°·cos 40°·cos 80°=2sin 20°·cos 20°·cos 40°·cos 80°4sin 20°=sin 40°·cos 40°·cos 80°4sin 20°=sin 80°cos 80°8sin 20°=116·sin 160°sin 20°=116=右边,所以原等式得证.。
简单的三角恒等变换(教案)
简单的三角恒等变换(一)张掖中学 宋娟一、教学目标知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用;过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力;情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点教学重点:利用公式进行简单的恒等变换;教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容复习引入(学生组织完成)问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解思考1(学生组织完成):如何用cos α表示222sin cos tan 222ααα、、?分析:观察α与2α的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的变形公式.解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2α代替α,即得2cos 12sin 2αα=-,所以21cos sin 22αα-=; ①在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2α代替α,即得2cos 2cos 12αα=-,所以21cos cos 22αα+=. ②将①②两个等式的左右两边分别相除,即得21cos tan 21cos ααα-=+.思考2:若已知cos α,如何计算sincos tan 222ααα、、?sincos tan 222ααα=== (半角公式) 强调:“±”号由2α所在象限决定. 例1:已知5sin 13α=,且2παπ<<,求tan 2α的值.解512sin cos 13213,tan24222tan tan 522πααπαππαπααπαα=<<∴=-<<∴<<∴>=====因为且又由公式例2 求证sin 1cos tan 21cos sin ααααα-==+ 证明22sin sin2cossin sin 222tan21cos cos cos 2cos 2cos 2222sin sin 2sin 2sin1cos 2222tan2sin sin coscos2sin222αααααααααααααααααααααα⋅====+⋅⋅-====⋅利用例2的结论,再做一下例1,比较两种方法.例3 已知3sin 25θ=,022πθ<<,求22cos sin 12)4θθπθ--+.分析:由降幂公式知22cos 1cos 2αα=+,故有cos sin cos sin θθθθ-=+原式 ﹡ 此处有两种处理方法:方法一、由已知求出cos sin θθ、的值,带入﹡式计算,即可得到结果; 方法二、由﹡继续变形,将半角化为倍角进行计算. 解法一22cos sin......cos sin020cos0,sin02434sin2,02cos2525cos212sin2cos1sin121010θθθθππθθθθπθθθθθθθθ-=*+<<∴<<∴>>=<<==-=-∴==**==原式由由得又带入式得解法二222cos sincos sin(cos sin)(cos sin)(cos sin)12sin cos1sin2......cos sin cos234sin2,02cos252532115544255θθθθθθθθθθθθθθθθπθθθ-=+-=+---==*-=<<=*-*==原式由得带入式得=小结:对于例3,我们从不同角度出发,解法一先利用倍角计算半角,再带入求值,解法二先利用半角化为倍角,再带入求值.在三角恒等变换中,正所谓“条条大路通罗马”.在以后的学习当中,此类问题是三角恒等变换中常见的问题.万丈高楼平地起,在此告诫同学们,基础知识的理解和必要的记忆是很重要的,所以在以后的学习中,不管题目如何变化,都有一个固定的解题理论,那就是我们的倍角公式,及其逆用,掌握好了基础的理论知识,不管题目如何变化,我们都能将他们各个击破.所谓“咬定青山不放松,任尔东南西北风”.