第18章勾股定理综合检测题检测试题A

合集下载

《勾股定理》综合测试题(A)

《勾股定理》综合测试题(A)
A. 2n B. -1 n4 C. 一 l n D . - n 4 -l
1 . 图 , 一块 直 角 三 角形 纸 片 , 4如 有 两直 角 边 AC=6厘 米 , C=8厘 米 B
/ l D折 叠 , 它 落在斜 边 4B上 , 与 E重合 , C 使 且 则 D等 于 (
3 4
、 、、

结 交 明 友 只往 …念 之 间 , 友谊 却 是 慢 慢 成熟 的果 实 。— — 亚里 士 多 德
c在A B . A C中, = ,= c则A B 为直角三角形 若n }cb , A C

D 在 AA C中 , a b: . B 若 : c=2: 4, △AB 2: 则 C为直 角 三角形 1 . 果直 角三 角形 的两 直 角边 长分别 为 n 一l2 ( 3如 ,n n>1 , 么它 的斜 )那
A. 2厘 米
C. 4厘 米
) .
B 3厘 米 .
D. 5厘 米
1 . 块 木 板 如 图所 示 , 知 B=4 B 5一 已 , C=3 D , C=1 , D =1 , 2A 3 B =9 。木 板 的 面 积 为 ( 0.
A. 0 6 B. 0 3
) .
C. 4 2 D.1 2

c =



9 在 R △/ C中, = 0, = 5, . t 4 B LC 9  ̄厶4 1。 D为4 的中点 , E L B交 C于点 E,E= , B = D _A A 2则 C
二 、 择 题 ( 小 题 3分 , 3 选 每 共 0分 )

… 一

1 0 如果 下列 各组数 是 三角形 的 _边 , . 二 那么 不能组 成直 角 角形 的一组数 是 (

沪科版八年级数学下学期第18章勾股定理单元测试卷 (含答案)

沪科版八年级数学下学期第18章勾股定理单元测试卷 (含答案)

沪科版八年级数学下册第18章勾股定理单元检测卷(满分150分,考试时间120分钟)一、选择题(本大题共6题,每题4分,满分24分)1.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.450a元B.225a元C.150a元D.300a元2.如图,Rt△ABC中,∠C=90°,AC=12,BC=5.分别以AB、AC、BC为边在AB的同侧作正方形ABDE、ACFG、BCIH,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.90B.60C.169D.1443. 已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.32cm D.122cmcm C.62cm B.424.如图,Rt△ABC中,∠C=90°,CD⊥AB于点D,AB=13,CD=6,则(AC+BC)2等于( )A.25B.325C.2197D.4055. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( )A.()()2222221,4,1a m b m c m =-==+B.()()222221,4,1a m b m c m =-==+C.()()222221,2,1a m b m c m =-==+D.()()2222221,2,1a m b m c m =-==+6. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A .90 B . 100 C . 110 D . 121B . 二、填空题(本大题共12 题,每题4分,满分48分)7.如图,B ,C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点A 到岸边BC 的距离是______米.8.在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为______.9.如图,圆柱形容器中,高为120cm ,底面周长为100cm ,在容器内壁离容器底部40cm 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为__________cm .(容器厚度忽略不计)10.如图,平面上A、B两点处有甲、乙两只蚂蚁,它们都发现C处有食物,已知点C在A的东南方向,在B的西南方向.甲、乙两只蚂蚁同时从A、B两地出发爬向C处,速度都是30cm/min.结果甲蚂蚁用了2 min,乙蚂蚁2分40秒到达C处分享食物,两只蚂蚁原来所处地点相距_______cm.11. 小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?______________(填“能”或“不能”).12.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.13.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,BC=_______.14.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD上的任意一点,则AP+EP的最小值是____________cm.15.如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14 BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要_________cm.16.小明把一根70cm长的木棒放到一个长宽高分别为30cm,40cm,50cm的木箱中,他能放进去吗?答:__________(选填“能”或“不能”).17. 已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.18. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,∠BAD=________.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)甲乙两船从位于东西走向的海岸线上的港口A同时出发,甲以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,2小时后,甲船到C岛,乙船到达B岛,B、C两岛相距100海里,判断乙船所走方向,说明理由.20.(本题满分10分)如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD 的长.21.(本题满分10分)如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,CB'=3.将纸片沿某条直线折叠,使点B落在点B'处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.22. (本题满分10分)如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB=4,AC=3,32BDCD=,求:△ABC的面积.23.(本小题满分12分)如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.25.(本题满分14分)如图1,四根长度一定的木条,其中AB=6cm,CD=15cm,将这四根木条用小钉绞合在一起,构成一个四边形ABCD(在A、B、C、D四点处是可以活动的).现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D在BA的延长线上时,点C在线段AD上(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若设BC的长为x,请用x的代数式表示AD的长;(2)在图3中画出位置二的准确图形;(各木条长度需符合题目要求)(3)利用图2、图3求图1的四边形ABCD中,BC、AD边的长.参考答案一、选择题(本大题共6题,每题4分,满分24分)12 3 4 5 6 C C C D C D二、填空题(本大题共12 题,每题4分,满分48分)7.【答案】30;8.【答案】132cm ;【解析】由题意()222111n n +=+,解得60n =,所以周长为11+60+61=132.9.【答案】130;10.【答案】100;【解析】依题知AC =60cm ,BC =80cm ,∴ AB2=602+802=1002,AB=100cm . 11.【答案】能;【解析】可设放入长方体盒子中的最大长度是xcm ,根据题意,得x2=502+402+302=5000, 702=4900,因为4900<5000,所以能放进去.12.【答案】81; 13.【答案】14或4;【解析】当△ABC 是锐角三角形时,BC =9+5=14;当△ABC 是钝角三角形时,BC =9-5=4. 14.【答案】5【解析】作E 点关于直线BD 的对称点E ′,连接AE ′,则线段AE ′的长即为AP+EP 的最小值5.15.【答案】5【解析】∵长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=14BC ,∴AC=4cm ,PC=34BC=3cm ,根据两点之间线段最短,AP=5. 16.【答案】能;【解析】解:可设放入长方体盒子中的最大长度是xcm ,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.17.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.18.【答案】90°;【解析】延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12 在△ACM 中22251213+= 即222CM AM AC +=∴∠AMC =∠BAD=90°三、解答题:(本大题共7题,满分78分)19.【解析】解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里, ∵602+802=1002,∴∠BAC=90°,∵C 岛在A 北偏东35°方向,∴B 岛在A 北偏西55°方向.∴乙船所走方向是北偏西55°方向.20.【解析】解:设BD =x ,则CD =30-x .在Rt △ACD 中,根据勾股定理列出()222(30)1020x x -=++, 解得x =5.所以BD =5.21. 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称, ∴AM A M '=,BN B N '=.设BN B N x '==,则9CN x =-.∵ 正方形ABCD ,∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.解得5x =.∴ 5BN =.22.【解析】 解:∵32BD CD =,设BD =3x ,则CD =2x ,由AE =AF ,BE =BD ,CF =CD , 即AF =3-2x ,AE =4-3x , ∴ 3-2x =4-3x ,解得x =1.∴ BC =3x +2x =5 又∵ 222345+=,即222AC AB BC +=∴ △ABC 是直角三角形,∠A =90°.∴ 1143622ABC S AB AC ==⨯⨯=g △ 23.【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=21BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.24.【解析】解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m ,∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=21BC ,OA=80m , ∵在Rt △AOD 中,∠AOB=30°,∴AD=21OA=21×80=40m , 在Rt △ABD 中,AB=50,AD=40,由勾股定理得:m AD AB BD 3040502222=-=-=,故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即3006018000=米/分钟, ∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.25.【解析】解:(1)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变,BC =x , ∴ 在图2中,AC =BC -AB =x -6,AD =AC +CD =x +9.(2)位置二的图形见图3.(3)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变, ∴ 在图3中,BC =x ,AC =AB +BC =6+x ,AD =x +9.在△ACD 中,∠C =90°由勾股定理得222AC CD AD +=.∴ 222(6)15(9)x x ++=+.整理,得2212362251881x x x x +++=++.化简,得6x =180.解得 x =30.即 BC =30.∴ AD =39.。

