九年级数学复习导学案
人教版九年级上册数学全册导学案
6、对于二次函数,当x=时,y有最小值.ห้องสมุดไป่ตู้
这两题都在考查顶点横坐标公式。
7、抛物线的开口方向向,顶点坐标是,对称轴是,与x轴的交点坐标是,与y轴的交点坐标是,当x=时,y有最值是.
8、已知二次函数的最小值为1,求m的值.本题考查顶点坐标纵坐标公式。
9、利用配方法,把下列函数写成+k的形式,并写出它们的图象的开口方向、对称轴和顶点坐标.
1、抛物线的开口,对称轴是,顶点坐标是。
2、函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.
3、对于二次函数对称轴,顶点坐标.
4、已知抛物线的顶点在坐标轴上,则的值为
双休日作业出过让学生回忆。
5、(1)二次函数的对称轴是.
(2)二次函数的图象的顶点是,当x时,y随x的增大而减小.
(1)(2)
10、确定抛物线的开口方向、对称轴和顶点坐标,再描点画图.作图可作草图。
人教版九年级上册数学全册导学案
人教版九年级上册数学全册导学案(52份)-人教版九年级上册数学知识点
环节1
二次函数解析式常用的有三种形式:
(开口方向、大小、对称轴、顶点坐标、增减性、极值)
(1)一般式:_______________ (a≠0)
(2)顶点式:_______________ (a≠0)
对应训练:
九年级数学导学案全册
九年级数学导学案全册一、整体介绍九年级数学导学案全册是为了帮助九年级学生系统地学习和掌握数学知识而设计的教学辅助材料。
本导学案旨在以清晰的结构和详细的内容,帮助学生理解和掌握每个知识点,并培养学生的问题解决能力和数学思维。
二、导学目标本导学案的目标是帮助学生在九年级学习阶段掌握以下内容:1. 复习和巩固七、八年级学到的数学知识;2. 学习并理解九年级新引入的数学概念和方法;3. 培养学生的问题解决能力和逻辑思维。
三、具体内容1. 单元一:代数运算本单元将复习和巩固整数、有理数的加减乘除运算,并引入一次、二次方程的解法。
通过练习提高学生的计算能力和代数运算技巧。
2. 单元二:平面几何本单元将复习和巩固平面图形的性质和计算方法,包括三角形、四边形和圆的周长、面积计算。
同时引入椭圆、双曲线等二次曲线的基本性质和计算方法。
3. 单元三:立体几何本单元将复习和巩固立体图形的性质和计算方法,包括球体、圆柱体、圆锥体和棱柱、棱锥的体积和表面积计算。
同时引入三角锥、圆锥、三角棱柱等复杂立体图形的计算方法。
4. 单元四:数据统计与概率本单元将复习和巩固数据统计中的表格、图表的制作和分析方法,同时引入概率的基本概念和计算方法。
通过实际案例和练习,培养学生的数据分析和概率计算能力。
四、学习方法和建议1. 在学习过程中,学生应注意理解每个知识点的定义、性质和计算方法。
2. 学生可以通过课堂讲解、课后习题练习以及自主学习的方式来巩固所学内容。
3. 遇到困难和疑惑时,学生可以寻求老师和同学的帮助,或参考相关的数学学习资料。
五、总结九年级数学导学案全册是九年级学生学习数学的重要辅助材料。
通过学习和掌握本导学案中的知识,学生将能够提高数学思维能力,解决实际问题,并为高中数学的学习打下坚实的基础。
希望本导学案能够帮助九年级学生在数学学习中取得优秀的成绩,为未来的学习和发展打下坚实的基础。
2019-2020九年级数学下册总复习教案导学案课时16平行四边形及多边形教学设计含中考演练
课时16.平行四边形及多边形【知识梳理】1.多边形的基本概念与性质(1)任意n边形的内角和为________ ____,外角和等于___ ___.(2)正n边形的每个内角度数:_____ ______,正n边形的每个外角度数:_ ____.(3)多边形的对角线:过n边形的一个顶点有____ __条不重复的对角线;一个n边形共有_______ __条对角线.2.平面图形的镶嵌(密铺)(1)密铺:用多边形进行密铺时,相拼接的边相等,每一个拼接点处各个角的和等于_____.(2)在平面内,只用一种正多边形进行镶嵌,则正多边形只能是_____ ____,正四边形,_______ __.3.平行四边形【基础过关】1.只用下列图形不能镶嵌的是( )A.三角形B.四边形C.正五边形D.正六边形2. 如图,在□ABCD中,O是对角线AC,BD的交点,下列结论错误的是( )A.AB∥CDB.AB=CDC.AC=BDD.OA=OC3.在□ABCD中,∠B=60°,下列各式中,不能成立的是( )A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°第5题4.如图,□ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则□ABCD的两条对角线长的和是( )A.18B.28C.36D.465.内角和为1440°的多边形的边数是___ _.6.一个多边形的每个外角都等于60°,则这个多边形的边数为_ ___.7.在平行四边形ABCD中,若∠A+∠C=130°,则∠D的度数是__ ___.【能力提升】例1 已知多边形的内角和是其外角和的5倍,求这个多边形的边数.例2 如图,纸片△ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,求∠2的度数.例3 如图,在平行四边形ABCD中,∠B=∠AFE,AE是∠BAF的角平分线.求证:(1)△ABE≌△AFE;(2)DF=EC.例4 如图,在□ABCD中,点E,F在对角线BD上,且BE=DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【自我检测】1.若一个十二边形的每个外角都相等,则它的每个外角的度数为___ _,每个内角的度数为___ __.2.如图,在正五边形ABCDE中,连接AC,AD,则∠CAD的度数是__ __.3.如果一个n边形恰有n条对角线,这个多边形是___ _边形.4.顺次连接任意四边形四边的中点,所得四边形是___________.5.平行四边形的周长为28,两邻边的比为4:3,则较短的一条边的长为__ __.6.如图,在□ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=__ __cm.7.如图,在□ABCD中,AC与BD相交于点O,点E是BC边的中点,OE=1,则AB的长是_ ___.8.点O是□ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC延长线于E、F两点,若EA:AB=2:5,那么FC:FD=__ ____.第2题9.一个多边形的内角和为720°,则这个多边形的边数是( )A.5B.6C.7D.810.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形. 若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( )A.1种B.2种C.3种D.4种11.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为( ) A.4 B.5 C.6 D.712.若n边形的每一个外角都不大于40°,则它是边数( )A. n=8B. n=9C. n>9D. n≥913.如图,在□ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1为( )A.40°B.50°C.60°D.80°14.将一个平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有( )A.1种B.2种C.3种D.无数种15.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.16.如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.17.如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.。
人教版九年级数学导学案全册
人教版九年级数学导学案全册九年级数学导学案-全册第一章:有理数导学目标:了解有理数的定义,会对有理数进行加减法运算1. 有理数的定义有理数是指可以表示为两个整数比例的数,包括正整数、负整数、零以及可以表示为分数形式的小数。
2. 有理数的表示有理数可以通过分数、小数和负号表示。
例如:32/5,-1.2,-3。
3. 有理数的比较有理数的大小可以通过数轴进行比较,数轴的左边表示负数,右边表示正数。
例如:-5 < -1 < 0 < 2 < 4。
4. 有理数的加法运算有理数的加法运算遵循以下规则:- 两个正数相加,结果为正数;- 两个负数相加,结果为负数;- 正数加负数时,找到两个数的绝对值中较大的数,并用它的符号作为结果的符号。
5. 有理数的减法运算有理数的减法运算可以转化为加法运算,即求减数的相反数后再进行加法运算。
例如:7-3可以转化为7+(-3)。
第二章:代数基础导学目标:掌握代数基础概念,灵活运用代数式进行计算1. 代数式的定义代数式是由数或运算符号组成的表达式,可以包括数字、字母和运算符号。
2. 代数式的计算代数式可以通过代数运算进行计算,其中常用的运算符号包括加减乘除和指数符号。
3. 代数式的展开和因式分解代数式的展开指的是将括号中的内容按照规则进行计算,例如:(a+b)^2 = a^2 + 2ab + b^2。
代数式的因式分解指的是将代数式分解成乘积的形式,例如:4x^2 + 12x = 4x(x + 3) 。
4. 代数式的简化代数式可以通过合并同类项进行简化,合并同类项是将相同字母的项合并在一起,例如:2x + 3x = 5x。
第三章:图形的认识导学目标:了解几何图形的基本概念和性质,能够进行图形的分类和判断1. 平面图形的分类平面图形包括点、线段、射线、直线和曲线,可以通过形状和大小进行分类,例如:三角形、四边形、圆等。
2. 几何图形的性质几何图形有不同的性质,例如:矩形的对边相等、正方形的对角线相等。
北师大版九年级上册数学 第一章复习导学案1
第一章特殊平行四边形【学习目标】1、掌握并能区分矩形、菱形、正方形的性质与判定(重点)2、矩形、菱形、正方形的性质与判定综合运用.(难点)【学习方案】正方形、平行四边形、矩形、菱形的性质可比较如下:平行四边形矩形菱形正方形对边平行且相等四条边都相等对角相等四个角都是直角对角线互相平分对角线互相垂直对角线相等每条对角线平分一组对角(凡是图形所具有的性质,在表中相应的空格中填上“√”,没有的性质不要填写)矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.矩形判定方法3:有一个角是直角的平行四边形是矩形.矩形判定方法4:对角线相等且互相平分的四边形是矩形直角三角形斜边上的中线等于斜边的一半1、已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.2、如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.3、如图,在□ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.※4、如图,在□ABCD 中,DE ⊥AB 于E ,BM =MC =DC ,求证:∠EMC=3∠BEM.菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.菱形判定方法2:四边都相等的四边形是菱形1、 已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E . 求证:∠AFD=∠CBE .2、已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.F E DC BAM EAB DC3、如图,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E .求线段BE 的长.4、如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F 。
北师大版九年级上册数学 第四章复习导学案1(2)
第四章图形的相似学习目标与考点分析学习目标:1、熟练理解运用线段的比AB:CD=m:n以及黄金分割2、明确理解相似三角形和相似多边形的性质3、熟练运用相似多边形边角关系考点分析:1、相似比的性质和黄金分割2、相似多边形的性质和判定定理学习重点重点:1、线段比例和黄金分割2、相似三角形的性质3、相似三角形的额判定定理学习方法讲练结合练习巩固学习内容与过程【知识点梳理】一. 线段的比※1. 如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成 .※2. 四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3. 注意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a, 与互为倒数;⑤比例的基本性质:若, 则ad=bc; 若ad=bc, 则二. 黄金分割※1. 如图1,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.※2.黄金分割点是最优美、最令人赏心悦目的点.四. 相似多边形¤1. 一般地,形状相同的图形称为相似图形.※2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.五. 相似三角形※1. 在相似多边形中,最为简简单的就是相似三角形.※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5. 相似三角形周长的比等于相似比.※6. 相似三角形面积的比等于相似比的平方.六.探索三角形相似的条件※1. 相似三角形的判定方法:一般三角形直角三角形基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.①两角对应相等;②两边对应成比例,且夹角相等;③三边对应成比例. ①一个锐角对应相等;②两条边对应成比例:a. 两直角边对应成比例;b. 斜边和一直角边对应成比例.※2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3,则 .※3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.八. 相似的多边形的性质※相似多边形的周长比等于相似比;面积比等于相似比的平方.九. 图形的位似※1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.※2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.◎3. 位似变换:①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.③利用位似的方法,可以把一个图形放大或缩小.【例题讲解】(一)线段的比1.两条线段的比的概念:两条线段的比就是两条线段长度的比注:同一长度单位的两条线段AB 、CD 的长度分别为m 、n ,那么这两条线段的比AB :CD =m n :或,其中、分别叫做这个线段比的前项和后项,如果AB CD mnAB CD =把表示成比值,那么或·。
中考数学专题复习导学案尺规作图》(含答案)
中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。
九年级数学第7章复习学案
九年级数学第7章《空间图形的初步认识》复习导学案主备人:审核人:研讨人员:【复习目标】:1.通过复习,掌握本章基本知识点;2.会计算棱柱、圆柱、圆锥的侧面积、全面积;3.感悟转化数学思想,建立空间观念。
【复习过程】:一.自主整理(千里之行,始于足下。
相信自己,你能行)绘制知识网络图表,并对照课本查漏补缺:二.交流提升(海阔凭鱼跃,天高任鸟飞)1.多面体是由围成的几何体,圆柱是由旋转而成的;圆锥是由旋转而成的。
2.棱柱、圆柱、圆锥的侧面都可以展开成平面图形。
