平行四边形的性质复习
平行四边形的性质及判定复习课教案
平行四边形的性质及判定复习课教案平行四边形的性质及判定复习课教案「篇一」一教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二重点、难点1.重点:平行四边形的判定方法及应用.2.难点:平行四边形的判定定理与性质定理的灵活应用.3.难点的突破方法:平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只介绍前两个判定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.三例题的意图分析本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
平行四边形的性质与判定复习课
FC
达标
• 1、平行四边形的周长为36cm,相邻两边 的比为1:2,则它的两邻边长分别是
____________
• 2、在平行四边形ABCD中,已知AB、BC、
CD三条边的长度分别为(x+3),(x-4)和16,
则这个四边形的周长是
。
达标
3、如图,在平行四边形ABCD中,EF∥AD, GH ∥ AB, EF 、 GH相交于点O,则图中共有_____个平行四边形.
于G, 交BC于H, 连结EH、HF、FG、GE,
求证: 四边形EHFG是平行四边形.
E
证明: 在 ABCD中
A1
G
3
D
AD∥BC, OA=OC, ∴∠1=∠2, ∠3=∠4,
O
∴△AOG≌△COH ∴ OG = OH
B
42
H
C
又∵ AE=CF ∴ OE=OF
F∴四边形EHFG是平行四边形.
合作探究
证明:连接BD交AC于点O
∵ 四边形ABCD是平行四边形
O
∴OB=OD OA=OC
∵ AE=CF ∴OA-AE=OC-CF
即OE=OF ∴四边形BFDE是平行四边形
变式2、已知:如图,在□ABCD中,点E,F在
对角线AC上, 且AE=CF. 求证:四边形BFDE是平行四边形
证明:连接BD交AC于O
∵ 四边形ABCD是平行四边形
O
∴OB=OD OA=OC
∵ AE=CF ∴ AE-OA=CF-OC
即OE=OF
∴四边形BFDE是平行四边形
变式3、已知:如图,在□ABCD中,点E,F在
对角线AC所在的直线上, 且AE=CF. 求证:四边形BFDE是平行四边形
平行四边形的性质复习课件ppt
分成面积相等的两部分
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1、 通过本节课的学习,你有什么收获? 2、 平行四边形的性质共有哪些?
边 角 对角线
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
如图,把两张完全相同的平行四边形纸片叠
合在一起,在它们的中心O 钉一个图钉,将一个
平行四边形绕O旋转180°,你发现了什么?
A
B
O
D
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
结论
●1. ABCD绕它的中心O旋转180°后与自身重合,这 时我们说 ABCD是 中心对称图形,点O叫对称中心。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
猜一猜 你能证明
根据刚才的旋转,你知道平行四边形的对 它吗?
由于年迈体弱,他决定把这块土地分给他的四个孩
子,他是这样分的:
老大
老二
老四
老三
当四个孩子看到时,争论不休,都认为自己的地 少,同学们,你认为老人这样分合理吗?为什么?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
平行四边形性质判定复习课
∟
C OB
D
11.解: 两个全等的三角形可以 拼成平行四边形,
两个全等的直角三角 形可以拼成矩形,
两个全等的等腰直角三 角形可以拼成正方形形。
12. 解: 四边形EFGH是正方形。
D GC
理由:如图,∵ ABCD,
∴OA=OC,AD∥CB,∴∠1=∠2, ∵∠3=∠4, ∴△AOH≌△COF(ASA),
3.有三个角是直角的 四边形是矩形. .
A
D
判定
O
B 矩形ABCD C
一组邻边相等的平行四边形叫做菱形。
A
D
D
B
O C 一组邻边相等 A
平行四边形ABCD
1.四边相等; 2.对角相等;
C
菱形ABCD B
判定 A
3.两条对角线互相垂直
性质
平分,并且每一条对角
线平分一组对角。
D
菱形是轴对称图形.它的对
∠DAB:∠ABC=1:5, A 故答案选:C.
(3) 解:∠AEB=150.
B
150
故答案选:B.
=
D 1
AEB
∟
600 150
=
E
600
C
D
C 2x0 B
C
2.证明: 连接AC,
F
C
∵ 四边形ABCD, ∴OA=OC,OD=OB,
∵BE=DF,
∴OE=OF,
∴四边形ABCD是 ,
D OB
A
E
性质:平行四边形对角线互相平分.
判定:对角线互相平分的四边形是平行四边形.
3.解:如图,∵矩形ABCD, ∴OA=OB=OC=OD, ∵∠1=500, ∴∠2=1300, ∴∠3=∠4=1300÷2=650,
初三数学复习教案平行四边形与梯形的性质与判定
初三数学复习教案平行四边形与梯形的性质与判定一、平行四边形的性质与判定1. 平行四边形的定义平行四边形是指四边形的对边是平行的四边形。
具体而言,如果一个四边形的对边两两平行,则它可以被称为平行四边形。
2. 平行四边形的性质(1)对边相等:平行四边形的对边长度相等。
(2)对角线相交:平行四边形的对角线相交于一点,并且这个交点将对角线分为两条相等的线段。
(3)同位角相等:平行四边形的内角与外角以及同位角之间互相相等。
(4)对角矩形:如果一个平行四边形的所有内角都是直角,则它可以被称为对角矩形。
3. 平行四边形的判定(1)对边相等判定:如果一个四边形的对边长度相等,则它是一个平行四边形。
(2)对角线比例判定:如果一个四边形的两条对角线被一条直线分成比例相等的线段,则它是一个平行四边形。
二、梯形的性质与判定1. 梯形的定义梯形是指有两个平行边的四边形,这两个平行边被称为梯形的底边,而两个非平行边被称为梯形的腰。
2. 梯形的性质(1)底角相等:梯形的两个底角相等。
(2)腰角相等:梯形的两个腰角相等。
(3)对腰异侧角互补:梯形的对腰异侧角互为补角。
(4)对角矩形:如果一个梯形的两个连续内角互为补角,则它可以被称为对角矩形。
3. 梯形的判定(1)底边平行判定:如果一个四边形的两个非平行边被一条直线分成比例相等的线段,则它是一个梯形。
(2)腰长比例判定:如果一个四边形的两个非平行边长度成比例,则它是一个梯形。
总结:平行四边形和梯形是初三数学中重要的几何概念。
通过了解平行四边形和梯形的性质与判定方法,我们可以更好地理解和应用这些概念,解决与其相关的数学问题。
在做题和复习时,我们应该熟练掌握平行四边形和梯形的定义、性质和判定方法,灵活运用于解题过程中。
这样可以提高我们的数学解题能力,更好地应对考试和学习中的数学难题。
平行四边形的性质和判定复习
B
D
E
C
练习
如图, 如图,在 ABCD中,E,F是 D,BC上的点 ABCD中,E,F是AD,BC上的点, 上的点, 且AE=CF.AF,BE交于点G,DF,CE交于点H.图中除 AE=CF.AF,BE交于点G,DF,CE交于点H.图中除 交于点G,DF,CE交于点H. ABCD外 还有几个平行四边形? ABCD外,还有几个平行四边形?