沪科版八年级数学下册第18章 勾股定理单元测试题

沪科版八年级数学下册第18章 勾股定理单元测试题

第18章勾股定理一、选择题(每题4分,共40分)1.下列几组数中,为勾股数的一组是()A.5,6,7B.3,-4,5C.0.5,1.2,1.3D.20,48,522.已知a,b,c是三角形的三边长,且满足(a-6)2++|c-10|=0,则该三角形是()A.等腰三角形B.等边三角形C.钝角三角形D.直角三角形3.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走(假设2步为1 m)()A.2步B.4步C.5步D.10步第3题图第5题图第6题图4.小明从一根长为6 m的钢条上截取一段,截取的钢条恰好与两根长分别为3 m,5 m的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.4 mB. mC.4 m或 mD.6 m5.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.806.如图,将两个大小、形状完全相同的△ABC和△A'B'C'拼在一起,其中点A'与点A重合,点C'落在AB边上,连接B'C.若∠ACB=∠A'C'B'=90°,AC=BC=3.则B'C的长为()A.3B.6C.3D.7.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,分别以Rt△ABC的三边为边向外作等边三角形,若AB=4,则三个等边三角形的面积之和为()A.8B.6C.18D.129.如图,一张长方形纸片ABCD,AB=6,BC=9,将长方形纸片ABCD折叠,使点C与点A重合,则折痕EF的长为()A. B.2 C.5 D.7第9题图第10题图10.图1是我国著名的“赵爽弦图”,它是由四个全等的直角三角形所围成,将四个直角三角形的较短边(如AF)向外延长1倍分别得到点A',B',C',D',并顺次连接得到图2.若正方形EFGH与正方形A'B'C'D'的面积分别为1 cm2和85 cm2,则图2中阴影部分的面积是()A.15 cm2B.30 cm2C.36 cm2D.60 cm2二、填空题(每题5分,共20分)11.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是.12.如图,校园内有两棵树,相距8 m,一棵树高13 m,另一棵树高7 m,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞m.第12题图第13题图第14题图13.如图是一个底面周长为24 m,高为5 m的圆柱体,一只蚂蚁沿表面从点A到点B所经过的最短路线长为m.14.如图,已知1号、4号两个正方形的面积和为7,2号、3号两个正方形的面积和为4,则a,b,c三个正方形的面积和为.三、解答题(共90分)15.(8分)如图,在△ABC中,AB=10,BC=16,BC边上的中线AD=6.求证:AB=AC.16.(8分)某校要把一块形状是直角三角形的废地开发为小花园,如图,∠ACB=90°,AC=40 m,BC=30 m.计划建一条水渠CD,且点D在边AB上,已知水渠的造价为3 000元/m,点D距点A多远时,此水渠的造价最低?最低造价是多少?请在图上标出点D.17.(8分)如图,在由边长为1的小正方形组成的网格图中,四边形ABCD的顶点都在格点上.(1)求四边形ABCD的周长;(2)判断AD与DC是否垂直?并说明理由.18.(8分)如图所示的是一个十字路口,O是两条公路的交点,A,B,C,D表示公路上的四辆车.某一时刻,OC=8 m,AC=17 m,AB=5 m,BD=10 m,求C,D两辆车之间的距离.19.(10分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=5,且AC+BC=6,求AB的长.20.(10分)有一艘渔船在海上C处作业时发生故障,立即向搜救中心发出求救信号,此时搜救中心的两艘救助轮一号和二号分别位于海上A处和B处,B在A的正东方向,且距A 100海里.测得点C在A的南偏东60°方向上,在B的南偏东30°方向上,如图所示.若救助轮一号和二号的速度分别为40海里/时和30海里/时,问搜救中心应派哪艘救助轮才能尽快赶到C处救援?(≈1.7)21.(12分)如图,点A是5×5网格中的一个格点,图中每个小正方形的边长为1,请在网格中按下列要求操作(顶点都在格点上的多边形为格点多边形):(1)以点A为其中的一个顶点,在图1中画一个面积等于3的格点直角三角形;(2)以点A为其中的一个顶点,在图2中画一个面积等于的格点等腰直角三角形;(3)以点A为其中的一个顶点,在图3中画一个三边边长比为1∶∶,且最长边的长度为5的格点三角形.22.(12分)在△ABC中,AB=AC,∠BAC=2∠DAE=2α,点D关于直线AE的对称点为F.(1)如图1,若α=45°,求证:DE2=BD2+CE2;(2)如图2,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还成立吗?请说明理由.23.(14分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪灵感.他发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明勾股定理.下面是小聪利用图1证明勾股定理的过程.如图1,△ACB≌△DEA,∠DAB=90°,求证:a2+b2=c2.证明:连接DB,DC,过点D作DF⊥BC交BC的延长线于点F,则DF=EC=b-a.则S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b-a),∴b2+ab=c2+a(b-a),∴a2+b2=c2.请参照上述证法,利用图2证明勾股定理.如图2,△ACB≌△AED,∠DAB=90°,求证:a2+b2=c2.图1 图2答案15. 因为AD是BC边上的中线,所以BD=CD=BC=8,又因为AB=10,AD=6,所以AD2+BD2=AB2,所以△ADB是直角三角形,AD⊥BC.在Rt△ADC中,由勾股定理得AC2=AD2+CD2=62+82=102,所以AC=10,所以AB=AC.16. 如图,过点C作CD⊥AB于点D,则点D为所求的点.在Rt△ABC中,由勾股定理,得AB===50(m).∵S△ABC=AC·BC=AB·CD,∴CD===24(m).在Rt△ACD中,由勾股定理,得AD===32(m).∵水渠的造价为3 000元/m,∴水渠的最低造价为3 000×24=72 000(元).故当点D距点A 32 m时,此水渠的造价最低,最低造价是72 000元.17. (1)由题意可知AB==3,AD==,DC==2,BC==,∴四边形ABCD的周长为AB+BC+CD+AD=3++3.(2)AD⊥DC,理由如下:连接AC.∵AD=,DC=2,AC=5,∴AD2+CD2=AC2,∴△ACD是直角三角形,且∠ADC=90°,∴AD⊥DC.18. 在Rt△AOC中,由勾股定理得OA2+OC2=AC2,∴OA===15(m),∴OB=OA+AB=20 m.在Rt△BOD中,由勾股定理得BD2=OB2+OD2,∴OD===10(m),∴CD=OD-OC=10-8=2(m).19. 由勾股定理,得AC2+BC2=AB2,∴由题图可知S1+S2=π×()2+π×()2+×AC×BC-π×()2=(AC2+BC2-AB2)+×AC×BC=×AC×BC,∵S1+S2=5,∴AC×BC=10,∴AB===4.20. 如图,过点C作CD⊥AB交AB的延长线于点D.由题意得∠EAC=60°,∠FBC=30°,∴∠1=30°,∠2=60°.∵∠1+∠BCA=∠2,∴∠BCA=30°,∴∠1=∠BCA,∴BC=AB=100海里.在Rt△BDC中,BD=BC=50海里,∴DC==50海里,AD=AB+BD=150海里.在Rt△ADC中,由勾股定理,得AC==100 海里,∴救助轮一号所用的时间t1==≈4.25(时),救助轮二号所用的时间t2==≈3.33(时),∵3.33<4.25,∴搜救中心应派救助轮二号才能尽快赶到C处救援.21. (1)如图1所示.(画法不唯一)(2)如图2所示.(画法不唯一)(3)∵三角形的三边边长比为1∶∶,且最长边的长度为5,∴三边长分别为,,5,满足题意的格点三角形如图3所示.(画法不唯一)22. (1)∵点D,F关于直线AE对称,∴AD=AF,DE=EF,∠FAE=∠DAE=α.∴∠DAF=2α=∠BAC,∴∠DAF-∠DAC=∠BAC-∠DAC,即∠CAF=∠BAD,又∵AB=AC,AD=AF,∴△BAD≌△CAF,∴BD=CF,∠ACF=∠ABD.∵∠BAC=2α=90°,AB=AC,∴∠ABD=∠ACB=45°,∴∠ACF=45°,∴∠ECF=∠ACB+∠ACF=90°,∴EF2=EC2+CF2.∵BD=CF,DE=EF,∴DE2=BD2+CE2.(2)成立.理由如下:∵点D,F关于直线AE对称,∴AD=AF,DE=EF,∠FAE=∠DAE=α,∴∠DAF=2α=∠BAC,∴∠DAF-∠DAC=∠BAC-∠DAC,即∠CAF=∠BAD,又∵AB=AC,AD=AF,∴△BAD≌△CAF,∴BD=CF,∠ACF=∠ABD.∵∠BAC=2α=90°,AB=AC,∴∠ABD=∠ACB=45°,∴∠ACF=45°,∴∠ECF=180°-∠ACB-∠ACF=90°,∴EF2=CF2+CE2.∵EF=DE,CF=BD,∴DE2=BD2+CE2.23. 如图,连接BD,BE,过点B作BF⊥DE交DE的延长线于点F,则S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab. 又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b-a),∴ab+b2+ab=ab+c2+a(b-a),∴a2+b2=c2.。

八年级数学下册 第18章 勾股定理自测题

八年级数学下册 第18章 勾股定理自测题

第18章 勾股定理自测题 一、填空题(每题3分,共24分)1. 在△ABC 中,∠B=90°,a=3,c=4,那么b= .2. 在Rt△ABC,∠C=90°,若是b=8,a :c=3:5,那么c= .3. 已知等边三角形的边长为2cm ,那么它的高为 ,面积为 .4. △ABC 中,AB=AC=25cm ,高AD=20cm,那么BC= ,S △ABC =5. △ABC 中,假设∠A=2∠B=3∠C,AC=32cm ,那么∠A= 度,∠B= 度,∠C= 度,BC= ,S △ABC = .6. 已知0435=-+-+-Z y x ,那么由此x,y,z 为边的三角形是 三角形.7. 直角三角形的两边长别离为6和8,那么第三边的长为 .8. 一个圆柱状的杯子,由内部测得其底面直径为4cm,高10cm ,现有一支12cm 的吸管任意斜放于杯中,那么吸管 露出杯口(填“能”或“不能”).二、选择题(每题3分,共18分)9.以下各组线段中,能够组成直角三角形的是( ).A . 6,7,8 B. 5,6,7 C. 4,5,6 D. 3,4,510.以下各命题的逆命题成立的是( )A. 全等三角形的对应角相等B. 若是两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等 D.若是两个角都是45°,那么这两个角相等.11.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,那么它的面积是 ( )A. 60 B . 80 C. 120 D. 24012.直角三角形的两直角边别离为5cm ,12cm ,其中斜边上的高为( )A .6cmB .8.5cmC .1330cmD .1360cm 13.一直角三角形的斜边长比直角边大2,另一直角边长为6,那么斜边长为( )A. 4B. 8 C .10 D .1214. 两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟以后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm三、解答题(共58分)15. 在数轴上找出表示13的点(不要写作图步骤,只要保留作图痕迹)(6分)16. △ABC 的三边别离为AB=12+a ,BC=12-a ,AC=a 2(8分) (1)探讨那个三角形是不是直角三角形(2)若是是直角三角形,分析哪个是直角.17.甲、乙两艘轮船于上午8时同时从A 码头别离向北偏东23°和北偏西67°的方向动身,甲轮船的速度为每小时24海里,乙轮船的速度为每小时32海里,那么下午1时两船相距多少海里?(8分)18.如图,在平面直角坐标系中,P 点在第二象限,OP 与y 轴的正半轴的夹角为30°,OP=2.求P 点的坐标.(8分)19.过直线l 外的点A 、B 作l 的垂线,垂足别离为M 、N ,已知AM+BN=12,MN=5.假设一只蚂蚁从A 点动身,爬到直线l 上的某点迅速向终点B 爬行.求蚂蚁爬行的最短距离 .(8分)20.如图,已知正方形ABCD 的边长为1,以AE 为折痕使点D 落在AC 上F 处,求DE 的长.(10分)21.在等边△ABC 内有一点P ,已知PA=3,PB=4,PC=5.现将△APB 绕A 点逆时针旋转60°,使P 点抵达Q 点,连PQ ,猜想△PQC的形状,并论证你的猜想(10分).。

人教版 勾股定理综合检测题检测试题及答案(共2套)

人教版 勾股定理综合检测题检测试题及答案(共2套)

数学:第18章勾股定理综合检测题检测试题(1)(总分:120分,时间:90分钟)一、认真选一选,你一定很棒!(每题3分,共30分)1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52,已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( )A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶13,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ) A.52B.3C.3+2D.332+ 4,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B.800米C.1000米D.不能确定6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( )A.L 1 C.L 3 D.L 47,(2006年山西吕梁课改)如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是A.5,4,3B.13,12,5C.10,8,6D.26,24,109,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( )A.1B.2C.3D.210,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185 二、仔细填一填,你一定很准!(每题3分,共24分)11,根据下图中的数据,确定A =_______,B =_______,x =_______.12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 13,直角三角形的三边长为连续偶数,则这三个数分别为__________.14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米. 15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________. 16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm.17,[2008年河北省]如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .18,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里. 三、细心做一做,你一定会成功!(共66分)19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一AB CABC图25mBCAD图1BCAED 图3图5图420,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21,如图7,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22,(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm,宽为2cm的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m;第二步:m=k;第三步:分别用3、4、5乘以k,得三边长”.(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.24,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.图6AB小河东北牧童小屋图7图8 图9北A图10数学:第18章勾股定理综合检测题检测试题(1)参考答案:一、1,B ;2,B ;3,D ;4,A ;5,C .点拨:画出图形,东南方向与西南方向成直角;6,B .点拨:在Rt △ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x =253≈2.8868,所以2x =5.7736;7,A ;8,D .点拨:设斜边为13x ,则一直角边长为5x ,另一直角边为22(13)(5)x x -=12x ,所以 13x +5x +12x =60,x =2,即三角形分别为10、24、26;9,D .点拨:AE =22DE AD +=221CD AC++=2211BC AB+++=211++=2;10,A .二、11,15、144、40;12,1360;13,6、8、10;14,24;15,16;16,17;17,:76 ;18,30.三、19,设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形.20,15m.21,如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt △A ′DB 中,由勾股定理求得A ′B =17km.22,(1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有22513a b a b +=⎧⎨+=⎩由此得ab=6,(a -b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:23,(1)当S =150时,k =m=1502566S ===5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S =12(3k )·(4k )=6k 2,所以k 2=6S,k =6S (取正值),即将面积除以6,然后开方,即可得到倍数.24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).ABDPNM数学:第18章勾股定理综合检测题检测试题(2)一﹑选择题(每小题3分, 共30分)1. 一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为 ( )A . 4B . 8C . 10D . 122.小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( ) A. 小丰认为指的是屏幕的长度 B. 小丰的妈妈认为指的是屏幕的宽度 C. 小丰的爸爸认为指的是屏幕的周长 D. 售货员认为指的是屏幕对角线的长度3.如图1,中字母A 所代表的正方形的面积为( ) A. 4 B. 8 C. 16 D. 644. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形5. 一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm , 则斜边的长( ) A. 18cm B. 20 cm C. 24 cm D. 25cm6. 适合下列条件的△ABC 中, 直角三角形的个数为( ) ①;51,41,31===c b a ②,6=a ∠A=450;③∠A=320, ∠B=580;④;25,24,7===c b a⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个 7. 在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形8. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( ) A. 15° B. 30° C. 45° D. 60° 9.已知,如图2,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) 2222北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里B .30海里C .35海里D .40海里二﹑填空题 (每小题3分, 共24分)11. (2008年湖州市)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .12.如图5, 等腰△ABC 的底边BC 为16, 底边上的高AD 为6, 则腰长AB 的长为____________. 13.如图6,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,求该河流的宽度为_________ m.14. 小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走了12米到了B 点,则________=AB 米.15. 一个三角形三边满足(a+b)2-c 2=2ab, 则这个三角形是 三角形.16. 木工做一个长方形桌面, 量得桌面的长为60cm, 宽为32cm, 对角线为68cm, 这个桌面(填”合格”或”不合格”).17. 直角三角形一直角边为cm 12,斜边长为cm 13,则它的面积为 .18. 如图7,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着A289225(图1)(图4) ( 图5) AB C200m520mDCBA(图6)D CB AOA BEFD北南 A东(图3)D ˊABCD A ˊB ˊC ˊ三、 解答题 (共66分)19. (8分) 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)20. (8分)如图, 在△ABC 中, AD ⊥BC 于D, AB=3, BD=2, DC=1, 求AC 2的值. AB D C21. (10分) “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?22. (10分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?23.(10分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”: “平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”24.(10分)如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么?(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?四、创新探索题(10分)一只蚂蚁如果沿长方体的表面从A 点爬到B ’点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm 、宽为1cm 、高为4cm.八年级勾股定理单元检测题参考答案(2)一1.C 2.D 3.D 4.C 5.D 6.A 7.D 8.C 9.A 10.D 二11、勾股定理,222ab c +=;12、10;13、480; 14、15;15、直角;16、合格;17、观测点BCA东北 FE AB30;18、25. 三19、13米 20、AC 2=6 21、20 v米/秒=72千米/时>70千米/时,超速。