棱柱的侧面展开图是;A.B.C.D.4.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是()A.61cm B.85cm C.97cm D.109cm三. 精讲点拨(生讲、师讲相结合,重点知识,重点巩固)1. (2007•兰州)如图,小丽自己动手做了一顶圆锥形的圣诞帽,母线长是30cm ,底面半径是10cm ,她想在帽子上缠一根漂亮的丝带,从A 出发绕帽子侧面一周,至少需要丝带( )A .603cm B .2330 cm C .303cm D .30cm 2.(2010•自贡)如图,有一直径是1cm 的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形CAB .(1)被剪掉的阴影部分的面积是多少?(2)若用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少(结果可用根号表示).四.巩固练习(登泰山而小天下) (一)、选择题1、下列图形中,不是三棱柱的表面展开图的是( )2、李明为好友制作一个(图1)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )3、一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是( )(A )9π (B )18π (C )27π (D )39π4、(2007湖北孝感)亮亮想用一块铁皮制作一个圆锥模型,要求圆锥的母线长为12cm ,底面圆的半径为5cm.那么,这个圆锥模型的侧面展开扇形铁皮的圆心角度数应为( ) A .90° B .120° C .150° D .240°祝 成预 图1 A. B. C. D.5、(2007湖南益阳)如图,将一个底面直径为2CM ,高为2CM 的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图的面积为:( )A .2πcm 2B .3πcm2C .4πcm 2D .5πcm26、将圆柱形纸筒沿母线AB 剪开铺平,得到一个矩形(如图).如果将这个纸筒沿线路B M A →→剪开铺平,得到的图形是( ) A .平行四边形 B .矩形C .三角形D .半圆 7.如图所示,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC = 6cm ,点P 是母线BC 上一点且PC =23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( ) A .(64π+)cm B .5cm C.cm D .7cm8.一个圆锥的底面圆的周长是2π,母线长是3,则它的侧面展开图的圆心角等于( ) A 、150° B 、120° C 、90° D 、60°9.如图,矩形ABCD 中,AB=4,以点B 为圆心,BA 为半径画弧交BC 于点E ,以点O 为圆心的⊙O 与弧AE ,边AD ,DC 都相切.把扇形BAE 作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O ,则AD 的长为( )A.4B.92 C.112D.510. (2011浙江宁波,10,3)如图,Rt △ABC 中,∠ACB =90°,AC=BC =22,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为( )D 、82πA 、4πB 、4πC 、8π(二)、填空题1.已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是 .(结果保留π) 2.有一木质圆柱形笔筒的高为h ,底面半径为r ,现要围绕笔筒的表面由A 至1A (1A A ,在圆柱的同一轴截面上)镶入一条银色金属线作为装饰,这条金属线的最短长度是 . 3.如图所示的圆柱体中底面圆的半径是2π,高为2,若一只小虫从A 点出发沿着圆柱体的侧面爬行到C 点,则小虫爬行的最短路程是 (结果保留根号)M()A )B1AAC24. 如图,圆柱底面半径为2cm ,高为9cm ,点A B 、分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线 从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm . 5.用半径为9cm ,圆心角为120°的扇形纸片围成一个圆锥, 则该圆锥的高为 cm .(三)、解答题1.如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A 、B 、C . (1)请完成如下操作:①以点O 为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D 的位置(不用写作法,保留作图痕迹),并连结AD 、CD .(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C 、D ; ②⊙D 的半径= (结果保留根号);③若扇形ADC 是一个圆锥的侧面展开图,则该圆锥的 底面面积为 (结果保留π); ④若E (7,0),试判断直线EC 与⊙D 的位置关系并说明你 的理由.2.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长。
9年级数学中考复习专题最值问题导学案(无答案)
最值问题解决几何最值问题的理论依据(读一读,背一背)①两点之间,线段最短②垂线段最短(直线外一点与直线上各点连接的所有线段中,垂线段最短)③三角形三边关系(三角形任意两边之和大于第三边,三角形任意两边之差小于第三边)●轴对称最值模型●巩固练习1.如图,在平面直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0) B.(0,1) C.(0,2) D.(0,3)4. 已知:如图,∠ABC =30°,P 为∠ABC 内部一点,BP =4,如果点M ,N 分别为边AB ,BC 上的两个动点,请画图说明当M ,N 在什么位置时使得△PMN 的周长最小,并求出△PMN 周长的最小值.● 折叠之最值模型特征1:折痕过定点,折叠前后线段相等(线段BA ′长度不变,A ′的路径为圆弧) 思路:求A ′C 最小,转化为BA ′+A ′C 最小,利用三角形三边关系求解特征2:折痕折痕经过两条线的动点,折叠前后线段相等(A′N +NC 为定值)思路:求BA′的最小值,转化为求BA′+A′N +NC 的最小值,利用两点之间线段最短求解. ● 巩固练习5. 如图,在△ABC 中,∠ACB =90°,AB =5,BC=3.P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B′CP ,连接B′A ,则B′A 长度的最小值是_____.a b A'M C B AA'M C BAA MA'NBC7. 如图,在直角梯形纸片ABCD 中,AD ⊥AB ,AB =8,AD =CD =4,点E ,F 分别在线段AB ,AD 上,将△AEF 沿EF 翻折,点A 的对应点记为P . (1)当点P 落在线段CD 上时,PD 的取值范围是_______.(2)当点P 落在直角梯形ABCD 内部时,PD 长度的最小值为_____________.8. 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则A′C 长度的最小值是_______.C'Q PCBAP F ED CB APFE DCBA9. 如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A′,当CA′的长度最小时,CQ 的长为________.10. 动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使 点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P ,Q 也随之移动.若限定点P ,Q 分别在AB ,AD 边上移动,则点A ′在BC 边上可移动的最大距离为________________.A'D CBNMAQE PABDCBP D ACQPA'D CB A D CBA直角之最值模型特征:直角不变,斜边长不变思路:取斜边中点,结合斜边中线等于斜边一半,利用三角形三边关系求解 示例:如图,在直角△ABC 中,∠ACB =90°,AC =4,BC =3,在△ABC 内部以AC 为斜边任意作Rt △ACD ,连接BD ,则线段BD 的最小值是________.思路:求BA′的最小值,利用三角形三边关系求解,BD OB OD ≥-. 巩固练习:11. 如图,∠MON=90°,长方形ABCD 的顶点A ,B 分别在OM ,ON 上,当点B在ON 上运动时,点A 随之在OM 上运动,且长方形ABCD的形状和大小保持不变.若AB =2,BC =1,则在运动过程中,点D 到点O 的最大距离为( ) AB .C D .52D A CBDCABONM12. 如图,菱形ABCD 边长为2,∠C =60°.当点A 在x 轴上运动时,点D 随之在y 轴上运动,在运动过程中,点B 到原点O 的最大距离为_______ 13. 如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =3,在△ABC 内部以AC 为斜边任意作Rt △ACD ,连接BD ,则BD 长度的最小值为( ) A .2 B .4 C .5 D .1解决几何最值问题的通常思路:1.分析定点、动点,寻找不变特征.2.若属于常见模型、结构,调用模型、结构解决问题;若不属于常见模型,结合所求目标,依据不变特征转化,借助基本定理解决问题. 转化原则:尽量减少变量,向定点、定线段、定图形靠拢.14. 如图,在△ABC 中,AB =6,AC =8,BC =10,P 为BC 边上一动点,PE ⊥AB于点E ,PF ⊥AC 于点F .若M 为EF 的中点,则AM 长度的最小值为____________.15. 如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 边上,则以AC为对角线的所有□ADCE 中,DE 长度的最小值为_____________.DCBA M FE PCBAOED CBA17. 如图,在等边△ABC 中,D 是AC 边上一个动点,连接BD ,将线段BD 绕点B 逆时针旋转60°得到BE ,连接ED ,若BC =2,则△AED 的周长的最小值是_______.18. 如图,△ABC ,△EFG 均是边长为2的等边三角形,点D 是边BC ,EF 的中点,直线AG ,FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是__________.DGFECB A E DC BA19. 如图,E ,F 是正方形ABCD 的边AD 上的两个动点,且满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H ,连接DH .若正方形的边长为2,则DH 长度的最小值是_______.实战模式20. 如图,钝角三角形ABC 的面积为15,最长边AB =10,BD 平分∠ABC ,点M ,N 分别是BD ,BC 上的动点,则CM +MN 的最小值为_____.21. 如图,在菱形ABCD 中,AB =4,∠ABC =60°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK +QK 的最小值为_____.22. 如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A 旋转,那么C ,F 两点之间的距离的最大值为____________,连接BD ,则△BDF 面积的最大值为__________,最小值为_____.DMBKQPDCBAG FE DCB AGFE DCB AP CDAPBOAQ①当∠EAC=90°时,求PB的长;②直接写出旋转过程中线段PB长的最小值与最大值。
人教版九年级数学上册全册导学案
人教版九年级数学上册全册导学案近几年,数学被越来越多地视为一门基础性科学研究。
从数学课本内容来看,它主要体现出数学系统的程度、数学分析的深度和微积分的广度,体现出数学的复杂性和解决高等数学问题的能力。
人教版数学上册全册导学案,为学习提供了一系列完善的数学知识结构,为学生提供了数学基本概念、定义、公式、解法和解,以及评价标准等完整的导学案。
人教版九年级数学上册全册导学案以下列内容为主:一、数量1、实数的基本概念及四则运算;2、代数式的四则运算;3、整式的乘法及除法;4、无理数的基本概念及加减法;5、无理数的乘法除法及幂运算;6、统计的基本概念。
二、几何1、几何的基本概念;2、空间几何的基本概念;3、几何图形的分类和性质;4、直角坐标系的基本概念;5、根式的基本概念;6、勾股定理和全等三角形的性质。
三、排列组合1、排列组合的基本概念;2、组合数的基本概念及其运算;3、概率的基本概念及计算。
四、数列1、数列的基本概念;2、等差数列的基本概念及其运算;3、等比数列的基本概念及其运算;4、数列极限的基本概念及运算。
五、不等式1、不等式的基本概念;2、不等式的解法;3、一元二次不等式的解法。
六、函数1、函数的基本概念;2、函数的特征及分析;3、函数及图像的对应解法;4、倒数及指数函数的特征及定义;5、指数函数及对数函数的分析;6、根式及立体函数的函数特征。
以上就是人教版九年级数学上册全册导学案的主要内容,涉及数量几何、排列组合、数列、不等式和函数五大部分,涵盖了九年级数学的基础知识。
九年级数学导学案是对学生九年级数学学习的一次全面考察,它包括九年级数学的主要内容,从而为学生提供了一个全面的学习环境。
人教版九年级数学上册全册导学案的学习有很多不同的技巧。
首先,学生要能够正确理解这些知识点,正确掌握相关概念,定义及公式,并灵活运用它们。
其次,学生应该多做练习,以充分熟悉这些基础的知识点,提高解题速度和解题能力。
【人教版】2020学年初中数学九年级上册:全套导学案
第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数结合具体情境体会二次函数的意义,理解二次函数的有关概念;能够表示简单变量之间的二次函数关系.重点:能够表示简单变量之间的二次函数关系.难点:理解二次函数的有关概念.一、自学指导.(10分钟)自学:自学课本P28~29,自学“思考”,理解二次函数的概念及意义,完成填空.总结归纳:一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a,b,c.现在我们已学过的函数有一次函数、二次函数,其表达式分别是y=ax+b(a,b为常数,且a≠0)、y=ax2+bx+c(a,b,c为常数,且a≠0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列函数中,是二次函数的有__A,B,C__.A.y=(x-3)2-1B.y=1-2x2C.y=13(x+2)(x-2)D.y=(x-1)2-x22.二次函数y=-x2+2x中,二次项系数是__-1__,一次项系数是__2__,常数项是__0__.21.1 一元二次方程测试时间:15分钟一、选择题1.(2018广东汕头潮南期末)下列方程是一元二次方程的是( )A.ax2+bx+c=0B.3x2-2x=3(x2-2)C.x3-2x-4=0D.(x-1)2+1=02.将一元二次方程3x2=-2x+5化为一般形式后,二次项系数、一次项系数、常数项分别为( )A.3、-2、5B.3、2、-5C.3、-2、-5D.3、5、-23.m是方程x2+x-1=0的根,则式子2m2+2m+2 018的值为( )A.2 016B.2 018C.2 019D.2 0204.(2018天津宝坻期末)某幼儿园准备修建一个面积为210 m2的矩形活动场地,它的长比宽多12 m,设场地的长为x m,可列方程为( )A.x(x+12)=210B.x(x-12)=210C.2x+2(x+12)=210D.2x+2(x-12)=210二、填空题5.若x=1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,则 2 019(a+b+c)= .6.已知-x+=0是关于x的一元二次方程,则k的值为.三、解答题7.把方程(3x+2)(x-3)=2x-6化成一般形式,并写出它的二次项系数,一次项系数和常数项.8.已知关于x的方程(m2-1)x2-(m+1)x+m=0.(1)当m为何值时,此方程是一元一次方程?(2)当m为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.9.已知x3-a+3x-10=0和x3b-4+6x+8=0都是一元二次方程,求(-)2 018×(+)2 020的值.21.1 一元二次方程一、选择题1.答案 D A、当a=0时,该方程不是一元二次方程,故本选项错误;B、化简原方程得2x-6=0,该方程不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确.故选D.2.答案 B 3x2=-2x+5,移项得3x2+2x-5=0,则二次项系数、一次项系数、常数项分别为3、2、-5,故选B.3.