2 5 (A) 11
(C) 15 4 7
36 (B) 13
(D) 17 B 5 8
5
2 O2 5
F
C
再展雄姿
7. 如图: 平行四边形 如图: 平行四边形ABCD中, 中 AC、BD相交于点 相交于点O, AB=8, 、 相交于点 则以下列两条线段长为对角线的长, 则以下列两条线段长为对角线的长 AC=12, BD=20.则△AOB的周长为 24 则 的周长为 能组成平行四边形的是( 能组成平行四边形的是 D ) , △AOB的面积为 24 的面积为 A A. 4, 12 B. 6, 8 3 4 2 6 ABCD的面积为 96 . 8 的面积为 46 O 13 10 C. 8, 26 D. 12, 20 B C
A
D
初露锋芒
5.如图 在△ABC中, AB = AC = 8, 如图: 如图 中 于点E, 点D 在BC上, DE∥AC交AB于点 上 ∥ 交 于点 DF∥AB交AC于F, ∥ 交 于 A . 则DE+DF = 8 +
E B
1
F C D
再展雄姿
6. 如图 在 ABCD中, 对角线 、BD 如图:在 中 对角线AC、 交于点O, EF过O交AD于E,交BC于F, 交于点 过 交 于 , 于 , AB=5, BC=6, OE=2, 则四边形 , , , 则图中共有( B 对全等三角形 对全等三角形. 则图中共有 C )对全等三角形 EFCD的周长是 ( C ) 的周长是 E A D
平行四边形的性质与应用
平行四边形的性质与应用平行四边形是一种具有特定性质和广泛应用的几何图形。
在本文中,我们将探讨平行四边形的性质以及它在现实中的应用。
一、平行四边形的定义与性质平行四边形是指具有两组对边平行的四边形。
它具有以下几个重要性质:1. 对边性质:平行四边形的对边相等。
即相对的两条边长度相等。
2. 对角线性质:平行四边形的对角线互相平分,并且互相垂直。
这意味着平行四边形的两条对角线长度相等且互相垂直。
3. 内角性质:平行四边形的内角之和为360度。
换句话说,平行四边形的任意两个相邻内角之和为180度。
4. 对顶角性质:平行四边形的对顶角相等。
即相对的两个内角大小相等。
二、平行四边形的应用平行四边形在几何学和实际生活中都有广泛的应用。
以下是一些常见的应用场景:1. 建筑设计:平行四边形的性质被广泛应用于建筑设计中,用于绘制平行四边形的模型,计算建筑物的面积和体积,以及确定建筑物内部布局的合理性。
2. 航空航天工程:在航空航天工程中,平行四边形的性质被用于计算飞机的机翼面积,帮助设计师设计出更加稳定和高效的飞行器结构。
3. 地理测量:在地理测量中,平行四边形的性质被应用于测量地表的形状、面积以及地表变动的研究。
同时,平行四边形也是测量工具中常用的标志物,用于校准和校正测量仪器。
4. 平行四边形的证明与运用:在数学课堂上,我们经常需要证明平行四边形的性质,通过证明和推理,培养学生的逻辑思维和问题解决能力。
此外,平行四边形的性质也应用于解决三角函数和向量等数学问题。
5. 平行四边形的网格结构:平行四边形的性质使其成为一种理想的结构形式,例如篮球场地板、瓷砖地板、蜂窝状网格等。
这些结构具有稳定性、坚固性和美观性。
结论平行四边形作为一种常见的几何图形,在我们的日常生活和学习中有着广泛的应用。
通过了解平行四边形的性质和运用,我们能够更好地理解和应用几何学知识,同时也能培养我们的逻辑思维和问题解决能力。
平行四边形不仅仅是数学课堂上的概念,它在各行各业中都发挥着重要的作用,为我们的生活和工作带来了便利和创造力。
平行四边形的认识
平行四边形的认识
平行四边形是初中数学中十分基础的一个概念,它广泛应用于各类
几何问题,因此对平行四边形的认识至关重要。
本文将从平行四边形
的定义、性质以及相关的定理三个方面来介绍平行四边形,让读者对
平行四边形有一个更深入的了解。
一、平行四边形的定义
所谓平行四边形,就是具有两对对边分别平行的四边形。
其中,两
条相邻的边不互相平行,两角相邻的两边不互相垂直。
二、平行四边形的性质
1. 对角线互相平分:平行四边形的两条对角线互相平分。
2. 对角线长度:平行四边形的对角线长度相等。
3. 同底异侧角相等:平行四边形的同底异侧角相等。
4. 邻角互补:平行四边形的邻角互补,即相邻的两个角的和为180°。
5. 对边相等:平行四边形的对边相等。
以上五个性质是初中数学中比较重要的平行四边形性质,也是学习
平行四边形时需要掌握的基本知识点。
三、平行四边形相关定理
1. 平行四边形的基本性质:平行四边形的四个角都是直角,则该四
边形是正方形;若一个角是钝角,则该四边形是菱形。
2. 平行四边形的面积公式:平行四边形的面积等于底边长乘以高。
3. 平行四边形的中线定理:平行四边形中位线长度等于底边长度的一半。
以上三个定理是初中数学中常用的平行四边形定理,也是在解决各类平行四边形问题时需要灵活应用的定理。
综上所述,平行四边形是初中数学中非常基础的一个几何概念,它有着广泛的应用。
熟练掌握平行四边形的定义、性质以及相关定理,可以在学习初中数学时事半功倍,也可以在解决各类几何问题时游刃有余。
平行四边形的性质(精讲)2021-2022学年八年级数学下学期重要考点精讲精练(人教版)(解析版)
18.1平行四边形的性质(解析版)平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.注意:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.题型1:平行四边形的定义1.如图,在▱ABCD中,若EF∥AD,OH∥CD,EF与GH相交于点O,则图中的平行四边形一共有()A.4个B.5个C.8个D.9个【分析】根据平行四边形的判定和性质定理即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∵AD∥EF,CD∥GH,【变式1-1】如图,点D、E、F分别是AB、BC、CA的中点,则图中平行四边形一共有()A.1个B.2个C.3个D.4个【分析】根据三角形的中位线定理得出EF∥AB,DF∥BC,DE∥AC,根据有两组对边分别平行的四边形是平行四边形推出即可.【解答】解:有3个平行四边形,有平行四边形ADEF,平行四边形CFDE,平行四边形BEFD,理由是:∵D、E、F分别是△ABC的边AB、BC、CA的中点,∴EF∥AB,DF∥BC,∴四边形BEFD是平行四边形,同理四边形ADEF是平行四边形,四边形CFDE是平行四边形,∴图中平行四边形一共有3个,故选:C综上所述,可以作0个或3个平行四边形.故答案为:0个或3个.平行四边形的性质(1)1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;注意:①平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;题型2:平行四边形的性质与角度计算2如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=128°,则∠A=()A.32°B.42°C.52°D.62°【分析】根据平行四边形的外角的度数求得其相邻的内角的度数,然后求得其对角的度数即可.【解答】解:∵∠DCE=128°,∴∠DCB=180°﹣∠DCE=180°﹣128°=52°,∵四边形ABCD是平行四边形,∴∠A=∠DCB=52°,故选:C【变式2-1】如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=50°,则∠BCE的度数为()A.50°B.45°C.40°D.35°【分析】由平行四边形的性质得出∠B=∠EAD=50°,由角的互余关系得出∠BCE=90°﹣∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=∠EAD=50°,∵CE⊥AB,∴∠BCE=90°﹣∠B=40°;故选:C【变式2-2】如图,平行四边形ABCD中,BD为对角线,∠C=60°,BE平分∠ABC交DC于点E,连接AE,若∠EAB=38°,则∠DBE为22度.【分析】根据平行四边形的性质和全等三角形的判定和性质解答即可.【解答】解:∵平行四边形ABCD中,∠C=60°,∴AD=BC,∠ADE=∠ABC=120°,∠BAD=60°,∵∠EAB=38°,∴∠EAD=∠BAD﹣∠EAB=22°,∵BE平分∠ABC,∴∠CBE=60°,∴△BCE是等边三角形,∴BE=BC,∠BEC=60°,∴BE=AD,∠BED=120°=∠ADE,在△BDE与△AED中,,∴△BDE≌△AED(SAS),∴∠DBE=∠EAD=22°,故答案为:22题型3:平行四边形的性质与求线段3.如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=2,则AB的长为()A.B.2C.2D.2【分析】利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB即可得出答案.【解答】解:∵CE平分∠BCD交AD边于点E,∴∠ECD=∠ECB,在平行四边形ABCD中,AD∥BC,AB=CD,∴∠DEC=∠ECB,∴∠DEC=∠DCE,∴DE=DC,∵AD=2AB,∴AD=2CD,∴AE=DE=AB=2.故选:C【变式3-1】如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.7【分析】首先由在▱ABCD中,AD=8,BE=3,求得CE的长,然后由DE平分∠ADC,证得△CED 是等腰三角形,继而求得CD的长.