第十八章勾股定理测试题

第十八章勾股定理测试题

第十八章勾股定理测试题、选择题(每小题4分,共24 分) 三角板,能画出的线段最长是 ______________________ . 10. 一艘小船早晨8: 00从A 码头出发,它以8海里/时的速度向东航行, 1小时后,另一艘小船以 12海里/时的速度从A 码头出发向南航行,上午 10: 00,两小船相距 _____________ 海里.11. 如图3,赵爽弦图是由四个全等的直角三角形与中间的小正方形拼成的 一个大正方形,如果大正方形的面积是34,小正方形的面积是 4,直角三角形较短的直角边为 a ,较长的直角边为b ,那么(a b )2的值为 ______________ . 12. 如图4,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm 现将直角边AC 沿直线AD 折叠,使它落在斜边 AB 上,且与AE 重合,则CD=.13. 如图5①,有一个面积为 1的正方形,经过一次“生长”后,在它的左 右肩上生出两个小正方形,如图5②,其中,三个正方形围成的三角形是直角三角形•再经过一次“生长”后,变成图5③;“生长” 10次后,变成班级姓名学号1.若把直角三角形的两直角边同时扩大到原来的4倍, A.4倍 B.8倍C.2倍则其斜边扩大到原来的(D.5倍2.在平面直角坐标系中,已知点 P 的坐标是(3,4) ,则 A.3B.4C.53.在 Rt △ ABC 中,/ C = 90°, / B = 45° ,c = 10, OP 的长为(D. . 7 的长为 ( A.5 B. 104.如图1中的小方格都是边长为A. 25B. 12.5D. 5C. 5 . 2 1的正方形,(图1)1 1 1,b ,c =3 4 5② a =6,. A = 45 ;③.A =32 B =58 •,④ a = 7, b = 24,c = 25 :⑤ a =2,b =2,c =4 ; ⑥32、42、52.其中直角三角形的个数为 (A . 2个B . 3个C . 4个6. 一位工人师傅测量一个等腰三角形工件的腰, 量完后,不小心与其他记录的数据记混了, 形工件的数据是 ( ) A. 13, 10, 10 B . 13, 10, 12 5. △ ABC 中,/ A , / B , / C 的对边分别是a,b,c ;有下列三角形: ①a ) D . 5个底及底边上的中线,并按顺序记录下数据,请你帮助这位师傅从下列数据中找出等腰三角 C . 13, 12, 12 D . 13, 10,二、填空题(每小题4分,共28分)7. _____________________________ 如图2,看图求未知边:a=8. 命题“等腰三角形的两个底角相等”的逆命题是 ____________________ 该逆命题是 ____________ (填真命题还是假命题).9. 若一块直角三角形三角板,两直角边长分别为12 cm 和5 cm,不移动,b= ,c = (图4)5④;如果继A(图3)EC D① ② ③ ④(图5)随着不断的“生长”,形成的图形中所有正方形的面积和也随之变化•若生长n次后,变成的图中所有正方形的面积用S h表示,贝U = __________ , s2= _________ , s3= _________ ;S n= _________________ •三、解答题(第14题5分,第15题9分,第16、17题每题8分,第18、19题每题9分, 共48分)14. 数轴上的点有的表示有理数,有的表示无理数,请在下面的数轴上画出表示8的点.(1)求DC的长;(2) 求AB的长;(3)求厶BCD中BC边上的高.15. 如图6,已知:在厶ABC中,CDL AB于点D, AC= 20, BC= 15, DB= 9.16. 如图7所示,有一条平行四边形小路穿过长方形的草地ABCD,若AB=60m,BC=84m,(图6)AE=100m,?则这条小路的面积是多少?(图7)BC17 •小东拿着一根长竹竿进一个宽为3米的长方形城门,他先横着拿不进去,又竖起来拿, 原来竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?18. “中华人民共和国道路交通管理条理”规定:小汽车在城市街路上行驶的速度不得超过70千米/时.如图8 一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪”正前方30米处,过了2秒后,测得“小汽车”与“车速检测仪”间的距离为50米,请问这辆“小汽车”超速了吗?(图8)19. 如图9(1)是現测点用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c•图9(2)是以c为直角边的等腰直角三角形•请你开动脑筋,将它们拼成一个能证明勾股定理的图形•(1) 画出拼成的这个图形的示意图,指出它是什么图形(2) 用这个图形证明勾股定理.⑴(2(图9)。

强化训练沪科版八年级数学下册第18章 勾股定理综合测评试题(含答案解析)

强化训练沪科版八年级数学下册第18章 勾股定理综合测评试题(含答案解析)

