2018年高考数学(理科)二轮复习:寒假作业(二) 函数的图象与性质(注意速度和准度)含解析

合集下载

2018届高考数学理新课标二轮专题复习课件:2-6函数的性质及图像 精品

2018届高考数学理新课标二轮专题复习课件:2-6函数的性质及图像 精品

[函数的周期性、对称性] (1)(2016·马鞍山质检)已知 f(x)是 R 上的奇函数,f(1)=1,其 对任意 x∈R 都有 f(x+6)=f(x)+f(3)成立,则 f(2 015)+f(2 016) =________.
【解析】 令 x=-3,故 f(-3+6)=f(-3)+f(3),又 f(- 3)=-f(3),故 f(3)=0,故 f(x+6)=f(x),故 f(2 015)=f(5)=f(- 1)=-f(1)=-1,f(2 016)=f(0)=0,故 f(2 015)+f(2 016)=-1.
【答案】 C
(5)(2016·郑州质检)已知函数 f(x)=x+4x,g(x)=2x+a,若∀x1
∈[12,1],∃x2∈[2,3],使得 f(x1)≥g(x2),则实数 a 的取值范围
为( )
A.a≤1
B.a≥1
C.a≤2
D.a≥2
【审题】 对∀x1,∃x2 使 f(x1)≥g(x2)⇔f(x)min≥g(x)min.
【解析】 由题意知,mx2-6mx+m+8≠0 对一切实数 x 都成立,即 mx2-6mx+m+8=0 在实数集上无解.当 m=0 时, 定义域为 R,满足题意;当 m≠0 时,由 Δ=(-6m)2-4m(m+8)<0, 解得 0<m<1.综上,实数 m 的取值范围是[0,1).
【答案】 [0,1)
【答案】 A
【回顾】 (1)①若 f(x+T)=f(x),则 T 为周期;②若 f(x+ a)=-f(x),则 T=2a;③若 f(x+a)=f(1x),则 T=2a;④若 f(x +a)=-f(1x),则 T=2a.
(2)①若函数 y=f(x)满足 f(a+x)+f(a-x)=2b,即 f(x)+f(2a -x)=2b,则 y=f(x)的图像关于点(a,b)成中心对称;②若函数 y=f(x)满足 f(a+x)=f(a-x)成轴对称;③若 y=f(x+a)是偶函数, 则函数 y=f(x)的图像关于直线 x=a 对称,若 y=f(x+a)是奇函数, 则函数 y=f(x)的图像关于点(a,0)对称.

2018届高考数学二轮复习函数与导数函数的图象与性质(理)专题卷

2018届高考数学二轮复习函数与导数函数的图象与性质(理)专题卷
2
解析:易知 f(x)=
4 4 m 16 8 =2+ =6,m=f(4)=2+ =4,所以 = = . 3-2 4-2 M 6 3 答案:D e 5.(2017·太原市模拟试题)函数 f(x)= 的图象大致为(
x
x
)
e xe -e x-1e 解析: 由 f(x)= , 可得 f′(x)= = , 则当 x∈(-∞, 0)和 x∈(0,1) 2 2
a
答案:A 10.奇函数 f(x)的定义域为 R,若 f(x+1)为偶函数,且 f(1)=2 017,则 f(2 016)+
f(2 017)的值为(
A.2
) B.2 017
C.-2 017 D.-2 解析:由函数 f(x)为 R 上的奇函数,可得函数 f(x)的对称中心为 O(0,0),且 f(0)=0. 又函数 f(x+1)为偶函数,可知函数 f(x)的对称轴为 x=1. 所以函数 f(x)的周期为 T=4(1-0)=4. 故 f(2 016)=f(4×504)=f(0)=0,f(2 017)=f(1+4×504)=f(1)=2 017. 所以 f(2 016)+f(2 017)=0+2 017=2 017. 答案:B 11.(2017·广西三市第一次联考)已知 f(x)是定义在 R 上的偶函数,且在区间(-∞, 0]上单调递增,若实数 a 满足 f(2log3a)>f(- 2),则 a 的取值范围是( A.(-∞, 3) C.( 3,+∞) B.(0, 3) D.(1, 3) )
fx1-fx2 [fx1-x1]-[fx2-x2] <1,可得 <0. x1-x2 x1-x2
令 F(x)=f(x)-x,由题意知 F(x)在(-∞,0),(0,+∞)上是减函数,且是奇函数, 且 F(2)=0,F(-2)=0,所以结合图象,令 F(x)>0,得 x<-2 或 0<x<2.故选 C. 答案:C 9.已知函数 f(x)=loga(3 +b-1)(a>0,a≠1)的图象如图所示,则 a,b 满足的关系 是( )

2018届高考数学二轮复习 函数的图象专题

2018届高考数学二轮复习 函数的图象专题

函数的图象专题[基础达标](30分钟50分)一、选择题(每小题5分,共35分)1.下列函数f(x)的图象中,满足f14>f(3)>f(2)的只可能是()D【解析】因为f14>f(3)>f(2),所以函数f(x)有增有减,排除选项A,B;又选项C中,f14<f(0)=1,f(3)>f(0),即f14<f(3),所以排除选项C,故选项D正确.2.函数f(x)与g(x)在同一直角坐标系下的图象如图所示,则f(x)与g(x)的解析式可以是()A.f(x)=1+log2x与g(x)=21-xB.f(x)=1-log2x与g(x)=21-xC.f(x)=1+log2x与g(x)=21+xD.f(x)=1-log2x与g(x)=21+xA【解析】由于图中的两条曲线可分别视为f(x)=a x(0<a<1)与f(x)=log a x(a>1)分别向右移与向上移而得到,对比给出的函数解析式可知只有选项A符合,因为f(x)=1+log2x是由f(x)=log2x的图象向上平移一个单位得到,g(x)=21-x=2-(x-1)可视为函数f(x)=2-x的图象向右平移一个单位得到.3.函数y=x2(x<0),2x-1(x≥0)的图象大致是()B【解析】当x<0时,函数的图象是抛物线y=x2(x<0)的图象;当x≥0时,函数的图象是指数函数y=2x(x≥0)的图象向下平移一个单位所得到的图象,所以选B.4f(x)=sin x·ln(x2+1)的部分图象可能是()B【解析】由题可知,f(x)为奇函数,且sin x存在多个零点导致f(x)存在多个零点,故函数f(x)为奇函数且其图象与x轴有多个交点.5f(x)=1x+1(0<x≤2),ln x(x>2),如果关于x的方程f(x)=k有两个不同的实根,那么实数k的取值范围是()A.(1,+∞)B.32,+∞C.[e 32,+∞) D.[ln 2,+∞)B【解析】在同一坐标系中作出函数y=f(x),y=k的图象如图,由图象可知当k≥32时,y=f(x)与y=k的图象有两个不同的交点,所以关于x的方程f(x)=k有两个不同的实根,故实数k的取值范围是32,+∞.6x轴上,另两个顶点在函数y=2x1+x(x>0)的图象上,如图,则此矩形绕x轴旋转而成的几何体的体积的最大值是()A.πB.π3C.π4D.π2A【解析】设矩形的高为k(0<k<1),则2x1+x=k,即kx2-2x+k=0,则矩形的另一边长为|x1-x2|=4k2-4,将此矩形绕x轴旋转而成的几何体是圆柱,其体积为V=πk2|x1-x2|=2πk2·1k -1=2πk2-k4=2π- k2-122+14,当k2=12时,V max=2π14=π.7f(x)=xx+1+x+1x+2+x+2x+3的对称中心为()A.(-4,6)B.(-2,3)C.(-4,3)D.(-2,6)B【解析】由题意可得f(-x-4)=x+4x+3+x+3x+2+x+2x+1,则f(-x-4)+f(x)=2x+6x+3+2x+4x+2+2x+2x+1=6,则函数f(x)的图象关于点(-2,3)对称.二、填空题(每小题5分,共15分)8.若函数y=f(2x+1)是偶函数,则函数y=f(x)的图象的对称轴方程是.x=1【解析】因为函数y=f(2x+1)是偶函数,所以f(-2x+1)=f(2x+1),记t=2x,则f(1-t)=f(1+t),则函数y=f(t)的对称轴为t=1,所以函数y=f(x)的图象的对称轴方程是x=1.9.已知x2>x 1,则实数x的取值范围是.(-∞,0)∪(1,+∞)【解析】分别画出函数y=x2与y=x 1的图象,如图所示,由于两函数的图象都过点(0,0),(1,1),则由图象可知不等式x2>x 1的解集为{x|x<0或x>1}.10.若函数y=12|1-x|+m的图象与x轴有公共点,则实数m的取值范围是.[-1,0)【解析】首先作出y=12|1-x|的图象如图,若y=12|1-x|+m的图象与x轴有交点,则-1≤m<0.[高考冲关](25分钟40分)1.(5分P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为△ABC的重心,设点P走过的路程为x,△OAP 的面积为f(x)(当A,O,P三点共线时,记面积为0),则函数f(x)的图象大致为()A【解析】当x∈[0,a]时,f(x)=12x×36a=312ax,对应图象是线段,排除B;由题意当x=32a时,f(x)=0,当x∈ a,32a 时,f(x)=12×23×32a×32a-x =34a2-36ax,对应图象是线段,排除C和D.2.(5分y=f(x)的曲线如图所示,则方程y=f(2-x)的曲线是()C【解析】由题可知作f(x)关于y轴对称的图象,得到y=f(-x)的图象,再向右平移两个单位,即可得到y=f(-(x-2))=f(2-x)的图象,结合选项知选C.3.(5分f(x)=|x e x|,又g(x)=f2(x)+tf(x)(t∈R),若满足g(x)=-1的x有四个,则t的取值范围为()A.-∞,-e 2+1 eB.e 2+1e,+∞C.-e 2+1e,-2D.2,e 2+1 eA【解析】f(x)=|x e x|=x e x(x≥0),-x e x(x<0),易知f(x)在[0,+∞)内是单调递增函数,当x∈(-∞,0)时,f(x)=-x e x,f'(x)=-e x·(x+1),故f(x)在(-∞,-1)上是增函数,在(-1,0)内是减函数,作出f(x)的图象如图,且f(-1)=1e,若方程f2(x)+tf(x)+1=0有四个实根,则关于m的方程m2+tm+1=0有两个不相等的实根m1,m2,且m1∈0,1e,m2∈1e ,+∞,所以0+0+1>0,1e2+te+1<0,解得t<-e2+1e.4.(12分)已知a>0,且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<12,求实数a 的取值范围.【解析】由题知,当x∈(-1,1)时,f(x)=x2-a x<12,即x2-12<a x.在同一坐标系中分别作出二次函数y=x2-12,指数函数y=a x的图象,当x∈(-1,1)时,要使指数函数的图象均在二次函数图象的上方,需满足0<a<1,a≥12,或a>1,a-1≥12,解得12≤a<1或1<a≤2,故实数a的取值范围是12,1∪(1,2].5.(13分)已知函数f(x)=2x-a2x.将y=f(x)的图象向右平移两个单位,得到y=g(x)的图象.(1)求函数y=g(x)的解析式;(2)若函数y=h(x)与函数y=g(x)的图象关于直线y=1对称,求函数y=h(x)的解析式.【解析】(1)由题可知g(x)=f(x-2)=2x-2-a2x-2.(2)设(x,y)在y=h(x)的图象上,其关于直线y=1对称的点(x1,y1)在y=g(x)的图象上,则x1=x,y1=2-y,即2-y=g(x),y=2-g(x).即h(x)=2-2x-2+a2x-2.。

最新-2018届高三数学二轮复习 专题高效升级卷2 函数的图象和性质课件 文 新人教A版 精品

最新-2018届高三数学二轮复习 专题高效升级卷2 函数的图象和性质课件 文 新人教A版 精品

A.0
B.1
C.2
D.3
答案:C
11.定义在 R 上的函数 (f x)满足 (f - x)=-f(x),f(x-2)=f(x+2),且 x
∈(-1,0)时,(f x)=2x+
1 5
,则
(f log220)
等于( )
A.1
B. 4
5
答案:C
C.-1
D.- 4 5
12.已知函数f(x)对任意自然数x,y均满足:f (x+y2)=f(x)+2[f(y)]2,且 f(1)≠0,则f(2 010)2x-4x,x∈[0,1].
(2)∵f(x)=a·2x-4x,x∈[0,1],
令 t=2x,t∈[1,2],
∴g(t)=a·t-t2=-(t- a )2+ a2 .
2
4

a 2
≤1,即
a≤2
时,g(t)max=g(1)=a-1.

1<
a 2
<2,即
2<a<4
时,g(t)max=g(
(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)
+f(4)=3,
又∵f(3x+1)+f(2x-6)≤3,即 f[(3x+1)(2x-6)]
≤f(64),
∴f(|(3x+1)(2x-6)|)≤f(64).
∵f(x)在(0,+∞)上是增函数,
∴ 解得 x 的取值范围为[- ,- )∪(- , (3x 1)(2x 6) 0, | (3x 1)(2x 6) | 64.
a 2
)=
a2 4
.

a 2
≥2,即
a≥4
时,g(t)max=g(2)=2a-4.
综上,当 a≤2 时,f(x)最大值为 a-1,

2018年高考理科数学考纲解读与题型示例 (1)函数的图象与性质

2018年高考理科数学考纲解读与题型示例  (1)函数的图象与性质

2018年高考理科数学考纲解读与题型示例 (1) 函数的图象与性质【2018年高考考纲解读】(1)函数的概念和函数的基本性质是B级要求,是重要题型;(2)指数与对数的运算、指数函数与对数函数的图象和性质都是考查热点,要求都是B级;(3)幂函数是A级要求,不是热点题型,但要了解幂函数的概念以及简单幂函数的性质。