【解答】解:在▱ABCD中,AD=8,∴BC=AD=8,AD∥BC,∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠CED,∴CD=CE=5,故选:B【变式3-2】如图,在▱ABCD中,∠BCD的平分线交BA的延长线于点E,AE=2,AD=5,则CD的长为()A.4B.3C.2D.1.5【分析】根据平行四边形的性质可得AB∥CD,AD=BC=5,由CE平分∠BCD得∠DCE=∠BCE,由平行线的性质得∠DCE=∠E,运用等量代换得∠E=∠BCE,从而得到△BCE为等腰三角形,计算出BE的长度,由AE=2可求得AB的长度,继而得到CD的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=5,CD=AB,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AB=BE﹣AE=5﹣2=3,∴CD=3.故选:B平行四边形的性质(2)1.对角线性质:平行四边形的对角线互相平分;2.平行四边形是中心对称图形,对角线的交点为对称中心.注意:(1)对角线的性质可以证明线段的相等关系或倍半关系.(2)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.(3)对角线性质的拓展∶①两条对角线将平行四边形分为面积相等的四个三角形;②过平行四边形的对角线交点作直线与平行四边形的一组对边或对边的延长线相交,得到线段总相等;③过对角线交点的任一条直线都将平行四边形分成面积相等的两部分.且与对角线围成的三角形相对的两个全等.题型4:平行四边形的性质与求周长4.如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,若△BCO的周长为14,则AD的长为()A.12B.9C.8D.6【分析】由平行四边形的性质可得AO=CO=AC,BO=DO=BD,由△BCO的周长为14,可求BC=AD=6.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO=AC,BO=DO=BD,∵AC+BD=16,∴BO+CO=8,∵△BCO的周长为14,【变式4-1】在▱ABCD中,若∠B=60°,AB=16,AC=14,则▱ABCD的周长是52或44.【分析】过点A作AE⊥BC于E,利用勾股定理得出BE,AE,EC,进而根据平行四边形的性质解答即可.【解答】解:①当△ABC是锐角三角形时,如图所示,过点A作AE⊥BC于E,∵∠B=60°,AB=16,∴BE=8,AE=8,由勾股定理得,EC=,∴BC=BE+EC=8+2=10,∴▱ABCD的周长=2(AB+BC)=2×(10+16)=52,②当△ABC是锐角三角形时,如图所示,过点A作AE⊥BC于E,由①可知,BE=8,EC=2,∴BC=BE﹣EC=6,∴▱ABCD的周长=2(AB+BC)=2×(16+6)=44,故答案为:52或44(2)若CD=7,AD=5,OE=2,求四边形AEFD的周长.【分析】(1)根据平行四边形的性质得出AD∥BC,OA=OC,求出∠EAO=∠FCO,根据ASA推出△AEO≌△CFO,从而结论;(2)由△AOE≌△COF(ASA),可得EF=2OE=4,DF+AF=AB=6,继而求得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DC,OA=OC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF;(2)解:∵△OAE≌△OCF,∴CF=AE,∴DF+AE=AB=CD=7,又∵EF=2OE=4,∴四边形AEFD的周长=AD+DF+AE+EF=7+4+5=16题型5:平行四边形的性质与面积5.如图,在▱ABCD中,BC=13,过点A作AE⊥DC于E,AE=12,CE=10.(1)求AB的长;(2)求▱ABCD的面积.【分析】(1)根据平行四边形的性质和勾股定理得出DE,进而解答即可;(2)根据平行四边形的面积公式解答即可.【解答】解:(1)在▱ABCD中,AB=CD,AD=BC=13,在Rt△ADE中,,=.∴CD=DE+CE=5+10=15.∴AB=15;(2)S▱ABCD=CD×AE=15×12=180【变式5-1】如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF、AC.(1)求证:△ABE≌△FCE;(2)若AD=AF,AB=3,BC=5,求四边形ABFC的面积.【分析】(1)由平行四边形的性质得到AB∥DF,从而证得∠ABC=∠BCF,利用ASA可证明结论;(2)由△ABE≌△FCE得到AE=FE,利用对角线相等可证得四边形ABFC为平行四边形,得到AB =FC=CD,利用等腰三角形三线合一证得AC⊥DF,从而得到四边形ABFC是矩形,再利用勾股定理求出AC的长度,即可求出四边形ABFC的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABC=∠BCF,∵E为BC中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE.(2)解:∵△ABE≌△FCE,∴AE=FE,∵BE=FC,∴四边形ABFC是平行四边形,∴AB=CF=CD,∵AD=AF,∴AC⊥FD,∴四边形ABFC是矩形,∴∠BAC=90°,∵AB=3,BC=5,根据勾股定理得AC===4,∴矩形ABFC的面积为AB•AC=3×4=12【变式5-2】如图,▱ABCD中,∠B=60°,AB=4,BC=5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积为()A.5B.5C.10D.10【分析】利用▱的性质及判定定理可判断四边形AEPF为▱,EF、AP为▱AEPF的对角线,设交点为O,则EF、AP相互平分,从而证得△POF≌△AOE,则阴影部分的面积等于△ABC的面积.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC∵PE∥BC,∴PE∥AD∵PF∥CD,∴PF∥AB,∴四边形AEPF为▱.设▱AEPF的对角线AP、EF相交于O,则AO=PO,EO=FO,∠AOE=∠POF∴△POF≌△AOE(SAS),∴图中阴影部分的面积等于△ABC的面积,过A作AM⊥BC交BC于M,∵∠B=60°,AB=4,∴AM=2,S△ABC=×5×2=5,即阴影部分的面积等于5.故选:B题型6:平行四边形的性质与三边关系6.如图,平行四边形ABCD和平行四边形EAFC的顶点D、E、F、B在同一条直线上,则下列关系正确的是()A.DE>BF B.DE=BF C.DE<BF D.DE=FE=BF【分析】本题要求的是DE与BF之间的关系,它们分别是在△ECD与△F AB中的两边,只要证明两个三角形全等即可.【解答】解:∵在平行四边形ABCD中,AB=CD,AB∥CD∴∠CDE=∠ABF∵在平行四边形EAFC中,EC∥AF∴∠AFE=∠CEF∴∠AFB=∠CED∴△ECD≌△F AB(AAS)所以DE=BF.故选:B【变式6-1】如图,AB=CD=DE,CE是由AB平移所得,则AC+BD与AB的大小关系是()A.AC+BD<AB B.AC+BD=AB C.AC+BD>AB D.无法确定【分析】由平移的性质可得AB∥CE,AB=CE,可证四边形ABEC是平行四边形,可得AC=BE,AB =CE,由三角形的三边关系可求解.【解答】解:∵CE是由AB平移所得∴AB∥CE,AB=CE∴四边形ABEC是平行四边形∴AC=BE,AB=CE,∴AB=CD=DE=CE,在△DBE中,DB+BE>DE,∴DB+AC>AB,故选:C【变式6-2】已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.【分析】由平行四边形的性质可得AD=BC,AD∥BC,由“SAS”可证△ADE≌△CBF,即可得结论.【解答】解:DE∥BF DE=BF理由如下:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC∴∠DAC=∠ACB,且AE=CF,AD=BC∴△ADE≌△CBF(SAS)∴DE=BF,∠AED=∠BFC∴∠DEC=∠AFB∴DE∥BF题型7:平行四边形的性质与角平分线7.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.连接BE,若BE⊥AF,EF=2,,则AB的长为()A.B.C.D.4【分析】由平行四边形的性质和角平分线的性质可证AB=BF,在Rt△BEF中,由勾股定理可求BF,即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠F,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠F=∠BAE,∴AB=BF,∵BE⊥AF,EF=2,,∴BF===4,【变式7-1】如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=8.【分析】过点A作AM∥FC,交BE与点O,由平行线的性质和角平分线的性质可证∠BHC=90°,由平行线的性质可求∠AOE=∠BHC=90°,由平行线的性质和角平分线的性质可证AE=AB=5,由勾股定理可求AO的长,由“ASA”可证△ABO≌△MBO,可得AO=OM=4,通过证明四边形AMCF 是平行四边形,可得CF=AM=8.【解答】解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ABC+∠DCB+180°,∵BE平分∠ABC,CF平分∠BCD,∴∠ABE=∠EBC,∠BCF=∠DCF,∴∠CBE+∠BCF=90°,∴∠BHC=90°,∵AM∥CF,∴∠AOE=∠BHC=90°,∵AD∥BC,∴∠AEB=∠EBC=∠ABE,∴AB=AE=5,又∵∠AOE=90°,∴BO=OE=3,∴AO===4,在△ABO和△MBO中,,∴△ABO≌△MBO(ASA),∴AO=OM=4,∴AM=8,∵AD∥BC,AM∥CF,∴四边形AMCF是平行四边形,∴CF=AM=8,故答案为:8【变式7-2】如图,在平行四边形ABCD中,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.