下面我们来分小组讨论一下这一个问题:(练一练)化简22221sin sin cos cos cos2cos22αβαβαβ⋅+⋅-⋅.分析:1.从“角”入手,倍角化半角;2.从“幂”入手,利用降幂公式将次;3.从“形”入手,利用配方法.本题目至少有6种解法,请同学们讨论完成.课堂小结三个数学方法1.从“角”入手,倍角化半角(半角化倍角);2.从“幂”入手,利用降幂公式将次(利用升幂公式升次);3.从“形”入手,利用配方法(分母有理化、分子有理化).两个人生哲理1.条条大路通罗马;2.咬定青山不放松,任尔东南西北风.布置作业习题3.2A组1(1)、(2)、(4)、(5)课后反思。
简单的三角恒等变换说课稿
简单的三角恒等变换说课稿一、说教材(一)作用与地位本文《简单的三角恒等变换》是高中数学课程中的重要组成部分,属于三角函数章节。
它不仅承担着巩固学生对三角函数基础知识的掌握,而且肩负着培养学生逻辑思维能力和数学变换技巧的重任。
在数学教育中,三角恒等变换是联系实际应用与理论推导的桥梁,通过学习,学生能够更好地理解数学在自然科学和社会科学中的应用。
(二)主要内容本文主要围绕以下三个方面的内容展开:1. 三角恒等变换的基本概念:包括正弦、余弦、正切的和差公式、倍角公式、半角公式等。
2. 三角恒等变换的基本方法:运用上述公式进行三角函数式的化简、求值等。
3. 三角恒等变换在实际问题中的应用:结合实际案例,让学生体验三角恒等变换在解决具体问题时的作用。
二、说教学目标(一)知识与技能目标1. 理解并掌握三角恒等变换的基本概念和基本方法。
2. 能够熟练运用三角恒等变换解决实际问题。
3. 培养学生的逻辑思维能力和数学变换技巧。
(二)过程与方法目标1. 通过自主探究、合作交流,培养学生主动学习的习惯。
2. 通过问题解决,提高学生分析问题、解决问题的能力。
(三)情感态度与价值观目标1. 培养学生对数学的兴趣和热爱,提高学生的数学素养。
2. 引导学生认识到数学在现实生活中的重要作用,增强学生的应用意识。
三、说教学重难点(一)重点1. 三角恒等变换的基本概念和基本方法。
2. 三角恒等变换在实际问题中的应用。
(二)难点1. 理解并熟练运用三角恒等变换公式。
2. 解决实际问题时,能够灵活运用三角恒等变换。
四、说教法(一)启发法在教学过程中,我将以启发式教学为主,引导学生通过观察、思考、总结等环节,自主发现三角恒等变换的规律。
具体操作如下:1. 以实际问题导入,激发学生的好奇心和求知欲。
2. 引导学生回顾已学的三角函数知识,为新知识的学习做好铺垫。
3. 设计一系列具有启发性的问题,让学生在思考问题的过程中,自然地发现三角恒等变换的规律。
(全国通用版)2018-2019高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换 第1课时
=cosx2+sincxos2x.
证法二:cosx2+sincxos2x=coEs3v2xa2-sliu2xna+32txic-oons2x32ox+nl2xy.
Copyright 2004-2011 Aspose Pty Ltd.
3
课时作业学案
Evaluation only.
Created withCAosppyorsigeh.St 自2li0d0e主4s-预f2o0r1习.1NEA学Tsp案3o.s5eCPliteynLt tPdr.ofile 5.2.0.0.
2.常见的三角恒等变换
(1)asinx+bcosx=___a_2_+__b_2 __sin(x+φ)(ab≠0),其中
Evaluation only.
tanφ=ba,φ
所在象限由
Care和abte的d符w号it确h定A.sp仅o仅s讨e.论Sbali=de±1s,fo±r3.,N±E3T3的3情.5况C.lient Profile 5.2.0.0.
C.-
1C+ocopsαyright
2
2004-201D1.Asp1o+s2ceosαPty
Ltd.
2.已知 sinθ=35,52π<θ<3π,那么 tan2θ+cos2θ的值为
( B)
A. 1100-3
EvaluatioBn.o3-nly11.00
CreaCte.d-w3-ith1C10A0osppyorsigห้องสมุดไป่ตู้h.St 2li0d0e4s-f2o0r1.D1N.EA3Ts+p31o1.0s05eCPliteynLt tPdr.ofile 5.2.0.0.
θ
∴tan2θ=sinC2θo=p3y.right 2004-2011 Aspose Pty Ltd.