【重点、难点剖析】1.函数及其图象(1)定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题时务必须“定义域优先”.(2)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减”的原则;(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性;(3)周期性:周期性也是函数在定义域上的整体性质.若函数满足f(a+x)=f(x)(a不等于0),则其周期T=ka(k∈Z)的绝对值.3.求函数最值(值域)常用的方法(1)单调性法:适合于已知或能判断单调性的函数;(2)图象法:适合于已知或易作出图象的函数;(3)基本不等式法:特别适合于分式结构或两元的函数;(4)导数法:适合于可求导数的函数.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)的图象和性质,分0<a <1和a >1两种情况,着重关注两函数图象中的两种情况的公共性质;(2)幂函数y =x α的图象和性质,分幂指数α>0和α<0两种情况. 5.函数图象的应用函数的图象和解析式是函数关系的主要表现形式,它们的实质是相同的,在解题时经常要互相转化.在解决函数问题时,尤其是较为繁琐的(如分类讨论,求参数的取值范围等)问题时,要注意充分发挥图象的直观作用.高考题型 1、函数的性质及其应用【例1】 【2017北京,理5】已知函数1()3()3x x f x =-,则()f x (A )是奇函数,且在R 上是增函数(B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数【答案】A【解析】()()113333x x x x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以该函数是奇函数,并且3x y =是增函数, 13x y ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数,故选A. 【举一反三】【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+= .【答案】-2【举一反三】(1)(2015·重庆卷)函数f (x )=log 2(x 2+2x -3)的定义域是( )A .[-3,1]B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞)(2)已知函数f (x )=⎩⎪⎨⎪⎧ lg x ,x >0,x +3,x ≤0.若f (a )+f (1)=0,则实数a 的值为( )A .-3B .-1或3C .1D .-3或1(1)答案:D解析:要使函数有意义,只需x 2+2x -3>0,即(x +3)(x -1)>0,解得x <-3或x >1.故函数的定义域为(-∞,-3)∪(1,+∞).(2)答案:D解析:f (1)=lg 1=0,所以f (a )=0.当a >0时,则lg a =0,a =1;当a ≤0时,则a +3=0,a =-3.所以a =-3或1.【变式探究】 (1)(2014·江西)函数f (x )=ln(x 2-x )的定义域为( )A .(0,1)B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)(2)(2014·浙江)设函数f (x )=⎩⎪⎨⎪⎧ x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.【命题意图】(1)本题主要考查函数的定义域求法以及不等式的解法.通过定义域的求法考查考生的运算求解能力及转化意识.(2)本题主要考查分段函数和不等式恒成立问题,可结合函数图象进行分析求解.【方法技巧】1.已知函数解析式,求解函数定义域的主要依据有:(1)分式中分母不为零;(2)偶次方根下的被开方数大于或等于零;(3)对数函数y =log a x (a >0,a ≠1)的真数x >0;(4)零次幂的底数不为零;(5)正切函数y =tan x 中,x ≠k π+π2(k ∈Z ).如果f (x )是由几部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的自变量的集合.根据函数求定义域时:(1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出;(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.2.函数的值域是由函数的对应关系和函数的定义域所唯一确定的,具有相同对应关系的函数如果定义域不同,函数的值域也可能不相同.函数的值域是在函数的定义域上求出的,求解函数的值域时一定要与函数的定义域联系起来,从函数的对应关系和定义域的整体上处理函数的值域.题型 2、函数的图象及其应用【例2】【2016高考新课标1卷】函数2y x e=-在[]2x-的图像大致为2,2(A)(B)(C)(D)【答案】D【感悟提升】(1)根据函数的解析式判断函数的图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时也可结合特殊的函数值进行辅助推断,这是解决函数图象判断类试题的基本方法.(2)研究函数时,注意结合图象,在解方程和不等式等问题时,借助图象能起到十分快捷的作用.【举一反三】(1)(2015·四川卷)函数y =x 33x -1的图象大致是( )(2)函数y =f (x )的图象如图所示,在区间[a ,b ]上可找到n (n ≥2)个不同的数x 1,x 2,…,x n ,使得f x 1 x 1=f x 2 x 2=…=f x n x n,则n 的取值范围是( )A.{3,4} B .{2,3,4}C .{3,4,5}D .{2,3}(1)答案:C解析:由已知3x-1≠0⇒x ≠0,排除A ; 又∵x <0时,3x -1<0,x 3<0,∴y =x 33x -1>0,故排除B ; 又y ′=x 2[3x 3-x ln 3 -3]3x -1 2,当3-x ln 3<0时,x >3ln 3>0,y ′<0,所以D 不符合.故选C. (2)答案:B解析:f x 1 x 1=f x 1 -0x 1-0表示(x 1,f (x 1))与原点连线的斜率; f x 1 x 1=f x 2 x 2=…=f x n x n表示(x 1,f (x 1)),(x 2,f (x 2)),…,(x n ,f (x n ))与原点连线的斜率相等,而(x 1,f (x 1)),(x 2,f (x 2)),…,(x n ,f (x n ))在曲线图象上,故只需考虑经过原点的直线与曲线的交点个数有几种情况.如图所示,数形结合可得,有2,3,4三种情况,故选B.【变式探究】 (1)若函数f (x )=(k -1)·a x -a -x (a >0且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x -k )的图象是( )(2)(2014·山东)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C .(1,2) D .(2,+∞)【命题意图】(1)本题主要考查函数的奇偶性,单调性的概念以及指数、对数函数的图象.(2)本题主要考查方程的根与函数的零点,意在考查考生的数形结合思想、化归与转化思想及运算求解能力.【方法技巧】1.关于判断函数图象的解题思路(1)确定定义域;(2)与解析式结合研究单调性、奇偶性;(3)观察特殊值.2.关于函数图象应用的解题思路主要有以下两点(1)方程f(x)=g(x)解的个数可以转化为函数y=f(x)与y=g(x)交点的个数;(2)不等式f(x)>g(x)(f(x)<g(x))解集为函数y=f(x)位于y=g(x)图象上方(下方)的那部分点的横坐标的取值范围.题型 3、函数性质的综合应用例3、【2017山东,理10】已知当[]0,1x ∈时,函数()21y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是(A )(])0,1⎡+∞⎣ (B )(][)0,13,+∞(C )()⎡+∞⎣(D )([)3,+∞ 【答案】B【解析】当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,y m =单调递增,且[,1]y m m m =∈+ ,此时有且仅有一个交点;当1m >时,101m<< ,2(1)y mx =-在1[,1]m上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥ 选B. 【变式探究】【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为(A )a b c << (B )c b a <<(C )b a c << (D )b c a <<【答案】C 【解析】因为()f x 是奇函数且在R 上是增函数,所以在0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以即0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<,所以b a c <<,故选C .【举一反三】【2016年高考北京理数】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________;②若()f x 无最大值,则实数a 的取值范围是________.【答案】2,(,1)-∞-.【感悟提升】(1)指数函数、对数函数、幂函数是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算能力.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.【举一反三】(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案:1解析:∵ f (x )为偶函数,∴ f (-x )-f (x )=0恒成立,∴ -x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,∴ x ln a =0恒成立,∴ ln a =0,即a =1.【变式探究】(1)(2014·湖南)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( ) A .-3 B .-1 C .1 D .3(2)(2014·湖北)已知函数f (x )是定义在R 上的奇函数,当x ≥0时, f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-16,16B.⎣⎢⎡⎦⎥⎤-66,66 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-33,33 【命题意图】(1)本题主要考查函数的解析式、奇偶性和求函数的值,意在考查考生的转化思想和方程思想.求解此题的关键是用“-x ”代替“x ”,得出f (x )+g (x )=-x 3+x 2+1.(2)本题主要考查奇函数的性质、分段函数以及函数的最值与恒成立问题,意在考查考生应用数形结合思想,综合运用所学知识分析问题、解决问题的能力.【答案】(1)C (2)B【解析】(1)用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1,故选C.(2)当x ≥0时,f (x )=⎩⎪⎨⎪⎧ -x ,0≤x ≤a 2,-a 2,a 2<x ≤2a 2,x -3a 2,x >2a 2,又f (x )为奇函数,可得f (x )的图象如图所示,由图象可得,当x ≤2a 2时,f (x )max =a 2,当x >2a 2时,令x -3a 2=a 2,得x =4a 2,又∀x ∈R ,f (x -1)≤f (x ),可知4a 2-(-2a 2)≤1⇒a ∈⎣⎢⎡⎦⎥⎤-66,66,故选B. 【方法技巧】函数性质的综合应用主要是指利用函数的单调性、奇偶性、周期性等性质来相互转化解决相对综合的问题.主要的解析:奇偶性主要转化方向是f (-x )与f (x )的关系,图象对称问题;单调性主要转化方向是最值、方程与不等式的解;周期性主要转化方向是利用f (x )=f (x +a )把区间外的函数转化到区间内,并结合单调性、奇偶性解决相关问题.。

专题02 函数的图像与性质(教学案)-2018年高考理数二轮复习精品资料(解析版)

专题02 函数的图像与性质(教学案)-2018年高考理数二轮复习精品资料(解析版)

函数单调性的判断和应用及函数的奇偶性、周期性的应用,识图用图是高考的热点,题型既有选择题、填空题,又有解答题,与函数的概念、图象、性质综合在一起考查.预计2018年高考仍将综合考查函数性质,并能结合函数图象的特点,对各个性质进行综合运用,另外函数的性质还常常与向量、不等式、三角函数、导数等知识相结合,所以在备考过程中应加强这方面的训练.1.函数(1)映射:集合A(A 中任意x)――→对应法则f集合B(B 中有唯一y 与A 中的x 对应).(2)函数:非空数集A ―→非空数集B 的映射,其三要素:定义域A 、值域C(C ⊆B)、对应法则f. ①求函数定义域的主要依据: (Ⅰ)分式的分母不为零; (Ⅱ)偶次方根被开方数不小于零; (Ⅲ)对数函数的真数必须大于零;(Ⅳ)指数函数和对数函数的底数必须大于零且不等于1;(Ⅴ)正切函数y =tan x 中,x 的取值范围是x ∈R ,且x ≠k π+π2,k ∈Z.②求函数值域的方法:无论用什么方法求值域,都要优先考虑定义域,常用的方法有基本函数法、配方法、换元法、不等式法、函数的单调性法、函数的有界性法、导数法.③函数图象在x 轴上的正投影对应函数的定义域;函数图象在y 轴上的正投影对应函数的值域. 2.函数的性质 (1)函数的奇偶性如果对于函数y =f (x )定义域内的任意一个x ,都有f (-x )=-f (x )(或f (-x )=f (x )),那么函数f (x )就叫做奇函数(或偶函数).(2)函数的单调性函数的单调性是函数的又一个重要性质.给定区间D 上的函数f (x ),若对于任意x 1、x 2∈D ,当x 1<x 2时,都有f (x 1)<f (x 2)(或f (x 1)>f (x 2)),则称f (x )在区间D 上为单调增(或减)函数.反映在图象上,若函数f (x )是区间D 上的增(减)函数,则图象在D 上的部分从左到右是上升(下降)的.如果函数f (x )在给定区间(a ,b )上恒有f ′(x )>0(f ′(x )<0),则f (x )在区间(a ,b )上是增(减)函数,(a ,b )为f (x )的单调增(减)区间.判定单调性方法主要有定义法、图象法、导数法等. (3)函数的周期性设函数y =f (x ),x ∈D ,如果存在非零常数T ,使得对任意x ∈D ,都有f (x +T )=f (x ),则函数f (x )为周期函数,T 为y =f (x )的一个周期.(4)最值一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①对于任意的x ∈I ,都有f (x )≤M (或f (x )≥M );②存在x 0∈I ,使f (x 0)=M ,那么称M 是函数y =f (x )的最大值(或最小值). 3.函数图象(1)函数图象部分的复习应该解决好画图、识图、用图三个基本问题,即对函数图象的掌握有三方面的要求:①会画各种简单函数的图象;②能依据函数的图象判断相应函数的性质; ③能用数形结合的思想以图辅助解题. (2)利用基本函数图象的变换作图 ①平移变换:y =f (x )――→h >0,右移|h |个单位h <0,左移|h |个单位y =f (x -h ),y =f (x )――→k >0,上移|k |个单位k <0,下移|k |个单位y =f (x )+k .③对称变换:y =f (x )――→关于x 轴对称y =-f (x ),y =f (x )――→关于y 轴对称y =f (-x ), y =f (x )――→关于直线x =a 对称y =f (2a -x ), y =f (x )――→关于原点对称y =-f (-x ).4.对函数性质的考查主要依托基本初等函数及其基本变换来进行,对于某些抽象函数来说,一般通过恰当赋值,结合基本定义来研究.考点一 函数表示及定义域、值域例1、(1)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,1解析:基本法:由已知得-1<2x +1<0,解得-1<x <-12,所以函数f (2x +1)的定义域为⎝⎛⎭⎫-1,-12,选B.答案:B(2)设函数f (x )=⎩⎪⎨⎪⎧1+log 2-x , x <1,2x -1, x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12【变式探究】设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x , x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =( ) A .1 B.78C.34D.12解析:基本法:f ⎝⎛⎭⎫56=3×56-b =52-b ,当52-b ≥1,即b ≤32时,f ⎝⎛⎭⎫52-b =252-b , 即252-b =4=22,得到52-b =2,即b =12;当52-b <1,即b >32时,f ⎝⎛⎭⎫52-b =152-3b -b =152-4b , 即152-4b =4,得到b =78<32,舍去. 综上,b =12,故选D.答案:D考点二 函数的奇偶性 对称性例2、【2017课标1,理5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(),-∞+∞单调递减,要使()11f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足()121f x -≤-≤成立的x 的取值范围为[]1,3,选D.【变式探究】(1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.(2)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A .f (x )g (x )是偶函数 B .|f (x )|g (x )是奇函数 C .f (x )|g (x )|是奇函数 D .|f (x )g (x )|是奇函数解析:基本法:由题意可知f (-x )=-f (x ),g (-x )=g (x ),对于选项A ,f (-x )·g (-x )=-f (x )·g (x ),所以f (x )g (x )是奇函数,故A 项错误;对于选项B.|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x ),所以|f (x )|g (x )是偶函数,故B 项错误;对于选项C ,f (-x )|g (-x )|=-f (x )|g (x )|,所以f (x )|g (x )|是奇函数,故C 项正确;对于选项D ,|f (-x )g (-x )|=|-f (x )g (x )|=|f (x )g (x )|,所以|f (x )g (x )|是偶函数,故D 项错误,选C.速解法:y =f (x )是奇函数,则y =|f (x )|为偶函数. 故f (x )·g (x )=奇,A 错,|f (x )|g (x )=偶,B 错. f (x )|g (x )|=奇,C 正确. 答案:C【变式探究】已知函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,若g (x )=f (x )+2 016,则g (x )的最大值与最小值之和为( )A .0B .1C .2 016D .4 032答案:D考点三 函数单调性、周期性与对称性例3、(1)偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.解析:基本法:∵函数y =f (x )的图象关于直线x =2对称,∴f (2+x )=f (2-x )对任意x 恒成立, 令x =1,得f (1)=f (3)=3, ∴f (-1)=f (1)=3.速解法:由题意y =f (x )的图象关于x =0和x =2对称,则周期T =4. ∴f (-1)=f (-1+4)=f (3)=3. 答案:3(2)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log12a )≤2f (1),则a 的取值范围是( )A .[1,2] B.⎝⎛⎦⎤0,12 C.⎣⎡⎦⎤12,2 D .(0,2]解析:基本法:∵f (log 12a )=f (-log 2a )=f (log 2a ),∴原不等式可化为f (log 2a )≤f (1).又∵f (x )在区间[0,+∞)上单调递增,∴0≤log 2a ≤1,即1≤a ≤2.∵f (x )是偶函数,∴f (log 2a )≤f (-1).又f (x )在区间(-∞,0]上单调递减,∴-1≤log 2a ≤0,∴12≤a ≤1.综上可知12≤a ≤2.答案:C 【方法技巧】1.基本法是利用单调性化简不等式.速解法是特例检验法. 2.求函数的单调区间与确定单调性的方法一样.常用的方法有:(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.(2)定义法:先求定义域,再利用单调性定义确定单调区间.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性写出它的单调区间.(4)导数法:利用导数取值的正负确定函数的单调区间.3.若函数f (x )在定义域上(或某一区间上)是增函数,则f (x 1)<f (x 2)⇔x 1<x 2.利用上式,可以去掉抽象函数的符,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必须在定义域内或给定的范围内进行.【变式探究】已知函数f (x )=⎩⎪⎨⎪⎧a x x <,a -x +4a x满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则a 的取值范围是________.解析:基本法:因为对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,所以f (x )是减函数,所以⎩⎪⎨⎪⎧0<a <1,a -3<0,a 0a -+4a ,解得0<a ≤14,即a ∈⎝⎛⎦⎤0,14. 答案:⎝⎛⎦⎤0,14 考点四 比较函数值的大小例4、(1)设a =log 32,b =log 52,c =log 23,则( ) A .a >c >b B .b >c >a C .c >b >a D .c >a >b解析:基本法:∵3<2<3,1<2<5,3>2,∴log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22,∴12<a <1,0<b <12,c >1, ∴c >a >b .故选D.速解法:分别作出y =log 3x ,y =log 2x ,y =log 5x 的图象,在图象中作出a 、b 、c 的值,观察其大小,可得c >a >b .答案:D(2)已知x =ln π,y =log 52,z =,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x【变式探究】设a =,b =2,c =3,则( )A .a >b >cB .a >c >bC .b >c >aD .c >a >b解析:基本法:∵b =-log 32∈(-1,0),c =-log 23<-1,a =>0,∴a >b >c ,选A.答案:A考点五 指数函数、对数函数图象的变换与应用例5、【2017课标1,理11】设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【解析】令235(1)x y zk k ===>,则2log x k =,3log y k =,5log z k =∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 【变式探究】(1)设函数y =f (x )的图象与y =2x+a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =( )A .-1B .1C .2D .4答案:C(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2)解析:基本法:易知0<a <1,则函数y =4x 与y =log a x 的大致图象如图,则只需满足log a 12>2,解得a >22, ∴22<a <1,故选B.速解法:若a >1,∵x ∈⎝⎛⎦⎤0,12,显然log a x <0,原不等式不成立,∴0<a <1. 若a =12,当x =12时,log a x =1,4x =412=2,显然不成立,∴故只能选B.答案:B【变式探究】若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,则a 的取值范围为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎦⎤0,12 C .[2,+∞) D .(2,+∞)答案:B1.【2017课标1,理5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4]D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(),-∞+∞单调递减,要使()11f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足()121f x -≤-≤成立的x 的取值范围为[]1,3,选D.2.【2017课标1,理11】设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【解析】令235(1)x y zk k ===>,则2log x k =,3log y k =,5log z k =∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 3.【2017北京,理5】已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数【答案】A4.【2017山东,理10】已知当[]0,1x ∈时,函数()21y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是(A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞(C )()23,⎡+∞⎣(D )([)3,+∞【答案】B【解析】当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,y m=单调递增,且[,1]y m m m =∈+ ,此时有且仅有一个交点;当1m >时,101m<< ,2(1)y mx =-在1[,1]m上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥ 选B. 5.【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为(A )a b c << (B )c b a << (C )b a c <<(D )b c a <<【答案】C1.【2016高考新课标3理数】已知432a =,254b =,1325c =,则( ) (A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 2.【2016年高考北京理数】已知x ,y R ∈,且0x y >>,则( )A.110x y ->B.sin sin 0x y ->C.11()()022x y -<D.ln ln 0x y +> 【答案】C【解析】A :由0>>y x ,得y x 11<,即011<-yx ,A 不正确; B :由0>>y x 及正弦函数的单调性,可知0sin sin >-y x 不一定成立; C :由1210<<,0>>y x ,得y x )21()21(<,故0)21()21(<-y x ,C 正确; D :由0>>y x ,得0>xy ,但xy 的值不一定大于1,故ln ln =ln 0x y xy +>不一定成立,故选C. 3.【2016高考新课标1卷】函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D4.【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C【解析】由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C 。