求证:CD=BE.【分析】直接利用平行四边形的性质结合角平分线的定义、等腰三角形的性质得出AB=BE,进而得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,题型8:平行四边形的性质与垂直平分线8.在平行四边形ABCD中,对角线AC的垂直平分线交AD于点E,连接CE.若平行四边形ABCD的周长为30cm,则△CDE的周长为()A.20cm B.40cm C.15cm D.10cm【分析】根据线段垂直平分线的性质,可得AE=CE,又AB+BC=AD+CD=15cm,继而可得△CDE的周长等于AD+CD.【解答】解:如图,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长为30cm,∴AD+CD=15(cm),∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=15(cm).故选:C【变式8-1】如图,在▱ABCD中,D在AB的垂直平分线上,且▱ABCD的周长为42cm,△BCD的周长比▱ABCD的周长少12cm,则AB=12cm,S▱ABCD=36cm2.【分析】根据垂直平分线的性质可知,AD=DB,由于△ABD的周长比▱ABCD的周长少10cm,所以可求出BD=9cm,再根据周长的值求出AB,根据勾股定理求出高DE,即可求出答案.【解答】解:∵AB的垂直平分线EF经过点D,∴DA=DB,∵四边形ABCD是平行四边形,∴DA=CB,∵△ABD的周长比▱ABCD的周长少10cm∴BD=9cm,∴ADBC=BD=9cm,∵▱ABCD的周长为42cm,∴AB=DC=×42cm﹣9cm=12cm,在△ADB中,AD=BD=9cm,AB=12cm,∵DE垂直平分AB,∴∠AED=90°,AE=BE=6cm,由勾股定理得:DE==3(cm),∴S平行四边形ABCD=AB×DE=12cm×3cm=36cm2,故答案为:12,36.【变式8-2】如图,在平行四边形ABCD中,AC的垂直平分线分别交CD,AB于点F和E,AB=4,BC =,AC=3,求EF的长.【分析】过C作CG∥FE交AB的延长线于G、作CH⊥BG交BG于H.构建直角△AHC、直角△BCH,相似三角形△ACH∽△AGC,以及平行四边形EFCG.利用勾股定理和相似三角形的对应边成比例可以求得CG的长度,则平行四边形EFCG的对边相等:EF=CG.【解答】解:如图,过C作CG∥FE交AB的延长线于G、作CH⊥BG交BG于H.由勾股定理得到:CH2=AC2﹣(AB+BH)2=BC2﹣BH2,∵AB=4,BC=,AC=3 ,∴(3 )2﹣(4+BH)2=()2﹣BH2,解得∴BH=1.∴AH=AB+BH=4+1=5.∴CH==.∵CG∥FE、AC⊥FE,∴CG⊥AC.∵∠CAH=∠GAC,∠AHC=∠ACG=90°,∴△ACH∽△AGC,∴CH:CG=AH:AC,∴CG==.∵四边形ABCD平行四边形,∴FC∥EG.又CG∥FE,∴四边形EFCG是平行四边形,∴EF=CG=.题型9:平行四边形的性质与最值9.如图,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M是线段AD上任意一点,连接MC并延长到点E,使MC=CE,以MB和ME为边作平行四边形MBNE,请直接写出线段MN长度的最小值.【分析】作辅助线,构建相似三角形,先根据平行线分线段成比例定理得:=,G是BC上一定点,得出当MN⊥AD时,MN的长最小,计算AH的长就是MN的最小值.【解答】解:当MN⊥AD时,MN的长最小,∴MN∥DC∥AB,∴∠DCM=∠CAN=∠MNB=∠NBH,设MN与BC相交于点G,∵ME∥BN,MC=CE,∴=,∴G是BC上一定点,作NH⊥AB,交AB的延长线于H,∵∠D=∠H=90°,∴Rt△MDC∽Rt△NHB,即=,∴BH=2DC=4,∴AH=AB+BH=6+4=10,∴当MN⊥AD时,MN的长最小,即为10;则线段MN长度的最小值为10.【变式9-1】如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,求DE的最小值.【分析】由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【解答】解:∵在Rt△ABC中,∠B=90°,∴BC⊥AB,∵四边形ADCE是平行四边形,∴OD=OE,OA=OC,∴当OD取最小值时,DE线段最短,此时OD⊥BC,∴OD是△ABC的中位线,∴OD=AB=2,∴ED=2OD=4;则DE的最小值是4.【变式9-2】在平面直角坐标系中,已知平行四边形ABCD的点A(0,﹣1)、点B(m,m+1)(m≠﹣1),点C(4,1),则对角线BD的最小值是()A.3B.2C.5D.6【分析】先根据B(m,m+1),可知B在直线y=x+1上,设AC,BD的交点为M,则M(2,0),BD=2BM,所以当BM最小时,BD最小,根据垂线段最短,得到当BM⊥直线y=x+1时,BM最小,此时BD亦最小,如图2,可以证得△BEM为等腰直角三角形,从而利用勾股定理,求得此时BM的值,即可解决.【解答】解:∵点B(m,m+1),∴令,∴y=x+1,∴B在直线y=x+1上,设AC,BD交于点M,如图1,∴M是AC和BD的中点,∴M(2,0),BD=2BM,∴当BM最小时,BD最小,过M作MH⊥直线y=x+1于H,根据垂线段最短,BM≥MH,所以BM的最小值为MH,即当BM⊥直线y=x+1时,BM最小,则BD最小,设直线y=x+1与x轴,y轴交于点E,F,如图2,令x=0,则y=1,∴F(0,1),同理,E(﹣1,0),∴OE=OF=1,∴∠BEM=45°,又∠MBE=90°,∴∠BEM=∠BME=45°,∴△BME为等腰直角三角形,∵E(﹣1,0),M(2,0),∴ME=3,∵BE2+BM2=ME2,且BM=BE,∴BM=,∴,即对角线BD的最小值为3,故选:A.题型10:平行四边形的性质与折叠问题10.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C【变式10-1】如图,在▱ABCD中,∠A=70°,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于()A.70°B.40°C.30°D.20°【分析】根据折叠的性质得出AM=MD=MF,得出∠MF A=∠A=70°,再由三角形内角和定理即可求出∠AMF.【解答】解:根据题意得:AM=MD=MF,∴∠MF A=∠A=70°,∴∠AMF=180°﹣70°﹣70°=40°;故选:B【变式10-2】如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=55°.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.题型11:平行四边形的性质与证明题11.如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF.证明:BE=DF.【分析】根据平行四边形的性质得出AB=CD,AB∥CD,进而利用全等三角形的判定和性质解答即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠DCA,∵E,F是对角线AC的三等分点,∴AE=CF,在△ABE与△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF.【变式11-1】如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)线段AF与CE有什么关系?请证明你的结论.【分析】(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)AE=CF且AF∥CE,理由如下:由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.【变式11-2】如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)求证:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以证明.【分析】(1)只要证明∠MAB+∠MBA=90°即可;(2)结论:DF=CE.只要证明AD=DE,CF=BC,可得DE=CF即可解决问题;【解答】(1)证明:∵AE、BF分别平分∠DAB和∠ABC,∴∠EAB=∠DAB,∠ABF=∠ABC,∵四边形ABCD是平行四边形∴∠DAB+∠ABC=180°,∴∠EAB+∠ABF=×180°=90°,∴AE⊥BF.(2)DF=CE.证明:∵AE平分∠DAB∴∠EAB=∠EAD,∵DC∥AB,∴∠EAD=∠EAD,∴AD=DE,同理:FC=BC,∵四边形ABCD是平行四边形,∴AD=BC,∴DE=FC,∴DF=CE两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度.两条平行线间的任何两条平行线段都是相等的.题型12:平行线的距离12.如图,平行四边形ABCD中,对角线AC=21cm,BE⊥AC,垂足为E,且BE=5cm,AD=7cm,求AD和BC之间的距离.【分析】利用等积法,设AD与BC之间的距离为x,由条件可知▱ABCD的面积是△ABC的面积的2倍,可求得▱ABCD的面积,再由S四边形ABCD=AD•x,可求得x.【解答】解:设AD和BC之间的距离为x,则平行四边形ABCD的面积等于AD•x,∵S平行四边行ABCD=2S△ABC=2×AC•BE=AC•BE,∴AD•x=AC•BE,即:7x=21×5,x=15(cm),答:AD和BC之间的距离为15cm.【变式12-1】如图,在▱ABCD中,AC⊥AB,AB=6,BC=10,求:(1)AB与CD的距离;(2)AD与BC的距离.【分析】(1)在直角三角形中,由勾股定理解直角三角形,再利用三角形的面积公式求解即可;(2)由面积相等建立等式关系,进而可求解其距离.【解答】解:(1)在Rt△ABC中,由勾股定理可得AC===8,∴AB与CD的距离=AC=8;(2)∵在Rt△ABC中,AC=8,∴AD、BC之间的距离为6×8÷10=4.8【变式12-2】如图,在▱ABCD中,AE⊥BC于点E,CF⊥AD于点F.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=2,求AD与BC之间的距离.【分析】(1)根据平行四边形的对边相等可得AB=CD,对角相等可得∠B=∠D,然后利用“角角边”证明△ABE和△CDF即可;(2)利用∠B的正弦值求出AE,再根据平行线间的距离的定义解答.【解答】(1)证明:在▱ABCD中,AB=CD,∠B=∠D,∵AE⊥BC,CF⊥AD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS);(2)解:∵∠B=60°,AB=2,∴AE=AB•sin60°=2×=,∵▱ABCD的边AD∥BC,∴AD与BC之间的距离为word可编辑文档。