简单的三角恒等变换
一、学习目标: 1.知识与技能:
掌握半角公式的正用、逆用和变形应用,并会应用其 进行求值、化简和证明; 2.过程与方法:
小组合作探究、大胆质疑拓展,类比归纳 ; 3.情感态度价值观: 协作精神及合作共赢的意识,激发学习的热情和兴趣。 二、重点、难点:
重点:半角的正弦、余弦、正切公式以及公式的逆用、 变形应用;
难点:半角公式与以前学过的同角三角函数的基本关系 式、诱导公式、和角公式、倍角公式的综合应用 。
知识回顾:
两角和的正弦 1:sin(α +β )=sinα cosβ +cosα sinβ
两角差的正弦 2:sin(α -β )=sinα cosβ -cosα sinβ
3:倍角公式 sin2α =2sinα cosα cos2α =cos2α -sin2α
tan sin 1 cos 2 1 cos sin
注意:每一个确定的半角的三角函数值唯一 确定。应根据角的象限定符号!
2
2
2
tan2 1 cos . 2 1 cos
半角公式:
sin2 1 cos
2
2
cos2 1 cos
2
2
tan2 1 cos
2 1 cos
sin 1 cos
2
2
cos
2
1 cos
2
tan 1 cos 2 1 cos
=2cos2α -1 =1-2sin2α ;
设疑自探 问题1:由二倍角
的公式求出 sin2 , cos2 ,
问题2: 试用cos表示sin 2 , cos2 , tan2 .
简单的三角恒等变换PPT教学课件
=-18sin70°+18(sin110°+sin30°)
=-18sin70°+18sin70°+116=116.
解法二:原式=12cos20°cos40°cos80°
=sin20°cos22s0i°nc2o0s°40°cos80°=sin40°4csoisn4200°°cos80°
=sin88s0i°nc2o0s°80°=1s6insi1n6200°°=116.
[答案]
-2 5 5
-
5 5
2
[解析] ∵|cosθ|=35,52π<θ<3π,
∴cosθ=-35,54π<θ2<32π.
∵cosθ=1-2sin22θ,
∴sinθ2=- 1-2cosθ=-
1+2 35=-2
5
5 .
又 cosθ=2θcos2θ2-1,有 cosθ2=- ∴tanθ2= sin2θ=2.
=sin32x·cos2x3-x cosx32x·sin2x=sin332xx-2xx
cos 2 cos2
cos 2 cos2
=coss32ixncxos2x=cosx2+sincxos2x.
求证:1c+osc2ox+ s2(cxo+s2yy)=ccooss((xx-+yy)). [证明] 左边=2cos2(xc+osy2()xc+os(yx)-y) =ccooss((xx- +yy))=右边.
原式=(a+b)2+(a-b)2+(a+b)(a-b)
=3a2+b2
=34cos220°+34sin220°=34.
• [点评] 解法一:通过对该题中两个角的 特点分析,巧妙地避开了和差化积与积化 和差公式.当然运用降次、和积互化也是 一般方法.
• 解法二:利用正余弦函数的互余对偶,构 造对偶式,组成方程组,解法简明.
高三数学人教版A版数学(理)高考一轮复习教案简单的三角恒等变换 简单的三角恒等变换1
第六节 简单的三角恒等变换 简单的三角恒等变换能运用公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).知识点一 半角公式1.用cos α表示sin 2 α2,cos 2 α2,tan 2 α2.sin 2α2=1-cos α2;cos 2 α2=1+cos α2; tan 2 α2=1-cos α1+cos α.2.用cos α表示sin α2,cos α2,tan α2.sin α2=±1-cos α2;cos α2=± 1+cos α2; tan α2=±1-cos α1+cos α.3.用sin α,cos α表示tan α2.tan α2=sin α1+cos α=1-cos αsin α.易误提醒 应用“sin α2=±1-cos α2”或“cos α2=± 1+cos α2”求值时,可由α2所在象限确定该三角函数值的符号.易混淆由α决定.必记结论 用tan α表示sin 2α与cos 2αsin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[自测练习]1.已知cos θ=-15,5π2<θ<3π,那么sin θ2=( )A.105 B .-105 C.155D .-155解析:∵5π2<θ<3π,∴5π4<θ2<3π2.∴sin θ2=-1-cos θ2=-1+152=-155. 答案:D知识点二 辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=ba . 易误提醒 在使用辅助角公式易忽视φ的取值,应由点(a ,b )所在象限决定,当φ在第一、二象限时,一般取最小正角,当φ在第三、四象限时,一般取负角.[自测练习]2.函数f (x )=sin 2x +cos 2x 的最小正周期为( ) A .π B.π2 C .2πD.π4解析:f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴T =π. 答案:A3.函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( ) A .[-2,2] B .[-3,3] C .[-1,1]D.⎣⎡⎦⎤-32,32 解析:∵f (x )=sin x -cos ⎝⎛⎭⎫x +π6=sin x -cos x cos π6+sin x sin π6=sin x -32cos x +12sin x =3⎝⎛⎭⎫32sin x -12cos x =3sin ⎝⎛⎭⎫x -π6(x ∈R ), ∴f (x )的值域为[-3,3]. 