2018年高考数学理科二轮复习:数学函数图像及其综合应用(链接高考解析版)

2018年高考数学理科二轮复习:数学函数图像及其综合应用(链接高考解析版)

函数图像及其综合应用(链接高考解析版)基础知识回顾:1.应掌握的基本函数的图象有:一次函数、二次函数、三次函数、幂函数、指数函数、对数函数等.2.利用描点法作图:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性);④画出函数的图象.3、图象变换包括图像的平移变换、伸缩变换、对称变换、翻折变换等。

(1)平移变换(左加右减,上加下减)把函数()f x 的图像向左平移(0)a a >个a 单位,得到函数()f x a +的图像, 把函数()f x 的图像向右平移(0)a a >个a 单位,得到函数()f x a -的图像, 把函数()f x 的图像向上平移(0)a a >个a 单位,得到函数()f x a +的图像, 把函数()f x 的图像向下平移(0)a a >个a 单位,得到函数()f x a -的图像。

(2)伸缩变换①把函数()y f x =图象的纵坐标不变,横坐标伸长到原来的w1倍得()y f x ω=(0<ω<1)②把函数()y f x =图象的纵坐标不变,横坐标缩短到原来的w1倍得()y f x ω=(ω>1)③把函数()y f x =图象的横坐标不变,纵坐标伸长到原来的w 倍得()y f x ω=(ω>1)④把函数()y f x =图象的横坐标不变,纵坐标缩短到原来的w 倍得()y f x ω=(0<ω<1)(3)对称变换①y =f(x)――→关于x 轴对称 )(x f y -=; ②y =f(x)――→关于y 轴对称)(x f y -=; ③y =f(x)――→关于原点对称 )(x f y --=; ④y =a x(a>0且a ≠1)――→关于y =x 对称x y a log =. (a>0且a ≠1)⑤对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是2ba x +=(4)翻折变换:①把函数y=f(x)图像上方部分保持不变,下方的图像对称翻折到x 轴上方,得到函数()y f x =的图像;②保留y 轴右边的图像,擦去左边的图像,再把右边的图像对称翻折到左边,得到函数()y f x =的图像。

2018高考数学(理)二轮复习试题专题一第1讲函数的图象与性质

2018高考数学(理)二轮复习试题专题一第1讲函数的图象与性质

2.对于分段函数的求值问题,必须依据条件准确地 找出利用哪一段求解;形如 f(g(x))的函数求值时,应遵循 先内后外的原则.
[变式训练] (1)(2017· 郑州模拟)函数 y= a-ax(a> 5 48 0,a≠1)的定义域和值域都是[0,1],则 loga +loga = 6 5 ( ) A.1 B.2 C.3 D.4 (2)(2016· 江苏卷)设 f(x)是定义在 R 上且周期为 2 的
x+a,-1≤x<0, 函数,在区间[-1,1)上,f(x)=2 其 -x,0≤x<1, 5
5 9 中 a∈R.若 f-2=f2,则 f(5a)的值是________.
解析:(1)当 x=1 时,y=0,则函数为减函数,故 a >1. 所以当 x=0 时,y=1,所以 y= a-1=1.所以 a- 1=1,所以 a=2.
3x2 [例 1] (1)函数 f(x)= +lg(3x+1)的定义域是 1-x ( )(导学号 54850014)
1 A.-3,1 1 1 C.-3,3 1 B.-3,+∞ 1 D.-∞,-3
(2)(2015· 全 国 卷 Ⅱ) 设 函 数
专题一
函数与导数、不等式
第 1 讲 函数的图象与性质
sin x 1.(2017· 全国卷Ⅲ)函数 y=1+x+ 2 的部分图象 x 大致为( )
sin x 解析:法一 易知 g(x)=x+ 2 为奇函数,其图象 x sin x 关于原点对称.所以 y=1+x+ 2 的图象只需把 g(x)的 x 图象向上平移一个单位长度.选项 D 满足.
B.[-1,1] D.[1,3]
解析:因为 f(x)为奇函数,所以 f(-1)=-f(1)=1, 于是-1≤f(x-2)≤1 等价于 f(1)≤f(x-2)≤f(-1), 又 f(x)在(-∞,+∞)上单调递减,