初二数学:平行四边形知识点总结及压轴题练习(附答案解析)
A C BD 初二平行四边形所有知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线互相平分。
3平行四边形的判定:⑴.两组对边分别相等的四边形是平行四边形; ⑵对角线互相平分的四边形是平行四边形;⑶两组对角分别相等的四边形是平行四边形; ⑷一组对边平行且相等的四边形是平行四边形。
4、矩形的定义:有一个角是直角的平行四边形。
5、矩形的性质:⑴矩形的四个角都是直角;⑵矩形的对角线相等。
6、矩形判定定理:⑴ 有三个角是直角的四边形是矩形;⑵对角线相等的平行四边形是矩形。
7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
(连接三角形两边中点的线段叫做三角形的中位线。
)8、菱形的定义 :有一组邻边相等的平行四边形。
9、菱形的性质:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
S 菱形=1/2×ab (a 、b 为两条对角线长)10、菱形的判定定理:⑴四条边相等的四边形是菱形。
⑵对角线互相垂直的平行四边形是菱形。
11、正方形定义:一个角是直角的菱形或邻边相等的矩形。
12正方形判定定理:⑴ 邻边相等的矩形是正方形。
⑵有一个角是直角的菱形是正方形。
(矩形+菱形=正方形)常考题:一.选择题(共14小题)1.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等2.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形5.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)6.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.117.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.168.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1010.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.1711.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.812.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1913.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣414.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°二.填空题(共13小题)15.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.16.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.17.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO 的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD 和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.19.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.20.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.21.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是.22.如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.23.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.24.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C (0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.25.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标.26.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.27.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三.解答题(共13小题)28.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.29.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.30.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.31.如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.32.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.33.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.34.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?35.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.36.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.37.如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.38.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.39.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.40.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.(2014•河池)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3.(2008•扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.4.(2011•张家界)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.5.(2006•南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.6.(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.7.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【分析】在矩形ABCD中根据AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD 沿EF翻折点B恰好落在AD边的B′处,所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EFB′是等边三角形,由此可得出∠A′B′E=90°﹣60°=30°,根据直角三角形的性质得出A′B′=AB=2,然后根据矩形的面积公式列式计算即可得解.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故选D.【点评】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.8.(2013•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.9.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.10.(2013•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.11.