答案:B考点一 三角函数式的化简|化简:(1)sin 50°(1+3tan 10°);(2)2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫x +π4.解:(1)sin 50°(1+3tan 10°) =sin 50°(1+tan 60°tan 10°)=sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.(2)原式=2cos 2x (cos 2x -1)+122tan ⎝⎛⎭⎫π4-x ·cos 2⎝⎛⎭⎫π4-x=-4cos 2x sin 2x +14cos ⎝⎛⎭⎫π4-x sin ⎝⎛⎭⎫π4-x =1-sin 22x2sin ⎝⎛⎭⎫π2-2x=cos 22x 2cos 2x =12cos 2x . 考点二 辅助角公式的应用|(1)函数y =sin 2x +2 3sin 2x 的最小正周期T 为________.[解析] y =sin 2x +23sin 2x =sin 2x -3cos 2x +3=2sin(2x -π3)+3,所以该函数的最小正周期T =2π2=π.[答案] π(2)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________. [解析] f (x )=sin x -2cos x =5⎝⎛⎭⎫55sin x -255cos x =5sin(x -φ),其中sin φ=255,cos φ=55,当x -φ=2k π+π2(k ∈Z )时函数f (x )取到最大值,即θ=2k π+π2+φ时函数f (x )取到最大值,所以cos θ=-sin φ=-255.[答案] -255(1)利用a sin x +b cos x =a 2+b 2sin(x +φ)把形如y =a sin x +b cos x +k 的函数化为一个角的一种函数的一次式,可以求三角函数的周期、单调区间、值域、最值和对称轴等.(2)化a sin x +b cos x =a 2+b 2sin(x +φ)时φ的求法:①tan φ=ba ;②φ所在象限由(a ,b )点确定.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. 求函数f (x )的最小正周期和单调递增区间. 解:f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z .考点三 三角恒等变换的综合应用|三角恒等变换是高考必考内容,考查时多与三角函数的图象与性质、解三角形及平面向量交汇综合考查,归纳起来常见的命题探究角度有:1.三角恒等变换与三角函数性质的综合. 2.三角恒等变换与三角形的综合.3.三角恒等变换与向量的综合.探究一 三角恒等变换与三角函数性质的综合1.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值; (2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3, 求cos ⎝⎛⎭⎫α+3π2的值. 解:(1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2,k =0,±1,±2,…. 因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝⎛⎭⎫α2=3sin ⎝⎛⎭⎫2·α2-π6=34, 所以sin ⎝⎛⎭⎫α-π6=14.由π6<α<2π3,得0<α-π6<π2, 所以cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫142=154. 因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π6+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=14×32+154×12=3+158. 探究二 三角恒等变换与三角形的结合2.(2016·台州模拟)已知实数x 0,x 0+π2是函数f (x )=2cos 2ωx +sin ⎝⎛⎭⎫2ωx -π6(ω>0)的相邻的两个零点.(1)求ω的值;(2)设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若f (A )=32且b tan B +c tan C =2atan A,试判断△ABC 的形状,并说明理由.解:(1)f (x )=1+cos 2ωx +32sin 2ωx -12cos 2ωx =32sin 2ωx +12cos 2ωx +1 =sin ⎝⎛⎭⎫2ωx +π6+1, 由题意得T =π,∴2π2ω=π.∴ω=1.(2)由(1)得f (x )=sin ⎝⎛⎭⎫2x +π6+1, ∴f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 即sin ⎝⎛⎭⎫2A +π6=12. ∵0<A <π,∴π6<2A +π6<13π6,∴2A +π6=5π6,即A =π3.由b tan B +c tan C =2a tan A 得b cos B sin B +c cos C sin C =2a cos A sin A,所以cos B +cos C =2cos A =1, 又因为B +C =2π3,所以cos B +cos ⎝⎛⎭⎫2π3-B =1, 即sin ⎝⎛⎭⎫B +π6=1,所以B =C =π3. 综上,△ABC 是等边三角形. 探究三 三角恒等变换与向量的综合3.(2015·合肥模拟)已知向量a =⎝⎛⎭⎫cos ⎝⎛⎭⎫θ-π4,1,b =(3,0),其中θ∈⎝⎛⎭⎫π2,5π4,若a·b =1.(1)求sin θ的值; (2)求tan 2θ的值.解:(1)由已知得:cos ⎝⎛⎭⎫θ-π4=13,sin ⎝⎛⎭⎫θ-π4=223,sin θ=sin ⎣⎡⎦⎤⎝⎛⎭⎫θ-π4+π4=sin ⎝⎛⎭⎫θ-π4cos π4+cos ⎝⎛⎭⎫θ-π4·sin π4=4+26.