答案 D ∵m是方程x2+x-1=0的根,∴m2+m-1=0,∴m2+m=1,∴2m2+2m+2 018=2(m2+m)+2 018=2×1+2 018=2 020.故选D.4.答案 B ∵场地的长为x m,它的长比宽多12 m,∴宽为(x-12)m,根据题意得x(x-12)=210,故选B.二、填空题5.答案0解析把x=1代入ax2+bx+c=0(a≠0)得a+b+c=0,所以2 019(a+b+c)=2 019×0=0.6.答案-2解析由-x+=0是关于x的一元二次方程,得k2-2=2,且1-k≥0,解得k=-2.三、解答题7.解析(3x+2)(x-3)=2x-6,3x2-9x+2x-6=2x-6,3x2-9x=0,所以它的二次项系数是3,一次项系数是-9,常数项是0.8.解析(1)由题意,得解得m=1,即m=1时,方程(m2-1)x2-(m+1)x+m=0是一元一次方程.(2)由题意得m2-1≠0,解得m≠±1,即m≠±1时,方程(m2-1)x2-(m+1)x+m=0是一元二次方程. 此时方程的二次项系数是m2-1,一次项系数是-(m+1),常数项是m.9.解析由题意得3-a=2,3b-4=2,解得a=1,b=2.则(-)2 018×(+)2 020=[(+)(-)]2 018(+)2=(a-b)2 018(+)2,把a=1,b=2代入,得原式=(1-2)2 018(1+)2=(1+)2=3+2.21.2.1 配方法测试时间:15分钟一、选择题1.一元二次方程(x-2 019)2+2 018=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根2.方程2(x-3)2=8的根是( )A.x1=2,x2=-2B.x1=5,x2=1C.x1=-5,x2=-1D.x1=-5,x2=13.(2018辽宁大连沙河口期末)用配方法解方程x2-x-1=0时,应将其变形为( )A.=B.=C.=0D.=4.一元二次方程x2-px+1=0配方后为(x-q)2=15,那么一元二次方程x2-px-1=0配方后为( )A.(x-4)2=17B.(x+4)2=15C.(x+4)2=17D.(x-4)2=17或(x+4)2=17二、填空题5.小明设计了一个如图所示的实数运算程序,若输出的数为5,则输入的数x为.6.已知方程x2+4x+n=0配方后为(x+m)2=3,则(n-m)2 019= .三、解答题7.解方程:(1)(2x-3)2=25;(2)x2-4x-3=0.(配方法)8.用配方法解下列方程:(1)x2+12x-15=0;(2)3x2-5x=2;(3)x2-x-4=0.21.2.1 配方法一、选择题1.答案 D 由原方程得(x-2 019)2=-2 018.∵(x-2 019)2≥0,-2 018<0,∴该方程无解.故选D.2.答案 B 由原方程,得(x-3)2=4,则x-3=±2,解得x1=5,x2=1.故选B.3.答案 D ∵x2-x-1=0,∴x2-x=1,∴x2-x+=1+,∴=.4.答案 D ∵方程x2-px+1=0配方后为(x-q)2=15,即x2-2qx+q2-15=0,∴-p=-2q,q2-15=1,解得q=4,p=8或q=-4,p=-8.当p=8时,方程为x2-8x-1=0,配方为(x-4)2=17;当p=-8时,方程为x2+8x-1=0,配方为(x+4)2=17.故选D.二、填空题5.答案±解析根据题意知x2-1=5,∴x2=5+1,∴x2=6,x=±,则输入的数x为±.6.答案-1解析由(x+m)2=3,得x2+2mx+m2-3=0,∴2m=4,m2-3=n,∴m=2,n=1,∴(n-m)2 019=-1.三、解答题7.解析(1)2x-3=±5,x1=4,x2=-1.(2)x2-4x=3,x2-4x+4=7,(x-2)2=7,x-2=±,∴x1=2+,x2=2-.8.解析(1)移项,得x2+12x=15, 配方,得x2+12x+62=15+62,即(x+6)2=51,∴x+6=±,解得x1=-6+,x2=-6-. (2)系数化为1,得x2-x=,配方,得x2-x+=+, 即=,∴x-=±,解得x1=2,x2=-.(3)移项,得x2-x=4,系数化为1,得x2-4x=16,配方,得x2-4x+(-2)2=16+(-2)2, 即(x-2)2=20,∴x-2=±2,解得x1=2+2,x2=2-2.21.2.2 公式法测试时间:15分钟一、选择题1.一元二次方程x2-=2x的解是( )A.x=B.x=C.x=D.x=2.(2018辽宁葫芦岛建昌期末)一元二次方程x2-4x+3=0的解是( )A.x=1B.x1=-1,x2=-3C.x=3D.x1=1,x2=33.(2018广东汕头潮南期末)下列的一元二次方程中,有实数根的是( )A.x2-x+1=0B.x2=-xC.x2-2x+4=0D.(x-2)2+1=04.(2018四川泸州泸县一模)关于x的方程x2+2x-1=0有两个不相等的实数根,则k的取值范围是( )A.k≥0B.k>0C.k≥-1D.k>-1二、填空题5.一元二次方程3x2-4x-2=0的解是.6.关于x的方程kx2-4x+3=0有实数根,则实数k的取值范围是.7.等腰三角形的边长是方程x2-2x+1=0的两根,则它的周长为.三、解答题8.用公式法解方程:x2+x-3=0.9.用公式法解一元二次方程.(1)2x-1=-2x2;(2)3x2+1=2x;(3)2(x-1)2-(x+1)(1-x)=(x+2)2.10.(2018江苏宿迁泗阳期中)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c分别为△ABC三边的长.(1)若a=b=c,试求这个一元二次方程的根;(2)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由.21.2.2 公式法一、选择题1.答案 B 整理得4x2-8x-1=0,此时a=4,b=-8,c=-1,∴Δ=64+16=80,∴x==,故选B.2.答案 D a=1,b=-4,c=3,Δ=16-12=4>0,∴x=,解得x1=1,x2=3.故选D.3.答案 B 选项A,Δ=(-1)2-4×1×1=-3<0,则该方程无实数根,故本选项错误;选项B,x2+x=0,Δ=12-4×1×0=1>0,则该方程有实数根,故本选项正确;选项C,Δ=(-2)2-4×1×4=-12<0,则该方程无实数根,故本选项错误;选项D,由原方程得到(x-2)2=-1,而(x-2)2≥0,则该方程无实数根,故本选项错误.故选B.4.答案A∵方程x2+2x-1=0有两个不相等的实数根,∴k≥0,且Δ=(2)2-4×1×(-1)>0,解得k≥0.故选A.二、填空题5.答案x=解析∵a=3,b=-4,c=-2,∴Δ=b2-4ac=(-4)2-4×3×(-2)=40,∴x===. 6.答案k≤解析当k=0时,方程为-4x+3=0,此一元一次方程的解为x=;当k≠0,且Δ=16-4k×3≥0,即k≠0且k≤时,方程有两个实数根.综上所述,实数k的取值范围为k≤.7.答案3+1解析解方程x2-2x+1=0得x1=+1,x2=-1.∵等腰三角形的边长是方程x2-2x+1=0的两根,∴等腰三角形的三边长分别为①+1,+1,-1或②+1,-1,-1.∵+1>-1+-1,∴②不能构成三角形,∴等腰三角形的三边长分别为+1,+1,-1,∴它的周长为3+1.三、解答题8.解析∵a=1,b=1,c=-3,∴Δ=b2-4ac=12-4×1×(-3)=13>0,∴x==,∴x1=,x2=.9.解析(1)整理,得2x2+2x-1=0, a=2,b=2,c=-1,Δ=22-4×2×(-1)=12>0,x==,所以x1=,x2=.(2)整理,得3x2-2x+1=0,a=3,b=-2,c=1,Δ=(-2)2-4×3×1=0,x=,所以x1=x2=.(3)整理,得2x2-8x-3=0,a=2,b=-8,c=-3,Δ=(-8)2-4×2×(-3)=88,x==,所以x1=,x2=.10.解析(1)∵a=b=c,∴原方程为x2+x=0,∴Δ=12-4×1×0=1,∴x=,∴x1=0,x2=-1.(2)∵方程(a+c)x2+2bx+(a-c)=0有两个相等的实数根,∴Δ=(2b)2-4(a+c)(a-c)=4b2-4a2+4c2=0,∴a2=b2+c2.∵a、b、c分别为△ABC三边的长,∴△ABC为直角三角形.21.2.3 因式分解法测试时间:15分钟一、选择题1.(2018辽宁沈阳沈河期末)方程x2+x=0的根为( )A.x=-1B.x=0C.x1=0,x2=-1D.x1=0,x2=12.(2018四川宜宾期末)一元二次方程(x+3)(x-7)=0的两个根是( )A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-73.一元二次方程2x(3x-2)=(x-1)(3x-2)的解是( )A.x=-1B.x=C.x1=,x2=0D.x1=,x2=-14.对于方程(x-1)(x-2)=x-2,下面给出的说法不正确的是( )A.与方程x2+4=4x的解相同B.两边都除以x-2,得x-1=1,解得x=2C.方程有两个相等的实数根D.移项,因式分解得(x-2)2=0,解得x1=x2=2二、填空题5.若a2+a=0,则(a+1)2 019的值为.6.(2017安徽合肥包河一模)一元二次方程x-1=x2-1的根是.三、解答题7.(2017甘肃定西临洮期中)按要求解一元二次方程:(1)x2-10x+9=0(配方法);(2)x(x-2)+x-2=0(因式分解法).21.2.3 因式分解法一、选择题1.答案 C 因式分解,得x(x+1)=0,∴x=0或x+1=0,∴x1=0,x2=-1.故选C.2.答案 C ∵(x+3)(x-7)=0,∴x+3=0或x-7=0,∴x1=-3,x2=7,故选C.3.答案 D 移项,得2x(3x-2)-(x-1)(3x-2)=0,因式分解,得(3x-2)[2x-(x-1)]=0,解得x1=,x2=-1.故选D.4.答案 B 方程(x-1)(x-2)=x-2,移项得(x-1)(x-2)-(x-2)=0,因式分解得(x-2)(x-2)=0,解得x1=x2=2.选项A,与方程x2+4=4x的解相同,正确;选项B,当x-2=0时,方程两边不可以都除以x-2,错误;选项C,方程有两个相等的实数根,正确;选项D,移项,因式分解得(x-2)2=0,解得x1=x2=2,正确.故选B.二、填空题5.答案0或1解析∵a2+a=a(a+1)=0,∴a=0或a=-1.当a=0时,原式=1;当a=-1时,原式=0.综上,原式的值为0或1.6.答案x=0或x=1解析整理,得(x-1)-(x+1)(x-1)=0,因式分解,得(x-1)(1-x-1)=0,即-x(x-1)=0,则x=0或x=1.三、解答题7.解析(1)x2-10x+9=0,x2-10x=-9,x2-10x+=-9+,(x-5)2=16,∴x-5=4或x-5=-4,∴x1=9,x2=1.(2)x(x-2)+x-2=0,(x-2)(x+1)=0,∴x-2=0或x+1=0,∴x1=2,x2=-1.21.2.4 一元二次方程的根与系数的关系测试时间:15分钟一、选择题1.(2018湖北武汉武昌月考)方程x2-6x+10=0的根的情况是( )A.两个实根之和为6B.两个实根之积为10C.没有实数根D.有两个相等的实数根2.已知关于x的一元二次方程x2+(2m-3)x+m2=0有两个不相等的实数根α,β,且α,β满足+=1,则m的值为( )A.-3B.1C.-3或1D.23.(2018江苏徐州丰县月考)下列方程中,两根之和是正数的是( )A.3x2+x-1=0B.x2-x+2=0C.3x2-5x+1=0D.2x2-5=04.(2018河南南阳淅川月考)已知m,n是方程x2+2x-1=0的两根,则代数式的值为( )A.9B.C.3D.±二、填空题5.(2018四川宜宾模拟)已知x1,x2是关于x的方程x2+ax-2b=0的两实数根,且x1+x2=-2,x1·x2=1,则b a的值是.6.(2018湖北武汉黄陂月考)若一元二次方程x2-(m2-7)x+m=0的两根之和为2,则m= .三、解答题7.已知x1、x2是方程x2+4x+2=0的两个实数根,求下列代数式的值.(1)+;(2)+;(3)(x1-1)(x2-1).8.(2017江苏无锡宜兴期中)已知关于x的方程x2-(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线的长.*21.2.4 一元二次方程的根与系数的关系一、选择题1.答案 C 假设方程有两实根x1,x2,则x1+x2=6,x1·x2=10,此时选项A、B都正确,与一个正确答案矛盾;又知Δ=(-6)2-4×10=-4<0,∴该方程无实数根,故选C.2.答案 A 由根与系数的关系得α+β=3-2m,αβ=m2,∵+=1,∴=1,∴=1,∴m2+2m-3=0,(m+3)(m-1)=0,∴m=-3或m=1.把m=-3代入方程得x2-9x+9=0,Δ=(-9)2-4×1×9>0,此时方程有两个不相等的实数根;把m=1代入方程得x2-x+1=0,Δ=(-1)2-4×1×1<0,此时方程无解,∴m=1舍去.故选A.3.答案 C 选项A,∵Δ=12-4×3×(-1)=13>0,∴该方程有两个不相等的实数根,易知两根之和为-,选项A不符合题意;选项B,∵Δ=(-1)2-4×1×2=-7<0,∴该方程没有实数根,选项B不符合题意;选项C,∵Δ=(-5)2-4×3×1=13>0,∴该方程有两个不相等的实数根,易知两根之和为,选项C符合题意;选项D,∵Δ=02-4×2×(-5)=40>0,∴该方程有两个不相等的实数根,易知两根之和为0,选项D不符合题意.故选C.4.答案 C ∵m,n是方程x2+2x-1=0的两根,∴m+n=-2,mn=-1,∴===3.故选C.二、填空题5.答案解析∵x1,x2是关于x的方程x2+ax-2b=0的两实数根,x1+x2=-2,x1·x2=1,∴x1+x2=-a=-2,x1·x2=-2b=1,解得a=2,b=-,∴b a==.6.答案-3解析∵一元二次方程x2-(m2-7)x+m=0的两根之和为2,∴m2-7=2,解得m=3或m=-3.当m=3时,方程为x2-2x+3=0,此时Δ=(-2)2-4×1×3=-8<0,则方程无实数根,不合题意;当m=-3时,方程为x2-2x-3=0,此时Δ=(-2)2-4×1×(-3)=16>0,则方程有两个不相等的实数根.综三、解答题7.解析∵x1、x2是方程x2+4x+2=0的两个实数根,∴x1+x2=-4,x1x2=2.(1)+===-2.(2)+=(x1+x2)2-2x1x2=16-4=12.(3)(x1-1)(x2-1)=x1x2-(x1+x2)+1=2-(-4)+1=7.8.解析(1)∵方程x2-(2k+1)x+k2+1=0有两个不相等的实数根,∴Δ=[-(2k+1)]2-4×1×(k2+1)=4k-3>0,∴k>.(2)当k=2时,原方程为x2-5x+5=0,设方程的两根为m、n,∴m+n=5,mn=5,∴==,即该矩形的对角线的长为.21.3 实际问题与一元二次方程测试时间:25分钟一、选择题1.一个矩形的长比宽多3 cm,面积是25 cm2,求这个矩形的长和宽.设矩形的宽为x cm,则下面所列方程正确的是( )A.x2-3x+25=0B.x2-3x-25=0C.x2+3x-25=0D.x2+3x-50=02.(2018河北廊坊霸州期中)为改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约12 m2提高到14.52 m2,若每年的年增长率相同,则年增长率为A.9%B.10%C.11%D.12%3.某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格售出,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低元.( )A.0.2或0.3B.0.4C.0.3D.0.2二、填空题4.(2017海南临高模拟)一个两位数,十位上的数字比个位上的数字大7,且十位上的数字与个位上的数字和的平方等于这个两位数,这个两位数是.5.把长为40 cm,宽为30 cm的长方形硬纸板剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),把剩余部分折成一个有盖的长方体盒子,记剪掉的小正方形的边长为x cm,纸板的厚度忽略不计,若折成的长方体盒子表面积为950 cm2,则此时长方体盒子的体积为.三、解答题6.(2017湖南永州冷水滩一模)中国古代数学家杨辉所著的《田亩比类乘除捷法》中有这样一道题:“直田积八百六十四步,只云长阔共六十步,问长及阔各几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长和宽各多少步?7.每年暑假都有许多驴友骑自行车丈量中国最美公路川藏线.A、B两个驴友团队于同一天出发前往目的地拉萨.A队走317国道,结果30天到达.B队走318国道,总路程比A队少200 km,且路况更好,平均每天比A队多骑行20 km,结果B队比A队提前8天到达拉萨.