(2013•泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC 的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF 为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD 与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF 与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.12.(2013•菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.13.(2013•连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣4【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.14.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE 相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.二.填空题(共13小题)15.(2008•恩施州)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.16.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD 的周长等于20.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.17.(2013•厦门)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF 是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.18.(2007•临夏州)如图,矩形ABCD的对角线AC和BD相交于点O,过点O 的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE =S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.19.(2014•宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B 的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D 在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.20.(2015•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.21.(2013•十堰)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是1.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=,∴CE==2,∴AB=1,故答案为:1.【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.22.(2013•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF ⊥CD于F,∠B=60°,则菱形的面积为.【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.【解答】解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.【点评】本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.23.(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.24.(2015•攀枝花)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为(2.5,4),或(3,4),或(2,4),或(8,4).【分析】由矩形的性质得出∠OCB=90°,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:①当PO=PD时;②当OP=OD时;③当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标.【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果.25.(2013•阜新)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D 的坐标(3,2),(﹣5,2),(1,﹣2).【分析】首先根据题意画出图形,分别以BC,AB,AC为对角线作平行四边形,即可求得答案.【解答】解:如图:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(3,2),(﹣5,2),(1,﹣2).故答案为:(3,2),(﹣5,2),(1,﹣2).【点评】此题考查了平行四边形的性质.注意坐标与图形的关系.26.(2014•丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF 是等边三角形,再利用菱形的边长为4求出时间t的值.。
中考数学知识整理平行线与平行四边形的性质
中考数学知识整理平行线与平行四边形的性质中考数学知识整理:平行线与平行四边形的性质平行线和平行四边形是中考数学中一个重要的概念,它们具有一些独特的性质和关系。
掌握这些知识点,可以帮助我们更好地理解几何图形的性质和运用它们解题。
本文将对平行线和平行四边形的性质进行整理和总结。
一、平行线的性质在平面几何中,如果两条直线在同一个平面内,且不相交,那么它们被称为平行线。
平行线的性质有以下几个重要点:1. 平行线的判定:平行线有多种判定方法,常见的有以下两种:(1) 两条直线的斜率相等且不重合,即斜率相等的两条直线是平行线。
(2) 同一条横线的两条平行线上,二者任意一线与另一条的全部交点,都与另一条外一侧的交点全等。
即同位角相等。
2. 平行线之间的关系:(1) 平行线上的任意一组对应角都相等。
(2) 平行线上的任意一组同位角都相等。
(3) 平行线上的内错角(相交线的内错角)互补,即和为180度。
(4) 平行线上的外错角(相交线的外错角)相等。
3. 平行线和其他几何图形之间的关系:(1) 平行线和平行线之间相交的直线叫做平行线的转角线。
(2) 平行线和平行线之间的转角线与平行线上的对应角、内错角、外错角之间均有特定的关系。
二、平行四边形的性质平行四边形是指有四边且对应边都平行的四边形,平行四边形的性质如下:1. 平行四边形的基本性质:(1) 对边平行:平行四边形的对边是两两平行的。
(2) 对角线的性质:平行四边形的对角线互相平分,即两条对角线相交于各自的中点。
2. 平行四边形的特殊性质:(1) 相邻边的对角线分割成的小三角形全等。
(2) 对角线的长度关系:平行四边形的两条对角线的长度相等。
(3) 内角和:平行四边形的内角之和为360度,即四个内角之和等于360度。
(4) 体对角线的性质:平行六面体的对棱都是平行四边形。
三、应用举例在中考数学中,平行线和平行四边形的性质经常与解题相结合。
以下是一些常见的平行四边形的应用举例:1. 根据平行四边形的性质证明图形的性质。
初中数学平行四边形的性质知识点总结
初中数学平行四边形的性质知识点总结,早看早受益!初中数学平行四边形的性质知识点总结(一)知识点总结1.定义:两组对边分别平行的四边形叫平行四边形2.平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形的邻角互补,对角相等;(3)平行四边形的对角线互相平分;3.平行四边形的判定平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:第一类:与四边形的对边有关(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;第二类:与四边形的对角有关(4)两组对角分别相等的四边形是平行四边形;第三类:与四边形的对角线有关(5)对角线互相平分的四边形是平行四边形常见考法(1)利用平行四边形的性质,求角度、线段长、周长;(2)求平行四边形某边的取值范围;(3)考查一些综合计算问题;(4)利用平行四边形性质证明角相等、线段相等和直线平行;(5)利用判定定理证明四边形是平行四边形。
误区提醒(1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。
初中数学平行四边形的性质知识点总结(二)知识点总结一、特殊的平行四边形1.矩形:(1)定义:有一个角是直角的平行四边形。
(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。
(3)判定定理:①有一个角是直角的平行四边形叫做矩形。
②对角线相等的平行四边形是矩形。
③有三个角是直角的四边形是矩形。
直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。
2.菱形:(1)定义:邻边相等的平行四边形。
(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
19.1平行四边形性质复习
形,并说明理由
三、小结:
四、达标测试
3
八
第 4周 主题 授课人
年级
数学
(学科)训练单
总课时第 20 节 设计人 刘慧香 授课时间
第 5 课时 19.1 平行四边形性质复习 课 型
问题解决课
必做题 1.练习:□ABCD 两邻边的长分别为 3 ㎝和 5 ㎝,夹角为 120 度,求这个行四边形 面积?