(2)由cos ⎝⎛⎭⎫θ-π4=13得sin θ+cos θ=23,两边平方得:1+2sin θcos θ=29,即sin 2θ=-79,而cos 2θ=1-2sin 2θ=-429,∴tan 2θ=728. 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.5.三角恒等变换与解三角形的综合的答题模板【典例】 (12分)(2015·高考山东卷)设f (x )=sin x cos x -cos 2⎝⎛⎭⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝⎛⎭⎫A 2=0,a =1,求△ABC 面积的最大值.[思路点拨] (1)首先利用二倍角公式及诱导公式将f (x )的解析式化为“一角一函数”的形式,然后求解函数f (x )的单调区间.(2)首先求出角A 的三角函数值,然后根据余弦定理及基本不等式求出bc 的最大值,最后代入三角形的面积公式即可求出△ABC 面积的最大值.[规范解答] (1)由题意知f (x )=sin 2x2-1+cos ⎝⎛⎭⎫2x +π22=sin 2x 2-1-sin 2x2=sin 2x -12.(3分)由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π, k ∈Z ;(4分)由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z , 所以f (x )的单调递增区间是⎣⎡⎦⎤-π4+k π,π4+k π(k ∈Z );(5分)单调递减区间是⎣⎡⎦⎤π4+k π,3π4+k π(k ∈Z ).(6分) (2)由f ⎝⎛⎭⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32.(8分) 由余弦定理a 2=b 2+c 2-2bc cos A ,(9分) 可得1+3bc =b 2+c 2≥2bc ,(10分) 即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.(11分)所以△ABC 面积的最大值为2+34.(12分) [模板形成][跟踪练习] 已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ). (1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)已知△ABC 为锐角三角形,A =π3,且f (B )=65,求cos 2B 的值.解:(1)由f (x )=23sin x cos x +2cos 2x -1得 f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 所以函数f (x )的最小正周期为π.因为f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎣⎡⎦⎤π6,π2上为减函数, 又f (0)=1,f ⎝⎛⎭⎫π6=2,f ⎝⎛⎭⎫π2=-1, 所以f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)因为△ABC 为锐角三角形,且A =60°,所以⎩⎨⎧0<B <π2,0<C =2π3-B <π2,即B ∈⎝⎛⎭⎫π6,π2,所以2B +π6∈⎝⎛⎭⎫π2,7π6. 由(1)可知f (B )=2sin ⎝⎛⎭⎫2B +π6=65, 即sin ⎝⎛⎭⎫2B +π6=35,cos ⎝⎛⎭⎫2B +π6=-45, 所以cos 2B =cos ⎝⎛⎭⎫2B +π6-π6 =cos ⎝⎛⎭⎫2B +π6cos π6+sin ⎝⎛⎭⎫2B +π6sin π6 =3-4310.A 组 考点能力演练1.(2015·洛阳统考)已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B .-23C.13D.23解析:∵cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=1+sin 2α2,∴cos 2⎝⎛⎭⎫α-π4=23. 答案:D2.已知2sin θ+3cos θ=0,则tan 2θ=( ) A.59 B.125 C.95D.512解析:∵2sin θ+3cos θ=0,∴tan θ=-32,∴tan 2θ=2tan θ1-tan 2θ=2×⎝⎛⎭⎫-321-94=125.答案:B3.sin 2α=2425,0<α<π2,则2cos ⎝⎛⎭⎫π4-α的值为( )A.15 B .-15C.75D .±15解析:因为sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1,所以2cos ⎝⎛⎭⎫π4-α=±1+sin 2α,因为sin 2α=2425,所以2cos ⎝⎛⎭⎫π4-α=±75,因为0<α<π2,所以-π4<π4-α<π4,所以2cos ⎝⎛⎭⎫π4-α=75. 答案:C4.(2015·太原一模)设△ABC 的三个内角分别为A ,B ,C ,且tan A ,tan B ,tan C,2tan B 成等差数列,则cos(B -A )=( )A .-31010B .-1010C.1010D.31010解析:由题意得tan C =32tan B ,tan A =12tan B ,所以△ABC 为锐角三角形.又tan A =-tan(C +B )=-tan C +tan B 1-tan C tan B =-52tan B 1-32tan 2B =12tan B ,所以tan B =2,tan A =1,所以tan(B -A )=tanB -tan A 1+tan B tan A =2-11+2×1=13.因为B >A ,所以cos(B -A )=31010,故选D.答案:D5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A.118 B .-118C.1718D .