(1)求318国道全程为多少km;(2)骑行过程中,B队每人每天平均花费150元.A队开始有3个人同行,计划每人每天花费110元,后来又有几个人加入队伍,实际每增加1人,每人每天的平均花费就减少5元.若最终A、B两队骑行的人数相同(均不超过10人),两队共花费36 900元,求两个驴友团队各有多少人.8.(2018江苏南京期末)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,该商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(3)每件商品降价多少元时,商场日盈利可达到2 000元?9.如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形水池面积的,求道路的宽.21.3 实际问题与一元二次方程一、选择题1.答案 C 由题意知该矩形的长为(x+3)cm,∴x(x+3)=25,整理得x2+3x-25=0,故选C.2.答案 B 设年增长率为x,根据题意列方程得12(1+x)2=14.52,解得x1=0.1,x2=-2.1(不符合题意,舍去),所以年增长率为0.1,即10%,故选B.3.答案C设应将每千克小型西瓜的售价降低x元.根据题意,得(3-2-x)-24=200.解这个方程,得x1=0.2,x2=0.3.∵200+>200+,∴为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低0.3元.故选C.二、填空题4.答案81解析设个位上的数字为x,则十位上的数字为x+7,依题意,得(x+7+x)2=10(x+7)+x,整理得4x2+17x-21=0,解得x1=1,x2=-(舍去),所以x=1,x+7=8,即这个两位数是81.5.答案 1 500 cm3解析如图,EF=(30-2x)cm,GH=(20-x)cm.根据题意,得40×30-2x2-2×20x=950,解得x1=5,x2=-25(不合题意,舍去),所以长方体盒子的体积为x(30-2x)(20-x)=5×20×15=1 500(cm3).三、解答题6.解析设矩形田地的长为x(x≥30)步,则宽为(60-x)步,根据题意得x(60-x)=864,整理得x2-60x+864=0,解得x=36或x=24(舍去),∴60-x=24.答:该矩形田地的长为36步,宽为24步.7.解析(1)设318国道全程为x km,则317国道全程为(x+200)km,由题意得-=20,解得x=2 200.答:318国道全程为2 200 km.(2)设后来加入A队的有a人,则两队骑行的人数均为(3+a)人,而A队实际每天的平均花费为(110-5a)元,由题意,得30(3+a)(110-5a)+(3+a)×150×(30-8)=36 900,解得a1=3,a2=38.∴两个队的人数为3+3=6或3+38=41.∵两队骑行人数均不超过10,∴两个驴友团队的人数均为6.答:两个驴友团队均有6人.8.解析(1)(50-3)×(30+2×3)=1 692(元).答:若某天该商品每件降价3元,当天可获利1 692元.(2)2x;50-x.∵该商品每降价1元,商场平均每天可多售出2件,∴每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得(50-x)×(30+2x)=2 000,整理,得x2-35x+250=0,解得x1=10,x2=25,∵商场要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2 000元.9.解析设道路的宽为x米,则可列方程x(12-4x)+x(20-4x)+(4x)2=×20×12,即x2+4x-5=0,解得x1=1,x2=-5(舍去).答:道路的宽为1米.3.半径为R的圆,半径增加x,圆的面积增加y,则y与x之间的函数关系式为y=πx2+2πRx(x≥0).点拨精讲:判断二次函数关系要紧扣定义.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1若y=(b-2)x2+4是二次函数,则__b≠2__.探究2某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x元(x>50),每月销售这种篮球获利y元.(1)求y与x之间的函数关系式;(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?解:(1)y=-10x2+1400x-40000(50<x<100).(2)由题意得:-10x2+1400x-40000=8000,化简得x2-140x+4800=0,∴x1=60,x2=80.∵要吸引更多的顾客,∴售价应定为60元.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.如果函数y=(k+1)xk2+1是y关于x的二次函数,则k的值为多少?2.设y=y1-y2,若y1与x2成正比例,y2与1x成反比例,则y与x的函数关系是(A)A.二次函数B.一次函数C.正比例函数D.反比例函数3.已知,函数y=(m-4)xm2-m+2x2-3x-1是关于x的函数.(1)m为何值时,它是y关于x的一次函数?(2)m为何值时,它是y关于x的二次函数?点拨精讲:第3题的第(2)问,要分情况讨论.4.如图,在矩形ABCD中,AB=2 cm,BC=4 cm,P是BC上的一动点,动点Q仅在PC或其延长线上,且BP=PQ,以PQ为一边作正方形PQRS,点P从B点开始沿射线BC方向运动,设BP=x cm,正方形PQRS与矩形ABCD重叠部分面积为y cm2,试分别写出0≤x≤2和2≤x≤4时,y与x之间的函数关系式.点拨精讲:1.二次函数不要忽视二次项系数a≠0.2.有时候要根据自变量的取值范围写函数关系式.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.1.2二次函数y=ax2的图象和性质1.能够用描点法作出函数的图象,并能根据图象认识和理解其性质.2.初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感.重点:描点法作出函数的图象.难点:根据图象认识和理解其性质.一、自学指导.(7分钟)自学:自学课本P30~31“例1”“思考”“探究”,掌握用描点法作出函数的图象,理解其性质,完成填空.(1)画函数图象的一般步骤:取值-描点-连线;(2)在同一坐标系中画出函数y=x2,y=12x2和y=2x2的图象;点拨精讲:根据y≥0,可得出y有最小值,此时x=0,所以以(0,0)为对称点,对称取点.(3)观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点);(4)找出上述三条抛物线的异同:______.(5)在同一坐标系中画出函数y=-x2,y=-12x2和y=-2x2的图象,找出图象的异同.点拨精讲:可从顶点、对称轴、开口方向、开口大小去比较寻找规律.总结归纳:一般地,抛物线的对称轴是y轴,顶点是(0,0),当a>0时,抛物线的开口向上,顶点是抛物线的最低点.a越大,抛物线的开口越小;当a<0时,抛物线的开口向下,顶点是抛物线的最高点,a越大,抛物线的开口越大.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.教材P41习题22.1第3,4题.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1填空:(1)函数y=(-2x)2的图象形状是______,顶点坐标是______,对称轴是______,开口方向是______.(2)函数y =x 2,y =12x 2和y =-2x 2的图象如图所示,请指出三条抛物线的解析式. 解:(1)抛物线,(0,0),y 轴,向上;(2)根据抛物线y =ax 2中,a 的值来判断,在x 轴上方开口小的抛物线为y =x 2,开口大的为y =12x 2,在x 轴下方的为y =-2x 2. 点拨精讲:解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y =ax 2中,a>0时,开口向上;a<0时,开口向下;|a|越大,开口越小.探究2 已知函数y =(m +2)xm 2+m -4是关于x 的二次函数.(1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求这个最低点;当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值为多少?当x 为何值时,y 随x 的增大而减小?解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0. 解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2.∴当m =2或m =-3时,原函数为二次函数. (2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m>-2,∴只能取m =2. ∵这个最低点为抛物线的顶点,其坐标为(0,0),∴当x>0时,y 随x 的增大而增大.(3)若函数有最大值,则抛物线开口向下,∴m +2<0,即m<-2,∴只能取m =-3.∵函数的最大值为抛物线顶点的纵坐标,其顶点坐标为(0,0),∴m =-3时,函数有最大值为0.∴x>0时,y 随x 的增大而减小.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.二次函数y =ax 2与y =-ax 2的图象之间有何关系?2.已知函数y =ax 2经过点(-1,3).(1)求a 的值;(2)当x<0时,y 的值随x 值的增大而变化的情况.3.二次函数y =-2x 2,当x 1>x 2>0,则y 1与y 2的关系是__y 1<y 2__.4.二次函数y =ax 2与一次函数y =-ax(a ≠0)在同一坐标系中的图象大致是( B )点拨精讲:1.二次函数y=ax2的图象的画法是列表、描点、连线,列表时一般取5~7个点,描点时可描出一侧的几个点,再根据对称性找出另一侧的几个点,连线将几个点用平滑的曲线顺次连接起来,抛物线的两端要无限延伸,要“出头”;2.抛物线y=ax2的开口大小与|a|有关,|a|越大,开口越小,|a|相等,则其形状相同.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(1)1.会作函数y=ax2和y=ax2+k的图象,能比较它们的异同;理解a,k对二次函数图象的影响,能正确说出两函数图象的开口方向、对称轴和顶点坐标.2.了解抛物线y=ax2上下平移规律.重点:会作函数的图象.难点:能正确说出两函数图象的开口方向、对称轴和顶点坐标.一、自学指导.(10分钟)自学:自学课本P32~33“例2”及两个思考,理解y=ax2+k中a,k对二次函数图象的影响,完成填空.总结归纳:二次函数y=ax2的图象是一条抛物线,其对称轴是y轴,顶点是(0,0),开口方向由a的符号决定:当a>0时,开口向上;当a<0时,开口向__下__.当a>0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.抛物线有最__低__点,函数y有最__小__值.当a<0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.抛物线有最__高__点,函数y有最__大__值.抛物线y=ax2+k可由抛物线y=ax2沿__y__轴方向平移__|k|__单位得到,当k>0时,向__上__平移;当k<0时,向__下__平移.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.在抛物线y =x 2-2上的一个点是( C )A .(4,4)B .(1,-4)C .(2,2)D .(0,4)2.抛物线y =x 2-16与x 轴交于B ,C 两点,顶点为A ,则△ABC 的面积为__64__. 点拨精讲:与x 轴的交点的横坐标即当y 等于0时x 的值,即可求出两个交点的坐标.3.画出二次函数y =x 2-1,y =x 2,y =x 2+1的图象,观察图象有哪些异同?点拨精讲:可从开口方向、对称轴、形状大小、顶点、位置去找.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)探究1 抛物线y =ax 2与y =ax 2±c 有什么关系?解:(1)抛物线y =ax 2±c 的形状与y =ax 2的形状完全相同,只是位置不同;(2)抛物线y =ax 2向上平移c 个单位得到抛物线y =ax 2+c ;抛物线y =ax 2向下平移c 个单位得到抛物线y =ax 2-c.探究2 已知抛物线y =ax 2+c 向下平移2个单位后,所得抛物线为y =-2x 2+4,试求a ,c 的值.解:根据题意,得⎩⎨⎧a =-2,c -2=4,解得⎩⎪⎨⎪⎧a =-2,c =6. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(13分钟)1.函数y =ax 2-a 与y =ax -a(a ≠0)在同一坐标系中的图象可能是( D )2.二次函数的图象如图所示,则它的解析式为( B )A.y=x2-4B.y=-34x2+3C.y=32(2-x)2D.y=32(x2-2)3.二次函数y=-x2+4图象的对称轴是y轴,顶点坐标是(0,4),当x<0,y随x的增大而增大.4.抛物线y=ax2+c与y=-3x2的形状大小,开口方向都相同,且其顶点坐标是(0,5),则其表达式为y=-3x2+5,它是由抛物线y=-3x2向__上__平移__5__个单位得到的.5.将抛物线y=-3x2+4绕顶点旋转180°,所得抛物线的解析式为y=3x2+4.6.已知函数y=ax2+c的图象与函数y=5x2+1的图象关于x轴对称,则a=__-5__,c=__-1__.点拨精讲:1.函数的图象与性质以及抛物线上下平移规律.(可结合图象理解)2.抛物线平移多少个单位,主要看两顶点坐标,确定两顶点相隔的距离,从而确定平移的方向与单位长,有时也可以比较两抛物线上横坐标相同的两点相隔的距离,从而确定平移的方向与单位长.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(2)1.进一步熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.难点:能正确说出图象的开口方向、对称轴和顶点坐标,掌握抛物线y=a(x-h)2的平移规律.一、自学指导.(10分钟)自学:自学课本P 33~34“探究”与“思考”,掌握y =a(x -h)2与y =ax 2之间的关系,理解并掌握y =a(x -h)2的相关性质,完成填空.画函数y =-12x 2、y =-12(x +1)2和y =-12(x -1)2的图象,观察后两个函数图象与抛物线y =-12x 2有何关系?它们的对称轴、顶点坐标分别是什么? 点拨精讲:观察图象移动过程,要特别注意特殊点(如顶点)的移动情况.总结归纳:二次函数y =a(x -h)2的顶点坐标为(h ,0),对称轴为直线x =h .当a>0时,在对称轴的左侧y 随x 的增大而减小,在对称轴的右侧y 随x 的增大而增大,抛物线有最低点,函数y 有最小值;当a<0时,在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧y 随x 的增大而减小,抛物线有最高点,函数y 有最大值.抛物线y =ax 2向左平移h 个单位,即为抛物线y =a(x +h)2(h>0);抛物线y =ax 2向右平移h 个单位,即为抛物线y =a(x -h)2(h>0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.教材P 35练习题;2.抛物线y =-12(x -1)2的开口向下,顶点坐标是(1,0),对称轴是x =1,通过向左平移1个单位后,得到抛物线y =-12x 2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究1在直角坐标系中画出函数y =12(x +3)2的图象. (1)指出函数图象的对称轴和顶点坐标;(2)根据图象回答,当x 取何值时,y 随x 的增大而减小?当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 取最大值或最小值?(3)怎样平移函数y =12x 2的图象得到函数y =12(x +3)2的图象? 解:(1)对称轴是直线x =-3,顶点坐标(-3,0);(2)当x<-3时,y 随x 的增大而减小;当x>-3时,y 随x 的的增大而增大;当x =-3时,y 有最小值;(3)将函数y =12x 2的。