2、 已知如下图, 在 ABCD 中, AC 与 BD 相 交于点 O, 点 E, F 在 AC 上, 且 BE∥DF. 求 证:BE=DF.
一、复习旧知 1、平行四边形概念: 边: 2、平行四边形的性质 角: 对角线:
3、用图形语言和符号语言描述平行四边形概念和性质
1
二、课上导学 数学活动一 求面积
例 1 如图,□ABCD 中,AE⊥BC,AF⊥CD,垂足分别是 E,F,BE=1,CF=0.5 ∠EAF=60°求□ABCD 的面积?
数学活动二 求线段长或取值范围 例 2 如图 □ABCD 的周长为 60 ㎝,对角线相交于点 0,ABC 的周长比 BOC 的 周长少 8 ㎝,求 AB、AD 的长。
有效反馈评价设计
重点 难点 关键 教法 内容与时间
归纳引导 教师有效问题设计
学生有效活动设计
一、复习旧 检查学生对知识整理情况 学生口答 知 6′ 教师根据学生回答板书知 识结构 二、展示目 要求学生认真读目标,明 学生默读目标 标 2′ 确学习任务 教师解读目标
三.归 类 复 习 活动一 6′ 要求学生先独立归思考, 学生组内交流 再交流解题思路
八
第 4 周 主题 授课人 学习 目标 重点 难点
年级 数学
第 5 课时
平行四边形的性质知识点总结
平行四边形的性质知识点总结平行四边形是一种特殊的四边形,具有一些独特的性质和特点。
在本文中,我们将对平行四边形的性质进行总结和探讨。
1. 定义:平行四边形是指四边形的对边两两平行。
这意味着平行四边形的两对相对边是平行的。
2. 对角线:平行四边形的对角线相交于一点,并且相交点将对角线分成两个相等的部分。
这个相交点被称为对角线的交点。
3. 边长:平行四边形的对边是平行的,因此它的对边长度相等。
4. 内角和:平行四边形的对角线将它分成两个三角形。
这两个三角形的内角和分别为180°,因此平行四边形的内角和为360°。
5. 互补内角:平行四边形的相邻内角互补,也就是说,每个内角与相邻的内角之和为180°。
6. 对角线长度关系:平行四边形的对角线分成两个相等的部分,因此它们的长度相等。
7. 对边角:平行四边形的对边角相等。
也就是说,每对对边的夹角大小相等。
8. 顶点:平行四边形的顶点是四边形的角,其中每个顶点上的两条边都是相邻的边和相对的边。
9. 中点连线:平行四边形的相邻顶点可以通过连接中点而形成一组平行线。
这些平行线将平行四边形分成两个相等的部分。
10. 高度:平行四边形的高度是指从一个顶点到相对边的垂直距离。
对于平行四边形来说,所有的高度长度相等。
总结:平行四边形是一种具有特殊性质的四边形。
它的对边平行,对角线相交于一点,内角和为360°,对边长度相等,对角线长度相等,对边角相等等。
这些性质对于解决与平行四边形相关的问题和证明都具有重要的作用。
通过了解和掌握平行四边形的性质,我们可以更好地理解和应用几何学中的相关概念和定理。
希望本文对读者们在学习和应用平行四边形知识时提供一些帮助。
平行四边形的特性与分类知识点总结
平行四边形的特性与分类知识点总结平行四边形是学习几何学中一个重要的概念,它具有许多特性和分类。
本文将对平行四边形的特性和分类进行总结,以帮助读者更好地理解和掌握这一知识点。
一、平行四边形的定义和特性平行四边形是指四边形的对边两两平行的四边形。
根据这个定义,我们可以得出以下几个平行四边形的特性:1. 对边平行性:平行四边形的对边两两平行。
这意味着任意两条对边之间的夹角都相等。
2. 对角线性质:平行四边形的对角线相互平分,并且彼此相等。
也就是说,平行四边形的对角线互相垂直且相等长。
3. 对边长度性质:平行四边形的对边长度相等。
也就是说,相对的两边长度相等,同样相对的两个角度也是相等的。
二、平行四边形的分类根据平行四边形的性质,我们可以将其进一步分类,常见的平行四边形分类如下:1. 矩形:矩形是一种特殊的平行四边形,它的四个内角都是直角(90度),同时对边长度相等。
矩形具有较多的性质,如对角线相等长且相互平分,任意两条相邻边互相垂直等。
2. 正方形:正方形也是一种特殊的矩形,它的四个边长相等,并且四个内角都是直角。
正方形还具有其他特性,如对角线相等且相互平分,对边平行等。
3. 长方形:长方形是四边形的一种,它有两对平行的边,并且相对边长度相等。
长方形的特性包括对角线相等且相互平分,对边平行等。
4. 平行四边形:除了上述特殊的平行四边形外,还有一般的平行四边形,它具有对边平行和对角线性质,但没有其他特殊的角度和边长性质。
三、平行四边形的应用平行四边形是几何学中一个重要的概念,具有广泛的应用。
下面列举几个常见的应用场景:1. 建筑设计:在建筑设计中,平行四边形的概念常常用于设计和构建平行的墙壁或者地面。
2. 图形设计:平行四边形的特性和分类可以用于图形设计中的排版、构图等方面。
3. 工程测量:工程测量中的平行四边形可以用来判断建筑物或者道路是否平行或者垂直。
4. 数学证明:平行四边形的性质也常常被应用于数学证明中,用来推导和证明其他几何关系。
平行四边形性质的复习
平行四边形的性质一、课堂笔记知识点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”.诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条. 知识点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.知识点三、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的.2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.二、经典例题考点一、平行四边形的定义、表示及相关概念例1.如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有()A.12个B.9个C.7个D.5个考点二、平行四边形中的角与边的性质例2.如图,在平行四边形ABCD中,边AB在x轴上,顶点D在y轴上,AB=5,AD=4,点A 的坐标为(﹣1,0),求B、C、D点的坐标.例3.在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.例4.如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=110°,求∠ABE的度数.例5.已知:如图,在▱ABCD中,AB=CD,AD=BC,AB∥CD,AB∥CD,点F在AB的延长线上,且BF=AB,联结FD交BC于点E.(1)证明:△DCE≌△FBE;(2)若EC=3,求AD的长.例6.已知:如图,A为EF上一点,四边形ABCD是平行四边形且∠EAD=∠BAF.(1)求证:△CEF是等腰三角形.(2)△CEF的哪两边之和恰好等于平行四边形ABCD的周长?证明你的结论.考点三、平行线的性质定理及推论例7.如图,在▱ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=60°,BE=4,CF=2.(1)从对称性质看,▱ABCD是_________对称图形;(2)求平行四边形ABCD的周长.例8.如图,将▱ABCD分成3块,已知图形中阴影部分AEFG是平行四边形,面积是12平方厘米,请分别求出图中三角形ABG和梯形CDEF的面积.