-1718解析:依题意得3(cos 2α-sin 2α)=22(cos α-sin α),cos α+sin α=26,(cos α+sin α)2=⎝⎛⎭⎫262=118,即1+sin 2α=118,sin 2α=-1718,故选D.答案:D6.计算sin 250°1+sin 10°=________.解析:sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 答案:127.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:法一:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 法二:令α=0,则原式=14+14=12. 答案:128.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.解析:∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. 答案: 39.设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合; (2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期. 解:由已知:f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4.又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,∴f (x )max =2,此时12x -π4=2k π+π2,k ∈Z , 即x ∈⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z . (2)∵x =π8是函数f (x )的一个零点, ∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z , 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,此时其最小正周期为π. 10.(2016·沈阳模拟)已知函数f (x )=sin x -3cos x +2,记函数f (x )的最小正周期为β,向量a =(2,cos α),b =⎝⎛⎭⎫1,tan ⎝⎛⎭⎫α+β2⎝⎛⎭⎫0<α<π4,且a·b =73. (1)求f (x )在区间⎣⎡⎦⎤2π3,4π3上的最值;(2)求2cos 2α-sin 2(α+β)cos α-sin α的值. 解:(1)f (x )=sin x -3cos x +2=2sin ⎝⎛⎭⎫x -π3+2, ∵x ∈⎣⎡⎦⎤2π3,4π3,∴x -π3∈⎣⎡⎦⎤π3,π, ∴f (x )的最大值是4,最小值是2.(2)∵β=2π,∴a·b =2+cos αtan(α+π)=2+sin α=73, ∴sin α=13, ∴2cos 2α-sin 2(α+β)cos α-sin α=2cos 2α-sin 2αcos α-sin α=2cos α =21-sin 2α=423. B 组 高考题型专练1.(2015·高考北京卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解:(1)因为f (x )=22sin x -22(1-cos x ) =sin ⎝⎛⎭⎫x +π4-22,所以f (x )的最小正周期为2π. (2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝⎛⎭⎫-3π4=-1-22. 2.(2013·高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值. 解:f (x )=⎝⎛⎭⎫cos x ,-12·(3sin x ,cos 2x ) =3cos x sin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6. (1)f (x )的最小正周期T =2πω=2π2=π, 即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6. 当2x -π6=π2,即x =π3时,f (x )取得最大值1. 当2x -π6=-π6,即x =0时,f (0)=-12, 当2x -π6=56π,即x =π2时,f ⎝⎛⎭⎫π2=12, ∴f (x )的最小值为-12.因此,f (x )在⎣⎡⎦⎤0,π2上的最大值是1,最小值是-12. 3.(2014·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b .sin B =6sin C .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A -π6的值. 解:(1)在△ABC 中,由b sin B =c sin C ,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c .所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64,可得sin A =104. 于是,cos 2A =2cos 2A -1=-14, sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.。
高二数学简单的三角恒等变换教案(通用11篇)
高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。
2、能够运用三角恒等式进行简单的三角恒等变换。
3、培养学生的逻辑推理能力和数学运算能力。
教学重点1、三角恒等式的理解和记忆。
2、三角恒等变换的方法和步骤。
教学难点三角恒等式的灵活运用和复杂三角表达式的化简。
教学准备1、多媒体课件,包含三角恒等式、例题和练习题。