2018届高考数学二轮复习寒假作业(打包29套_有答案)理

2018届高考数学二轮复习寒假作业(打包29套_有答案)理

寒假作业(一) 集合与常用逻辑用语(注意解题的速度)一、选择题1.设集合A ={x |log 2x <0},B ={m |m 2-2m <0},则A ∪B =( ) A .(-∞,2) B .(0,1) C .(0,2)D .(1,2)解析:选C 由题意可得A =(0,1),B =(0,2),所以A ∪B =(0,2).2.(2017·沈阳一检)命题p :“∀x ∈N *,⎝ ⎛⎭⎪⎫12x ≤12”的否定为( )A .∀x ∈N *,⎝ ⎛⎭⎪⎫12x >12B .∀x ∉N *,⎝ ⎛⎭⎪⎫12x >12C .∃x 0∉N *,⎝ ⎛⎭⎪⎫12x 0>12D .∃x 0∈N *,⎝ ⎛⎭⎪⎫12x 0>12解析:选D 命题p 的否定是把“∀”改成“∃”,再把“⎝ ⎛⎭⎪⎫12x ≤12”改为“⎝ ⎛⎭⎪⎫12x 0>12”即可.3.(2017·山东高考)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:选D 由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 4.若集合M =⎩⎨⎧x ∈R ⎪⎪⎪⎭⎬⎫x +2x -1≤0,N 为自然数集,则下列选项中正确的是( )A .M ⊆{x |x ≥1}B .M ⊆{x |x >-2}C .M ∩N ={0}D .M ∪N =N解析:选C ∵M =⎩⎨⎧x ∈R ⎪⎪⎪⎭⎬⎫x +2x -1≤0={x |-2≤x <1},N 为自然数集,∴M ⊆{x |x ≥1}错误,M ⊆{x |x >-2}错误,M ∩N ={0}正确,M ∪N =N 错误.5.(2018届高三·洛阳五校联考)已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},则如图所示的阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}解析:选D 由Venn 图知阴影部分表示的集合为(∁R A )∩B ,依题意得A ={x |x <-1或x >4},因此∁R A ={x |-1≤x ≤4},故(∁R A )∩B ={x |-1≤x ≤2}.6.设集合A ={x |x >-1},B ={x ||x |≥1},则“x ∈A 且x ∉B ”成立的充要条件是( ) A .-1<x ≤1 B .x ≤1 C .x >-1D .-1<x <1解析:选D 由题意可知,x ∈A ⇔x >-1,x ∉B ⇔-1<x <1,所以“x ∈A 且x ∉B ”成立的充要条件是-1<x <1.7.已知集合A ={x ||x |≤2},B ={x |x 2-3x ≤0,x ∈N},则A ∩B =( ) A .{0,4} B .{-2,-1,0} C .{-1,0,1}D .{0,1,2}解析:选D ∵A ={x ||x |≤2}={x |-2≤x ≤2},B ={x |x 2-3x ≤0,x ∈N}={0,1,2,3},∴A ∩B ={0,1,2}.8.(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 9.已知命题p :∀a ∈R ,方程ax +4=0有解;命题q :∃m 0>0,直线x +m 0y -1=0与直线2x +y +3=0平行.给出下列结论,其中正确的有( )①命题“p ∧q ”是真命题; ②命题“p ∧(綈q )”是真命题; ③命题“(綈p )∨q ”为真命题; ④命题“(綈p )∨(綈q )”是真命题. A .1个 B .2个 C .3个D .4个解析:选B 因为当a =0时,方程ax +4=0无解,所以命题p 为假命题;当1-2m =0,即m =12时两条直线平行,所以命题q 是真命题.所以綈p 为真命题,綈q 为假命题,所以①错误,②错误,③正确,④正确.故正确的命题有2个.10.下列说法中正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1<0 C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=π6,则sin α=12”的否命题是“若α≠π6,则sin α≠12”解析:选D 当f (0)=0时,函数f (x )不一定是奇函数,如f (x )=x 2,所以A 错误;若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1≤0,所以B 错误;p ,q 只要有一个是假命题,则p ∧q 为假命题,所以C 错误;否命题是将原命题的条件和结论都否定,D 正确.11.设集合S ={A 0,A 1,A 2,A 3},在S 上定义运算⊕:A i ⊕A j =A k ,k 为i +j 除以4的余数(i ,j =0,1,2,3),则满足关系式(x ⊕x )⊕A 2=A 0的x (x ∈S )的个数为( )A .4B .3C .2D .1解析:选C 因为x ∈S ={A 0,A 1,A 2,A 3},故x 的取值有四种情况.若x =A 0,根据定义得,(x ⊕x )⊕A 2=A 0⊕A 2=A 2,不符合题意,同理可以验证x =A 1,x =A 2,x =A 3三种情况,其中x =A 1,x =A 3符合题意,故选C.12.若f (x )是R 上的增函数,且f (-1)=-4,f (2)=2,设P ={x |f (x +t )+1<3},Q ={x |f (x )<-4},若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是( )A .(-∞,-1]B .(-1,+∞)C .[3,+∞)D .(3,+∞)解析:选D P ={x |f (x +t )+1<3}={x |f (x +t )<2}={x |f (x +t )<f (2)},Q ={x |f (x )<-4}={x |f (x )<f (-1)},因为函数f (x )是R 上的增函数,所以P ={x |x +t <2}={x |x <2-t },Q ={x |x <-1},要使“x ∈P ”是“x ∈Q ”的充分不必要条件,则有2-t <-1,即t >3.二、填空题13.已知全集为R ,集合A ={x |x -1≥0},B ={x |-x 2+5x -6≤0},则A ∪∁R B =________. 解析:因为A ={x |x -1≥0}=[1,+∞),B ={x |-x 2+5x -6≤0}={x |x 2-5x +6≥0}={x |x ≤2或x ≥3},∁R B =(2,3),所以A ∪∁R B =[1,+∞).答案:[1,+∞)14.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π3,m ≥2tan x ”是真命题,则实数m 的最小值为________.解析:当x ∈⎣⎢⎡⎦⎥⎤0,π3时,2tan x 的最大值为2tan π3=23,∴m ≥23,实数m 的最小值为2 3.答案:2 315.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4≤⎝ ⎛⎭⎪⎫122-x≤16,B =[a ,b ],若A ⊆B ,则a -b 的取值范围是________.解析:集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4≤⎝ ⎛⎭⎪⎫122-x≤16={x |22≤2x -2≤24}={x |4≤x ≤6}=[4,6],∵A ⊆B ,∴a ≤4,b ≥6,∴a -b ≤4-6=-2,即a -b 的取值范围是(-∞,-2].答案:(-∞,-2]16.设全集U ={(x ,y )|x ,y ∈R},集合A ={(x ,y )|x 2+y 2≤2x },B ={(x ,y )|x 2+y 2≤4x },给出以下命题:①A ∩B =A ,②A ∪B =B ,③A ∩(∁U B )=∅,④B ∩(∁U A )=U ,其中正确命题的序号是________.解析:集合A 表示的是以(1,0)为圆心,1为半径的圆及其内部的点构成的集合,集合B 表示的是以(2,0)为圆心,2为半径的圆及其内部的点构成的集合,易知A ⊆B ,利用Venn 图可知,①②③正确,④错误.答案:①②③寒假作业(二) 函数的图象与性质(注意速度和准度)一、“12+4”提速练1.已知函数y =2x +1,x ∈{x ∈Z|0≤x <3},则该函数的值域为( ) A .{y |1≤y <7} B .{y |1≤y ≤7} C .{1,3,5,7}D .{1,3,5}解析:选D 由题意可知,函数的定义域为{0,1,2},把x =0,1,2代入函数解析式可得y =1,3,5,所以该函数的值域为{1,3,5}.2.函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为( )A .(-1,1]B .(0,1]C .[0,1]D .[1,+∞)解析:选B 由条件知⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0.即⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1.则x ∈(0,1].∴原函数的定义域为(0,1].3.(2017·成都第一次诊断性检测)已知定义在R 上的奇函数f (x )满足f (x +3)=f (x ),且当x ∈⎣⎢⎡⎭⎪⎫0,32时,f (x )=-x 3,则f ⎝ ⎛⎭⎪⎫112=( )A .-18 B.18C .-1258 D.1258解析:选B 由f (x +3)=f (x )知,函数f (x )的周期为3,又函数f (x )为奇函数,所以f ⎝ ⎛⎭⎪⎫112=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫123=18.4.(2018届高三·长沙四校联考)函数y =ln|x |-x 2的图象大致为( )解析:选A 令f (x )=ln|x |-x 2,定义域为(-∞,0)∪(0,+∞)且f (-x )=ln|x |-x 2=f (x ),故函数y =ln|x |-x 2为偶函数,其图象关于y 轴对称,排除B 、D ;当x >0时,y =ln x -x 2,则y ′=1x -2x ,当x ∈⎝⎛⎭⎪⎫0,22时,y ′=1x -2x >0,y =ln x -x 2单调递增,排除C.故A 符合.5.已知函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D 当a ≤0时,2a-2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74.6.(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D ∵f (x )为奇函数,∴f (-x )=-f (x ).∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1, ∴1≤x ≤3.7.(2017·衡阳四中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2),即函数f (x )的图象关于x =2对称,又因为函数y =f (x )在区间[0,2]上单调递增,所以函数y =f (x )在区间[2,4]上单调递减.因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52.8.设函数f (x )=x 3(a x +m ·a -x)(x ∈R ,a >0且a ≠1)是偶函数,则实数m 的值为( ) A .-1 B .1 C .2D .-2解析:选A 法一:因为函数f (x )=x 3(a x +m ·a -x)(x ∈R ,a >0且a ≠1)是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以-x 3(a -x+m ·a x )=x 3(a x +m ·a -x ),即x 3(1+m )(a x +a -x )=0对任意的x ∈R 恒成立,所以1+m =0,即m =-1.法二:因为f (x )=x 3(a x +m ·a -x )是偶函数,所以g (x )=a x +m ·a -x是奇函数,且g (x )在x =0处有意义,所以g (0)=0,即1+m =0,所以m =-1.9.若函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f xx在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:选D ∵函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,图象开口向上,对称轴为x =a ,∴a <1.∴g (x )=f x x =x +ax-2a . 若a ≤0,则g (x )=x +ax-2a 在(-∞,0),(0,+∞)上单调递增.若0<a <1,则g (x )=x +a x-2a 在(a ,+∞)上单调递增,故g (x )在(1,+∞)上单调递增.综上可得g (x )=x +ax-2a 在(1,+∞)一定是增函数.10.已知f (x )=⎩⎪⎨⎪⎧-ln x -x ,x >0,-ln -x +x ,x <0,则关于m 的不等式f ⎝ ⎛⎭⎪⎫1m <ln 12-2的解集为( )A.⎝ ⎛⎭⎪⎫0,12B .(0,2)C.⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12 D .(-2,0)∪(0,2)解析:选C 因为函数f (x )的定义域(-∞,0)∪(0,+∞)关于原点对称,又当x >0时,-x <0,f (-x )=-ln x -x =f (x ),同理,当x <0时,也有f (-x )=f (x ),所以f (x )为偶函数.因为f (x )在(0,+∞)上为减函数,且f (2)=-ln 2-2=ln 12-2,所以由偶函数的性质知f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1m <f (2),且m ≠0,所以⎪⎪⎪⎪⎪⎪1m >2,且m ≠0,解得0<m <12或-12<m <0. 11.若函数f (x )=x 2+ln(x +a )与g (x )=x 2+e x-12(x <0)的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .(-∞,e)B .(e ,+∞)C .(0,e)D .(0, e ]解析:选C 若函数f (x )与g (x )的图象上存在关于y 轴对称的点,则f (x )与g (-x )=x 2+e -x -12(x >0)的图象有交点,也就是方程ln(x +a )=e -x -12有正数解,即函数y =e -x -12与函数y =ln(x +a )的图象在(0,+∞)上有交点,结合图象可知,只需ln a <e 0-12,∴ln a <12,∴0<a < e.12.已知函数f (x )的定义域为D ,若对任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数.设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f ⎝ ⎛⎭⎪⎫x 3=12f (x );③f (1-x )=2-f (x ),则f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫18=( )A.32 B .1C .2 D.52解析:选A 令x =1,可得f (1)=2,那么f ⎝ ⎛⎭⎪⎫13=12f (1)=1,令x =12,可得f ⎝ ⎛⎭⎪⎫12=1,f ⎝ ⎛⎭⎪⎫16=12f ⎝ ⎛⎭⎪⎫12=12,令x =13,可得f ⎝ ⎛⎭⎪⎫19=12f ⎝ ⎛⎭⎪⎫13=12,因为函数是非减函数,所以12=f ⎝ ⎛⎭⎪⎫19≤f ⎝ ⎛⎭⎪⎫18≤f ⎝ ⎛⎭⎪⎫17≤f ⎝ ⎛⎭⎪⎫16=12,所以f ⎝ ⎛⎭⎪⎫18=f ⎝ ⎛⎭⎪⎫17=12,所以f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫18=1+12=32.13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x )(-1≤x <0).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-1214.已知函数f (x )=4+x 2ln 1+x 1-x 在区间⎣⎢⎡⎦⎥⎤-12,12上的最大值与最小值分别为M 和m ,则M +m =________.解析:令g (x )=x 2ln 1+x 1-x,则g (-x )=(-x )2ln 1-x 1+x =-x 2ln 1+x 1-x =-g (x ),所以函数g (x )为奇函数,其图象关于原点对称,则函数g (x )=f (x )-4的最大值M -4和最小值m -4之和为0,即M -4+m -4=0,∴M +m =8.答案:815.(2018届高三·江西师大附中月考)已知函数f (x )=⎪⎪⎪⎪⎪⎪2x-a 2x 在[0,1]上单调递增,则a 的取值范围为________.解析:令2x=t ,t ∈[1,2],则y =⎪⎪⎪⎪⎪⎪t -a t在[1,2]上单调递增.当a =0时,y =|t |=t在[1,2]上单调递增显然成立;当a >0时,函数y =⎪⎪⎪⎪⎪⎪t -a t ,t ∈(0,+∞)的单调递增区间是[a ,+∞),此时a ≤1,即0<a ≤1时成立;当a <0时,函数y =⎪⎪⎪⎪⎪⎪t -a t =t -a t,t ∈(0,+∞)的单调递增区间是[-a ,+∞),此时-a ≤1,即-1≤a <0时成立.综上可得a 的取值范围是[-1,1].答案:[-1,1]16.已知函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如:函数f (x )=2x +1(x ∈R)是单函数.给出下列命题:①函数f (x )=x 2(x ∈R)是单函数; ②指数函数f (x )=2x(x ∈R)是单函数;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数. 其中真命题的序号是________.解析:对于①,当x 1=2,x 2=-2时,f (x 1)=4=f (x 2),故①错;对于②,f (x )=2x为单调递增函数,故②正确;而③④显然正确.答案:②③④二、能力拔高练1.当a >0时,函数f (x )=(x 2+2ax )e x的图象大致是( )解析:选B 由f (x )=0,得x 2+2ax =0,解得x =0或x =-2a ,∵a >0,∴x =-2a <0,故排除A 、C ;当x 趋近于-∞时,e x趋近于0,故f (x )趋近于0,排除D.2.设曲线y =f (x )与曲线y =x 2+a (x >0)关于直线y =-x 对称,且f (-2)=2f (-1),则a =( )A .0 B.13 C.23D .1解析:选 C 依题意得,曲线y =f (x ),即为-x =(-y )2+a (y <0),化简后得y =--x -a ,即f (x )=--x -a ,于是有-2-a =-21-a ,解得a =23.3.已知定义在D =[-4,4]上的函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,-4≤x ≤0,2|x -2|,0<x ≤4,对任意x ∈D ,存在x 1,x 2∈D ,使得f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最大值与最小值之和为( )A .7B .8C .9D .10解析:选 C 作出函数f (x )的图象如图所示,由任意x ∈D ,f (x 1)≤f (x )≤f (x 2)知,f (x 1),f (x 2)分别为f (x )的最小值和最大值,由图可知|x 1-x 2|max =8,|x 1-x 2|min =1,所以|x 1-x 2|的最大值与最小值之和为9,故选C.4.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递减,若不等式f (x 3-x 2+a )+f (-x 3+x 2-a )≥2f (1)对x ∈[0,1]恒成立,则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤2327,1B.⎣⎢⎡⎦⎥⎤-2327,1 C .[1,3]D .(-∞,1]解析:选B ∵函数f (x )是定义域在R 上的偶函数,且-x 3+x 2-a =-(x 3-x 2+a ),∴f (x 3-x 2+a )+f (-x 3+x 2-a )≥2f (1)对x ∈[0,1]恒成立等价于2f (x 3-x 2+a )≥2f (1)对x∈[0,1]恒成立,又∵f (x )在[0,+∞)上单调递减,∴-1≤x 3-x 2+a ≤1对x ∈[0,1]恒成立.设g (x )=x 3-x 2,则g ′(x )=x (3x -2),则g (x )在⎣⎢⎡⎭⎪⎫0,23上单调递减,在⎝ ⎛⎦⎥⎤23,1上单调递增,又g (0)=g (1)=0,g ⎝ ⎛⎭⎪⎫23=-427,∴g (x )∈⎣⎢⎡⎦⎥⎤-427,0.∴⎩⎪⎨⎪⎧a ≤1,a -427≥-1,∴a ∈⎣⎢⎡⎦⎥⎤-2327,1.5.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x >0,x +1,x ≤0,g (x )=log 2x ,若f (a )+f (g (2))=0,则实数a的值为________.解析:因为函数f (x )=⎩⎪⎨⎪⎧x 2,x >0,x +1,x ≤0,g (x )=log 2x ,所以g (2)=log 22=1,f (g (2))=f (1)=1, 由f (a )+f (g (2))=0,得f (a )=-1.当a >0时,因为f (a )=a 2>0,所以此时不符合题意; 当a ≤0时,f (a )=a +1=-1,解得a =-2. 答案:-26.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),则对函数y =f (x )有下列判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6)上图象是往下的,所以①②④正确,③错误.答案:①②④寒假作业(三) 基本初等函数、函数与方程(注意速度和准度)一、“12+4”提速练1.(2018届高三·吉林实验中学摸底)若f (x )是幂函数,且满足f 9f 3=2,则f ⎝ ⎛⎭⎪⎫19=( )A.12 B.14 C .2D .4解析:选B 设f (x )=x α,由f 9f 3=9α3α=3α=2,得α=log 32,∴f ⎝ ⎛⎭⎪⎫19=⎝ ⎛⎭⎪⎫19log 32=14. 2.已知函数f (x )=x 2+x +c ,若f (0)>0,f (p )<0,则必有( ) A .f (p +1)>0 B .f (p +1)<0C .f (p +1)=0D .f (p +1)的符号不能确定解析:选A 由题意知,f (0)=c >0,函数图象的对称轴为x =-12,则f (-1)=f (0)>0,设f (x )=0的两根分别为x 1,x 2(x 1<x 2), 则-1<x 1<x 2<0,根据图象知,x 1<p <x 2, 故p +1>0,f (p +1)>0.3.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4解析:选C 作出函数g (x )=⎝ ⎛⎭⎪⎫12x 与h (x )=cos x 的图象(图略),可知函数g (x )与h (x )在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3.4.已知a =⎝ ⎛⎭⎪⎫79-14,b =⎝ ⎛⎭⎪⎫9715,c =log 279,则a ,b ,c 的大小关系是( )A .b <a <cB .c <a <bC .c <b <aD .b <c <a解析:选C ∵a =⎝ ⎛⎭⎪⎫79-14=⎝ ⎛⎭⎪⎫9714>⎝ ⎛⎭⎪⎫9715=b ,而b =⎝ ⎛⎭⎪⎫9715>1,c =log 279<log 21=0,∴c <b <a .5.函数f (x )=ln x +2x -6的零点所在的区间为( ) A .[1,2] B .[2,3] C .[3,4]D .[4,5]解析:选B ∵函数f (x )=ln x +2x -6在区间(0,+∞)上单调递增,且f (2)=ln 2+4-6=ln 2-2<0,f (3)=ln 3>0,f (2)·f (3)<0,∴函数f (x )的零点位于区间[2,3]内.6.(2017·潍坊模拟)已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=log a (x -b )的图象大致是( )解析:选B 法一:结合二次函数的图象可知,a >1,-1<b <0,所以函数g (x )=log a (x -b )单调递增,排除C ,D ;把函数y =log a x 的图象向左平移|b |个单位,得到函数g (x )=log a (x -b )的图象,排除A ,选B.法二:结合二次函数的图象可知,a >1,-1<b <0,所以a >1,0<-b <1,在g (x )=log a (x -b )中,取x =0,得g (0)=log a (-b )<0,只有选项B 符合,故选B.7.已知奇函数y =⎩⎪⎨⎪⎧f x ,x >0,gx ,x <0.