八年级数学下册第18章勾股定理综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数据中,能构成直角三角形的三边的长的一组是()A.1,2,3 B.4,5,6 C.5,12,13 D.13,14,152、梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是()A.6米B.7米C.8米D.9米3、如图,在长方形ABCD中,分别按图中方式放入同样大小的直角三角形纸片.如果按图①方式摆放,刚好放下4个;如果按图②方式摆放,刚好放下3个.若BC=4a,则按图③方式摆放时,剩余部分CF的长为()A.23aB.32aC.53aD.35a4、满足下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=5:12:13 B.a:b:c=3:4:5C .∠C =∠A ﹣∠BD .b 2=a 2﹣c 25、如图,在Rt △ABC 中,∠C =90°,AC =12,AB =13,AB 边的垂直平分线分别交AB 、AC 于N 、M 两点,则△BCM 的周长为( )A .18B .16C .17D .无法确定6、下列条件:①222b c a =-;②C A B ∠=∠-∠;③111::::345a b c =;④::3:4:5A B C ∠∠∠=,能判定ABC 是直角三角形的有( )A .4个B .3个C .2个D .1个7、ABC 中,A ∠,B ,C ∠的对边分别为a ,b ,c ,下列条件能判断ABC 是直角三角形的是( )A .ABC ∠=∠=∠B .6a =,7b =,8c =C .::3:4:5A B C ∠∠∠=D .222+=a b c8、在ABC 中,A ∠、B 、C ∠的对边分别为a 、b 、c ,下列条件中,能判定ABC 是直角三角形的是( ).A .2a =,3b =,4c =B .2a =,5b =,5c =C .5a =,8b =,10c =D .7a =,24b =,25c =9、下列长度的三条线段能组成直角三角形的是( )A .5,11,12B .4,5,6C .4,6,8D .5,12,1310、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为( )A .10B .C .15D .10或第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD 中,45ABC ∠=︒,E 、F 分别在CD 和BC 的延长线上,AE BD ∥,30EFC ∠=︒,AB =EF =______.2、如图,已知,直角ABC 中,90ACB ∠=︒,从直角三角形两个锐角顶点所引的中线的长5AD =,BE =AB 之长为______________.3、往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为___cm .4、细心观察图形,认真分析各式,然后填空.OA 22)2+1=2S 1OA32=12+2=3S 2;OA 42=12+2=4S 3_____个三角形?5、同学们,我们在今后的学习中会学到这个定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图,在Rt△ABC 中,∠ACB =90°,若∠ABC =30°,则12AC AB .问题:在Rt △ABC ,∠ACB =90°,∠ABC =30°,AC D 是边BC 的中点,点E 是斜边AB 上的动点,连接DE ,把△BDE 沿直线DE 折叠,点B 的对应点为点F .当直线DF ⊥AB 时,AE 的长为 _____.三、解答题(5小题,每小题10分,共计50分)1、已知在ACD △中,P 是CD 的中点,B 是AD 延长线上的一点,连接BC ,AP .(1)如图1,若90ACB ∠=︒,60CAD ∠=︒,BD AC =,AP AB 的长;(2)过点D 作∥DE AC ,交AP 的延长线于点E ,如图2所示,若60CAD ∠=︒,BD AC =,求证:2BC AP =;(3)如图3,若45CAD ∠=︒,是否存在实数m ,使得当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.2、如图,点B ,F ,C ,E 在直线上,点A ,D 在直线l 的异侧,AB ∥DE ,∠A =∠D =90°,AB =DE .(1)求证:△ABC ≌△DEF ;(2)若∠ABC =30°,AC =6,求DE 的长.3、数学课上,老师出示了一个题:如图,在ABC 中,90ACB ∠=︒,5AC =,13AB =,CAB ∠的平分线交CB 于点D ,求CD 的长.晓涵同学思索了一会儿,考虑到角平分线所在直线是角的对称轴这一特点,于是构造了一对全等三角形,解决了这个问题.请你在晓涵同学的启发下(或者独立思考后有自己的想法),解答这道题.4、已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA =OB .(1)求两个函数的解析式;(2)求△AOB的面积.5、如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3.点P从B 点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为.连接AP(1)当t=3秒时,求AP的长度(结果保留根号);(2)当点P在线段AB的垂直平分线上时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?-参考答案-一、单选题1、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题.【详解】解:A.222≠,不是直角三角形,故A不符合题意;1+23B. 222≠,不是直角三角形,故B不符合题意;4+56C. 2225+12=13,是直角三角形,故C不符合题意;D. 222≠,不是直角三角形,故D不符合题意,13+1415故选:C.【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.2、C【分析】根据题意画出图形,再根据勾股定理进行解答即可.【详解】解:如图所示:AB=10米,BC=6米,由勾股定理得:AC米.故选:C.【点睛】本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键.3、A【分析】由题意得出图①中,BE=a,图②中,BE=43a,由勾股定理求出小直角三角形的斜边长为53a,进而得出答案.【详解】解:∵BC=4a,∴图①中,BE=a,图②中,BE=43 a,5 3a=,∴图③中纸盒底部剩余部分CF的长为4a-2×53a=23a;故选:A.【点睛】本题考查了矩形的性质以及勾股定理;熟练掌握矩形的性质和勾股定理是解题的关键.4、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、∵∠A:∠B:∠C=5:12:13,∴∠C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∵b2=a2﹣c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.5、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.【详解】解:在Rt△ABC中,∠C=90°,AC=12,AB=13,∴由勾股定理得,5BC=,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C.【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键.6、C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论.【详解】解:①222b c a =-即222+=a b c ,△ABC 是直角三角形,故①符合题意;②∵∠A +∠B +∠C =180°,∠C =∠A −∠B ,∴∠A +∠B +∠A −∠B =180°,即∠A =90°,∴△ABC 是直角三角形,故②符合题意; ③∵111::::345a b c =,设a =3k,b =4k ,c =5k , 则222543k k k ⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴△ABC 不是直角三角形,故③不合题意;④∵::3:4:5A B C ∠∠∠=,∴∠C =5345++×180°=75°,故不是直角三角形;故④不合题意. 综上,符合题意的有①②,共2个,故选:C .【点睛】本题主要考查了直角三角形的判定方法.①如果三角形中有一个角是直角,那么这个三角形是直角三角形;②如果一个三角形的三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.7、D【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【详解】解:A 、∵A B C ∠=∠=∠,且∠A +∠B +∠C =180°,∴A B C ∠=∠=∠=60°,故△ABC 不是直角三角形;B 、∵6a =,7b =,8c =,∴a 2+b 2≠c 2,故△ABC 不是直角三角形;C 、∵∠A :∠B :∠C =3:4:5,且∠A +∠B +∠C =180°,∴最大角∠C =75°≠90°,故△ABC 不是直角三角形;D 、∵222+=a b c ,故△ABC 是直角三角形;故选:D .【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.8、D【分析】先求出两小边的平方和,再求出最长边的平方,看看是否相等即可.【详解】解:A 、∵22+32≠42,∴以a 、b 、c 为边不能组成直角三角形,故本选项不符合题意;B 、∵22+52≠52,∴以a 、b 、c 为边不能组成直角三角形,故本选项不符合题意;C 、∵52+82≠102,∴以a 、b 、c 为边不能组成直角三角形,故本选项不符合题意;D 、∵72+242=252,∴以a 、b 、c 为边能组成直角三角形,故本选项符合题意;故选:D .【点睛】本题考查了勾股定理的逆定理,注意:如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形.9、D【分析】先分别求出两小边的平方和和最长边的平方,再看看是否相等即可.【详解】解:A.∵52+112=25+121=146,122=144,∴52+112≠122,即三角形不是直角三角形,故本选项不符合题意;B.∵42+52=16+25=41,62=36,∴42+52≠62,即三角形不是直角三角形,故本选项不符合题意;C.∵42+62=16+36=52,82=64,∴42+62≠82,即三角形不是直角三角形,故本选项不符合题意;D.∵52+122=25+144=169,132=169,∴52+122=132,即三角形是直角三角形,故本选项符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于最长边c的平方,那么这个三角形是直角三角形.10、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解:∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.二、填空题1、8【分析】证明四边形ABDE 是平行四边形,得到DE=CD =AB =AB CE ∥, 过点E 作EH ⊥BF 于H ,证得CH=EH ,利用勾股定理求出EH ,再根据30度角的性质求出EF .【详解】解:∵四边形ABCD 是平行四边形,∴AB CD ∥,AB=CD ,∵AE BD ∥,∴四边形ABDE 是平行四边形,∴DE=CD =AB =AB CE ∥,过点E 作EH ⊥BF 于H ,∵45ABC ∠=︒,∴∠ECH =45ABC ∠=︒,∴CH=EH ,∵222CH EH CE +=,CE =∴CH=EH =4,∵∠EHF =90°,30EFC ∠=︒,∴EF =2EH =8,故答案为:8.【点睛】此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.2、8【分析】设BC =x ,AC =y ,根据勾股定理列方程组,从而可求得斜边的平方,即求得斜边的长.【详解】设BC=x ,AC=y ,∵直角三角形两个锐角顶点所引的中线 ∴1111,2222DC BC x CE AC y ==== 在Rt △ADC 和Rt △BCE 中,由勾股定理得:222222+DC +BC AC AD EC BE ⎧=⎨=⎩∴2222221+()521()2y x y x ⎧=⎪⎪⎨⎪+=⎪⎩ ∴2264x y +=∴8AB ===故答案为:8【点睛】注意此题的解题技巧:根据已知条件,在两个直角三角形中运用勾股定理列方程组.求解的时候,注意不必分别求出未知数的值,只需求出两条直角边的平方和,运用勾股定理即可.3、24【分析】连接OA ,过点O 作OD ⊥AB 交AB 于点C 交⊙O 于D ,再根据勾股定理求出AC 的长,进而可得出AB 的长.【详解】解:连接OA ,过点O 作OD ⊥AB 交AB 于点C 交⊙O 于D .∵OC ⊥AB ,∴AC =CB ,∵OA =OD =13cm ,CD =8cm ,∴OC =OD ﹣CD =5(cm ),∴12(cm)AC ==,∴AB =2AC =24(cm ),故答案为:24.【点睛】本题主要考查垂径定理,掌握垂径定理和勾股定理是解题的关键.4、20【分析】根据题意可以得到规律2211n n OA nS -=+==,由此求解即可. 【详解】解:∵OA 222+1=2S 1OA 32=12+2=3S 2;OA 42=12+2=4S 3∴2211n n OA nS -=+==,= ∴21n =,∴它是第21-1=20个三角形,故答案为:20.【点睛】本题主要考查了勾股定理和与实数运算有关的规律型问题,解题的关键在于能够根据题意找到规律求解.5 【分析】如图1所示,设DF 与AB 交点为G ,先求出AB ==3BC ,由D 是BC 的中点,可以得到1322BD BC ==,由折叠的性质可知∠F =∠B =30°,BE =EF ,即可得到1324DG BD ==,1122EG EF BE ==,BG ==,由此即可求出AE 的长;如图2所示,同理可得1324DG BD ==,BG ==1122EG EF BE ==,则32BE BG GE BG =+==,AE AB BE =-=。

初二数学人教版(下册)勾股定理综合测试题(附答案)

初二数学人教版(下册)勾股定理综合测试题(附答案)

第十八章勾股定理综合测试题一、选择题1.下列各数组中,不能作为直角三角形三边长的是( )A. 9,12,15B. 7,24,25C. 6,8,10D. 3,5,72.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( )A. 可能是锐角三角形B. 不可能是直角三角形C. 仍然是直角三角形D. 可能是钝角三角形3.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m)( )A.20mB.25mC.30mD.35m4.一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为( )A. 12cmB.C.D.二、填空题5.如图,64、400分别为所在正方形的面积,则图中字母A所代表的正方形面积是_________ .6.直角三角形两条直角边的长分别为5、12,则斜边上的高为.7.已知甲往东走了4km,乙往南走了3km,这时甲、乙两人相距.8.一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为.9.以直角三角形的三边为边向形外作正方形P、Q、K,若S P=4,S Q=9,则S k=.三、解答题10.假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米?11.P为正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBE的位置,若BP =a.求:以PE为边长的正方形的面积.12.已知:如图13,△ABC中,AB=10,BC=9,AC=17. 求BC边上的高.13.拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和__________ (填“大于”、“小于”或“等于”)图③中小正方形的面积,用关系式表示为________ .(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有__________个正方形,它们的面积之间的关系是________ ,用关系式表示为_____ .(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方形的面积之间的关系是_____ _____ ,用关系式表示________ _______ .参考答案:一、选择题:1-4:DCBA二、填空题:5.336;6.;7.5;8.34;9.5或13三、解答题:10.10Km;11.2a2;12.6;13.等于,其证明方案即为勾股定理的证明,最后的结论就是勾股定理。