人教版九年级数学上册第22章二次函数《复习课》导学案
人教版九年级数学上册第22章二次函数《复习课》导学案第二十二章复课1.知道二次函数的概念、图象和性质,能根据解析式判断抛物线的开口方向、对称轴、顶点坐标和函数的增减性.2.知道抛物线与对应的一元二次方程的关系,会用待定系数法求二次函数的解析式.3.能够运用二次函数解决一些实际问题,从中体会数学建模思想.4.重点:二次函数解析式的求法,二次函数的图象、性质和应用.◆体系构建◆核心梳理1.一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.2.二次函数y=ax2+bx+c(a≠0)与一元二次方程的关系:(1)当b2-4ac>时,抛物线与x轴有2个交点,对应的一元二次方程有两个不相等的实数解;(2)当b2-4ac=时,抛物线与x轴有1个交点,对应的一元二次方程有两个相等的实数解;(3)当b2-4ac<时,抛物线与x轴无交点,对应的一元二次方程无实数解.3.填表:特征函数启齿偏向对称轴极点坐标(0,0)(0,k)(h,0)(h,k)最值最小值最大值最小值k最大值k最小值最大值最小值k最大值k最小值y=ax2y=ax2+ky=a(x-h)2y=a(x-h)2+k a>时启齿向上a<时开口向下a>时开口向上a<时启齿向下a>时启齿向上a<时启齿向下a>时开口向上a<时开口向下a>时启齿向上y轴y轴x=hx=hy=ax2+bx+ca<时开口向下x=-(-,)最大值专题一:二次函数的概念、图象和性质1.二次函数y=ax2+bx+c的图象如图所示,那么abc,b2-4ac,2a+b,a+b+c这四个代数式中,值为正数的有(B)A.4个B.3个C.2个D.1个2.二次函数y=ax2+bx+c与一次函数y=ax+c在同一坐标系中的图象可能是(C)3.如图,已知二次函数y 1=ax2+bx+c与一次函数y2=kx+m的图象相交于A(-2,4),B(8,2),则能使y1>y2成立的x的取值范围是x<-2或x>8.【方法归纳交流】根据抛物线的开口方向判断a的正负;根据抛物线与y轴的交点判断c的值;若抛物线的对称轴在y 轴左侧,则a与b同号,若抛物线的对称轴在y轴右侧,则a与b异号;根据抛物线与x轴交点的个数判断b2-4ac的符号.专题二:求抛物线的顶点和对称轴4.求抛物线y=x2-4x+5的开口方向、对称轴及顶点坐标.(用两种方法)解:(1)y=(x2-8x+10)=[(x2-8x+16)-16+10]=(x-4)2-3,所以抛物线的开口向上,对称轴是x=4,顶点坐标是(4,-3).(2)对称轴:x=-=4,y最小==-3,顶点坐标为(4,-3).【方法归纳交流】求抛物线的顶点和对称轴一般有两种方法:配方法和公式法.专题三:抛物线的平移5.申明抛物线y=-3x2-6x+8通过如何的平移,可获得抛物线y=-3x2.解:配方:y=-3x2-6x+8=-3(x2+2x-)=-3[(x2+2x+1)-1-]=-3(x+1)2+11,∴抛物线的顶点坐标是(-1,11),∴把抛物线y=-3x2-6x+8先向右平移1个单位长度,再向下平移11个单位长度得到y=-3x2.6.如图,抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.解:(1)把C(5,4)代入y=ax2-5ax+4a,得25a-25a+4a=4。
人教版九年级数学上册全册导学案
人教版九年级数学上册全册导学案第22章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______; 式子)0(0≥≥a a 的意义是 。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?43,16-,34,5-,)0(3≥a a ,12+x2、计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论:,其中0≥a , )0()(2≥=a a a 的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,才有意义。
(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 :x 取何值时,下列各二次根式有意义?①43-x 223x + ③ 2、(133a a --a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数 B.负数 C.非负数 D.非正数(四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
人教版 九年级数学上册全册导学案
第二十一章一元二次方程21.1一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟)问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为__(100-2x)cm__,宽为__(50-2x)cm__.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x2-75x+350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x个队参赛,每个队要与其他__(x-1)__个队各赛1场,所以全部比赛共x(x-1)2__场.列方程__x(x-1)2=28__,化简整理,得__x2-x-56=0__.②探究:(1)方程①②中未知数的个数各是多少?__1个__.(2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.判断下列方程,哪些是一元二次方程?(1)x3-2x2+5=0;(2)x2=1;(3)5x2-2x-14=x2-2x+35;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1; (6)ax2+bx+c=0.解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,无论m取何值,该方程都是一元二次方程.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0.∴无论m取何值,该方程都是一元二次方程.点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.2.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x =-3是一元二次方程2x2+10x+12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.判断下列方程是否为一元二次方程.(1)1-x2=0; (2)2(x2-1)=3y;(3)2x2-3x-1=0; (4)1x2-2x=0;(5)(x+3)2=(x-3)2; (6)9x2=5-4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.2.若x=2是方程ax2+4x-5=0的一个根,求a的值.解:∵x=2是方程ax2+4x-5=0的一个根,∴4a+8-5=0,解得a=-3 4.3.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x.解:(1)4x2=25,4x2-25=0;(2)x(x-2)=100,x2-2x-100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0.3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2解一元二次方程21.2.1配方法(1)1. 使学生会用直接开平方法解一元二次方程.2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500 dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:__10×6x2=1500__,由此可得__x2=25__,根据平方根的意义,得x=__±5__,即x1=__5__,x2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.探究:对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4?方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为,即将方程变为__2x两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=2x2=2.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+__3__)2=4,进行降次,得到__x+3=±2__ ,方程的根为x1=__-1__,x2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么可得x=±p 或mx+n=±p.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y2=8;(2)2(x-8)2=50;(3)(2x-1)2+4=0; (4)4x2-4x+1=0.解:(1)2y2=8,(2)2(x-8)2=50,y2=4,(x-8)2=25,y=±2,x-8=±5,∴y1=2,y2=-2;x-8=5或x-8=-5,∴x1=13,x2=3;(3)(2x-1)2+4=0,(4)4x2-4x+1=0,(2x-1)2=-4<0,(2x-1)2=0,∴原方程无解;2x-1=0,∴x1=x2=1 2.点拨精讲:观察以上各个方程能否化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程:(1)(3x+1)2=7; (2)y2+2y+1=24;(3)9n2-24n+16=11.解:(1)-1±73;(2)-1±26;(3)4±113.点拨精讲:运用开平方法解形如(mx+n)2=p(p≥0)的方程时,最容易出错的是漏掉负根.2.已知关于x的方程x2+(a2+1)x-3=0的一个根是1,求a的值.解:±1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)用直接开平方法解下列方程:(1)3(x-1)2-6=0 ; (2)x2-4x+4=5;(3)9x2+6x+1=4; (4)36x2-1=0;(5)4x2=81; (6)(x+5)2=25;(7)x2+2x+1=4.解:(1)x1=1+2,x2=1-2;(2)x1=2+5,x2=2-5;(3)x1=-1,x2=1 3;(4)x1=16,x2=-16;(5)x1=92,x2=-92;(6)x1=0,x2=-10;(7)x1=1,x2=-3.学生总结本堂课的收获与困惑.(2分钟)1.用直接开平方法解一元二次方程.2.理解“降次”思想.3.理解x2=p(p≥0)或(mx+n)2=p(p≥0)中,为什么p≥0?学习至此,请使用本课时对应训练部分.(10分钟)21.2.1配方法(2)1.会用配方法解数字系数的一元二次方程.2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x-a)2=b的过程.(2分钟)1.填空:(1)x2-8x+__16__=(x-__4__)2;(2)9x2+12x+__4__=(3x+__2__)2;(3)x2+px+__(p2)2__=(x+__p2__)2.2.若4x2-mx+9是一个完全平方式,那么m的值是__±12__.一、自学指导.(10分钟)问题1:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,场地的长和宽分别是多少米?设场地的宽为x m,则长为__(x+6)__m,根据矩形面积为16 m2,得到方程__x(x+6)=16__,整理得到__x2+6x-16=0__.探究:怎样解方程x2+6x-16=0?对比这个方程与前面讨论过的方程x2+6x+9=4,可以发现方程x2+6x+9=4的左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程;而方程x2+6x-16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x2+6x=16,两边都加上__9__即__(62)2__,使左边配成x2+bx+(b2)2的形式,得__x2__+6__x__+9=16+__9__,左边写成平方形式,得__(x+3)2=25__,开平方,得__x+3=±5__,(降次)即__x+3=5__或__x+3=-5__,解一次方程,得x 1=__2__,x 2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程:(1)3x 2-1=5; (2)4(x -1)2-9=0;(3)4x 2+16x +16=9.解:(1)x =±2;(2)x 1=-12,x 2=52; (3)x 1=-72,x 2=-12. 归纳:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式ax 2+bx +c =0;(2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.填空:(1)x 2+6x +__9__=(x +__3__)2;(2)x 2-x +__14__=(x -__12__)2; (3)4x 2+4x +__1__=(2x +__1__)2.2.解下列方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0;(3)(1+x)2+2(1+x)-4=0.解:(1)移项,得x2+6x=-5,配方得x2+6x+32=-5+32,(x+3)2=4,由此可得x+3=±2,即x1=-1,x2=-5.(2)移项,得2x2+6x=-2,二次项系数化为1,得x2+3x=-1,配方得x2+3x+(32)2=(x+32)2=54,由此可得x+32=±52,即x1=52-32,x2=-52-32.(3)去括号,整理得x2+4x-1=0,移项得x2+4x=1,配方得(x+2)2=5,x+2=±5,即x1=5-2,x2=-5-2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程:12(8-x)(6-x)=12×12×8×6,即x2-14x+24=0,(x-7)2=25,x-7=±5,∴x1=12,x2=2,x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.答:2秒后△PCQ的面积为Rt△ABC面积的一半.点拨精讲:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.用配方法解下列关于x的方程:(1)2x2-4x-8=0;(2)x2-4x+2=0;(3)x2-12x-1=0 ; (4)2x2+2=5.解:(1)x1=1+5,x2=1-5;(2)x1=2+2,x2=2-2;(3)x1=14+174,x2=14-174;(4)x1=62,x2=-62.2.如果x2-4x+y2+6y+z+2+13=0,求(xy)z的值.解:由已知方程得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=136.学生总结本堂课的收获与困惑.(2分钟)1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2公式法1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式的推导.(2分钟)用配方法解方程:(1)x2+3x+2=0;(2)2x2-3x+5=0.解:(1)x1=-2,x2=-1;(2)无解.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根,当b2-4ac<0时,方程没有实数根.(2)x=-b±b2-4ac2a叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x2-3x=0;(2)3x2-23x+1=0;(3)4x2+x+1=0.