若f (x )=a x(a >0,a ≠1)对应的图象如图所示,则g (x )=( )A.⎝ ⎛⎭⎪⎫12-xB .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x解析:选D 由图象可知,当x >0时,函数f (x )单调递减,则0<a <1,∵f (1)=12,∴a =12,即函数f (x )=⎝ ⎛⎭⎪⎫12x ,当x <0时,-x >0,则f (-x )=⎝ ⎛⎭⎪⎫12-x=-g (x ),即g (x )=-⎝ ⎛⎭⎪⎫12-x =-2x ,故g (x )=-2x ,x <0. 8.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,|lg x |,x >0,则函数g (x )=f (1-x )-1的零点个数为( )A .1B .2C .3D .4解析:选C g (x )=f (1-x )-1=⎩⎪⎨⎪⎧1-x 2+21-x -1,1-x ≤0,|lg 1-x |-1,1-x >0=⎩⎪⎨⎪⎧x 2-4x +2,x ≥1,|lg 1-x |-1,x <1.易知当x ≥1时,函数g (x )有1个零点,当x <1时,函数有两个零点,所以函数g (x )的零点共有3个.9.已知函数f (x )=⎝ ⎛⎭⎪⎫13x+a 的图象经过第二、三、四象限,g (a )=f (a )-f (a +1),则g (a )的取值范围为( )A .(2,+∞)B .(-∞,-1)C .(-1,2)D .(-∞,2)解析:选A ∵函数f (x )=⎝ ⎛⎭⎪⎫13x+a 的图象经过第二、三、四象限,∴a <-1.则g (a )=f (a )-f (a +1)=⎝ ⎛⎭⎪⎫13a +a -⎝ ⎛⎭⎪⎫13a +1-a =⎝ ⎛⎭⎪⎫13a ⎝ ⎛⎭⎪⎫1-13=23·⎝ ⎛⎭⎪⎫13a .∵a <-1,∴⎝ ⎛⎭⎪⎫13a >3,则23·⎝ ⎛⎭⎪⎫13a>2,故g (a )的取值范围是(2,+∞).10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f x 1-f x 2x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)解析:选A ∵对任意的x 1,x 2∈(-∞,0),且x 1≠x 2,都有f x 1-f x 2x 1-x 2<0,∴f (x )在(-∞,0)上是减函数.又∵f (x )是R 上的偶函数,∴f (x )在(0,+∞)上是增函数.∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).11.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在[0,2]上为增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4的值为( )A .8B .-8C .0D .-4解析:选B ∵f (x -4)=-f (x ),∴f (x -8)=f (x ), ∴函数f (x )是以8为周期的周期函数,又由f (x -4)=-f (x )可得f (x +2)=-f (x +6)=-f (x -2),因为f (x )是奇函数,所以f (x +2)=-f (x -2)=f (2-x ),所以f (x )的图象关于x =2对称,结合在[0,2]上为增函数,可得函数的大致图象如图,由图看出,四个交点中的左边两个交点的横坐标之和为2×(-6),另两个交点的横坐标之和为2×2,所以x 1+x 2+x 3+x 4=-8.12.对于函数f (x )和g (x ),设α∈{x |f (x )=0},β={x |g (x )=0},若存在α,β,使得|α-β|≤1,则称f (x )与g (x )互为“零点相邻函数”.若函数f (x )=ex -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则实数a 的取值范围是( )A .[2,4]B.⎣⎢⎡⎦⎥⎤2,73C.⎣⎢⎡⎦⎥⎤73,3 D .[2,3]解析:选D 函数f (x )=ex -1+x -2的零点为x =1,设g (x )=x 2-ax -a +3的零点为b ,若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则|1-b |≤1,∴0≤b ≤2.由于g (x )=x 2-ax -a +3必经过点(-1,4),∴要使其零点在区间[0,2]上,则⎩⎪⎨⎪⎧g 0≥0,g ⎝ ⎛⎭⎪⎫a 2≤0,即⎩⎪⎨⎪⎧-a +3≥0,⎝ ⎛⎭⎪⎫a 22-a ·a2-a +3≤0,解得2≤a ≤3.13.(2017·陕西质检)已知函数y =4a x -9-1(a >0且a ≠1)恒过定点A (m ,n ),则log m n=________.解析:依题意知,当x -9=0,即x =9时,y =4-1=3,故定点为A (9,3),所以m =9,n =3,故log m n =log 93=12.答案:1214.若函数y =⎝ ⎛⎭⎪⎫12|x |-m 有两个零点,则m 的取值范围是________.解析:在同一平面直角坐标系内,画出y =⎝ ⎛⎭⎪⎫12|x |和y =m 的图象,如图所示,由于函数有两个零点,故0<m <1.答案:(0,1)15.对于实数a 和b ,定义运算a *b =⎩⎪⎨⎪⎧a b +1,a ≥b ba +1,a <b,则ln e 2*⎝ ⎛⎭⎪⎫19-12=________.解析:∵a *b =⎩⎪⎨⎪⎧ab +1,a ≥b ,b a +1,a <b ,ln e 2=2<⎝ ⎛⎭⎪⎫19-12=3,∴ln e 2]19-12=3×(2+1)=9.答案:916.(2018届高三·河北衡水中学月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1x +f 2x2+|f 1x -f 2x |2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g x 1-g x 2x 1-x 2>0恒成立,则b -a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1x +f 2x2+f 1x -f 2x2=f 1(x );当f 1(x )<f 2(x )时,g (x )=f 1x +f 2x 2+f 2x -f 1x2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1x ,f 1x ≥f 2x ,f 2x ,f 1x <f 2x ,即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:5二、能力拔高练1.若函数y =a -a x(a >0且a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( )A .1B .2C .3D .4解析:选C ∵当a >1时,函数y =a -a x在[0,1]上单调递减,∴a -1=1且a -a =0,解得a =2;当0<a <1时,函数y =a -a x在[0,1]上单调递增,∴a -1=0且a -a =1,此时无解.∴a =2,因此log a 56+log a 485=log 2⎝ ⎛⎭⎪⎫56×485=log 28=3. 2.已知函数f (x )=4x-m ·2x+1只有一个零点,则m =( ) A .1 B .-1 C .2D .-2解析:选C 依题意,方程4x-m ·2x+1=0只有一个实数根,设t =2x(t >0),则t 2-mt +1=0,由Δ=m 2-4=0,解得m =±2,当m =2时,t =1,即2x =1,则x =0;当m =-2时,t =-1,即2x=-1(舍去).故函数只有一个零点时,m =2.3.(2017·云南一检)已知a ,b ,c ,d 都是常数,且a >b ,c >d .若f (x )=2 017-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是( )A .a >c >b >dB .a >b >c >dC .c >d >a >bD .c >a >b >d解析:选 D f (x )=2 017-(x -a )·(x -b )=-x 2+(a +b )x -ab +2 017,又f (a )=f (b )=2 017,c ,d 为函数f (x )的零点,且a >b ,c >d ,所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D.4.(2017·成都二诊)已知函数f (x )=a x(a >0且a ≠1)的反函数的图象经过点⎝⎛⎭⎪⎫22,12.若函数g (x )的定义域为R ,当x ∈[-2,2]时,有g (x )=f (x ),且函数g (x +2)为偶函数,则下列结论正确的是( )A .g (π)<g (3)<g (2)B .g (2)<g (3)<g (π)C .g (π)<g (2)<g (3)D .g (2)<g (π)<g (3)解析:选B 因为函数f (x )的反函数的图象经过点⎝⎛⎭⎪⎫22,12,所以函数f (x )的图象经过点⎝ ⎛⎭⎪⎫12,22,所以a 12=22⇒a =12.函数f (x )=⎝ ⎛⎭⎪⎫12x在R 上单调递减.函数g (x +2)为偶函数,所以函数g (x )的图象关于直线x =2对称,又x ∈[-2,2]时,g (x )=f (x )且f (x )单调递减,所以x ∈[2,6]时,g (x )单调递增,根据对称性,可知距离对称轴x =2越远的自变量,对应的函数值越大,所以g (2)<g (3)<g (π).故选B.5.设函数f (x ),g (x )的定义域分别为M ,N ,且M N .若对任意的x ∈M ,都有g (x )=f (x ),则称g (x )是f (x )的“拓展函数”.已知f (x )=13log 2x ,若g (x )是f (x )的“拓展函数”,且g (x )为偶函数,则符合条件的函数g (x )的一个解析式是________.解析:由题意可知, 当x >0时,g (x )=13log 2x ,又函数g (x )是偶函数,故当x <0时,g (x )=13log 2(-x ),所以g (x )=13log 2|x |(x ≠0).答案:g (x )=13log 2|x |(x ≠0)(其他符合条件的函数也可以)6.(2017·云南玉溪统考)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a ,因为g (x )有三个不同的零点,所以2-x=0在x >a 时有一个解,由x =2得a <2;由x 2+3x +2=0得x =-1或x =-2,则由x ≤a 得a ≥-1.综上,a 的取值范围为[-1,2).答案:[-1,2)寒假作业(四) 导数的运算及几何意义(注意解题的速度)一、选择题1.已知函数f (x )=1xcos x ,则f ′(x )等于( )A.cos xx2B.-sin xx2C.cos x -x sin xx2D .-cos x +x sin xx2解析:选D f ′(x )=-1x 2cos x -sin x x =-cos x +x sin xx2. 2.已知f (x )=x 33+ax 2+x 是奇函数,则f (3)+f ′(1)=( )A .14B .12C .10D .-8解析:选A 由题意得,f (-x )=-f (x ),所以a =0,f (x )=x 33+x ,f ′(x )=x 2+1,故f (3)+f ′(1)=14.3.已知某个车轮旋转的角度α(rad)与时间t (s)的函数关系是α=π0.32t 2(t ≥0),则车轮启动后第1.6 s 时的瞬时角速度是( )A .20π rad/sB .10π rad/sC .8π rad/sD .5π rad/s解析:选B 由题意可得α′=πt 0.16,车轮启动后第1.6 s 时的瞬时角速度为π×1.60.16=10π rad/s.4.(2018届高三·广州五校联考)曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2 B .4e 2C .2e 2D .e 2解析:选D ∵y ′=12e 12x ,∴k =12e 142⨯=12e 2,∴切线方程为y -e 2=12e 2(x -4),令x =0,得y =-e 2,令y =0,得x =2,∴所求面积为S =12×2×|-e 2|=e 2.5.若⎠⎛12(x -a )d x =⎠⎜⎛0π4cos 2x d x ,则a 等于( )A .-1B .1C .2D .4解析:选B ⎠⎛12(x -a )d x =⎝ ⎛⎭⎪⎫12x 2-ax | 21=32-a ,⎠⎜⎛0π4cos 2x d x =12sin 2x =12.由32-a =12,得a =1.6.若f (x )=2xf ′(1)+x 2,则f ′(3)等于( ) A .1 B .2 C .3D .4解析:选B ∵f (x )=2xf ′(1)+x 2, ∴f ′(x )=2f ′(1)+2x .∴f ′(1)=2f ′(1)+2,∴f ′(1)=-2, ∴f ′(x )=-4+2x . ∴f ′(3)=-4+6=2.7.(2018届高三·湖南名校联考)设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1,x 2-1,x ∈[1,2],则21-⎰f (x )dx 的值为( )A.π2+43B.π2+3 C.π4+43D.π4+3解析:选A21-⎰f (x )d x =11-⎰1-x 2d x +21⎰(x 2-1)d x =12π×12+⎝ ⎛⎭⎪⎫13x 3-x | 21=π2+43.8.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x=3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 结合图象及题意可知直线l 与曲线f (x )相切的切点为(3,1),将其代入直线方程得k =-13,所以f ′(3)=-13,且g ′(x )=f (x )+xf ′(x ),所以g ′(3)=f (3)+3f ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. 9.(2017·成都一诊)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝ ⎛⎭⎪⎫4t ,2处的切线与曲线C 2:y =e x +1+1也相切,则t 的值为( )A .4e 2B .4e C.e 24D.e 4解析:选A 由y =tx ,得y ′=t 2tx ,则切线斜率为k =t4,所以切线方程为y -2=t 4⎝ ⎛⎭⎪⎫x -4t ,即y =t 4x +1.设切线与曲线y =e x +1+1的切点为(x 0,y 0).由y =e x +1+1,得y ′=ex +1,则由e x 0+1=t 4,得切点坐标为⎝ ⎛⎭⎪⎫ln t4-1,t 4+1,故切线方程又可表示为y -t 4-1=t4⎝ ⎛⎭⎪⎫x -ln t4+1,即y =t4x -t4ln t 4+t2+1,所以由题意,得-t4ln t 4+t2+1=1,即ln t4=2,解得t =4e 2.10.函数y =f (x )的图象如图所示,f ′(x )为f (x )的导函数,则f ′(1),f ′(2),f (2)-f (1)的大小关系是( )A .f′(1)<f′(2)<f (2)-f (1)B .f′(2)<f (2)-f (1)<f′(1)C .f′(2)<f ′(1)<f (2)-f (1)D .f′(1)<f (2)-f (1)<f′(2)解析:选D 由题意得(1,f (1)),(2,f (2))两点连线的斜率为f 2-f 12-1=f (2)-f (1),而f ′(1),f ′(2)分别表示函数f (x )在点(1,f (1)),(2,f (2))处的切线的斜率,结合图象可知f ′(1)<f2-f 12-1<f ′(2),即f ′(1)<f (2)-f (1)<f ′(2).11.已知函数f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x )=1x ,∴直线l 的斜率为k =f′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,解得m =-2.12.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=3x +4sin x -cos x 的拐点是M (x 0,f (x 0)),则点M ( )A .在直线y =-3x 上B .在直线y =3x 上C .在直线y =-4x 上D .在直线y =4x 上 解析:选B f ′(x )=3+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由题意知4sin x 0-cos x 0=0,所以f(x 0)=3x 0,故M(x 0,f(x 0))在直线y =3x 上. 二、填空题13.已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为________. 解析:因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x=-1,得x =1或x =-32(舍去),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m =2.答案:214.若m >1,则f (m )=⎠⎛1m ⎝ ⎛⎭⎪⎫1-4x 2d x 的最小值为________. 解析:f (m )=⎠⎛1m ⎝ ⎛⎭⎪⎫1-4x 2d x =⎝ ⎛⎭⎪⎫x +4x | m1=m +4m -5≥4-5=-1,当且仅当m =2时等号成立,故f (m )的最小值为-1.答案:-115.已知曲线f (x )=2x 3-3x ,过点M (0,32)作曲线f (x )的切线,则切线方程是________. 解析:设切点坐标为N (x 0,2x 30-3x 0), 则切线的斜率k =f ′(x 0)=6x 20-3, 故切线方程为y =(6x 20-3)x +32,又点N 在切线上,∴2x 30-3x 0=(6x 20-3)x 0+32, 解得x 0=-2,∴切线方程为y =21x +32. 答案:y =21x +32 16.已知点P 在曲线y =4e x+1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是________.解析:根据题意得f ′(x )=-4e xe 2x +2e x+1, ∴k =-4e x+1e x +2≥-42+2=-1,当且仅当e x=1e x 时等号成立,且k <0,则曲线y =f (x )在切点处的切线的斜率-1≤k <0,又k =tan α,结合正切函数的图象,可得α∈⎣⎢⎡⎭⎪⎫3π4,π.答案:⎣⎢⎡⎭⎪⎫3π4,π寒假作业(五) 导数的应用(注意命题点的区分度)一、选择题1.函数f (x )=3+x ln x 的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,1e B .(e ,+∞)C.⎝ ⎛⎭⎪⎫1e ,+∞ D.⎝ ⎛⎭⎪⎫1e ,e解析:选C f ′(x )=ln x +1,由f ′(x )>0,得x >1e,故f (x )的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞. 2.函数f (x )=(x 2-1)2+2的极值点是( ) A .x =1 B .x =-1 C .x =1或-1或0 D .x =0 解析:选C ∵f (x )=x 4-2x 2+3,∴由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0, 得x =0或x =1或x =-1,又当x <-1时f ′(x )<0,当-1<x <0时,f ′(x )>0, 当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.3.(2017·长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定 解析:选A 设g (x )=f xex,则g ′(x )=f ′x e x -f x e x ex2=f ′x -f xex,由题意知g ′(x )>0,所以g (x )在R 上单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f x 1e x 1<f x 2e x 2,所以e x 1f (x 2)>e x 2f (x 1). 4.已知x =2是函数f (x )=x 3-3ax +2的极小值点,那么函数f (x )的极大值为( ) A .15 B .16 C .17 D .18解析:选D f ′(x )=3x 2-3a ,因为x =2是函数f (x )=x 3-3ax +2的极小值点,所以f ′(2)=12-3a =0,解得a =4,所以函数f (x )的解析式为f (x )=x 3-12x +2,f ′(x )=3x 2-12.由3x 2-12=0,得x =±2,故函数f (x )在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x =-2时,函数f (x )取得极大值f (-2)=18.5.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( )A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)解析:选C 由题意,f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23得,x =0或x=-3,则结合图象可知⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0) .6.(2017·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )解析:选D 由f ′(x )的图象知,f ′(x )的图象有三个零点,故f (x )在这三个零点处取得极值,排除A 、B ;记导函数f ′(x )的零点从左到右分别为x 1,x 2,x 3,又在(-∞,x 1)上f ′(x )<0,在(x 1,x 2)上f ′(x )>0,所以函数f (x )在(-∞,x 1)上单调递减,排除C ,故选D.7.若函数f (x )=cos x +2xf ′⎝ ⎛⎭⎪⎫π6,则f ⎝ ⎛⎭⎪⎫-π3与f ⎝ ⎛⎭⎪⎫π6的大小关系是( )A .f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π6B .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π6 C .f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫π6 D .不确定解析:选C 因为f ′(x )=-sin x +2f ′⎝ ⎛⎭⎪⎫π6, 所以f ′⎝ ⎛⎭⎪⎫π6=-sin π6+2f ′⎝ ⎛⎭⎪⎫π6, 所以f ′⎝ ⎛⎭⎪⎫π6=12.因为f ′(x )=-sin x +1≥0恒成立, 所以f (x )=cos x +x 是R 上的增函数,所以f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫π6. 8.(2018届高三·黄冈调研)定义在区间(0,+∞)上的函数y =f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中y =f ′(x )为y =f (x )的导函数,则( )A .8<f 2f 1<16 B .4<f 2f 1<8C .3<f 2f 1<4 D .2<f 2f 1<3 解析:选B ∵xf ′(x )-2f (x )>0,x >0,∴⎣⎢⎡⎦⎥⎤f x x 2′=f ′x ·x 2-2xf x x 4=xf ′x -2f x x 3>0, ∴y =f xx 2在(0,+∞)上单调递增, ∴f 222>f 112,即f 2f 1>4.∵xf ′(x )-3f (x )<0,x >0,∴⎣⎢⎡⎦⎥⎤f x x 3′=f ′x ·x 3-3x 2f x x 6=xf ′x -3f x x 4<0, ∴y =f xx 3在(0,+∞)上单调递减, ∴f 223<f 113,即f 2f 1<8.综上,4<f 2f 1<8. 9.(2017·张掖一诊)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈⎣⎢⎡⎦⎥⎤-π2,3π2时,不等式f (2cos x )>32-2sin 2x 2的解集为( )A.⎝⎛⎭⎪⎫π3,4π3 B.⎝ ⎛⎭⎪⎫-π3,4π3C.⎝⎛⎭⎪⎫0,π3D.⎝ ⎛⎭⎪⎫-π3,π3解析:选D 令g (x )=f (x )-x 2-12,则g ′(x )=f ′(x )-12>0,∴g (x )在R 上单调递增,且g (1)=f (1)-12-12=0,∵f (2cos x )-32+2sin 2x 2=f (2cos x )-2cos x 2-12=g (2cos x ), ∴f (2cos x )>32-2sin 2x 2,即g (2cos x )>0, ∴2cos x >1,又x ∈⎣⎢⎡⎦⎥⎤-π2,3π2,∴x ∈⎝ ⎛⎭⎪⎫-π3,π3.10.已知函数f (x )=e xx2-k ⎝ ⎛⎭⎪⎫2x +ln x ,若x =2是函数f (x )的唯一一个极值点,则实数。