初中数学八年级第18章勾股定理单元测试卷

初中数学八年级第18章勾股定理单元测试卷

第18章勾股定理单元测试卷一、选择题(每题3分,共30分)1.以下列各组数据为边长的三角形中,是直角三角形的是()A.√2,√3,√7B.5,4,8C.√5,2,1D.√2,3,√52.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为()A.10B.15C.20D.303.在Rt△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若∠B=90°,则()A.b2=a2+c2B.c2+b2=a2C.a2+b2=c2D.a+b=c4.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8 cmB.5√2cmC.5.5 cmD.1 cm5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.3√346.如图,每个小正方形的边长都为1,则△ABC的三边a,b,c的大小关系是()A.a<c<bB.a<b<cC.c<a<bD.c<b<a7.有一个三角形的两边长分别是4和5,若这个三角形是直角三角形,则第三边长为()A.3B.√41C.3或√41D.无法确定8.三角形三边长分别是6,8,10,则它的最短边上的高为()A.6B.1412C.225D.89.如图,以直角三角形的三边a,b,c为边或直径,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是()A.1B.2C.3D.410.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上D'处.若AB=3,AD=4,则ED的长为()A.32B.3 C.1 D.43二、填空题(每题4分,共16分)11.如图是八里河公园水上风情园一角的示意图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),如果黄芳同学想从A岛到C岛,则至少要经过________米.12.三角形一边长为10,另两边长是方程x2-14x+48=0的两实根,则这是一个________三角形,面积为________.13.如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积是24 cm2,则AC的长是________.(有一组邻边相等的长方形是正方形)14.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为__________.三、解答题(15~22题每题8分,23题10分,共74分)15.如图,在△ABC中,AC=6,AB=8,BC=7,求△ABC的面积.(结果保留整数)16.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.17.如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.18.龙梅和玉荣是好朋友,可是有一次经过一场争吵之后,两人不欢而散.龙梅的速度是0.5米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走米/秒,如果她和龙梅同时停的方向好像是和龙梅成直角,她的速度是23下来,而这时候她俩正好相距200米,那么她们行走的方向是否成直角?如果她们现在想讲和,那么以原来的速度相向而行,多长时间后能相遇?19.如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?20.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C 在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B 的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:√3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?21.如图,两个村子A,B在河的同侧,A,B两村到河边的距离分别为AC=1 km,BD=3 km,CD=3 km.现需在河边CD上建造一水厂向A,B两村送水,铺设水管的工程费用约为每千米20 000元,请在河边CD上选择水厂的位置O,使铺设水管的费用最少,并求铺设水管的费用.22.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD 折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.23.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为,即=|x|+|y|(其中“+”是四则运算中的加法).(1)求点A(-1,3),B(√3+2,√3-2)的勾股值,;(2)求满足条件=3的所有点N围成的图形的面积.参考答案一、1.【答案】C2.【答案】B解:设较短直角边长为x(x>0),则有x2+(3x)2=102,解得x=√10,∴直角三x·3x=15.角形的面积S=123.【答案】A4.【答案】A5.【答案】A解:在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB 的长,然后过C作CD⊥AB于D,直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.6.【答案】C解:利用勾股定理可得a=√17,b=5,而c=4,所以c<a<b.7.【答案】C解:此题要考虑两种情况:当两直角边长是4和5时,斜边长为√41;当一直角边长是4,斜边长是5时,另一直角边长是3.故选C.8.【答案】D解:因为62+82=102,所以该三角形是直角三角形,所以最短边上的高为8.9.【答案】D解:因为直角三角形的三边为a,b,c,所以应用勾股定理可得a2+b2=c2.第一个图形中,首先根据等边三角形的面积的求法,表示出3个等边三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第二个图形中,首先根据半圆形的面积的求法,表示出3个半圆形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.10.【答案】A解:在Rt△ABC中,AC=√AB2+BC2 =√32+42 =5.设ED=x,则D'E=x,AD'=AC-CD'=2,AE=4-x,根据勾股定理可得方程22+x2=(4-x)2,再解方程即可.二、11.【答案】37012.【答案】直角;24解:解方程得x1=6,x2=8.∵x12+x22=36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.【答案】4√3cm解:过点A作AE⊥BC于点E,AF⊥CD交CD的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=√24=2√6(cm),所以AC=√2AE=√2×2√6=4√3(cm).14.【答案】√41解:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=√41.所以AC+CB=√41.三、15.解:如图,过点A 作AD ⊥BC 于点D.在Rt △ABD 中,由勾股定理得AD 2=AB 2-BD 2.在Rt △ACD 中,由勾股定理得AD 2=AC 2-CD 2.所以AB 2-BD 2=AC 2-CD 2.设BD=x,则82-x 2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD=√AB 2-BD 2=√82-5.52≈5.8.所以S △ABC =12·BC·AD≈12×7×5.8=20.3≈20.16.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC=√AB2-AC2=√202-102=10√3.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM= 1BC=5√3,2∴CM=√BC2-BM2=√(10√3)2-(5√3)2=15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5√3,∴CD=CM-MD=15-5√3.17.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE=√BC2-BE2=√302-152=15√3(m).答:小丽自家门前小河的宽度为15√3m.18.解:龙梅行走的路程为0.5×240=120(米),玉荣行走的路程为2×240=160(米),两人相距200米,因为1202+1602=,根据勾股定理的逆定3理可知,两人行走的方向成直角.因为2000.5+23=1 2007(秒)=207(分钟),所以207分钟后她们能相遇. 19.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =12ab,S △C'A'D'=12ab,S 直角梯形A'D'BA =12(a+b)(a+b)=12(a+b)2,S △ACA'=12c 2. (2)由题意可知S △ACA'=S 直角梯形A'D'BA -S △ABC -S △C'A'D'=12(a+b)2-12ab-12ab=12(a 2+b 2),而S △ACA'=12c 2.所以 a 2+b 2=c 2.20.解:(1)MN 不会穿过原始森林保护区.理由如下:过点C 作CH ⊥AB 于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°. 在Rt △ACH 中,AH=CH=x m,在Rt △HBC 中,BC=2x m.由勾股定理,得HB=22=√3x m. ∵AH+HB=AB=600 m,∴x+√3x=600.解得x=1+√3≈220>200. ∴MN 不会穿过原始森林保护区.(2)设原计划完成这项工程需要y 天,则实际完成这项工程需要(y-5)天. 根据题意,得1y -5=(1+25%)×1y . 解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.21.解:如图,延长AC 到A',使A'C=AC,连接A'B 与CD 交于点O,则点O为CD上到A,B两点的距离之和最小的点.过A'作CD的平行线,交BD 的延长线于点G,连接AO,则BG=4 km,A'G=3 km.在Rt△A'BG 中,A'B2=BG2+A'G2=42+32=25,解得A'B=5 km.易知OA=OA',则OA+OB=A'B=5 km,故铺设水管的费用最少为5×20 000=100 000(元).22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC=√DE2-CD2=√32-12=2√2,则有OE=OC-CE=m-2√2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2√2)2=m2,解得m=3√2.23.解:(1)=|-1|+|3|=4.=|√3+2|+|√3-2|=√3+2+2-√3=4.(2)设N(x,y),∵=3,∴|x|+|y|=3.①当x≥0,y≥0时,x+y=3,即y=-x+3;②当x>0,y<0时,x-y=3,即y=x-3;③当x<0,y>0时,-x+y=3,即y=x+3;④当x≤0,y≤0时,-x-y=3,即y=-x-3.如图,满足条件=3的所有点N围成的图形是正方形,面积是18.。

2022年精品解析沪科版八年级数学下册第18章 勾股定理综合练习试题(含答案及详细解析)

2022年精品解析沪科版八年级数学下册第18章 勾股定理综合练习试题(含答案及详细解析)