解:(1)x1=0,x2=32;有两个不相等的实数根;(2)x1=x2=33;有两个相等的实数根;(3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程x2-4x+4=0的根的情况是(B)A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根2.当m为何值时,方程(m+1)x2-(2m-3)x+m+1=0,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?解:(1)m<14;(2)m=14;(3)m >14.3. 已知x2+2x=m-1没有实数根,求证:x2+mx=1-2m必有两个不相等的实数根.证明:∵x2+2x-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0.对于方程x2+mx=1-2m,即x2+mx+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴x2+mx=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.利用判别式判定下列方程的根的情况:(1)2x2-3x-32=0; (2)16x2-24x+9=0;(3)x2-42x+9=0 ; (4)3x2+10x=2x2+8x. 解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根.2.用公式法解下列方程:(1)x2+x-12=0 ; (2)x2-2x-14=0;(3)x2+4x+8=2x+11; (4)x(x-4)=2-8x;(5)x2+2x=0 ; (6)x2+25x+10=0.解:(1)x1=3,x2=-4;(2)x1=2+32,x2=2-32;(3)x1=1,x2=-3;(4)x1=-2+6,x2=-2-6;(5)x1=0,x2=-2; (6)无实数根.点拨精讲:(1)一元二次方程ax2+bx+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把a,b,c的值代入x=-b±b2-4ac2a(b2-4ac≥0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a,b,c的值,再算.出b2-4ac的值、最后代.入求根公式求解.3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3因式分解法1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am+bm+cm=(__a+b+c__)m;(2)a2-b2=__(a+b)(a-b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)设物体经过x s落回地面,这时它离地面的高度为0,即10x-4.9x2=0,①思考:除配方法或公式法以外,能否找到更简单的方法解方程①?分析:方程①的右边为0,左边可以因式分解得:x(10-4.9x)=0,于是得x=0或10-4.9x=0,②∴x1=__0__,x2≈2.04.上述解中,x2≈2.04表示物体约在2.04 s时落回地面,而x1=0表示物体被上抛离开地面的时刻,即0 s时物体被抛出,此刻物体的高度是0 m.点拨精讲:(1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(x +1)(x-1)=0,那么__x+1=0或__x-1=0__,即__x=-1__或__x=1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)x(x-8)=0;(2)(3x+1)(2x-5)=0.解:(1)x1=0,x2=8;(2)x1=-13,x2=52.2.用因式分解法解下列方程:(1)x2-4x=0; (2)4x2-49=0;(3)5x2-20x+20=0.解:(1)x1=0,x2=4; (2)x1=72,x2=-72;(3)x1=x2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5x2-4x=0;(2)3x(2x+1)=4x+2;(3)(x+5)2=3x+15.解:(1)x1=0,x2=4 5;(2)x1=23,x2=-12;(3)x1=-5,x2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4x2-144=0;(2)(2x-1)2=(3-x)2;(3)5x2-2x-14=x2-2x+34;(4)3x2-12x=-12.解:(1)x1=6,x2=-6;(2)x1=43,x2=-2;(3)x1=12,x2=-12;(4)x1=x2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.用因式分解法解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)(x-4)2=(5-2x)2.解:(1)x1=0,x2=-1;(2)x1=0,x2=23;(3)x1=x2=1;(4)x1=112,x2=-112;(5)x1=3,x2=1.点拨精讲:因式分解法解一元二次方程的一般步骤:(1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__;(3)令每个因式分别为__0__,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5 m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m.则可列方程2πx2=π(x+5)2.解得x1=5+52,x2=5-52(舍去).答:小圆形场地的半径为(5+52) m.学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab=0得a=0或b=0,即“二次降为一次”.2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4一元二次方程的根与系数的关系1. 理解并掌握根与系数的关系:x1+x2=-ba,x1x2=ca.2. 会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟)自学1:完成下表:问题:你发现什么规律?①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项.②x2+px+q=0的两根x1,x2用式子表示你发现的规律. 答:x1+x2=-p,x1x2=q.自学2:完成下表:问题:上面发现的结论在这里成立吗?(不成立)请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax 2+bx +c =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-b a ,x 1x 2=ca.自学3:利用求根公式推导根与系数的关系.(韦达定理)ax 2+bx +c =0的两根x 1=2a ,x 2=2a.x 1+x 2=-b a ,x 1x 2=ca.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积.(1)x 2-3x -1=0 ; (2)2x 2+3x -5=0; (3)13x 2-2x =0. 解:(1)x 1+x 2=3,x 1x 2=-1; (2)x 1+x 2=-32,x 1x 2=-52;(3)x 1+x 2=6,x 1x 2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)3x 2+7x -9=0;(3)5x-1=4x2.解:(1)x1+x2=6,x1x2=-15;(2)x1+x2=-73,x1x2=-3;(3)x1+x2=54,x1x2=14.点拨精讲:先将方程化为一般形式,找对a,b,c.2.已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.解:另一根为32,k=3.点拨精讲:本题有两种解法,一种是根据根的定义,将x=-3代入方程先求k,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程x2-3x-5=0的两根,不解方程,求下列代数式的值.(1)1α+1β;(2)α2+β2;(3)α-β.解:(1)-35;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.不解方程,求下列方程的两根和与两根积:(1)x2-3x=15; (2)5x2-1=4x2;(3)x2-3x+2=10; (4)4x2-144=0.解:(1)x1+x2=3,x1x2=-15;(2)x1+x2=0,x1x2=-1;(3)x1+x2=3,x1x2=-8;(4)x1+x2=0,x1x2=-36.2.两根均为负数的一元二次方程是(C)A.7x2-12x+5=0 B.6x2-13x-5=0C.4x2+21x+5=0 D.x2+15x-8=0点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值.1.先化成一般形式,再确定a,b,c.2.当且仅当b2-4ac≥0时,才能应用根与系数的关系.3.要注意比的符号:x1+x2=-ba(比前面有负号),x1x2=ca(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题.难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x+1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x +1)(x+1)__人患了流感.则列方程:__(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得x1=__2__,x2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550B.x(x-1)=2550C.2x(x+1)=2550D.x(x-1)=2550×2分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2. 对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则11月份的营业额为__5000(1+x)__元,12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2;n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%) 分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其他依此类推.解:设这种存款方式的年利率为x,则1000+2000x·80%+(1000+2000x·80%)x·80%=1320,整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,。
数学九年级下册全套导学案(pdf版含答案)(1)
人教版数学九年级下册全套导学案26.1.1反比例函数§26.1 反比例函数1.认识反比例函数是描述具有反比例变化规律的数学模型.2.经历由实际问题抽象反比例函数的过程,掌握反比例函数的概念.3.能够根据已知条件求反比例函数的解析式.试一试反比例函数的概念1.回答下列问题(1)京沪线铁路全程为1463km ,某次列车的平均速度v(单位:km/ h )随此次列车的全程运行时间t (单位:h )的变化而变化.问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应.因此变量间具有函数关系,它的解析式为 .(2)某住宅小区要种植一块面积为1000m2 的矩形草坪,草坪的长y (单位:m )随宽x(单位:m )的变化而变化. 问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应.因此变量间具有,它的解析式为.(3)已知北京市的总面积为1.68 104 km2 ,人均占有面积S (单位:km2 / 人)随全市总人口n (单位:人)的变化而变化. 问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应. 因此变量间具有,它的解析式为.答案:1.(1)t,v,t,v,t,v,v1463;(2)x,y,x,y,x,y,函数关系,y t=1000;x1.68 ⨯104 k(3)n,S,n,S,n,S,函数关系,Sk = ;小结:(1) y = ,非零常数; n x(2)x ,y ,x ,不等于 0 的一切实数;(3)分母,无意义;(4)自变量,函数.根据已知条件求反比例函数解析式 1.已知 y 是 x 的反比例函数,并且当 x = 2 时, y = 6 .(1)写出 y 关于 x 的函数解析式;(2)当 x = 4 时,求 y 的值.解:(1)因为 y 是 x 的 ,所以设 .又因为 x = 2 时, y = 6 ,所以有,解得, 因此 y = .(2)把 x = 4 代入,得 y = . 2. 近视眼镜的度数 y (单位:度)与镜片焦距 x (单位:m )成反比例.已知 200 度近视眼镜的镜片焦距为0.5m ,则 y 与 x 之间的函数解析式是. 答案:1.(1)反比例函数,y= ,6 = x试一试k 12,k=12,2 x;(2)y12,3;2.xy 100.x 题组一1.用函数解析式表示下列问题中变量间的对应关系:(1)某厂现有 300 吨煤,这些煤能烧的天数y(单位:天)随平均每天烧的吨数x(吨/天)的变化而变化.那么y 与x 之间的函数关系式是.(2)一个物体重100N,物体对地面的压强p (单位:Pa)随物体与地面的接触面积S(单位:m2 )的变化而变化.那么p 与S 之间的函数关系式是.2.下列函数:① y做一做2x1;②y4=-;③yx⑤ xy =15;⑥y=2,其中y 是x 的反比例函数的是(填序号). x 23.在xy + 2 = 0 中,y 是x 的()A.一次函数B.反比例函数C. 正比例函数D.既不是正比例函数也不是反比例函数答案:1.(1)y300;(2)p x=300;2. ②④⑤;3. B. S题组二1.在温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对气缸壁所产生的压强,如下表:体积 x (mL)100 80 60 40 20压强 y(kPa) 60 75 100 150 300则可以反映y 与x 之间的关系的式子是()3000 6000A. y =3000x做一做B. y 6000xC.y =D. y =x x2.已知y 与x2 成反比例,并且当x = 3 时,y = 4 .(1)写出y 关于x2 的函数解析式;(2)当x = 1.5 时,求y 的值;(3)当y = 4 时,求x 的值.答案:1.D;2.(1)因为y 与x2 成反比例,所以设y =k k. 又因为 x = 3 时, y = 4 ,所以x 2 有4 = ,解得k = 36 ,因此 y =3236;(2)将x=1.5代入y = x36得y 16;(3)将x2 y = 6代入 y = 36得 x = ± 6 .x 1. 若 y = (a +1)xa -2 是反比例函数,则 a 的取值为 .2. 已知函数 y = 能力拓展m + 3 x1-m2-3m是反比例函数,则m2 2m = .3.反比例函数y=k在x = 2 处自变量增加 1,函数值相应地减少了2 x 3小结:(1)反比例函数y = 中 k≠0,自变量 x 的指数为;k x (2) y 与 x 成正比例, x 与 z 成反比例,则 y 与 z 成. 6 ,则 k= .4.若 y 与 x 成正比例, x 与 z 成反比例,且当 z = 2 时, y = -3,则 y 与 z 的函数解析式是 .答案:1. 1;2. 0;3. 4;4. y = -6 ;小结:(1)-1;(2)反比例. x 26.1.2 反比例函数的图像和性质1. 会根据解析式画反比例函数的图像,归纳反比例函数的图像特征和性质.2. 灵活运用反比例函数的图像和性质解决问题.3. 感悟反比例函数的解析式与图像之间的联系,体会数形结合及转化的思想方法. 反比例函数的图像和性质 1. 通过描点法画出下列反比例函数的图像.