江苏省2018届高三数学二轮专题复习(第2层次)专题2函数的图象与性质

江苏省2018届高三数学二轮专题复习(第2层次)专题2函数的图象与性质

专题2:函数的图象与性质班级 姓名一、前测训练1.求下列函数的值域:(1)y =sin(2x +π3) x ∈[0,π6] (2)y =1-x 21+x 2(3)y =x +1-x(4)f (x )=(12)x -x ,x ∈[-1,2] (5)f (x )=x 2+2x 2+1 (6)f (x )=x ln x答案:(1)[32,1];(2)(-1,1];(3)(-∞,54];(4)[-74,3];(5)[22-1,+∞); (6)[-1e,+∞).2.(1)f (x )=x (12x -1+12)的奇偶性为 .(2)若f (x )=x(2x +1)(x -a )为奇函数,则a 的值为 .答案:(1)偶函数;(2)12.3.(1)函数f (x )=2x +1x +1的增区间为 ; (2)f (x )=log 12(x 2-2x )的增区间为 ;(3)f (x )=ln x -2x 2的减区间为 .答案:(1)(-∞,-1)和(-1,+∞);(2)(-∞,0);(3)(12,+∞) .4.(1)若f (x )是R 上的奇函数,且当x >0时,f (x )=1+3x ,则f (x ) = . (2)若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2) 0,则f (x )<0的x 的取值范围是 .答案:(1)⎩⎪⎨⎪⎧-1+3x ,x <00, x =0 1+3x , x >0;(2)(-2,2).5.设f (x )是R 上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,(1)则f (7.5)= ;(2)当x ∈[4,6]时,f (x )= .答案:(1)-12;(2)⎩⎨⎧x -4,4≤x ≤56-x ,5<x ≤66.(1)已知函数f (x )=ln(2x +1),①将函数y =f (x )图象向右平移2个单位后的解+析式为 .②与函数y =f (x )图象关于y 轴对称的函数解+析式为 . (2)方程1-x 2=x +m 有一个实数解,则m 的取值范围为 . 答案:(1)①y =ln(2x -3);②y =ln(1-2x );(2)[-1,1)∪{2}.7.(1)若函数y =log 2(x +2)的图象与y =f (x )的图象关于x =1对称,则f (x )= . (2)已知f (x )=log 2|ax +3|关于x =1对称,则实数a = . 则实数a = . 答案:(1)log 2(4-x );(2)0或-3.二、方法联想1.值域求法(1)单调性法;(2)基本不等式法;(3)部分函数有界性法;(4)判别式法. 注意:单调性法是最基本最一般的方法,配方、换元等是变形的手段.变式1、若函数)1,0(.9,3log 4,9,223)(≠>⎩⎨⎧>-≤-=a a x x x x x f a 的值域是[),,5+∞则实数a 的取值范围是 . 答案:(]3,1(分段函数的值域是各段函数值域的并集)变式2、定义{}min ,,a b c 为,,a b c 中的最小值,设(){}2min 23,1,53f x x x x =++-,则()f x 的最大值是__________答案:2(数形结合求值域)变式3、函数y =+_________答案:)+∞(构造图像求值域)2.判断函数奇偶性方法1 定义法;方法2 图象法.优先考虑用图象法,定义法前先判断定义域.但证明奇偶性只能用定义法. 已知函数奇偶性方法1 若函数为奇函数且0在定义域内,用f (0)=0;方法2 利用特殊值法;方法3 利用定义.优先用方法1,再用方法2,注意检验.但如果是解答题,必须用定义证明其奇偶性. 变式1、设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x+b (b 为常数),则f (-1)= .答案:-3(已知函数奇偶性求值)变式2、已知a 为非零常数111lg)(++-=xxa x f ,满足1)5.0(l g -=f ,则=)2(lg f .(熟悉常见函数的奇偶性) 3.判断函数单调性方法1 导数法;方法2 定义法;方法3组合函数法;方法4 复合函数法. 判断函数的单调性优先考虑定义域,方法选择可先考虑组合函数法,再考虑复合函数法,关键时候用导数法,别忘了定义法.注意:单调性证明只能用导数法和定义法.变式1、设函数a x x x f -=)(,若对任意的[)2121,,2,x x x x ≠+∞∈,不等式0)()(2121>--x x x f x f 恒成立,则实数a 的取值范围是 .答案:(]2,∞-(注意单调性的不同表现形式,数形结合)变式2、已知函数()222,02,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩.若()()()21f a f a f -+≤,则a 的取值范围是 . 答案:[]1,1-(分段函数的奇偶性、单调性结合)4.奇偶性、单调性应用处理函数问题,如最值、解不等式、图象等,可分析函数的奇偶性,判断函数的单调性,其中奇(偶)函数y 轴两侧单调性口诀:奇同偶反.变式1、若ax x f x++=)110lg()(是偶函数,则=a .答案: 21- (应用定义代数运算)变式2、已知函数,2,2,cos )(2⎥⎦⎤⎢⎣⎡-∈-=ππx x x x f 则满足)3()(πf a f >的a 的取值范围是 .(函数解+析式隐含函数性质)5.奇偶性、对称性、周期性的综合常用结论:①如果存在一个非零常数T ,使得对于函数定义域内的任意x ,都有f (x +T )= f (x ),则称f (x )为周期函数.②若函数满足f (x +a )=-f (x ),则f (x )的周期为2a . ③若函数满足f (x +a )=1f (x ),则f (x )的周期为2a .④若函数满足f (x +a )= -1f (x ),则f (x )的周期为2a . 变式1、设)(x f 是定义在R 上的周期为2的函数,当[)1,1-∈x 时,⎩⎨⎧<≤<≤---=-.10,2,01),(log )(2x x x x f x则=))23((f f .答案:0(转化到已知范围内)变式2:函数f (x )是定义在R 上的奇函数,且f (x +4)=f (x )对一切实数x 都成立,若f (1)=0,则关于x 的方程f (x )=0在[0,10]上的解的个数为______________.(函数的周期性与奇偶性结合) 答案:116.函数图象变换(一) 平移变换; (二) 对称变换处理函数问题优先考虑函数的图象,即数形结合法.作函数图象时,先考虑用图象变换法转化为基本函数问题.我们也可以由函数的图象分析函数的性质(或值域),反过来要考虑函数的性质对函数作图的作用.变式1、已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩,,其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是_________. 答案:(3,)+∞ (图形对称)变式2、定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()3212x f x -⎛⎫=- ⎪⎝⎭,则52f ⎛⎫-= ⎪⎝⎭答案: 14-(函数周期性的拓展) 7.图象的对称问题方法1 相关点法;方法2 特殊值法. 常用结论:①若函数满足f (a +x )=f (b -x ),则f (x )图象关于直线x =a +b2对称. ②若函数满足f (a +x )+f (b -x )=m ,则f (x )图象关于点(a +b 2,m2)对称.③函数y =f (a +x )与函数 y =f (a -x ) 图象关于直线x =0即y 轴对称.④函数y =f (a +x )与函数 y =-f (a -x ) 图象关于点(0,0)及坐标原点对称.变式1、已知()f x 是定义在R 上的函数,满足()()()()0,11f x f x f x f x +-=-=+,当()0,1x ∈时,()2f x x x =-+,则函数()f x 的最小值为( )答案: 12-(运用函数周期性求函数的最小值)变式2、设函数)(x f 是定义在R 上的增函数,且对于任意的x 都有0)1()1(=++-x f x f 恒成立.如果实数 n m ,满足不等式组⎩⎨⎧<-++->.0)8()236(,322n n f m m f m 那么22n m +的取值范围是 . 答案:(13,49)(题意转化,数形结合)三、例题分析例1.已知函数f (x )=-3x +a3x +1+b.(1)当a =b =1时,求满足f (x )≥3x 的x 的取值范围;(2)若y =f (x )的定义域为R ,又是奇函数,求y =f (x )的解+析式,判断其在R 上的单调性并加以证明. 解:(1)x 的取值范围为(-∞,-1]. (2)f (x )=1-3x 3×(3x+1)=13(-1+23x +1). f (x ) 在R 上单调递减.【教学建议】1.本题考查指数函数的单调性、函数的奇偶性.第一问中涉及指数不等式的解法,第二问涉及等式恒成立问题.2.本题的易错点是第二问中忽视由“f (x )的定义域为R ”所得到的“b ≥0”的条件.3.单调性是函数在其定义域上的局部性质,它往往与不等式相结合,应用时要看清函数的单调区间.4.判断函数的单调性的常用方法有:①能画出图象的一般用数形结合法去观察;②由基本初等函数通过加减运算或复合而成的函数,常转化为基本初等函数的单调性判断问题;③对于解+析式较复杂的一般用导数法;④对于抽象函数的一般用定义法.例2. 已知函数f (x )=ax 2-|x |+2a -1(a 为实常数).(1)若a =1,作函数f (x )的图象;(2)设f (x )在区间[1,2]上的最小值为g (a ),求g (a )的表达式;(3)设h (x )=f (x )x ,若函数h (x )在区间[1,2]上是增函数,求实数a 的取值范围.解:(1)作图象如右图所示.(2)g (a )=⎩⎪⎨⎪⎧6a -3, a <14,2a -14a -1, 14≤a ≤12,3a -2, a >12.(3)实数a 的取值范围为⎣⎡⎦⎤-12,1.【教学建议】1.本题主要考查二次函数的性质,结合绝对值考查分类讨论思想,第一问主要是画图;第二问中二次函数属于轴动区间定的题型,主要考查分类讨论,细心一点即可完成;第三问比较发散,既可等价转化为h ′(x )≥0对于任意的x ∈[1,2]恒成立来解决,也可以用定义法来解决.2.求二次函数在某段区间上的最值时,要利用好图象,特别是含参数的两种类型:“定轴动区间、定区间动轴”的问题,要抓住“三点一轴”,“三点”指区间的两个端点和区间的中点,“一轴”指的是抛物线的对称轴.3.本题的易错点有三个,一是第(2)问中容易遗漏“a =0”的情况;二是第三问用导数解决函数的单调性问题时,误将“h ′(x )=a -2a -1x 2≥0在[1,2]上恒成立”写成“h ′(x )=a -2a -1x 2>0在[1,2]上恒成立”;三是无论用导数还是单调性的定义,都忽视了“a =0”的情形.例3.设n 为正整数,规定:f n (x )=f {f […f (x )]}n 个f ,已知f (x )=⎩⎪⎨⎪⎧2(1-x ),0≤x ≤1,x -1, 1<x ≤2..(1)解不等式f (x )≤x ;(2)设集合A ={0,1,2},对任意x ∈A ,证明:f 3(x )=x ; (3)探求f 2 014⎝⎛⎭⎫89;(4)若集合B ={x |f 12(x )=x ,x ∈[0,2]},证明:B 中至少包含有8个元素.解:(1)解集为⎩⎨⎧x ⎪⎪⎭⎬⎫23≤x ≤2. (2)证明:∵f (0)=2,f (1)=0,f (2)=1, ∴当x =0时,f 3(0)=f (f (f (0)))=f (f (2))=f (1)=0; 当x =1时,f 3(1)=f (f (f (1)))=f (f (0))=f (2)=1; 当x =2时,f 3(2)=f (f (f (2)))=f (f (1))=f (0)=2.即对任意x ∈A ,恒有f 3(x )=x . (3)149.(4)由(1)知,f ⎝⎛⎭⎫23=23,∴f n ⎝⎛⎭⎫23=23. 则f 12⎝⎛⎭⎫23=23.∴23∈B .由(2)知,对x =0,或1,或2,恒有f 3(x )=x , ∴f 12(x )=f 4×3(x )=x . 则0,1,2∈B .由(3)知,对x =89,29,149,59,恒有f 12(x )=f 4×3(x )=x , ∴89,29,149,59∈B . 综上所述23,0,1,2,89,29,149,59∈B .∴B 中至少含有8个元素.【教学建议】1.本题给出新定义内容,第一问就是解不等式,第二问实际就是对定义的认识并直接套用,第三问则需要对定义进行更深一步的认识,探究函数值之间存在的规律.2.形如f (g (x ))的函数求值时,应遵循先内后外的原则;对于分段函数的求值(解不等式)问题,必须依据条件准确地找出利用哪一段求解.3.自定义问题是用数学符号、文字叙述给出一个教材之外的新定义,它要求在短时间内通过阅读、理解,解决题目给出的问题.解决这类问题的关键是准确把握新定义的含义,把从新定义中获取的新信息进行有效的整合,并转化为熟悉的知识加以解决.4.周期性是函数在定义域上的整体性质,本题体现的是函数值的周期性.四、反馈练习(专题2:函数的图象与性质)1.函数)32lg()(xx x f -=的定义域为 ;答案 )0,(-∞(考查函数的定义域).2.已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ;答案 2-(考查函数的奇偶性).3.已知偶函数)(x f 在[)+∞,0单调递减,.0)2(=f 若,0)1(>-x f 则x 的取值范围是 ;答案 )3,1(-(考查函数的奇偶性和单调性).4.设奇函数),)((R x x f y ∈=满足对任意R t ∈都有),1()(t f t f -=且⎥⎦⎤⎢⎣⎡∈21,0x 时,,)(2x x f -=则=-+)23()3(f f ;答案 41-(考查函数图像的对称性).5.已知函数)1(2log -=ax y 在(1,2)上单调递增,则实数a 的取值范围是 ;答案[)+∞,1(考查复合函数的单调性).6.函数)(x f 对一切实数x 都满足)21()21(x f x f -=+,并且方程0)(=x f 有三个实根,则这三个实根的和为 ;答案23(考查函数图像的对称性,函数零点). 7. 已知函数)(x f 对任意R x ∈满足)()(x f x f =-,且当0≥x 时,.1)(2+-=ax x x f 若)(x f 有4个零点,则实数a 的取值范围是 ;答案 ),2(+∞(考查函数图像的对称性,函数零点).8.已知函数x x x f +=3)(,对任意的[]2,2-∈m ,0)()2(<+-x f mx f 恒成立,则x 的取值范围是 ;答案 ⎪⎭⎫ ⎝⎛-32,2(考查函数的奇偶性和单调性).9.已知函数⎪⎩⎪⎨⎧>≤+-=.1,2,1,5)3()(x xa x x a x f 是()+∞∞-,的减函数,那么a 的取值范围是 ;答案 (]2,0(考查分段函数的单调性).10.若不等式xx x a 2log 221≥-+在)2,21(∈x 时恒成立,则实数a 的取值范围为 . 答案 [)+∞,1 (考查函数图像,不等式恒成立).11.设)(x f 是定义在R 上且周期为2的函数,在区间[]1,1-上,⎪⎩⎪⎨⎧≤≤++<≤-+=,10,12,01,1)(x x bx x ax x f 其中.,R b a ∈若)23()21(f f =,则b a 3+的值为 ;答案 10-(考查分段函数,函数的周期性).12.已知函数⎩⎨⎧>-≤-=-.0,12,0,2)(x ax x e x f x (a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是(1,+∞);④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎪⎫x 1+x 22<.2)()(21x f x f + 其中正确命题的序号是________(写出所有正确命题的序号). 答案 ①③④(考查分段函数的单调性,函数图像).13.已知函数)(x f 是定义在R 上的单调递增奇函数,若当20πθ≤≤时,0)22()s i n 2(c o s 2<--++m f m f θθ恒成立,求实数m 的取值范围.答案 21->m (考查函数的奇偶性和单调性,不等式恒成立).14. 已知函数)()(R x e e x f xx∈-=-,其中e 为自然对数的底. (1)判断函数)(x f 的奇偶性与单调性;(2)是否存在实数t ,使不等式0)()(22≥-+-t x f t x f 对一切x 都成立?若存在,求出t ;若不存在,请说明理由.答案 (1)奇函数,单调增;(2)21-=t .(考查函数的奇偶性和单调性,不等式恒成立).15.已知函数f (x )=x 2+2x +ax,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.解(1)当a =12时,f (x )=x +12x +2,在[1,+∞)上为增函数,f (x )min =f (1)=72. (2)f (x )=x +ax +2,x ∈[1,+∞).①当a ≤0时,f (x )在[1,+∞)内为增函数.最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,∴-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数,f (x )min =f (1)=a +3. ∴a +3>0,a >-3.∴0<a ≤1.③当a >1时,f (x )在[1,a ]上为减函数,在(a ,+∞)上为增函数,所以f (x )在[1,+∞)上的最小值是f (a )=2a +2,2a +2>0,显然成立. 综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,+∞).(考查函数的单调性,不等式恒成立).16.设函数xxa ka x f --=)((a >0且a ≠1)是奇函数.(1)求k 的值;(2)若f (1)>0,解关于x 的不等式f (x 2+2x )+f (x -4)>0;(3)若f (1)=32,且)(2)(22x mf a a x g x x -+=-在[1,+∞)上的最小值为-2,求m 的值.解 (1)因为f (x )是奇函数,且f (0)有意义,所以f (0)=0,所以k -1=0,k =1.(2)因为f (1)>0,所以a -1a >0,∴a >1,∴f (x )=a x -a -x 是R 上的单调增函数.于是由f (x 2+2x )>-f (x -4)=f (4-x ),得x 2+2x >4-x ,即x 2+3x -4>0,解得x <-4或x >1.(3)因为f (1)=32,所以a -1a =32,解得a =2(a >0),所以g (x )=22x +2-2x -2m (2x -2-x )=(2x -2-x )2-2m (2x -2-x )+2.设t =f (x )=2x -2-x ,则由x ≥1, 得t ≥f (1)=32,g (x )=t 2-2mt +2=(t -m )2+2-m 2. 若m ≥32,则当t =m 时,y min =2-m 2=-2,解得m =2.若m<32,则当t=32时,y min=174-3m=-2,解得m=2512(舍去).综上得m=2.(考查函数的奇偶性和单调性).11。

2018届高考数学(理)二轮复习课件(一) 送分专题(二) 函数的图象与性质

2018届高考数学(理)二轮复习课件(一) 送分专题(二) 函数的图象与性质

5.已知函数
1-2ax+3a,x<1, f(x)= x-1 ,x≥1 2
的值域为 R,则实
数 a 的取值范围是________.
解析:当 x≥1 时,f(x)=2x-1≥1, ∵函数
1-2ax+3a,x<1, f(x)= x-1 ,x≥1 2
的值域为 R,
∴当 x<1 时,y=(1-2a)x+3a 必须取遍(-∞,1]内的所有
送分专题(二) 函数的图象与性质
[全国卷 3 年考情分析]
年份 卷别 2017 考查内容及考题位置 利用函数的单调性、 卷Ⅰ 奇偶性求解不等式·T 5 分段函数与不等式的 卷Ⅲ 解法·T 15 命题分析 1.高考对此部分内容的命题多 集中于函数的概念、函数的性质 及分段函数等方面,多以选择、 填空题形式考查,一般出现在第 5~10或第13~15题的位置上, 难度一般.主要考查函数的定义 域,分段函数求值或分段函数中 参数的求解及函数图象的判断. 2.此部分内容有时出现在选 择、填空题压轴题的位置,多与 导数、不等式、创新性问题结合 命题,难度较大.
答案:B
3.设函数
2 m+x ,|x|≥1, f(x)= x,|x|<1
的图象过点(1,1),函数 g(x)
是二次函数,若函数 f(g(x))的值域是[0,+∞),则函数 g(x) 的值域是 A.(-∞,-1]∪[1,+∞) C.[0,+∞) ( )
B.(-∞,-1]∪[0,+∞) D.[1,+∞)

函数在(e-1,+∞)上单调递增,结合图象可知 D 正确,故选 D. 答案:D
2.已知函数 f(x-1)是定义在 R 上的奇函数,且在[0,+∞) 上是增函数,则函数 f(x)的图象可能是 ( )