八年级数学下册第18章 勾股定理综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列条件:①222b c a =-;②C A B ∠=∠-∠;③111::::345a b c =;④::3:4:5A B C ∠∠∠=,能判定ABC 是直角三角形的有( ) A .4个 B .3个 C .2个 D .1个2、如图,以Rt △ABC (AC ⊥BC )的三边为边,分别向外作正方形,它们的面积分别为S 1﹑S 2﹑S 3,若S 1+S 2+S 3=12,则S 1的值是( )A .4B .5C .6D .73、一个直角三角形有两边长为3cm ,4cm ,则这个三角形的另一边为( )A .5cmB cmC .7cmD .5cm cm4、已知直角三角形的斜边长为5cm ,周长为12cm ,则这个三角形的面积( )A .24cmB .25cmC .26cmD .212cm5、如图,有一个长、宽、高分別为2m 、3m 、1m 的长方体,现一只蚂蚁沿长方体表面从A 点爬到B 点,那么最短的路径是( )A .3√2mB .√3mC .√2mD .2√5m6、以下列各组数为三边的三角形中不是直角三角形的是( )A .1 2B .6、10、8C .3、4、5D .6、5、47、下列各组线段中,能构成直角三角形的一组是( )A .5,9,12B .7,12,13C .30,40,50D .3,4,68、满足下列条件的△ABC ,不是直角三角形的是( )A .∠A :∠B :∠C =5:12:13B .a :b :c =3:4:5C .∠C =∠A ﹣∠BD .b 2=a 2﹣c 29、如图,已知钓鱼竿AC 的长为10m ,露在水面上的鱼线BC 长为6m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转动到AC '的位置,此时露在水面上的鱼线B C ''为8m ,则BB '的长为( )A .1mB .2mC .3mD .4m10、下列条件:(1)∠A =90°﹣∠B ,②∠A :∠B :∠C =3:4:5,③∠A =2∠B =3∠C ,④AB :BC :AC =3:4:5,能确定△ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,90C ∠=︒,AB 的垂直平分线交AB 、AC 于点D ,E ,若8AC =,5BD =,则ADE 的面积是______.2、如图,在一次夏令营活动中,小明从营地A 出发,沿北偏东60︒方向走了到达B 地,然后再沿北偏西30方向走了50m 到达目的地C ,则A 、C 两地之间的距离为_______m .3、如图,在△ABC 中,AB =AC ,∠BAC =90°,点D 、点E 在直线BC 上,点F 为AE 上一点,连接BF ,分别交AD 、AC 于点G 、点H ,若∠BAD =∠CAE ,∠AGH =∠E ,AF +AD =BF ,AC =,则AE 的长为 _____.4、如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是 _____.5、如图,将两个含30°角的全等的三角尺摆放在一起,可以证得△ABD是等边三角形,于是我们得到:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半如果BC=2,那么点C到AB的距离为________.三、解答题(5小题,每小题10分,共计50分)1、已知a,b,c满足|a+(c2=0(1)求a,b,c的值;并求出以a,b,c为三边的三角形周长;(2)试问以a,b,c为边能否构成直角三角形?请说明理由.2、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.3、如图,在△ABC 中,AB =7cm ,AC =25cm ,BC =24cm ,动点P 从点A 出发沿AB 方向以1cm/s 的速度运动至点B ,动点Q 从点B 出发沿BC 方向以6cm/s 的速度运动至点C ,P 、Q 两点同时出发.(1)求∠B 的度数;(2)连接PQ ,若运动2s 时,求P 、Q 两点之间的距离.4、如图,在ABC 中,90BAC ∠=︒,15AB =,20AC =,AD BC ⊥,垂足为D .求AD ,BD 的长.5、思维启迪:(1)如(图1),Rt ABC 中,90C ∠=︒,4BC =,5AB =,点D 是AB 的中点,点E 在AC 上,过B 点作AC 的平行线,交直线ED 于点F ,当1CE =时,BF =______.思维探索:(2)如(图2),Rt ABC 中,90C ∠=︒,点D 是AB 的中点,点E 在AC 上,DF DE ⊥交BC 于F ,连接EF ,请直接写出AE ,EF ,BF 的数量关系,并说明理由;(3)Rt ABC 中,90C ∠=︒,点D 是AB 的中点,点E 在直线AC 上,DF DE ⊥交直线BC 于F ,若3AC =,AB =1EC =,请直接写出线段BF 长.-参考答案-一、单选题1、C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论.【详解】解:①222b c a =-即222+=a b c ,△ABC 是直角三角形,故①符合题意;②∵∠A +∠B +∠C =180°,∠C =∠A −∠B ,∴∠A +∠B +∠A −∠B =180°,即∠A =90°,∴△ABC 是直角三角形,故②符合题意; ③∵111::::345a b c =,设a =3k,b =4k ,c =5k , 则222543k k k ⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴△ABC 不是直角三角形,故③不合题意;④∵::3:4:5A B C ∠∠∠=,∴∠C =5345++×180°=75°,故不是直角三角形;故④不合题意. 综上,符合题意的有①②,共2个,故选:C .【点睛】本题主要考查了直角三角形的判定方法.①如果三角形中有一个角是直角,那么这个三角形是直角三角形;②如果一个三角形的三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.2、C【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案.【详解】解:∵由勾股定理得:AC 2+BC 2=AB 2,∴S 3+S 2=S 1,∵S1+S2+S3=12,∴2S1=12,∴S1=6,故选:C.【点睛】题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积.3、D【分析】根据勾股定理解答即可.【详解】解:设这个三角形的另一边为x cm,若x为斜边时,由勾股定理得:5x=,若x为直角边时,由勾股定理得:x=综上,这个三角形的另一边为5cm,故选:D.【点睛】本题考查勾股定理,利用分类讨论思想是解答的关键.4、C【分析】设该直角三角形的两条直角边分别为a、b,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出2ab的值,根据直角三角形的面积公式计算即可.【详解】解:设该直角三角形的两条直角边分别为a 、b ,根据题意可得:22251257a b a b ⎧+=⎨+=-=⎩①② 将②两边平方-①,得224ab =∴12ab = ∴该直角三角形的面积为2126ab cm = 故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键.5、A【分析】将图形分三种情况展开,利用勾股定理求出两种情况下斜边的长进行比较,其值最小者即为正确答案..【详解】解:如图(1),AB =√(2+3)2+12=√26(m );如图(2),AB =√22+(1+3)2=√20=2√5(m );如图(3),AB =√32+(2+1)2=3√2(m ),∵3√2<2√5<√26,∴最短的路径是3√2m .故选:A .【点睛】本题主要考查了勾股定理的应用,两点之间线段最短,解题的关键在于能够把长方体展开,利用勾股定理求解.6、D【分析】利用勾股定理的逆定理逐一分析各选项即可得到答案.【详解】解:A 、因为222214+== ,所以是直角三角形,故本选项不符合题意;B 、因为2226810+= ,所以是直角三角形,故本选项不符合题意;C 、因为222345+= ,所以是直角三角形,故本选项不符合题意;D 、因为222456+≠,所以不是直角三角形,故本选项符合题意;故选:D【点睛】本题考查的是勾股定理的逆定理的应用,掌握“勾股定理的逆定理:若222,a b c += 则以,,a b c 为边的三角形是直角三角形”是解本题的关键.7、C【分析】根据勾股定理的逆定理对四个选项中所给的数据看是否符合两个较小数的平方和等于最大数的平方即可.【详解】解:A、∵52+92≠122,∴该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;B、∵72+122≠132,∴该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;C、∵302+402=502,∴该组线段符合勾股定理的逆定理,故是直角三角形,故符合题意;D、∵32+42≠62,∴该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;故选:C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、∵∠A:∠B:∠C=5:12:13,∴∠C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∵b2=a2﹣c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.9、B【分析】根据勾股定理分别求出AB和AB′,再根据BB′=AB-AB′即可得出答案.【详解】解:∵AC=10m,BC=6m,∠ABC=90°,∴AB8m,∵AC′=10m,B′C′=8m,∠AB′C′=90°,∴AB6=m,∴BB′=AB-A B′=2m;故选:B.【点睛】此题考查了勾股定理的应用,根据已知条件求出AB和AB′是解题的关键.10、B【分析】利用三角形内角和定理和勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【详解】解:①∵∠A=90°﹣∠B,∴∠A+∠B=90°,∴∠C=90°,∴△ABC是直角三角形;②∵∠A:∠B:∠C=3:4:5,设∠A=3x,则∠B=4x,∠C=5x,∴3x+4x+5x=180,解得:x=15°,∴∠C=15°×5=75°,∴△ABC不是直角三角形;③∵∠A=2∠B=3∠C,∴11,23B AC A ∠=∠∠=∠∴1118023A B C A A A︒∠+∠+∠=∠+∠+∠=,∴∠A=(108011)°,∴△ABC为钝角三角形;④∵AB:BC:AC=3:4:5,设AB=3k,则BC=4k,AC=5k,∴AB2+BC2=AC2,∴△ABC是直角三角形;∴能确定△ABC是直角三角形的条件有①④共2个,故选:B.【点睛】此题主要考查了勾股定理逆定理以及三角形内角和定理,关键是掌握勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.二、填空题1、758【分析】根据勾股定理求出BC,根据线段垂直平分线的性质得到EA=EB,根据勾股定理列式计算得到答案.【详解】解:连接BE,∵DE是AB的垂直平分线,∴EA=EB,AD=DB=5,∵∠C=90°,AC=8,BD=5,∴AB=2BD=10,由勾股定理得,BC,则CE=8-AE=8-EB,在Rt△CBE中,BE2=CE2+BC2,即BE2=(8-BE)2+36,解得,BE=254,则AE=254,∴S△ABE=12AE×BC=12×254×6=754,∴△ADE的面积是12S△ABE=758.故答案为:758.【点睛】本题考查的是勾股定理以及线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、100【分析】根据题意点C位于点B的西偏北60゜方向,再根据平行线的性质可得点A位于点B的西偏南30゜方向,从而可得AB⊥BC,由勾股定理即可求得AC的长.【详解】如图所示,∠CBH=30゜,∠DAB=60゜∴∠BAE=90゜-∠DAB=30゜,∠CBF=90゜-∠CBH=60゜∵FB∥AE∴∠FBA=∠BAE=30゜∴∠ABC=∠CBF+∠FBA=60゜+30゜=90゜在Rt△ABC中,AB=,50mBC=由勾股定理得:100(m)AC=故答案为:100【点睛】本题主要考查了勾股定理的应用,关键是知道方位角的含义并得出△ABC是直角三角形.3、【分析】过点C作CI⊥BE交AE于I,即可证明△ABD≌△ACI得到AI=AD,∠ADB=∠AIC,BD=CI;延长FA到K 使得AK=AD=AI,连接KB,KD,DI,可证△ADK和△ADI都是等腰直角三角形,从而推出∠DIC=∠KDB;证明△KDB≌△DIC得到∠KBD=∠DCI=90°,得到∠BKE+∠E=90°,∠KBF+∠EBF=90°,由BF=AF+AD,得到BF=AF+AK=KF,可推出∠E=∠EBF,由三角形外角的性质得到∠BFA=∠E+∠EBF=2∠E,再由∠AGH=∠E,∠GAF=90°,可得∠E=30°,过点A作AM⊥BE于M,然后利用勾股定理求解即可.【详解】解:如图所示,过点C作CI⊥BE交AE于I,∴∠ICD=90°,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ACI=45°,∴∠ABD=∠ACI,在△ABD 和△ACI 中,BAD CAI AB ACABD ACI ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△ACI (ASA ),∴AI =AD ,∠ADB =∠AIC ,BD =CI ,延长FA 到K 使得AK =AD =AI ,连接KB ,KD ,DI ,∴∠AKD =∠ADK ,∠ADI =∠AID ,∵∠AKD +∠KDI +∠AID =180°,∴∠ADK +∠ADI =90°,即∠KDI =90°,∵∠BAD =∠CAE ,∠BAC =90°,∴∠BAD +∠CAD =∠CAE +∠CAD =90°,即∠DAI =90°,∴△ADK 和△ADI 都是等腰直角三角形,∴∠DKI =∠DIK =∠ADK =45°,∴KD =ID ,∠BDK +∠ADK =∠DIK +∠DIC ,∴∠DIC =∠KDB ,在△KDB 和△DIC 中,BD CI KDB DIC KD DI =⎧⎪∠=∠⎨⎪=⎩, ∴△KDB ≌△DIC (SAS ),∴∠KBD =∠DCI =90°,∴∠BKE +∠E =90°,∠KBF +∠EBF =90°,∵BF=AF+AD,∴BF=AF+AK=KF,∴∠BKF=∠KBF,∴∠E=∠EBF,∴∠BFA=∠E+∠EBF=2∠E,∵∠AGH=∠E,∠GAF=90°,∴3∠E=90°,∴∠E=30°,过点A作AM⊥BE于M,∵∠ACM=45°,∴∠MAC=45°,∴∠ACM=∠MAC,∴AM=CM,∵222=+,AC AM CM∴2==,AM AC254∴AM=∴2==AE AM故答案为:【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,三角形外角的性质,直角三角形两锐角互余,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.4、101寸【分析】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到答案.【详解】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,CD=1寸,则AB=2r(寸),DE=10寸,OE=12∴AE=OA﹣OE=(r﹣1)寸,在Rt△ADE中,由勾股定理得:AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴AB =2r =101(寸),故答案为:101寸.【点睛】本题考查了勾股定理,添加辅助线构造出直角三角形再用勾股定理求解是解题的关键.5【分析】根据题干所给结论和勾股定理可求得AB 和AC ,再根据等面积法即可求得h .【详解】解:依据题意可得24AB BC ==,根据勾股定理可得AC ==设点C 到AB 的距离为h , 则1122ABC S BC AC AB h ∆=⋅=⋅,即112422h ⨯⨯=⨯⋅,解得h =C 到AB【点睛】本题考查等边三角形的性质,勾股定理,含30°角的直角三角形,掌握等面积法是解题关键.三、解答题1、(1)a =b =5,c ==5+(2)不能构成直角三角形,理由见解答.【分析】(1)由非数的性质可分别求得a 、b 、c 的值,进而解答即可;(2)利用勾股定理的逆定理可进行判断即可.【详解】解:(1)∵|a c 2=0.∴a ,b -5=0,c ,∴a b =5,c ,∴以a ,b ,c 为三边的三角形周长(2)不能构成直角三角形,∵a 2+c 2=8+18=26,b 2=25,∴a 2+c 2≠b 2,∴不能构成直角三角形.【点睛】本题主要考查非负数的性质及勾股定理的逆定理,利用非负数的性质求得a 、b 、c 的值是解题的关键.2、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ;定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.3、(1)∠B =90°;(2)P 、Q 两点之间的距离为13cm【分析】(1)如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.依据勾股定理的逆定理进行判断即可;(2)依据运动时间和运动速度,即可得到BP 和BQ 的长,再根据勾股定理进行计算,即可得到PQ 的长.【详解】解:(1)∵AB =7cm ,AC =25cm ,BC =24cm ,∴AB 2+BC 2=625=AC 2,∴△ABC 是直角三角形且∠B =90°;(2)运动2s 时,AP =1×2=2(cm ),BQ =2×6=12(cm ),∴BP =AB ﹣AP =7﹣2=5(cm ),Rt △BPQ 中,13cm PQ ===,∴P 、Q 两点之间的距离为13cm .【点睛】本题主要考查了勾股定理的逆定理和勾股定理,解题的关键在于能够根据题意求出∠B =90°.4、AD ,BD 的长分别为12、9【分析】先根据勾股定理求出BC ,再根据三角形面积公式得出1122AB AC BC AD ⋅=⋅,代入求出AD ;再根据勾股定理求出BD 即可.【详解】解:在Rt ABC 中,90BAC ∠=︒,15AB =,20AC =,根据勾股定理得:25BC ==, ∵12ABC SAB AC =⋅,12ABC AD S BC ⋅=, ∴1122AB AC BC AD ⋅=⋅. ∴15201225AB AC AD BC ⋅⨯===; ∵AD BC ⊥,∴90ADB ∠=︒.在Rt ADB 中,根据勾股定理得:9BD ==,因此,AD ,BD 的长分别为12,9.【点睛】此题考查三角形面积和勾股定理的应用,解题关键在于掌握在直角三角形中,两直角边的平方和等于斜边的平方.5、(1)2;(2)BF 2+AE 2=EF 2,理由见解析;(3)线段BF 长为1或2.2.【分析】(1)先利用勾股定理求得AC 的长,再证明△ADE ≌△BDF ,即可求解;(2)过B 点作AC 的平行线,交直线ED 于点G ,连接FG ,证明△ADE ≌△BDG ,得到BG =AE ,∠A =∠GBD ,再证明EF =FG ,在Rt △BFG 中利用勾股定理即可求解;(3)分点E 在线段AC 上和点E 在AC 延长线上时,两种情况讨论,利用勾股定理构建方程求解即可,【详解】解:(1)Rt △ABC 中,∠C =90°,BC =4,AB =5,∴AC 3==,∵CE=1,∴AE=AC-CE=2,∵BF∥AC,∴∠A=∠FBD,∠AED=∠F,又点D是AB的中点,则AD=BD,∴△ADE≌△BDF,∴BF=AE=2,故答案为:2;(2)BF2+AE2=EF2,理由如下:过B点作AC的平行线,交直线ED于点G,连接FG,同理可证明△ADE≌△BDF,∴BF=AE,ED=DG,∠A=∠GBD,∵DF⊥DE,∴DF是线段EG的垂直平分线,∴EF=FG,∵∠C=90°,∴∠A+∠ABC=∠GBD+∠ABC=90°,即∠GBF=90°,∴BF2+BG2=FG2,∴BF2+AE2=EF2;(3)Rt△ABC中,∠C=90°,AC=3,AB∴BC5,当点E在线段AC上时,∵EC=1,∴AE=AC-CE=2,设BF=x,则CF=5-x,由(2)得EF2= BF2+AE2,在Rt△ECF中,EF2= CF2+CE2,∴x2+22= (5-x)2+12,解得:x=2.2;当点E在AC延长线上时,∵EC=1,∴AE=AC+CE=4,设BF=x,则CF=5-x,过B点作AC的平行线,交直线ED于点H,连接FH,同理可证明△ADE≌△BDH,∴BH=AE=4,ED=DH,∠A=∠HBD,∵DF⊥DE,∴DF是线段EH的垂直平分线,∴EF=FH,∵∠ACB=90°,∴∠A+∠ABC=∠HBD+∠ABC=90°,即∠HBF=90°,∴FH2= BF2+BH2,在Rt△ECF中,EF2= CF2+CE2,∴x2+42= (5-x)2+12,解得:x=1;综上,线段BF长为1或2.2.【点睛】本题考查了全等三角形的判定和性质,线段垂直平分线的判定和性质,勾股定理,解题的关键是学会利用参数构建方程解决问题,。