2、黑板和粉笔。
教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。
提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。
2、通过实例演示如何使用三角恒等式进行三角恒等变换。
3、引导学生总结三角恒等变换的.一般方法和步骤。
三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。
教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。
四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。
鼓励学生相互讨论,分享解题思路和方法。
五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。
布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。
教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。
但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。
在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。
同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。
高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。
能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。
3.2简单的三角恒等变换(一)
1.两角和差的正弦、余弦、正切公式
2.二倍角正弦、余弦、正切公式
sin 2 2 sin cos
cos 2 cos2 sin 2
2 cos2 1
1 2 sin2
tan 2
1
2
tan tan2
学习了和(差)角公式,倍角公式以后,我 们就有了进行三角变换的新工具,从而使三角 变换的内容、思路和方法更加丰富,这为提高 我们的推理、运算能力提供了新的平台.
证明:左边 = sin2 x cos2 x 2sin x cos x cos2 x sin2 x
(sin x cos x)2
cos x sin x
(cos x sin x)(cos x sin x) sin x cos x
1 tan x =右边 1 tan x
A.12[sin(α+β)+cos(α-β)] B.-21[cos(α+β)-cos(α-β)] C.-12[sin(α+β)+sin(α-β)] D.12[sin(α+β)+cos(α-β)]
1.下列各式恒成立的是( B )
A.tan = 1 cos 2 sin
2 tan
C.
2
1 tan2
2
22
2sin cos 22
2 cos cos
sin 1 cos
1. 2
22
4、已知 sinθ=-35,3π<θ<72π,则 tanθ2=___-_3____.
解析:根据角 θ 的范围,求出 cosθ 后代入公式计算, 即由 sinθ=-35,3π<θ<72π,得 cosθ=-45,从而 tanθ2= 1+sincoθsθ=1--3554=-3.
简单的三角恒等变换PPT教学课件
a
2时
f
(x)大
a2 4
1 2
a 4
当a 2
1即a
2时
当sin x 1时
f
(x)大
3 4
a
1 2
当
a 2
0即a
0时
sin
x
0时 f
(x)大
1 2
a 4
3 4
a
1 2
(a
2)
即M
(a)
a2 4
a 4
1 2
(0
a
2)
1 2
a 4
(a
0)
(2)当M
(a)
2时,
解得a
10 3
或a
6
小结:
对公式我们不仅要会直接的运用,还 要会逆用、还要会变形用,还要会与 其它的公式一起灵活的运用。
2
log 1 (sin x cosx) f (x)
2
T 2
练习2.f(x)=cos2x+asinx-
a 4
-
1 2
(0≤x≤2 )
①用a表示f(x)的最大值M(a)
②当M(a)=2时,求a的值
解:
(1)
f
(x)
(sin
x
a 2
)2
a2 4
1 2
a 4
0
x
2
0
x
1
当0
a 2
1即0
2
sin2 cos2 1
2
解法2:
原式 1 (1 cos2 )(1 cos2 ) 1 (1 cos2 )(1 cos2 )
4
4
1 cos2 cos2
2
1 (1 cos2 cos2 ) 1 cos2 cos2
3.2简单的三角恒等变换
= 3sin2x - cos2x
3 1 = 2( sin2x - cos2x) 2 2
π π = 2(sin2xcos - cos2xsin ) 6 6 π = 2sin(2x - ) 6
故该函数的最小正周期是π,最小值是-2,在 0,π π 5π 上的单调增区间是 0, , ,π。 3 6
1 5 sin( + )+ 2x 2 6 4
y取得最大值必须且只需
2x+ +2k,k Z, 6 2
即x= +k,k Z。 6 所以当函数y取得最大值时,自变量x的集合为 {x |x =+k π,k ∈Z}。
(2)将函数y=sinx依次进行如下变换:
①把函数y=sinx的图象向左平移 ,得到函数y=sin(x+ )的图象; 6 6
α 1 + cosα cos = 2 2
α 1- cosα sinα 1- cosα tan = = = 2 1 + cosα 1 + cosα sinα
注意:
α α α α (1)sin 、cos 、tan 的符号有 所在的象限决定。 2 2 2 2
(2)正切半角公式的推导:
α α α α α α sin sin 2sin sin sin 2cos α α 2 = 2 2 2 = 2 2 tan = tan = 2 cos α cos α 2sin α 2 cos α cos α 2cos α 2 2 2 2 2 2