2018届高三理科数学二轮复习讲义:模块二 专题一 第二讲 函数图象与性质

2018届高三理科数学二轮复习讲义:模块二 专题一 第二讲 函数图象与性质

专题一 集合、常用逻辑用语、不等式、函数与导数第二讲 函数图象与性质高考导航对于函数性质的考查往往综合多个性质,一般借助的载体为二次函数、指数函数、对数函数或者由基本的初等函数复合而成,尤其在函数单调性、奇偶性和周期性等性质的综合问题上应重点加强训练.2.对于函数图象的考查比较灵活,涉及知识点较多,且每年均有创新,试题的考查突出表现在三方面,一是在解决与性质相关的问题中使用函数图象,体现数形结合思想方法;二是给出一个较复杂函数的解析式求其对应的图象;三是根据所给的图象来判断函数的内在信息.4-x21.(2017·山东卷)设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)[解析] 由4-x2≥0得-2≤x≤2,由1-x>0得x<1,故A∩B={x|-2≤x≤2}∩{x|x<1}={x|-2≤x<1},故选D.[答案] D2.(2015·福建卷)下列函数为奇函数的是( )xA.y=B.y=|sin x|C.y=cos x D.y=e x-e-x[解析] A项中的函数为非奇非偶函数,B项和C项中的函数是偶函数,D项中的函数满足奇函数的定义,故选D.[答案] D3.(2017·全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( ) A.[-2,2] B.[-1,1]C.[0,4] D.[1,3][解析] ∵f(x)为奇函数,∴f(-1)=-f(1)=1.于是-1≤f(x-2)≤1等价于f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)上单调递减,∴-1≤x-2≤1,∴1≤x≤3.故选D.[答案] D4.(2016·全国卷Ⅰ)函数y=2x2-e|x|在[-2,2]的图象大致为( )[解析] f (2)=2×22-e 2=8-e 2,因为0<8-e 2<1,所以0<f (2)<1,排除选项A ,B.当0≤x ≤2时,y ′=4x -e x ,在平面直角坐标系中分别作出当0≤x ≤2时函数y 1=4x ,y 2=e x的图象,如图所示.可知,当0≤x ≤x 0时,e x >4x ,y ′<0,即y =2x 2-e |x |单调递减;当x 0<x ≤2时,4x >e x ,y ′>0,即y =2x 2-e |x |单调递增,故选D.[答案] D5.(2016·四川卷)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f +f (1)=________.(-52)[解析] 因为f (x )是定义在R 上的奇函数,所以f (0)=0,f (x )=-f (-x ),又f (x +2)=f (x ),所以f (-1)=-f (1)=f (1),因此f (1)=0.又f =f =-f =-2,故f +f (1)=-2.(-52)(-12)(12)(-52)[答案] -2考点一 函数及其表示1.函数的三要素定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题务必遵循“定义域优先”的原则.2.分段函数若函数在其定义域内,对于自变量的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[对点训练]1.(2017·广东深圳一模)函数y =的定义域为( )-x 2-x +2ln x A .(-2,1)B .[-2,1]C .(0,1)D .(0,1][解析] 由题意得Error!解得0<x <1,故选C.[答案] C2.已知函数y =f (x +2)的定义域是[-2,5),则y =f (3x -1)的定义域为( )A .[-7,14)B .(-7,14]C. D.(13,83][13,83)[解析] 因为函数y =f (x +2)的定义域是[-2,5),所以-2≤x <5,所以0≤x +2<7,所以函数f (x )的定义域为[0,7),对于函数y =f (3x -1),0≤3x -1<7,解得≤x <,故y =f (3x -1)的定义域1383是,故选D.[13,83)[答案] D3.(2017·赣中南五校联考)函数f (x )=x +的值域为2x -1________.[解析] 由题意得2x -1≥0,解得x ≥,12又∵f (x )=x +在上为增函数,2x -1[12,+∞)∴当x =时,f (x )取最小值,f (x )min =f =,且f (x )无最大值.12(12)12∴f (x )的值域为.[12,+∞)[答案] [12,+∞)4.(2017·福建厦门一模)已知函数f (x )=Error!的值域为R ,则实数a 的取值范围是________.[解析] 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=Error!的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则Error!解得0≤a <.12[答案] [0,12)(1)函数定义域问题的3种类型①已知函数的解析式:定义域是使解析式有意义的自变量的取值范围,只需构建不等式(组)求解即可.②抽象函数:根据f [g (x )]中g (x )的范围与f (x )中x 的范围相同求解.③实际问题或几何问题:除要考虑解析式有意义外,还应使实际问题有意义.(2)函数值域问题的4种常用方法公式法、分离常数法、图象法、换元法.考点二 函数的图象及其应用1.作图常用描点法和图象变换法,图象变换法常用的有平移变换、伸缩变换和对称变换.2.识图从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.3.用图在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.但是,在利用图象求交点个数或解的个数时,作图要十分准确,否则容易出错.角度1:以具体函数的解析式选择图象或知图象选解析式【例1-1】 (2017·全国卷Ⅰ)函数y =的部分图象大致sin2x1-cos x 为( )[思维流程] 看条件――→奇偶性 单调性析选项――→特殊点、线 得结果[解析] 由题意,令函数f (x )=,其定义域为sin2x1-cos x {x |x ≠2k π,k ∈Z },又f (-x )===-f (x ),所以sin (-2x )1-cos (-x )-sin2x1-cos x f (x )=为奇函数,其图象关于原点对称,故排除B ;因为sin2x1-cos x f ==0,f ==<0,所以排除A ;f (π)=(π2)sin π1-cos π2(3π4)sin 3π21-cos 3π4-11+22=0,排除D.故选C.sin2π1-cos π[答案] C角度2:利用函数的图象研究函数的性质(特别是单调性、最值、零点)、方程解的问题及解不等式、比较大小等【例1-2】 (2017·杭州五校联盟诊断)若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )看作同一个“伙伴点组”).已知函数f (x )=Error!有两个“伙伴点组”,则实数k 的取值范围是( )A .(-∞,0)B .(0,1)C. D .(0,+∞)(0,12)[思维流程] →→理解伙伴点组当x <0时,作y =f (x )的对称图形→画y =kx -1与y =ln x (x >0)图象由相切时的k 值求范围[解析] 依题意,“伙伴点组”的点满足:都在y =f (x )的图象上,且关于坐标原点对称.可作出函数y =-ln(-x )(x <0)关于原点对称的函数y =ln x (x >0)的图象,使它与直线y =kx -1(x >0)的交点个数为2.当直线y =kx -1与y =ln x 的图象相切时,设切点为(m ,ln m ),又y =ln x 的导数为y ′=,1x 则km -1=ln m ,k =,解得m =1,k =1,1m 可得函数y =ln x (x >0)的图象过(0,-1)点的切线的斜率为1,结合图象可知k ∈(0,1)时两函数图象有两个交点.[答案] B识别函数图象应关注的5点(1)根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置.(2)根据函数的单调性判断图象的变化趋势.(3)根据函数的奇偶性判断图象的对称性.(4)根据函数的周期性判断图象的循环往复.(5)取特殊值代入进行检验.[对点训练]1.[角度1](2017·贵州七校联考)已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=B .f (x )=ln|x |x e x xC .f (x )=-1D .f (x )=x -1x 21x[解析] 由函数图象可知,函数f (x )为奇函数,应排除B 、C.若函数为f (x )=x -,则x →+∞时,f (x )→+∞,排除D ,故选A.1x [答案] A2.[角度2](2017·福建漳州八校联考)已知函数f (x )=Error!若函数g (x )=f (x )-m 有三个零点,则实数m 的取值范围是________.[解析] 令g (x )=f (x )-m =0,得f (x )=m ,则函数g (x )=f (x )-m 有三个零点等价于函数f (x )与y =m 的图象有三个不同的交点,作出函数f (x )的图象如图:当x ≤0时,f (x )=x 2+x =2-≥-,若函数f (x )与y =m (x +12)1414的图象有三个不同的交点,则-<m ≤0,即实数m 的取值范围是14.(-14,0][答案] (-14,0]考点三 函数的性质及其应用1.函数的单调性单调性是函数的一个局部性质,一个函数在不同的区间上可以有不同的单调性.判定函数的单调性常用定义法、图象法及导数法.2.函数的奇偶性(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.函数的周期性对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a ;(2)若f (x +a )=,则T =2a ;1f (x )(3)若f (x +a )=-,则T =2a .(a >0)1f (x )4.函数的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.(2)若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则f (x )的图象关于点(a,0)对称.(3)若函数y =f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =对称.a +b 2角度1:确认函数的单调性、奇偶性、周期性、对称性及最值【例2-1】 (2017·北京卷)已知函数f (x )=3x -x ,则f (x )( )(13)A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数[解析] 易知函数f (x )的定义域关于原点对称.∵f (-x )=3-x --x =x -3x =-f (x ),(13)(13)∴f (x )为奇函数.又∵y =3x 在R 上是增函数,y =-x 在R 上是增函数,(13)∴f (x )=3x -x 在R 上是增函数.故选A.(13)[答案] A 角度2:综合应用函数的性质求值(取值范围)、比较大小等,常与不等式相结合[思维流程] f (x )是R 上的偶函数且在(-∞,0)上单调递增――→对称性 →→f (x )在(0,+∞)上单调递减脱去“f ”解关于a的不等式[解析] 解法一:因为f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,所以f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-),f (-)=f (),故0<2|a -1|<,则|a -1|<,所以222212<a <.1232解法二:依题意,令f (x )=-|x |,由f (2|a -1|)>f (-),得-|2|a -1||>-|-|,22则|a -1|<,解得<a <.121232[答案] (12,32)函数3个性质的应用要领(1)奇偶性:具有奇偶性的函数在关于原点对称的区间上其图象、函数值、解析式和单调性联系密切,研究问题时可转化到只研究部分(一半)区间上,这是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ).(2)单调性:可以比较大小,求函数最值,解不等式,证明方程根的唯一性.(3)周期性:利用周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题,转化到已知区间上求解.【易错提醒】 在确定函数的奇偶性和单调性时,不能忽略函数的定义域.[对点训练]1.[角度1]下列函数在其定义域内既是奇函数,又是增函数的是( )A .y =x 2+2B .y =-4x 3C .y =-x +D .y =x |x |1x [解析] ∵函数y =x 2+2是偶函数,∴选项A 不满足题意;∵x 增大时,-4x 3减小,即y 减小,∴y =-4x 3为减函数,∴选项B 不满足题意;y =-x +在定义域内不单调,∴选项C 不满足题意;1x y =x |x |为奇函数,且y =x |x |=Error!∵y =x 2在[0,+∞)上单调递增,y =-x 2在(-∞,0)上单调递增,且y =x 2与y =-x 2在x =0处的函数值都为0,∴y =x |x |在定义域内是增函数.故选D.[答案] D2.[角度2](2016·山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >时,f=f 12(x +12).则f (6)=( )(x -12)A .-2 B .-1 C .0 D .2[解析] 由题意可知,当-1≤x ≤1时,f (x )为奇函数,且当x >时,f (x +1)=f (x ),所以f (6)=f (5×1+1)=f (1).而f (1)=-f (-1)12=-[(-1)3-1]=2,所以f (6)=2.故选D.[答案] D热点课题2 函数图象辨析[感悟体验]1.(2017·长沙模拟)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P 作直线OA的垂线,垂足为M.将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]的图象大致为( )[解析] 由题意知,f (x )=|cos x |·sin x ,当x ∈时,f (x )[0,π2]=cos x ·sin x =sin2x ;当x ∈时,f (x )=-cos x ·sin x =-sin2x ,12(π2,π]12故选B.[答案] B2.(2017·南昌二模)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱A 1B 1,CD 的中点,点M 是EF 上的动点(不与E ,F 重合),FM =x ,过点M 、直线AB 的平面将正方体分成上下两部分,记下面那部分的体积为V (x ),则函数V (x )的大致图象是( )[解析] 当x ∈时,V (x )增长的速度越来越快,即变化率(0,22]越来越大;当x ∈时,V (x )增长的速度越来越慢,即变化率[22,2)越来越小,故选C.[答案] C。

2018高考理科数 第二轮复习专题一 第一讲 函数的图像与性质

2018高考理科数 第二轮复习专题一   第一讲 函数的图像与性质

1 (a 0且f ( x) 0), 则f ( x)是周期函数, 4 若f x a f ( x) 2a是它的一个周期;
1+f ( x) (a 0且f ( x) 1), 则f ( x)是周期函数, 5 若f x a 1 f ( x) 4a是它的一个周期;
3、周期性是函数的整体性质,一般地,对于函数f(x), 如果对于定义域中任意一个x的值: (1)若f(x+T)=f(x)(T≠0),则f(x)是周期函数,T是它的一 个周期; (2)对f(x+a)=f(x+b)(a≠0), 则f(x)是周期函数,∣ba∣是它的一个周期; (3)若f(x+a)=f(x-a)(a≠0),则f(x)是周期函数,2a是它的 一个周期;
在积累、归纳、提炼中升华
——二轮专题复习的有效策略

通过第一轮复习,大家能够较为系统地掌 握高中数学知识,并初步形成知识体系, 积累比较丰富的解题经验.
第二轮复习应该做什么?怎么做?
关键是要弄清楚自己目前的水平离高 考的要求还有多大差距。具体地说,二轮 复习就是针对高考的重点、难点,以专题 的形式进行知识与方法的横、纵向联系, 以强化综合能力、思维能力、运算能力和 应试能力为主要目标的一种复习方式.
(-2,2/3) f ( x) 0恒成立,则x的取值范围为 ____________ .

总结:函数性质的综合应用主要包括求值 与解不等式两个方面:求值的关键是利用 函数的奇偶性、对称性以及函数的周期性 将自变量转化到指定区间内,然后代入函 数解析式求值。解不等式问题主要利用函 数的奇偶性与单调性将函数值的大小转化 为自变量之间的大小关系.
2、对称性与周期性之间的关系 周期性与对称性是相互联系、紧密相关的, 一般地,若f(x)的图像有两条对称轴x=a和 x=b(a≠b),则f(x)必为周期函数,且2∣b-a∣是 它的一个周期;若f(x)的图像有两个对称中心 (a,0)和(b,0)(a≠b),则f(x)必为周期函数 ,2∣b-a∣为它的一个周期;若f(x)的图像有一 条对称轴x=a和一个对称中心(b,0)(a≠b), 则f(x)必为周期函数,且它的一个周期是4∣ba∣.

2018届江苏高考数学二轮专题复习 函数的图象与性质

2018届江苏高考数学二轮专题复习 函数的图象与性质

解析
5 5 1 1 由已知 f -2=f -2+2=f -2=-2+a,
9 9 1 2 1 1 - f 2=f 2-4=f 2= = . 5 2 10
化为给出解析式的范围内的函数值.
思维升华
解析
答案
(2)已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a| - a(a∈R). 若 ∀x∈R , f(x + 2 016)>f(x) ,则实数 a 的取值范围是 (-∞,504) ____________. 思维升华 的形式. 利用函数的单调性解不等式的关键是化成 f(x1)<f(x2)
5 从而 f -2+f(1)=-2.
解析
答案
(2)(2017· 江苏溧水高级中学质检 ) 若函数 f(x) 是定义在 R 上的
奇函数,且在 ( - ∞ , 0) 上是增函数,又 f(2) = 0 ,则不等式
xf(x+1)<0的解集为________________. (-3,-1)∪(0,1)
x f 1+f x2 x1+x2 . ③ 2 <f 2
②③ 把所有正确结论的序号都填写在横线上) 其中正确的结论是______.(
解析
答案
热点三 指数、对数函数的图象与性质 例3 (1)若4x+2x+1+m>1对一切实数x成立,则实数m的取值

(16,64) 取值范围是_________. 思维升华 判断复杂函数的图象,常借助导数这一工具,先对
原函数进行求导,再利用导数判断函数的单调性、极值或最值, 从而对选项进行筛选.要注意函数求导之后,导函数发生了变化,
故导函数和原函数的定义域会有所不同,我们必须在原函数的