第18章《勾股定理》基础测试题(一).doc

第18章《勾股定理》基础测试题(一).doc

第18章《勾股定理》基础测试题(-)班级: ____________ 姓名: ____________ 得分:一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是() A 、6, 12, 13 B 、 3, 4, 7 C 、 15, 17, 8 D 、8, 15, 16 2、 要登上某建筑物,靠墙有一架梯子,底端离建筑物5///,顶端离地面12///,则梯子的长度为( ) A 、12/?7 B 、\3ni C 、14m D 、15m3、直角三角形的两条直角边长分别为&加和&加,则连接这两条直角边中点线段的长为( )A 、3cmB 、4cmC 、5cmD 、12cm4、 一艘小船早晨8: 00出发,以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时 的速度向南航行,上午10: 00两小船相距( )海里.A 、15B 、12C 、13D 、20 5、一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )二. 填空题(共6小题,每小题4分,满分24分) B 、8 C 、106、在△ABC 中, Z4CB 二90。

,AC=\2, BC=5, AM=AC, BN 二BC 、 则MN 的长为( 4、2 B 、2.6A 、4 笫6ACB第11题7.已知在Rt/\ABC中,ZC=90°. ____ (1)若。

=3, b=4,则;(2)若°=6,尸10,则b= ____________ .8、已知甲乙在同一地点出发,甲往东走了4千米,乙往南走了3千米,这时甲、乙两人相距千米.9、如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路=他们仅仅少走了__________ 步路(假设2步为1米),却踩伤了花草.10.某养殖厂有一个长2米.宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米.11、如图,隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA=50m, CB=40m,那么A、B两点间的距离是__________________ m •12、如果直角三角形的斜边与一条直角边的长分别是13c税和5c/77,那么这个直角三角形的面积是2cm .三、解答题(共4小题,满分52分)塑料薄膜,试求需要多少平方米塑料薄膜?13、如图,要修建一个育苗棚,棚高肛1.8加,棚宽a=2.4 m,棚的长为12加,现要在棚顶上覆盖a14、如图,铁路上A、B两点相距25如?,C、D为两村庄,DA丄AB于A, CB丄AB于B,己知DA=\5km f CB二\0血,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在多少千米处?15、在△ABC 中,ZC=90°, AC=2A cm. BC=2.S cm.(1)求这个三角形的斜边AB的长和斜边上的高CD的长;(2〉求斜边被分成的两部分4D和BD的长.16、在两千多年前我国古算术上记载有“勾三股四弦五”,你知道它的意思吗?它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.(1〉请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7, BC=4,请你研究参考答案与评分标准一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是()A、6, 12, 13B、 3, 4, 7C、15, 17, 8D、 8, 15, 16考点:勾股定理的逆定理;勾股数。

18、第18章_勾股定理单元综合测试题(一)及答案

18、第18章_勾股定理单元综合测试题(一)及答案

第18章“勾股定理”分解测试题(一)(温馨提醒:满分100+50分时光100分钟)基本巩固一.选择题(每题5分,满分30分)1.如图1,从电线杆离地面5m 处向地面拉一条长13m 的缆绳,则这条缆绳在地面的固定点距离电线杆底部【】.(A )6m (B )8m (C )10m (D )12m2. 小明用火柴棒摆直角三角形,已知他摆两条直角边分离用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒【】. (A )20根(B )14根(C )24根(D )30根3.如图2,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是【】.(A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上答案都不合错误4.如图3,直线l 上有三个正方形a b c ,,,若a c ,的面积分离为5和图1 图2 图3(A)4 (B) 6 (C) 16(D) 555. .分离以每组数据中的三个数为三角形的三边长,组成直角三角形的有【】(A)② (B) ①② (C)①③(D) ②③6.已知直角三角形双方的长为3和4,则此三角形的周长为【】.(A)12 (B)7C)12或7D)以上都不合错误二.填空题(每小题5分,共30分)7.若一个直角三角形三边长是三个持续的天然数,则这个三角形的周长是.8. 传奇,古埃及人曾用"拉绳”的办法画直角,现有一根长24厘米的绳索,请你应用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分离为_______厘米,______厘米,________厘米,个中的道理是______________________.9. 如图4,或人欲横渡一条河,因为水流的影响,现实上岸地点C偏离欲到达点B200m,成果他在水中现实游了520m,求该河道的宽度为_________m.10. 在Rt△ABC中,∠C=90°,c =20,a∶b=3∶4,则a=_________,b=________.11. 如图5,分离以直角三角形的三边为直径作半圆,个中两个半圆的面1S=258π,22Sπ=,则3S是12.在长方形纸片ABCD中,AD=4㎝,AB=10㎝,按如图6方法折叠,使点B与点D重合,折痕为EF,则DE=㎝.三.解答题(共40分)13.(12分)如图7,每个小方格都是边长为1的正方形.(1)求图中格点四边形ABCD的周长;(2)求∠ADC的度数.图4 图5 图614. (14分)如图8,在四边形ABCD中,∠B =90°,AB =8,BC =6,CD =24,AD =26,求四边形ABCD 的面积.15. (14分)如图9,小刚预备测量一条河的深度,他把一根竹竿插到离岸边米远的水底,竹竿凌驾水面米,再把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐;请盘算并揣摸河水的深度为几米?拓展创新(满分50分)一.选择题(每题6分,满分12分)1.若△ABC 的三边a ,b ,c 知足222338102426a b c a b c +++=++,则此三图7 图8 图9(A)锐角三角形(B)钝角三角形(C)直角三角形(D)不克不及肯定2.国庆时代,小华与同窗到“花鼓灯嘉韶华”去玩探宝游戏,按照探宝图,他们从门口A处动身先往东走8千米,又往北走2千米,碰到障碍后又往西走3千米,再折向北走到6千米处往东拐,仅走了1千米,就找到了宝藏,则门口A到藏宝点B的直线距离是【】.(A)20千米(B)14千米(C)11千米(D)10千米二.填空题(每小题6分,共12分)3.如图2,甲是我国古代有名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=6,将四个直角三角形中边长为6的直角边分离向外延伸一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是______________.4.如图3,一只蚂蚁从点A 沿圆柱概况爬到点B ,假如圆柱的高为8cm ,圆柱的底面半径为6cm,那么最短的路线长是.三.解答题(共26分) 5.(12分)小明是一位擅长思虑的学生,在一次数学运动课上,他将一副直角三角板如图4地位摆放,A .B .D 在统一向线上,EF ∥AD ,∠A =∠EDF =90°,∠C =45°,∠E =60°,量得DE =8,试求BD 的长.6.(14分)如图5,A .B 两座城市相距100千米,现筹划要在两座城市之间构筑一条高级级公路(即线段AB ).经测量,丛林呵护区中间P 点在A 城市的北偏东30°偏向,B 城市的北偏西45°偏向上.已知丛林呵护区的规模在以P 为圆心,50千米为半径的圆形区域内.请问:筹划构筑的这条高级级公路会不会穿越丛林呵护区?为什么?图1 图2 AB图3 图4参考答案基本巩固1.D 2.C 3.A 4.C 5.D 6.C 7.128. 6 8 10 勾股定理(222+=a b c ) 9.480 10. 1216 11.98π12.29513.(1)四边形周长为:353213++,∠ADC 的度数为90.14.衔接AC ,∵∠B =90°,∴△ABC 为直角三角形.∵AC 2=AB 2+BC 2=102,∴AC =10.在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676,∴AC 2+CD 2=AD 2, ∴△ACD 为直角三角形,且∠ACD =90°,∴ABC ACD ABCD S S S ∆∆=+四边形=12×6×8+12×10×24=144.15.若假设竹竿长x 米,则水深(x -)米,由题意得,2221.5(0.5)x x =+-,解之得, 2.5x =.所以水深-0.5=2米.拓展创新一.选择题1.C2.D二.填空题3. 764. 10cm图5三.解答题 5.过点F 作FM ⊥AD 于M ,∵∠EDF =90°,∠EFD =30°,DE =8.∴EF =16,∴DF =2283EF DE -=. ∵EF ∥AD ,∴∠FDM =30°,∴FM =1432DF =,∴MD =2212FD FM -=.∵∠C =45°,∴∠MFB =∠B =45°,∴FM =BM =43,∴BD =DM -BM =1243-.6.过点P 作PD ⊥AB ,垂足为D ,由题可得∠APD =30°∠BPD =45°,设AD =x ,在Rt △APD 中,PD =3x ,在Rt △PBD 中,BD =PD =3x . ∴3100x x +=,50(31)x =-,∴PD =350(33)63.450x =-≈>. ∴不会穿过呵护区.。

人教版八年级下第十八章勾股定理测试题

人教版八年级下第十八章勾股定理测试题

第3题图HC第4题图人教版八年级下第十八章勾股定理测试题(时限:100分钟满分100分)一、选择题(本大题共12小题,每小题2分,共24分)1.下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C.若a、b、c是Rt△ABC的三边,∠A=90°,则a2+b2=c2D.若a、b、c是Rt△ABC的三边,∠C=90°,则a2+b2=c22.下列各命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.等边三角形每个内角都等于60°D.如果a=b那么a2=b23.如图,在单位正方形组成的网格图中标有四条线段,其中能构成一个直角三角形三边的线段是()A. CD,EF,GHB. AB,EF,GHC. AB,CD,GHD. AB,CD,EF4.在一个由16个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的第5题图第10题图DCBA比是( )A. 3︰4B. 5︰8C. 9︰16D. 1︰25.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别为3、5、2、3,则最大正方形E 的面积是( ) A. 13 B. 26 C. 47 D. 946.分别以下列四组数为一个三角形的边长:①3,4,5; ②5,12,13;③8,15,17;④4,5,6. 其中能够构成直角三角形的有( )A. 4组B. 3组C. 2组D. 1组 7.三角形的三边长分别为a 2+b 2、2ab 、a 2-b 2 (a 、b 都是正整数),则这个三角形是( ) A. 直角三角形 B. 钝角三角形 C. 锐角三角形 D. 不能确定 8.等腰直角三角形三边长度之比为( )A. 1︰1︰2B.1︰1︰C. 1︰2︰D. 不能确定9.三角形的三边长a 、b 、c 满足(a +b )2=c 2+2ab ,则这个三角形是( ) A. 等边三角形 B. 钝角三角形 C. 锐角三角形 D. 直角三角形 10.一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( )A. 60B. 30C. 24D. 12第12题图A64100第18题图EDCBA第19题图11.已知三角形的三边长为a 、b 、c ,如果a -9)2++(c -15)2=0,则△ABC 是( ) A. 以a 为斜边的直角三角形 B. 以b 为斜边的直角三角形 B. 以c 为斜边的直角三角形 D. 不是直角三角形 12.三个正方形的面积如图立,正方形A 的边长为( )A. 8B. 36C. 64D. 6二、填空题(本大题分8小题,每小题3分,共24分) 13.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜 边长为 .14.已知直角三角形的两边长为3、5,则另一边长是 . 15.若一个三角形的三边之比为5︰12︰13,则它为 三角形.16.在△ABC 中,若a 2+b 2=25,a 2-b 2=7,c =5,则△ABC 为 三角形. 17.一个长方形土地面积为48m 2,对角线长为10m ,则此长方形的周长为 . 18.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且BE ︰AE=12︰5,则河堤的高BE 为 米.19.如图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 .第22题图DCB 第23题图ON MPBA20.直角三角形的一条边直角边为11,另两边均为自然数,则周长是 . 三、解答题(本大题共52分)21.(本题分2个小题,每小题3分共6分)(1)若△ABC 的三边a 、b 、c ,满足a ︰b ︰c =1︰1︰,试判断△ABC 的形状.(2)若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,试判断△ABC 的形状22.(10分)如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13, 求四边形ABCD 的面积.23.(10分)如图,∠AOB =60°,P 为∠AOB 内一点,P 到OA 、OB 的距离PM 、第24题图cbaCA第25题图DCBAPN 分别为2和11,求OP 的长.24.(10分)在△ABC 中,∠C =135°,a =,b =2,求c 的长.25.(10分)如图,四边形ABCD 中,AB =AD =8,∠A =60°,∠D =150°, 四边形的周长为32,求BC 和CD 的长.图图②①cccbacbaE图④c ccc b bbbaaaa图③cc bb aa DCBA四、阅读与证明(6分)26. 如图①是用硬纸片做成的两个全等的直角三角形,两直角边分别为a 和b ,斜边为c ,图②是以c 为直角边的等腰直角三角形,将它们拼成一个能证明勾股定理的图形.⑴ 将图①、图②拼成一个直角梯形,如图③. ⑵ 假设图①中直角三角形有若干个,可拼成边长为(a +b )的正方形.如图④证明⑴.由图③可得===++=++∴=++∴a2+b2=c2由图④你能验证勾股定理吗?试一试:参考答案:一、1.D;2.D;3.B;4.B;5.C;6.B;7.A;8.B;9.D;10.C;11.C;12.D;二、13.;14. 4或;15.直角;16.直角;17. 28cm;18. 12;19.20cm2;20. 132. 解:设所求直角三角形的斜边为x,另一直角边为y,则:X2-y2=112,∴(x+y)(x-y)=121∵x>y,∴x+y>x-y,且x+y、x-y都为自然数,∴解之∴直角三角形三边长为11、60、61.∴直角三角形的周长为132.三、21.略;22.连接AC,其他略;23.延长NP交OB于C,其他略;24.作BD⊥AC交AC的延长线于点D,其他略;25.连接BD,其他略;26.略.。