新课导入
学习了简单的和(差)角公式,倍 角公式后,对于一些稍微复杂的三角恒 等变化,比如已知2α求α,已知
y=sin2xcos2x,求最小正周期、最大最小
值、单调区间是否能求呢?
通过复习前面所学过的公式,以已
高中数学第三章三角恒等变换3.2简单的三角恒等变换知识巧解学案新人教A版必修04
,π<2α< ,求 tanα.
13
2
3
3
解: ∵π<2α< ,∴ <α< .
2
2
4
由 cos 2
1 sin 2
5
1 ( 12 ) 2
5 ,得 tan
1 cos2
1 13
3
13
13
sin 2
12 2
13
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
或 tan 或 tan
或 tan
2 1 cos
2 sin
可避开符号的讨论 .
③若角α的倍角 2α是特殊角,则可用半角公式求α的函数值,以α为桥梁,可把
的函数值连在一起 .
知识点二 积化和差公式的应用
例 4 求下列各式的值:
5 (1) cos sin ; (2)2cos50° cos70° -cos20° .
12 12
5
15
1
3
.
2
24
(2)原式 =cos(50° +70° )+cos(50°-70° )-cos20°
1
=cos120°+cos20° -cos20° =cos120°=-cos60° = .
2
31
例 5 求证: (1)sin80°cos40° =
sin 40 ;
42
11
(2)sin37.5° sin22.5° = + cos15° .
( 2 3) .
例 2 求 cos , tan 的值 . 8 12
2
解: 由于 cos2
1 cos 1
4
2
1
3.2简单的三角恒等变换
3.2 简单的三角恒等变换(3个课时)一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以cos α表示222sin ,cos ,tan 222ααα..思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦;(2)、sin sin 2sin cos 22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想?证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数sin y x x =+的周期,最大值和最小值.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:157158P P - 14T T -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 简单的三角恒等变换(3个课时)
一、课标要求:
本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.
二、编写意图与特色
本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.
三、教学目标
通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.
四、教学重点与难点
教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.
五、学法与教学用具
学法:讲授式教学
六、教学设想:
学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.
例1、试以cos α表示222sin ,cos ,tan 222α
α
α
.
解:我们可以通过二倍角2cos 2cos
12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin
2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22α
α+=
. 又因为222
sin 1cos 2tan 21cos cos 2α
α
ααα-==+. 思考:代数式变换与三角变换有什么不同?
代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.
例2、求证:
(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣
⎦; (2)、sin sin 2sin cos 22θϕ
θϕ
θϕ+-+=.
证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.
()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣
⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕ
θϕ
αβ+-==.
把,αβ的值代入①式中得sin sin 2sin
cos 22θϕθϕθϕ+-+=.
思考:在例2证明中用到哪些数学思想?
例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.
例3、求函数sin y x x =的周期,最大值和最小值.
解:sin y x x =这种形式我们在前面见过,
1
sin 2sin 2sin 23y x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭
, 所以,所求的周期22T π
πω==,最大值为2,最小值为2-.
点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.
小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.
作业:
157158P P - 14T T -。