例9.如图,点P是▱ABCD上一点,已知S△ABP=3,S△PCD=1,求▱ABCD的面积.例10.如图,m∥n,AD∥BC,CD∶CF=2∶1,如果△CEF的面积为10,求四边形ABCD 的面积.例11. 如图,在▱ABCD中,F,E分别是BA,DC延长线上的点,且AE∥CF,交BC,AD于点G,H.求证:EG=FH.例12.如图,把▱ABCD分成4个小平行四边形,已知▱AEOG,▱BFOG,▱CFOH的面积分别为8,10,30,求▱OEDH的面积.考点四、平行四边形对角线的性质例13.已知点A(3,0)、B(-1,0)、C(0,2),以A、B、C为顶点画平行四边形,你能求出第四个顶点D吗?二、经典例题答案考点一、平行四边形的定义、表示及相关概念例1解:根据平行四边形的定义:两组对边分别平行的四边形是平行四边形,则图中的四边AEOH,HOFD,EBNO,ONCF,AEFD,EBCF,ABNH,HNCD,ABCD都是平行四边形,共9个.故选B.考点二、平行四边形中的角与边的性质例2解:∵在平行四边形ABCD中,AB=5,AD=4,点A的坐标为(﹣1,0),∴AO=1,BO=5﹣1=4,DO==故B(4,0),D(0,),由平行四边形的性质得:AB=CD=5,故C(5,).例3.证明:平行四边形ABCD中,将△BCD沿BD对折,使点C落在E处,可得∠DBE=∠ADB,∠A=∠C,∴OB=OD,在△AOB和△EOD中,,∴△AOB≌△EOD(AAS),∴OA=OE.例4.(1)证明:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠DCE=∠F,∠FBC+∠BCD=180°,∵E为AD的中点,∴DE=AE.在△DEC和△AEF中,,∴△DEC≌△AEF(AAS).∴DC=AF.∴AB=AF;(2)解:由(1)可知BF=2AB,EF=EC,∵∠BCD=110°,∴∠FBC=180°﹣110°=70°,∵BC=2AB,∴BF=BC,∴BE平分∠CBF,∴∠ABE=∠FBC=×70°=35°.例5.(1)证明:∵AB∥CD,∴∠FBE=∠C,∵AB=DC,AB=BF,∴BF=DC,在△DCE和△FBE中,,∴△DCE≌△FBE(AAS);(2)解:∵△DCE≌△FBE,∴BE=EC=3,∴AD=BC=6.例6.(1)证明:∵四边形ABCD是平行四边形,∴AD∥FC,AB∥EC,∴∠FAB=∠E,∠EAD=∠F.又∵∠EAD=∠BAF,∴∠E=∠F.∴△CEF是等腰三角形.(2)结论:CE+CF=平行四边形ABCD的周长.证明:由(1)可知:∠FAB=∠E,∠EAD=∠F,∴∠F=∠BAF,∠DAE=∠E.∴AB=BF,AD=DE,∴▱ABCD的周长=AB+BC+CD+AD=BF+BC+CD+DE=CE+CF.考点三、平行线的性质定理及推论例7.【解】(1)中心;(2)40试题解析:1)∵四边形ABCD是平行四边形,∴对角线互相平分,∴O为旋转中心,即平行四边形ABCD是中心对称图形,(2)∵四边形ABCD是平行四边形,∴∠B=∠D=60°,AB=CD,AD=BC.∵AE⊥BC,∵BE=4,∴AB=8,∴CD=AB=8,∵CF=2,∴DF=6,∵AF⊥DC,∠D=60°∴在Rt△ADF中,AD=12,∴平行四边形ABCD的周长=2(12+8)=40.例8.【解】解:分别过点A作AM⊥BC于M,CN⊥AD于N,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =9 cm ,∴AM =CN ,∵S ▱AEFG =GF·AM ,∴AM =S ▱AEFG GF =123=4(cm ), ∴CN =AM =4 cm ,∵四边形AEFG 是平行四边形,∴AE =GF =3 cm ,∴DE =6 cm ,∴S △ABG =12BG·AM =6(cm 2), S 梯形CDEF =12(CF +DE)·CN =18(cm 2) 例9.解:过点B 作BM ⊥AD ,交DA 的延长线于点M ,过点C 作CN ⊥AD 于点N ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴AM =CN ,∴S △ABP +S △PCD =12AP·BM +12DP ·CN =12AP·BM +12DP·BM =12BM(AP +DP)=12AD·BM =12S ▱ABCD ,∴S ▱ABCD =2(S △ABP +S △PCD )=2(3+1)=821例10.解:过点A 作AG ⊥n 于点G ,EH ⊥n 于点H ,∵m ∥n ,∴AG =EH ,∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 为平行四边形,又∵S △CEF =12CF·EH =10,CD ∶CF =2∶1, ∴S ▱ABCD =CD·AG =2CF·EH =40例11.解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∵AB ∥CD ,AE ∥CF ,∴AE =CF ,∵AD ∥BC ,AE ∥CF ,∴AG =CH ,∴AE -AG =CF -CH ,即EG =FH例12.解:设平行线AD ,GH 之间的距离为h 1,平行线GH ,BC 之间的距离为h 2,则S ▱OEDH S ▱OHCF =OH·h 1OH ·h 2= h 1h 2,S ▱OEAG S ▱OGBF =OG·h 1OG ·h 2=h 1h 2,∴S ▱OEDH S ▱OHCF =S ▱OEAG S ▱OGBF, 即S ▱OEDH 30=810,∴S ▱OEDH =24 考点四、平行四边形对角线的性质例13.。
平行四边形的性质复习
当四个孩子看到时,争论不休,都认为自己的地少, 同学们,你认为老人这样分合理吗?为什么?
例题教学:
如图,已知 ABCD中, AE⊥BD,CF⊥BD,垂足 为E、F, 求证:EB=DF
D E
F
C
A
B
如图,在平面直角坐标系中, OBCD的顶点O﹑B﹑D的坐标 如图所示,则顶点 C 的 坐标为 Y (C ) D(2,3) C
A
C O
B
D
如图,在 ABCD中, 对角线 AC﹑BD相交于点O,且AC+BD=20, 5 △AOB的周长等于15,则CD=______.
A
B
D O
C
如图: ABCD中,AB=BE, 连结AE,并延长与DC的延长线 交于点F,∠F=62°,求这个 平行四边形各内角的度数.
F A
D
B
C
E
已知
ABCD,延长AB到E, 延长
CD到F ,使BE=DF.求证:AF=CE
如图,在
ABCD中,
⊥ AE BC,AF ⊥CD,垂足分别为 E,F,AE=6cm,AF=8cm,若 0 ∠EAF=30 , 求 ABCD的周长和面积
A
D
B
E
C
已知:平行四边形ABCD中, AB=2,BC=4,∠ABC =60°,BE平分∠ABC交 AD于E,交CD的延长线于 F.⑴△ABE与△DFE全等 吗?⑵求CF的长. ⑶若连结CE,则CE与BE有 F 怎样的位置关系? A E D ⑷能否求出CE的长?
B C
小明家有一块平行四边形菜地,菜 地中间有一口井,为了浇水的方便,小 明建议妈妈经过水井修一条路,可以把 菜地分成面积相等的两部分. 同学们, 你知道聪明的小明是怎么帮妈妈分的吗?