八年级数学下第18章勾股定理整章测试题人教版

八年级数学下第18章勾股定理整章测试题人教版

第18章勾股定理测试题一、选择题 (每小题4分,共40分)1、一个直角三角形,两直角边长分别为3和4,下列说法正确的是 ( )2、小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )C.小丰的爸爸认为指的是屏幕的周长D.售货员认为指的是屏幕对角线的长度.3、下列各组数中不能作为直角三角形的三边长的是( ),2,,24,25 C. 6,8,,12,15.4、适合下列条件的△ABC 中,直角三角形的个数为( )①;51,41,31===c b a ②,6=a ∠A=450;③∠A=320, ∠B=580; ④;25,24,7===c b a ⑤.4,2,2===c b a5、将直角三角形的三条边长同时扩某某一倍数, 得到的三角形是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形.6、如图,一圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( )A.20cmB.10cmC.14cmD.无法确定.7、已知三角形的三边长为a 、b 、c ,如果()a b c c -+-+-+=51226169022,则△ABC 是( )8、下列叙述中,正确的是( )A 、直角三角形中,两条边的平方和等于第三边的平方B 、如果一个三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形C 、ΔABC 中,∠A 、∠B 、∠C 的对边分别是a ,b ,c ,若a 2+b 2=c 2,则∠A=90°D 、ΔABC 中,∠A 、∠B 、∠C 的对边分别是a ,b ,c ,若c 2-a 2=b 2,那么∠B=90°9、直角三角形有一条直角边的长为11,另外两边的长也是自然数,那么它的周长是( ) A 、132 B 、121 C 、120 D 、以上答案都不对10、如图,ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是( )二、填空题(每小题4分,共24分)11.如图,64、400分别为所在正方形的面积,则图中 400字母所代表的正方形面积是. A6412.满足222c b a =+的三个正整数,称为.13.三角形的三边长分别是15,36,39,这个三角形是三角形.14.已知甲往东走了4km,乙往南走了3km,这时甲、乙俩人相距.15.如图,直角三角形的两边长分别为6和8,带阴影的正方形面积是.16.直角三角形的周长为12cm,斜边的长为5cm,则其面积为________.三、解答题(共36分)17、(7分)某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度.18、(7分)如图所示,在高为3m,斜坡长为5m的楼梯表面铺地毯,至少需要地毯多少米?19、(7分)已知△ABC为Rt△,且∠ACB=90°,以三边为直径向形外作三个半圆(如图所示).求证:以斜边为直径的半圆面积等于以两直角边为直径的两个半圆面积之和.20、(7分)探险队的A组由驻地出发,以12公里/时的速度前进,同时,B组也由驻地出发,以9公里/时的速度向另一个方向前进,2小时后同时停下来,这时A、B两组相距30公里,那么A、B两组行驶的方向成直角吗?说明理由.21、(8分)在一根长为24个单位的绳子上,分别标出A、B、C、D四个点,它们将绳子分成长为6个单位、8个单位和10个单位的三条线段。

勾股定理单元测试卷(含答案)

勾股定理单元测试卷(含答案)

诚信教育学校第18章勾股定理测试题一、选择题(每题3分,共30分)1. 下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,62.在一个直角三角形中,若斜边长是13,一条直角边长为12,则这个直角三角形的面积是( ) A .30 B .40 C .50 D .603.如图1,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移( ) A .0.6米 B .0.7米 C .0.8米 D .0.9米(1)4.直角三角形有一条直角边的长是11,另外两边的长都是自然数,那么它的周长是( ) A .132 B .121 C .120 D .以上答案都不对 5.直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( ) A2d Bd C.2d D.d6. 直角三角形的三边是,,a b a a b -+,并且,a b 都是正整数,则三角形其中一边的长可能是( ) A .61 B .71 C .81 D .917、已知一个直角三角形的两条边长分别为34和,则第三条边长为( )A .5B .25 CD58、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m .同时梯子的顶端B 下降至B ′,那么BB ′( ).A .小于1mB .大于1mC .等于1mD .小于或等于1m9、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm 二、填空题(每题3分,共24分)1、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.2、 如图2,以三角形ABC ∆的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为_____.3、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).4、如图3,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_____米.(3) (4) (5)5、如图4,已知ABC ∆中,90ACB ∠=︒,以ABC ∆的各边为边在ABC ∆外作三个正方形,123,,S S S 分别表示这三个正方形的面积,1281,225S S ==,则3_____.S =6、如图5,已知,Rt ABC ∆中,90ACB ∠=︒,从直角三角形两个锐角顶点所引的中线的长5,AD BE ==AB 之长为______.7、如图6,在长方形ABCD 中,5DC cm =,在DC 上存在一点E ,沿直线AE 把AED ∆折叠,使点D 恰好落在BC 边上,设此点为F ,若ABF ∆的面积为230cm ,那么折叠AED ∆的面积为_____.(6) (7) (8)8、如图7,已知:ABC ∆中,2BC =, 这边上的中线长1AD =,1AB AC +=AB AC ⋅为_____.9、一个三角形的三条边长分别为221,2,1m m m -+,则三角形中最大的角是_____.10、在ABC ∆中,=905C AB ︒∠=,则222AB AC BC ++=_____.11、如图,一个三级台阶,它的每一级的长、宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是 .12、如图中阴影部分是一个正方形,如果正方形的面积为64厘米2,则x 的长为 厘米。

(完整版)八年级数学第十八章《勾股定理》测试题

(完整版)八年级数学第十八章《勾股定理》测试题

第 - 1 - 页 共 3 页八年级数学第十八章《勾股定理》测试题班级 姓名 成绩一、选择题(每小题4分,共32分)1、下列各组数中,能构成直角三角形的是( )A 、4,5,6B 、1,1,2C 、6,8,11D 、5,12,23 2、在Rt △ABC 中,∠C =90°,a =6,b =8,则c 的长为( )A 、12B 、18C 、20D 、103、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A 、3B 、4C 、5D 、7 4、如图,点A 表示的实数是( )A 、3B 、5C 、5-D 、3- 5、下列定理中,没有逆定理的是( )A 、两直线平行,内错角相等B 、直角三角形两锐角互余C 、对顶角相等D 、同位角相等,两直线平行6、若一个三角形的三边长为3、4、x ,则使此三角形是直角三角形的x 的值是( ) A 、5 B 、 6 C 、7 D 、5或77、等边三角形的边长为2,则该三角形的面积为( )A 、43B 、3C 、23D 、38、已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c -+-+-=,则三角形的形状是( )A 、底与边不相等的等腰三角形B 、等边三角形C 、钝角三角形D 、直角三角形 二、填空题(每小题4分,共40分)9 、三角形的三边长分别为3,4,5,则这个三角形的面积是 。

10、如图所示,以Rt ABC V 的三边向外作正方形,其面积分别为123,,S S S ,且1234,8,S S S ===则 ;11、将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为 ;12、如图,90,4,3,12C ABD AC BC BD ︒∠=∠====,则第 - 2 - 页 共 3 页CBADAD= ;13、若三角形的三边满足::5:12:13a b c ,则这个三角形中最大的角为 ;14、已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为 ;15、写出一组全是偶数的勾股数是 ;16、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 (填“合格”或“不合格”);17、如图,已知一根长8m 的竹杆在离地3m 处断裂,竹杆顶部抵着地面,此时,顶部距底部有 m ;18、定理“内错角相等,两直线平行”的逆定理是 三、解答题(每小题7分,共28分)19、如图,为修通铁路凿通隧道AC ,量出∠A=40°∠B =50°,AB =5公里,BC =4公里,若每天凿隧道0.3公里,问几天才能把隧道AB 凿通?20、如图,每个小方格的边长都为1.求图中格点四边形ABCD 的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学:第18章勾股定理综合检测题检测试题A (人教新课标八年级下)
一、认真选一选,你一定很棒!(每题3分,共30分)
1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,
41;⑤3
21,421,521.其中能构成直角三角形的有( )组 A.2 B.3 C.4 D.5
2,已知△ABC 中,∠A =12∠B =13
∠C ,则它的三条边之比为( ) A.1∶1
B.1
2 C.1
D.1∶4∶1
3,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ) A.52 B.3
4,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )
A.12米
B.13米
C.14米
D.15米
5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的
速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )
A.600米
B.800米
C.1000米
D.不能确定
6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要
符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( )
A.
C.L 3
D.L 4
7,(2006年山西吕梁课改)如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.
设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )
A.S 1=S 2
B.S 1<S 2
C.S 1>S 2
D.无法确定
8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分
别是( )
A.5,4,3
B.13,12,5
C.10,8,6
D.26,24,10
9,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( )
A.1 D.2
10,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( )
A.182
B.183
C.184
D.185
A
B C 图2 图1 B C E D
图3
二、仔细填一填,你一定很准!(每题3分,共24分)
11,根据下图中的数据,确定A =_______,B =_______,x =_______.
12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______.
13,直角三角形的三边长为连续偶数,则这三个数分别为__________.
14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有_____米. 15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是______. 16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm.
17,[2008年河北省]如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三
角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .
18,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以
12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里.
三、细心做一做,你一定会成功!(共66分)
19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的
一个三角形,其中一个角便是直角,请说明这种做法的根据.
20,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?
A
B
C
图 5 图
4
21,图7,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,
他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
22,(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图8,它是
由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.
(2)现有一张长为6.5cm ,宽为2cm 的纸片,如图9,请你将它分割成6块,再拼合成一个正
方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)
23学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A
处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A 处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.
(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)
(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便
算法.
图7 图8
图9
北A 图10。

相关文档
最新文档