(1) y = (2) y = 12 x x解:列表表示几组 x 与 y 的对应值(填空):x … -12 -6 -4 -3 -2 -1 1 2 3 4 6 12 … y = 6xy = 12 x图26.1-12. 通过描点法画出下列反比例函数的图像.(1) y = - 6x试一试(2)y =-12 x答案:1. 略;小结(2)一、三,一、三,减小;(3)减小;2. 略;小结:(3)二、四,二、四,上升,增大;(4)二、四,增大.反比例函数的图像和性质的运用1.已知反比例函数的图像经过点A(2,6) .(1)这个函数的图像位于哪些象限?y 随x 的增大如何变化?(2)点B(3,4) ,C(-2试一试1, 4 2k k 14) , D (2,5) 是否在这个函数图像上? 5解:(1)因为点 A (2,6) 在 象限,所以这个函数的图像位于 象限,在每一个象限内, y 随 x 的增大而.(2)设这个反比例函数的解析式为 y = ,因为点 A (2,6) 在其图像上,所以点 A 的坐x标满足 y = ,即 ,解得 k=.所以这个反比例函数的解析式为,x因为点满足该解析式,点 不满足该解析式,所以点在这个函数图像上,点 不在这个函数图像上. 2. 下列反比例函数:① y = - 2x②y =③ 7 y =-103x x④ y3 100x(1)图像位于第一、三象限的是 ; (2)图像位于第二、四象限的是 .小结:1. 如果任意一点的坐标满足函数解析式,那么这个点就在其图像上,否则,就不在其图像上.2. 反比例函数图像的位置以及 y 如何随 x 的变化而变化的情况,只与有关.函数 图像位置 图像变化趋势y = kxk > 0 第一、三象限 在每个象限内, y 随 x 的增大而减小 k < 0第二、四象限在每个象限内, y 随 x 的增大而增大3. 如图 26.1-2,它是反比例函数 y =m - 5 图像的一支.根据图像,回答下列问题:x(1)图像的另一支位于哪个象限?常数 m 的取值范围是什么?(2)在这个函数图像的某一支上任取点 A (x 1,y 1) 和点 B (x 2,y 2 ) ,如果 x 1 > x 2 ,那么y 1和 y 2 有怎样的大小关系?图 26.1-2解:(1)反比例函数的图像只有两种可能:位于象限,或者位于象限.因为这个函数的图像的一支位于第 象限,所以另一支必位于第象限. 因为这个函数位于象限,所以 m-5,解得.(2)因为 m-5 ,所以在这个函数图像的任一支上,y 都随 x 的增大而,因此当 x 1 > x 2 时,.4. A (-1, y ) , B (1, y ) , C (3, y ) 是反比例函数 y = - 1图像上的三点,请你正确排出123xy 1,y 2,y 3 的大小顺序.k 12 答案:1.(1)第一,第一、三,减小;(2) 6 =,12, y =,B 、C ,D ,B 、C ,D ;2.2x(1)②④;(2)①③;小结:2. k 的正负;3,(1)第一、三,第二、四,一,三,一、三, >0,m >5;(2)>0,减小, y 1 < y 2 ;4. y 2 < y 3 < y 1 ;小结:(2)原点.反比例函数的几何意义k1. 如图 26.1-3 所示,反比例函数 y =试一试(k ≠ 0) 的图像上任取一点P(x, y) ,过这一点分别x作x 轴、y 轴的垂线PM ,PN ,垂足分别为点M 、N ,所得的矩形PMON 的面积为多少?图 26.1-3k解:矩形PMON 的面积S = ,因为y =,所以xy =k ,所以S= ,即过x双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形面积为.k2.如图 26.1-3 所示,反比例函数y =k (k ≠ 0) 的图像上任取一点 E (x , y ) ,过 E 作 xEF ⊥ y 轴于点 F ,连接OE ,所得三角形 EOF 的面积为多少? 解:三角形 EOF 的面积 S= ,因为 y = ,所以 xy = k ,所以 S=, x即过双曲线上任意一点作坐标轴的垂线,并将该点与原点相连,所得的三角形的面积为 .答案:1. PM ⋅ PN =y ⋅x =xyk k, , ,k ,k ;2. 1 EF ⋅ OF =1x ⋅ y = 1xy1 1.22 22 2题组一1. 下列图像中是反比例函数图像的是( )(A )(B )2. 填空学习迁移做一做k (C )(D ) 5(1)反比例函数 y =的图像在第象限.x(2)反比例函数 y = 的图像如图 26.1-4 所示,则k0;在图像的每一支上,y 随 xx的增大而.图 26.1-43. 对于反比例函数 y =3 ,下列说法正确的是( )xA.图像经过点(-1,3)a 2B. 图像位于第二、第四象限C. x > 0 时, y 随 x 的增大而增大D. x < 0 时, y 随 x 的增大而减小4.当a ≠ 0 时,函数 y = ax +1与函数 y = 在同一坐标系中的图象可能是()x答案:1.C ;2.(1)一、三;(2)>,减少;3.D ;4.C.题组二k1. 若点 P 1(-1,m ) P 2 (-2, n ) 在反比例函数 y = x(k > 0) 的图像上,则m n (填“>”“<”或“=”) 2. 已知点 A (x 1, y 1) , B (x 2 , y 2 ) , C (x 3, y 3 ) 是函数 y = - xx 1 < 0 < x 2 < x 3 ,则 y 1, y 2 , y 3 的大小关系是3 + 2m图 像 上 的 三 点 , 且3. 已知 A (-1, y 1) , B (2, y 2 ) 两点在双曲线 y = ( )做一做,且y1 >y2 ,则m 的取值范围是xA.m >0B.m 0C.m >-3 2D.m <-3 2答案:1.<;2. y2 <y3 <y1 ;3.D.题组三k1.如图26.1-5 所示,M 为反比例函数y =的图像上的一点,MA⊥y轴,垂足为A,△MAOx的面积为2,则k 的值为.2.如图26.1-6,点A 在函数y =做一做4 4 ( x > 0) 的图象上,且OA = 4 ,过点 A 作 AB ⊥ x 轴于x点 B ,则△ ABO 的周长为.图26.1-5 图26.1-6 3. 如图 26.1-7 所示,A 、B 两点在双曲线 y = ,分别经过 A 、B 两点向坐标轴作垂线段,x已知 S 阴影 = 1,则 S 1+ S 2 等于( ) A. 3B. 4C. 5D.6图 26.1-7图 26.1-84 4. 如图 26.1-8 所示,函数 y = -x 与函数 y = -x6 的图像相交于 A ,B 两点,过 A ,B 两点 分别作 y 轴的垂线,垂足分别为点 C ,D ,则四边形 ACBD 的面积为( ) A. 2 B. 4 C. 6 D. 8 答案:1.4;2. 2 + 4 ;3.D ;4.D. 1. 如图 26.1-9,P 是双曲线 y =4( x > 0) 的一个分支上的一点,以点P 为圆心,1 个点位x长度为半径作⊙P,当⊙P与直线y = 3相切时,点P 的坐标为. 图26.1-9 图26.1-102.如图26.1-10,在平面直角坐标系中,反比例函数y =k( x> 0) 的图像上有一点A(m,4),x过点 A 作AB⊥x轴于点 B,将点 B 向右平移 2 个单位长度得到点 C,过点 C 作y 轴的平行线4交反比例函数的图像于点D,CD =.3(1)点D 的横坐标为(用含m 的式子表示);(2)求反比例函数的解析式.3.如图 26.1-11,四边形ABCO 是平行四边形,OA = 2 ,AB = 6 ,点C 在x 轴的负半轴上,将□ABCO 绕点A 逆时针旋转得到□ADEF,AD 经过点O ,点F 恰好落在x 轴的正半轴k上,若点 D 在反比例函数y =( x< 0) 的图像上,则k 的值为.x图 26.1-11答案:1.(1,4)或(2,2);2.(1)m+2;(2) CD =4,∴点 D 的坐标为(m + 2, 34) . 3点 A (m ,4) ,点 D (m + 2, 4 ) 在函数 y = k 的图像上,∴4m = 4(m + 2) ,解得 m=1,3 x 3∴k = 4m = 4 .∴反比例函数的解析式为 y = 4;3. 4 x§26.2 实际问题与反比例函数1.运用反比例函数的概念、图像、性质解决实际问题.2.经历“实际问题——建立模型——拓展应用”的过程,进一步体会数学建模思想,培养学生的数学应用意识,激发学生学习兴趣.几何问题与反比例函数1.已知矩形面积为36cm 2,相邻的两条边长分别为 x cm 和 y cm ,则 y 与 x 之间的函数图像大致是( )A BC D2.市煤气公司要在地下修建一个容积为104 m 3的圆柱形煤气储存室.(1)储存室的底面积 S (单位: m 2)与其深度d (单位: m )有怎样的函数关系?(2)公司决定把储存室的底面积 S 定为500m 2,施工队施工时应该向地下掘进多深? (3)当施工队按(2)中的计划掘进到地下15m 时,公司临时改变计划,把储存室的深度改为15m .相应地,储存室的底面积应改为多少?(结果保留小数点后两位) 解:(1)根据圆柱的体积公式,得,所以 S 关于d 的函数解析式为 ,其中是常量,是变量, S 是d 的函数.(2)由题意,把储存室的底面积 S 定为500m 2,也即 S = 500 ,将其代入 S 关于d 的函数解析式得,解得d =.因此,如果把储存室的底面积 S 定为500m 2,施工时应向地掘进深.(3)由题意,把储存室的深度改为15m ,也即d = 15 ,将其代入 S 关于d 的函数解析式得,解得 S ≈ .因此,如果把储存室的深度改为15m ,储存室的底面积应改为.4104104 答案:1.A ;2.(1) Sd = 10 , S =,容积, S 、d ,反比例;(2) 500 =,dd3知识建构试一试。
九年级数学导学案答案.doc
九年级数学导学案答案相似三角形教学目标:使学生掌握相似三角形的判定与性质教学重点:相似三角形的判定与性质教学过程:一知识要点:1、相似形、成比例线段、黄金分割相似形:形状相同、大小不一定相同的图形。
特例:全等形。
相似形的识别:对应边成比例,对应角相等。
成比例线段:对于四条线段a、b、c、d,如果其中两条线ac段的长度的比与另两条线段的长度的比相等,即?,那bd么,这四条线段叫做成比例线段,简称比例线段。
黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0・618?。
这种分割称为黄金分割,点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
例1:放大镜下的图形和原来的图形相似吗?哈哈镜中的形象与你本人相似吗?你能举出生活中的一些相似形的例子吗/例2:判断下列各组长度的线段是否成比例:2厘米,3厘米,4厘米,1厘米1. 5厘米,2. 5厘米,4. 5厘米,6. 5厘米1. 1厘米,2. 2 厘米,3. 3厘米,4. 4厘米1厘米,厘米,2厘米,4厘米。
例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黄金分割,需穿多高的高跟鞋?例4:等腰三角形都相似吗?矩形都相似吗?正方形都相似吗?、相似形三角形的判断:a两角对应相等b两边对应成比例且夹角相等c三边对应成比例3、相似形三角形的性质:1a对应角相等b对应边成比例c对应线段之比等于相似比d周长之比等于相似比e面积之比等于相似比的平方4、相似形三角形的应用:计算那些不能直接测量的物体的高度或宽度以及等份线段例题1ABCD中,G是BC延长线上一点,AG交BD于点E,交DC 于点F,试找出图中所有的相似三角形C B G2如图在正方形网格上有6个斜三角形:a :ABC; b: BCD c: BDE d: BFG e: FGH f: EFK,试找出与三角形a相似的三角形ABC中,AB=8厘米,BC-16厘米,点P从点A开始沿AB 边向点B以2厘米每秒的速度移动,点Q从点B开始沿BC 向点C以4厘米每秒的速度移动,如果P、Q分别从B经几秒钟PBQ与ABC相似?C、某房地产公司要在一块矩形ABCD±地上规划建设一个矩形GHCK小区公园,为了使文物保2A N EH B护区AEF不被破坏,矩形公园的顶点G不能在文物保护区内。
数学导学案九年级答案
数学导学案九年级答案【篇一:九年级数学金榜学案答案】>一.选择题(本题共10小题,每小题3分,共30分)1.下列函数中,属于二次函数的是 ( )a.b.c.y= d.2.抛物线y=(x+3)2-2的对称轴是( )a.直线x=3b.直线x=-3c.直线x=-2d.直线x=23.抛物线y=x2-2x-1的顶点坐标是( )a .(1,-1) b.(-1,2) c.(-1,-2) d.(1,-2)4. 二次函数y=x2-2x-3的图象如图所示,当y<0时,自变量 x 的取值范围为()a.-1<x<3 b.x<-1 c. x>3 d.x<-1或x>35.如果二次函数y=ax2+bx+c(其中a、b、c为常数,a≠0)的部分图象如图所示,它的对称轴过点(-1,0),那么关于x的方程ax2+bx+c=0的一个正根可能是( ) 6.一个圆锥形的冰淇淋纸筒,其底面直径为,母线长为,围成这样的冰淇淋纸筒所需纸片的面积是()a. b. c. d.7.如图,实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )8.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()a.10cm b.20cmc.30cmd.40cm9.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象可能为10.如图,点c、d是以线段ab为公共弦的两条圆弧的中点,ab=4,点e、f分别是线段cd,ab上的动点,设af=x, ae2-fe2=y,则能表示y与x的函数关系的图象是()二.填空题(每空3分,共30分)11.函数﹣2,当x 时,函数值y随x的增大而减小.12.若抛物线与轴没有交点,则的取值范围是 .13.抛物线 y= 的开口向 .14.把抛物线y=-2(x+2)2-1先沿y轴向右平移3个单位,再沿x 轴向上平移2个单位,得到的抛物线解析式为 .15. 函数y=ax2-ax+3x+1的图象与x轴有且只有一个交点,写出a所有可能的值________________.16. 如果⊙a和⊙b相切,它们的半径分别为8cm和2cm,那么圆心距ab为 cm.18.如图,在以o为圆心的两个同心圆中,大圆的弦ab与小圆相切于点c,若弦ab的长为8cm.则圆环的面积为________cm2.19.如图是某风景区的一个圆拱形门,路面ab宽为2m,净高cd 为5m,则圆拱形门所在圆的半径为m.20.如图,长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)三.解答题(本题共8小题,共70分)21. (本小题10分)分别求出对应的二次函数的解析式:(1)已知抛物线的顶点为(-2,1),且过点(-4,3 );(2)抛物线与x轴的两个交点坐标为(-3,0)和(2,0),且它经过点(1,4).22. (本小题8分)已知二次函数y=x2+bx+2的图像经过点(-1,6)(1)求这个二次函数的关系式;(2)求二次函数图像与x轴的交点的坐标;(3)画出图像的草图,观察图像,直接写出当y>0时,x的取值范围.23.(本小题10分)已知:抛物线y =x2+ax+a﹣2.(1)求证:不论a取何值时,抛物线y=x2+ax+a﹣2与x轴都有两个不同的交点.(2)设这个二次函数的图象与轴相交于a(x1,0),b(x2,0),且x1 、x2的平方和为3,求a的值.24.(本小题9分)如图,p是⊙o的直径ab延长线上的一点, pc 切⊙o于点c,弦cd⊥ab,垂足为点e,若,.求:(1)⊙o的半径;(2)cd的长;(3)图中阴影部分的面积.25.(本小题9分)近日某小区计划在中央花园内建造一个圆形的喷水池,在水池中央垂直于水面安装一个花形柱子oa, o恰好在水面中心,oa为1.25m,安置在柱子顶端a处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过oa的任一平面上抛物线路径如图所示.为使水流形状较为漂亮,设计成水流在到oa距离lm处达到距水面最大高度2.25m.(1)请求出其中一条抛物线的解析式;(2)如果不计其他因素,那么水池的半径至少要为多少m 才能使喷出水流不致落到池上?26.(本小题12分)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点a沿着正方体表面爬到点c1处;(2)如图2,圆锥的母线长为4cm,底面半径r= cm,一只蚂蚁欲从圆锥的底面上的点a出发,沿圆锥侧面爬行一周回到点a;(3)如图3,是一个没有上盖的圆柱形食品盒,一只蚂蚁在盒外表面的a处,它想吃到盒内表面对侧中点b处的食物,已知盒高10cm,底面圆周长为32cm,a距下底面3cm..27.(本小题12分)如图,在平面直角坐标系xoy中,正方形oabc的边长为2cm,点a、c别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点a、b,最低点为m,且s△amb=(1)求此抛物线的解析式,并说明这条抛物线是由抛物线y=ax2 怎样平移得到的;( 2)如果点p由点a开始沿着射线ab以2cm/s的速度移动,同时点q由点b开始沿bc边以1cm/s的速度向点c移动,当其中一点到达终点时运动结束;①在运动过程中,p、q两点间的距离是否存在最小值,如果存在,请求出它的最小值;②当pq取得最小值时,在抛物线上是否存在点r,使得以p、b、q、r为顶点的四边形是梯形? 如果存在,求出r点的坐标,如果不存在,请说明理由.九年级数学参考答案一.选择题(本题共10小题,每小题3分,共30分)1.a2.b3.d4.a5.b .6. d7.d8.a9. c 10.c二.填空题(每空3分,共30分)11.>-1 12.a<-113.下 14.y=-2(x-1)2+1 15.0、1、9(少写一个扣1分)三.解答题(本题共8小题,共70分)21. (本小题10分)(1)设y=a(x+2)2+1 1分a=0.54分∴y=0.5(x+2)2+15分(2)设y=a(x+3)(x-2)1分a=-14分∴y=-(x+3)(x-2)5分22. (本小题8分)(1)b=-32分(2)(1,0)(2,0)4分(3)草图略6分(要求仅画出大致形状即可)∴x>2或x<-18分23.(本小题10分)(1)△=a2-4(a-2)2分=(a-2)2+44分∴不论a取何值时,抛物线y=x2+ax+a﹣2与x轴都有两个不同的交点.??5分(2)x1 +x2=-a1分x1 .x2=a-22分x1 2+x22=(x1 +x2)2-2 x1 .x23分=a2-2a+4=3∴a=15分24.(本小题9分)(1)切线得oc⊥pc1分设半径为r(r+1)2=r2+32分r=13分(2)ce= 2分cd= 3分(3)图中阴影部分的面积 - 3分25.(本小题9分)(1) y= -(x-1)2+2.254分(2)(x-1)2=2.25x1=2.5 或 x2= -0.5 (舍)8分答:半径至少为2.5米时9分26.(本小题12分)(1)展开图略 5 4分(2)展开图略 4 8分(3)展开图略 20 12分27.(1)y= (x-1)2- 2分向右1个单位长度,向下个单位长度3分(2)①pq2=(2-2t)2+t2=5(t- )2+ 5分存在,当t= 时,最小值 ??????? ?6分②10当ab∥qr时y=- 时(x-1)2- =- 8分x1= 或 x2=当x1= 时,说明p、b、q、r为顶点的四边形是梯形9分当x2= 时,pbrq为平行四边形,舍.10分20当br∥pq时与x2= 的情况相同,故此时不存在梯形.11分【篇二:人教版九年级数学上册全册导学案】s=txt>总结自己存在的问题,分析原因,制定弥补方案。
九年级数学导学案(全册)整理
九年级数学导学案(全册)整理导学案1单元:有理数综合运用研究目标:- 理解有理数的概念和表示方法- 掌握有理数的加法和减法运算规则- 进一步熟练运用有理数进行混合运算教学内容:1. 有理数的引入和定义2. 有理数的表示方法3. 有理数的加法和减法规则4. 有理数的混合运算练教学步骤:1. 导入:通过实例引导学生认识有理数的概念和意义。
2. 定义:给出有理数的准确定义,并介绍有理数的表示方法。
3. 讲解:详细介绍有理数的加法和减法规则,包括同号相加、异号相减等。
4. 练:通过练题让学生巩固对有理数运算规则的掌握,进行混合运算。
5. 总结:对本节课的研究内容进行总结和归纳。
课后作业:- 完成课堂上的练题- 预下节课的内容,完成预题导学案2单元:平面图形的认识研究目标:- 了解平面图形的种类和属性- 掌握平面图形的命名和分类方法- 进一步熟练绘制和测量平面图形教学内容:1. 平面图形的定义和分类2. 平面图形的命名规则3. 平面图形的性质和特点4. 绘制和测量平面图形的方法教学步骤:1. 导入:利用一个日常生活中的例子引出平面图形的概念和意义。
2. 定义:给出平面图形的准确定义,并介绍不同种类的平面图形。
3. 讲解:通过示意图或实际测量过程,说明平面图形的命名规则和性质。
4. 练:让学生绘制和测量不同种类的平面图形,加深对其属性的理解和掌握。
5. 总结:对本节课研究内容进行总结和归纳。
课后作业:- 练题:根据给定条件,命名和绘制不同种类的平面图形。
- 思考题:举例说明平行线和垂直线的性质和判定方法。
...(后续导学案依次展开)总结该份文档整理了九年级数学导学案的内容,包括有理数综合运用、平面图形的认识等单元内容。
每个导学案都设定了学习目标、教学内容、教学步骤和课后作业,以满足学生对数学知识的学习和实践需求。
希望这份文档能为您提供有益的参考,帮助您更好地教授九年级数学课程。
2023教与学课时导学案数学九年级全一册人教版
2023教与学课时导学案数学九年级全一册人教版课时导学案目录:一、导学目标二、课前预习三、课堂学习四、课后巩固五、思考题六、拓展题七、学习反思一、导学目标本节课主要学习目标如下:1.复习数与代数、方程式的知识,强化数学思维能力;2.认识、比较和使用一次函数、二次函数的性质和解析式;3.通过实际问题,学习运用函数解决实际问题的方法;4.培养学生的数学建模能力。
二、课前预习在课前,同学们需要完成以下预习任务:1.复习数与代数、方程式的知识;2.预习一次函数和二次函数的性质和解析式;3.了解并运用函数解决实际问题的方法;4.查阅相关资料,了解数学建模的基本概念。
三、课堂学习1.导入新知识老师可以借助课件、案例、实际问题等方式,向学生引入一次函数和二次函数的概念,让学生了解函数的基本性质和解析式。
2.讲解理论知识通过教材内容,系统地讲解一次函数和二次函数的性质、图像以及解析式的求法。
3.示范演练老师可以选择一些示范题,让学生积极参与,学习如何应用一次函数和二次函数的知识进行解题。
4.小组合作在小组合作中,同学们可以根据给定的实际问题,共同运用一次函数和二次函数的知识,解决实际问题。
同时,要求学生充分讨论,提出各自的解决思路和方法,并展示给全班。
5.课堂练习通过一些课本习题或试卷示例,让同学们巩固所学知识,检验自己的理解和掌握程度。
四、课后巩固1.完成课后作业同学们需要认真完成课后作业,并及时批改检查。
2.总结归纳每节课结束后,同学们应该进行总结和归纳,梳理自己所学的知识点和方法,做到心中有数,便于巩固和复习。
五、思考题以下是本节课的思考题,请同学们积极思考并回答:1.一次函数和二次函数之间有哪些不同之处?请分别列举并加以比较。
2.函数的图像有哪些特点?它们与函数的解析式有何关系?六、拓展题以下是本节课的拓展题,请同学们尝试解答:1.已知一次函数y=kx+b的图像经过点(2,3),求k与b的值。
2.已知二次函数y=ax²+bx+c的图像与x轴交于点(-1,0)和(2,0),且顶点坐标为(1,2),求a、b和c的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时1.实数的有关概念【考点链接】 1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 . ⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14³105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位. (2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题. 【典例精析】例1 在“()05,3.14 ,()33,()23-,cos 600 sin 450”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个 例2 ⑴2--的倒数是( )A .2 B.12C.12-D.-2 ⑵若23(2)0m n -++=,则2m n +的值为( ) A .4-B .1-C .0D .4⑶如图,数轴上点P 表示的数可能是( )B. 3.2-D.例3 下列说法正确的是( )A .近似数3.9³103精确到十分位B .按科学计数法表示的数8.04³105其原数是80400C .把数50430保留2个有效数字得5.0³104.D .用四舍五入得到的近似数8.1780精确到0.001【中考演练】1.-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= . 2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”) 3. 下列各数中:-3,00.31,227,2π,2.161 161 161…, (-2 005)0是无理数的是___________________________.4.全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字) 5.若0)1(32=++-n m ,则m n +的值为 . 6. 2.40万精确到__________位,有效数字有__________个.8.点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )A .3B .-1C .5D .-1或3 10.下列各组数中,互为相反数的是( )A .2和21 B .-2和-21C .-2和|-2|D .2和21 12.实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若x 的相反数是3,│y│=5,则x +y 的值为( ) A .-8 B .2 C .8或-2 D .-8或2 14. 如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数o课时2. 实数的运算与大小比较【课前热身】1.某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C . 2.(晋江)计算:=-13_______.3.(贵阳)比较大小:2- 3.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9B. 9C.-6D.6 5.下列各式正确的是( )A .33--=B .326-=- C .(3)3--=D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2³1=2,3!=3³2³1=6,4!=4³3³2³1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!【考点链接】1. 数的乘方 =na ,其中a 叫做 ,n 叫做 . 2. =0a (其中a 0 且a 是 )=-pa(其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大. ⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误. 如5÷51³5.【典例精析】 例1 计算:⑴20080+|-1|-3cos30°+ (21)3;⑵22(2)2sin 60--+ .例2 计算:1301(20.1252009|1|2--⨯++-.﹡例3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.【中考演练】1. 根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 . 2. 比较大小:73_____1010--. 3.计算(-2)2-(-2) 3的结果是( )A. -4. 下列各式运算正确的是( )A .2-1=-21B .23=6C .22²23=26D .(23)2=26 5. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( ) A. 10 B .20 C .-30 D .18 6. 计算:⑴4245tan 21)1(10+-︒+--;⑵201()2sin 3032--+︒+-;⑶ 01)2008(260cos π-++-.课时3.整式及其运算【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ²a n = ; (a m )n = ; a m ÷a n =_____; (ab)n= . 6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ; (3) (a +b)2= ;(4)(a -b)2= . 7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【典例精析】例1 若0a >且2xa =,3ya =,则x ya-的值为( )A .1-B .1C .23 D .32例2按下列程序计算,把答案写在表格内:⑵ 请将题中计算程序用代数式表达出来,并给予化简.例3 先化简,再求值:(1) x (x +2)-(x +1)(x -1),其中x =-21; (2) 22(3)(2)(2)2x x x x +++--,其中13x =-.【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42.下列运算中,结果正确的是( )A.633·x x x =B.422523x x x =+C.532)(x x = D .222()x y x y +=+ ﹡3.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .7 4. 若3223m n x y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 . 6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .1 1 11 2 1 1 3 3 1 14 6 4 1 ....................................... ⅠⅡ 1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++课时4.因式分解【课前热身】1.若x -y =3,则2x -2y = .2.分解因式:3x 2-27= .3.若 , ),4)(3(2==-+=++b a x x b ax x 则. 4. 简便计算:2200820092008-⨯ = .【考点链接】 1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a , ⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2 .6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【典例精析】 例1 分解因式:⑴(聊城)33222ax y axy ax y +-=__________________.⑵3y 2-27=___________________. ⑶244x x ++=_________________. ⑷ 221218x x -+= .例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值. 【中考演练】1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________. 3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________.5.分解因式2232ab a b a -+= . 6.将3214x x x +-分解因式的结果是 . 7.分解因式am an bm bn +++=_____ _____; 8. 下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 29.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+- C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(﹡10. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.11.计算:(1)299; (2)2222211111(1)(1)(1)(1)(1)234910----- . ﹡12.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得: 222244c b c a b a -=- ① ()()()2222222b a c b aba -=-+ ②即222c b a =+ ③∴△ABC 为Rt △。