2018届高考数学理科二轮总复习高考小题分项练 2 含解

2018届高考数学理科二轮总复习高考小题分项练 2 含解

高考小题分项练2 函数的图象与性质1.函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的单调增区间为________.答案 [0,+∞)解析 当x ≥0时,y =x 为增函数;当x <0时,y =x 2为减函数. 2.若函数f (x )=(x +1)(x -a )为偶函数,则a =________. 答案 1解析 ∵f (x )=(x +1)(x -a )=x 2+(1-a )x -a 为偶函数,∴对称轴x =-1-a2=0,∴a =1.3.函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥4,f (x +3),x <4,则f (f (-1))=________.答案 0解析 f (f (-1))=f (f (2))=f (f (5))=f (1)=f (4)=0.4.若函数f (x )=x 2-6x +m 在区间[2,+∞)上的最小值是-3,则实数m 的值为________. 答案 6解析 函数f (x )=x 2-6x +m 的对称轴是x =3,开口向上,所以函数f (x )在[2,3]上单调递减,在(3,+∞)上单调递增,故函数在x =3处取得最小值. 由f (3)=32-6×3+m =-3,解得m =6. 故实数m 的值为6.5.函数y =|x |(1-x )的单调增区间为________. 答案 ⎣⎡⎦⎤0,12 解析 当x ≥0时,y =|x |(1-x )=x (1-x )=x -x 2 =-⎝⎛⎭⎫x -122+14; 当x <0时,y =|x |(1-x )=-x (1-x )=x 2-x =⎝⎛⎭⎫x -122-14. 故y =⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0,函数图象如图所示.所以函数的单调增区间为⎣⎡⎦⎤0,12. 6.已知f (x )=⎩⎪⎨⎪⎧2x-3,x >0,g (x ),x <0是奇函数,则f (g (-2))=________.答案 1解析 方法一 当x <0时,-x >0,g (x )=-f (-x )=-(2-x -3)=3-⎝⎛⎭⎫12x ,所以g (-2)=-1,f (g (-2))=f (-1)=3-2=1.方法二 因为g (-2)=f (-2)=-f (2),所以f (g (-2))=f (-f (2))=f (-(22-3))=f (-1)=-f (1)=1.7.已知函数f (x )=a x (a >0且a ≠1)在[-1,1]上恒有f (x )<2,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫12,1∪(1,2)解析 当a >1时,f (x )在[-1,1]上是增函数, ∵在x ∈[-1,1]上恒有f (x )<2, ∴f (1)<2,∴1<a <2.当0<a <1时,f (x )在[-1,1]上是减函数, ∵在x ∈[-1,1]上恒有f (x )<2,∴f (-1)<2, ∴1a <2且0<a <1,∴12<a <1. 综上所述,实数a 的取值范围为12<a <1或1<a <2.8.当函数f (x )=⎩⎪⎨⎪⎧lg x ,x >0,-2x +a ,x ≤0有且只有一个零点时,a 的取值范围是________.答案 {a |a ≤0或a >1}解析 ∵f (1)=lg 1=0,∴当x ≤0时,函数f (x )没有零点,故-2x +a >0或-2x +a <0在(-∞,0]上恒成立,即a >2x 或a <2x 在(-∞,0]上恒成立,故a >1或a ≤0.9.函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n 的最小值为________.答案 92解析 由题意得点A (-2,-1), 故-2m -n +2=0,即2m +n =2.∴2m +1n =2m +n m +2m +n 2n =n m +m n +2+12≥4+12=92, 当且仅当m =n =23时,等号成立.10.函数y =log a x (a >0且a ≠1)在x ∈[2,+∞)上恒有|y |>1,则a 应满足的条件是________. 答案 12<a <1或1<a <2解析 若0<a <1,当x ≥2时,log a x <0,∴log a x <-1. 由题意知log a 2<-1,∴a ∈⎝⎛⎭⎫12,1. 若a >1,当x ≥2时,log a x >0,∴log a x >1. 由题意知log a 2>1,∴a ∈(1,2). 综上可知,12<a <1或1<a <2.11.已知t 为常数,函数y =|x 2-2x -t |在区间[0,3]上的最大值为2,则t =________. 答案 1解析 二次函数y =x 2-2x -t 在[0,3]上的最大值为2或最小值为-2,f (1)=1-2-t =-1-t =-2,∴t =1,或f (3)=3-t =2,∴t =1.综上t =1.12.已知f (x )是定义在R 上的偶函数,且对于任意的x ∈[0,+∞),满足f (x +2)=f (x ),若当x ∈[0,2)时,f (x )=|x 2-x -1|,则函数y =f (x )-1在区间[-2,4]上的零点个数为________. 答案 7解析 由题意作出y =f (x )在区间[-2,4]上的图象,与直线y =1的交点共有7个,故函数y =f (x )-1在区间[-2,4]上的零点个数为7.13.设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数:f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .取函数f (x )=a -|x |(a >1).当K =1a 时,函数f K (x )的单调减区间是________.答案 (1,+∞)解析 由题意知,当K =1a(a >1)时,令f (x )≤1a ,即a -|x |≤1a,解得x ≤-1或x ≥1;令f (x )>1a ,即a -|x |>1a ,解得-1<x <1.所以f K (x )如图实线所示.由图象知,f K (x )在(1,+∞)上为减函数.14.已知函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x +1)(k>0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________. 答案 ⎣⎡⎭⎫14,13解析 根据[x ]表示的意义可知,当0≤x <1时,f (x )=x ,当1≤x <2时,f (x )=x -1,当2≤x <3时,f (x )=x -2,以此类推,当k ≤x <k +1时,f (x )=x -k ,k ∈Z ,当-1≤x <0时,f (x )=x +1.作出函数f (x )的图象如图,直线y =k (x +1)过点(-1,0),当直线经过点(3,1)时恰有三个交点,当直线经过点(2,1)时恰有两个交点,在这两条直线之间时有三个交点,故k ∈⎣⎡⎭⎫14,13.。

2018年高考数学二轮复习习题:第一部分 专题一 第二讲 函数的图象与性质 第二讲 函数的图象与性质

2018年高考数学二轮复习习题:第一部分 专题一 第二讲 函数的图象与性质 第二讲 函数的图象与性质

限时规范训练 A 组——高考热点强化练一、选择题1.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( ) A .(1,2) B .(1,2] C .(-2,1)D .[-2,1)解析:∵4-x 2≥0,∴-2≤x ≤2,∴A =[-2,2].∵1-x >0,∴x <1,∴B =(-∞,1),∴A ∩B =[-2,1). 故选D. 答案:D2.(2017·沈阳模拟)已知函数f (x )=⎩⎪⎨⎪⎧,x >0,3x ,x ≤0,则f (f (4))的值为( )A .-19B .-9C.19D .9解析:因为f (x )=⎩⎪⎨⎪⎧,x >0,3x ,x ≤0,所以f (f (4))=f (-2)=19.答案:C3.(2017·湖南东部六校联考)函数y =lg|x |( ) A .是偶函数,在区间(-∞,0)上单调递增 B .是偶函数,在区间(-∞,0)上单调递减 C .是奇函数,在区间(0,+∞)上单调递增D .是奇函数,在区间(0,+∞)上单调递减解析:因为lg|-x |=lg|x |,所以函数y =lg|x |为偶函数,又函数y =lg|x |在区间(0,+∞)上单调递增,由其图象关于y 轴对称,可得y =lg|x |在区间(-∞,0)上单调递减,故选B. 答案:B4.函数f (x )=⎪⎪⎪⎪⎪⎪x -1x 的图象为( )解析:由题设条件,当x ≥1时,f (x )=22log x-⎝⎛⎭⎪⎫x -1x =1x;当0<x <1时, f (x )=22log x --⎝ ⎛⎭⎪⎫1x -x =1x -⎝ ⎛⎭⎪⎫1x -x =x .故f (x )=⎩⎪⎨⎪⎧1x,x ≥1,x ,0<x <1.其图象如图所示.故选D.答案:D5.(2017·西安模拟)对于函数y =f (x ),部分x 与y 的对应关系如下表:数列{x n }满足:x 1=n n +1x 1+x 2+…+x 2 017=( ) A .7 554 B .7 540 C .7 561D .7 564解析:∵数列{x n }满足x 1=1,且对任意n ∈N *,点(x n ,x n +1)都在函数y =f (x )的图象上,∴x n +1=f (x n ),∴由图表可得x2=f(x1)=3,x3=f(x2)=5,x4=f(x3)=6,x5=f(x4)=1,…,∴数列{x n}是周期为4的周期数列,∴x1+x2+…+x2 017=504(x1+x2+x3+x4)+x1=504×15+1=7 561.故选C.答案:C6.已知函数y=sin ax+b(a>0)的图象如图所示,则函数y=log a(x+b)的图象可能是( )解析:由题图可知0<a<1,0<b<1.故选C.答案:C7.(2016·福州质检)已知偶函数f(x)满足:当x1,x2∈(0,+∞)时,(x1-x2)[f(x1)-f(x2)]>0恒成立.设a=f(-4),b=f(1),c=f(3),则a,b,c的大小关系为( )A.a<b<c B.b<a<cC.b<c<a D.c<b<a解析:因为f(x)为偶函数,故f(-4)=f(4).因为(x1-x2)·[f(x1)-f(x2)]>0,故函数f(x)在(0,+∞)上单调递增,故f(-4)=f(4)>f(3)>f(1),即a>c>b,故选C.答案:C8.(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.故选D.答案:D9.(2017·高考山东卷)设f (x )=⎩⎨⎧x ,0<x <1,x -,x ≥1.若f (a )=f (a +1),f (1a)=( )A .2B .4C .6D .8解析:若0<a <1,由f (a )=f (a +1)得a =2(a +1-1),∴a =14,∴f (1a )=f (4)=2×(4-1)=6.若a ≥1,由f (a )=f (a +1)得2(a -1)=2(a +1-1),无解.综上,f (1a)=6.故选C.答案:C10.(2017·山西四校联考)已知函数f (x )满足:①定义域为R ;②∀x ∈R ,都有f (x +2)=f (x );③当x ∈[-1,1]时,f (x )=-|x |+1.则方程f (x )=12log 2|x |在区间[-3,5]内解的个数是( )A .5B .6C .7D .8解析:画出y 1=f (x ),y 2=12log 2|x |的图象如图所示,由图象可得所求解的个数为5.答案:A11.(2017·天津模拟)已知函数f (x )的图象如图所示,则f (x )的解析式可能是( )A .x 2cos xB .sin x 2C .x sin xD .x 2-16x 4解析:由图象可得f ⎝ ⎛⎭⎪⎫π2>0,故可排除A 选项.由于函数f (x )在区间⎝⎛⎭⎪⎫0,π2上先增后减,而函数y =x sin x 在⎝⎛⎭⎪⎫0,π2上单调递增(因为y =x 及y =sin x 均在⎝⎛⎭⎪⎫0,π2上单调递增,且函数取值恒为正),故排除C 选项.对函数y =x 2-16x 4而言,y ′=2x -23x 3=23x (3-x 2),当x ∈⎝ ⎛⎭⎪⎫0,π2时,y ′=23x (3-x 2)>0,故y =x 2-16x 4在区间⎝ ⎛⎦⎥⎤0,π2上单调递增,与图象不符,故排除D 选项.故选B.答案:B12.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:由f (x -4)=-f (x )得f (x +2-4)=f (x -2)=-f (x +2),由f (-x )=-f (x )得f (-x -2)=-f (x +2),所以f (-2+x )=f (-2-x ),所以直线x =-2是函数f (x )图象的一条对称轴.同理得直线x =2是函数f (x )图象的一条对称轴,所以函数f (x )的周期是8,所以f (-25)=f (-1)=-f (1),f (11)=f (3)=f (1),f (80)=f (0).由f (x )是奇函数,且在区间[0,2]上是增函数,得f (0)=0,f (1)>0,-f (1)<0,则-f (1)<f (0)<f (1), 即f (-25)<f (80)<f (11).故选D. 答案:D 二、填空题13.(2017·高考全国卷Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.解析:法一:令x >0,则-x <0.∴f (-x )=-2x 3+x 2. ∵函数f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ). ∴f (x )=2x 3-x 2(x >0).∴f (2)=2×23-22=12. 法二:f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12. 答案:1214.若函数f (x )=2x+a ·2-x为奇函数,则实数a =________. 解析:依题意得f (0)=1+a =0,所以a =-1. 答案:-115.已知函数f (x )=22x +1+sin x ,则f (-2 017)+f (-2 016)+f (0)+f (2 016)+f (2 017)=________.解析:因为f (x )=22x +1+sin x ,所以f (-x )=22-x +1-sin x =2·2x2x +1-sin x ,所以f (x )+f (-x )=2.则f (2 017)+f (-2 017)=2,f (2 016)+f (-2 016)=2.而f (0)=220+1+sin 0=1,所以f (-2 017)+f (-2 016)+f (0)+f (2 016)+f (2 017)=5. 答案:516.已知定义在R 上的函数f (x )满足:①函数y =f (x -1)的图象关于点(1,0)对称;②∀x ∈R ,f ⎝ ⎛⎭⎪⎫34-x =f ⎝ ⎛⎭⎪⎫34+x ; ③当x ∈⎝ ⎛⎦⎥⎤-32,-34时,f (x )=log 2(-3x +1).则f (2 017)=________.解析:由①知f (x )为奇函数.又由②可得f (x )是以3为周期的周期函数,所以f (2 017)=f (1)=-f (-1)=-log 2[-3×(-1)+1]=-log 24=-2. 答案:-2B 组——12+4高考提速练一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:当a ≤0时,2a-2=-2无解;当a >0时,由-log 3a =-2,解得a =9, 所以f (7-a )=f (-2)=2-2-2=-74,故选D.答案:D2.(2017·高考北京卷)已知函数f (x )=3x-(13)x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数解析:∵函数f (x )的定义域为R ,f (-x )=3-x -(13)-x =(13)x -3x =-f (x ),∴函数f (x )是奇函数.∵函数y =(13)x 在R 上是减函数,∴函数y =-(13)x在R 上是增函数.又∵y =3x 在R 上是增函数,∴函数f (x )=3x-(13)x 在R 上是增函数.故选A.答案:A3.函数y =(x 3-x )2|x |的图象大致是( )解析:易判断函数为奇函数,由y =0得x =±1或x =0.且当0<x <1时,y <0;当x >1时,y >0,故选B. 答案:B4.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( )A .(-∞,0)B.⎣⎢⎡⎦⎥⎤0,12 C .[0,+∞)D.⎝ ⎛⎭⎪⎫12,+∞ 解析:y =|x |(1-x )=⎩⎪⎨⎪⎧x 1-x ,x ≥0,-x 1-x ,x <0=⎩⎪⎨⎪⎧-x 2+x ,x ≥0,x 2-x ,x <0=⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫x -122+14,x ≥0,⎝ ⎛⎭⎪⎫x -122-14,x <0.画出函数的大致图象,如图所示.由图易知函数在⎣⎢⎡⎦⎥⎤0,12上单调递增,故选B.答案:B5.若函数f (x )=⎩⎪⎨⎪⎧x 2-5x ,x ≥0,-x 2+ax ,x <0是奇函数,则实数a 的值是( )A .-10B .10C .-5D .5解析:∵f (x )为奇函数,∴f (-1)=-f (1),即-1-a =4,∴a =-5. 答案:C6.(2017·贵阳模拟)已知函数f (x )的图象如图所示,则f (x )的解析式可能是( )A .f (x )=e1-x2B .f (x )=e x 2-1 C .f (x )=e x 2-1D .f (x )=ln(x 2-1)解析:A 中,令f (x )=e u,u =1-x 2,易知当x <0时,u 为增函数,当x >0时,u 为减函数,所以当x <0时,f (x )为增函数,当x >0时,f (x )为减函数,故A 可能是;B 、C 中同理可知,当x <0时,f (x )为减函数,当x >0时,f (x )为增函数,故B 、C 不是;D 中,当x =0时,无意义,故D 不是,选A. 答案:A7.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x+15,则f (log 220)=( )A .1B.45 C .-1D .-45解析:由f (x -2)=f (x +2)可得f (x )=f (x +4).因为4<log 220<5,所以0<log 220-4<1,-1<4-log 220<0,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f ⎝ ⎛⎭⎪⎫log 245=-1,故选C. 答案:C8.(2017·陕西宝鸡中学第一次月考)已知函数f (x )=⎩⎪⎨⎪⎧a -x +4a ,x <1,log a x , x ≥1满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,13B.⎝ ⎛⎭⎪⎫13,1C.⎣⎢⎡⎭⎪⎫17,13 D.⎣⎢⎡⎭⎪⎫17,1 解析:依题意f (x )单调递减,所以⎩⎪⎨⎪⎧3a -1<0,0<a <1,3a -1+4a ≥log a 1,解得17≤a <13,故选C.答案:C9.对于函数f (x ),使f (x )≤n 成立的所有常数n 中,我们把n 的最小值G 叫做函数f (x )的上确界.则函数f (x )=⎩⎨⎧2-x,x ≥0,⎛⎭⎪⎫12-x ,x <0的上确界是( )A .0B.12 C .1D .2解析:∵f (x )在(-∞,0)上是单调递增的,在[0,+∞)上是单调递减的,∴f (x )在R 上的最大值是f (0)=1, ∴n ≥1,∴G =1.故选C. 答案:C10.(2017·重庆一中模拟)设曲线y =f (x )与曲线y =x 2+a (x >0)关于直线y =-x 对称,且f (-2)=2f (-1),则a =( )A .0 B.13C.23 D .1解析:依题意得,曲线y =f (x )即为-x =(-y )2+a (其中-y >0,即y <0,注意到点(x 0,y 0)关于直线y =-x 的对称点是点(-y 0,-x 0),化简后得y =--x -a ,即f (x )=--x -a ,于是有-2-a =-21-a ,由此解得a =23,选C. 答案:C11.已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,如果f (ax +1)≤f (x -2)在x ∈⎣⎢⎡⎦⎥⎤12,1上恒成立,那么实数a 的取值范围是( )A .[-2,1]B .[-5,0]C .[-5,1]D .[-2,0]解析:因为f (x )是偶函数,且f (x )在[0,+∞)上是增函数,所以f (ax +1)≤f (x -2)在x ∈⎣⎢⎡⎦⎥⎤12,1上恒成立,即|ax +1|≤|x -2|,即x -2≤ax +1≤2-x .由ax +1≤2-x ,得ax ≤1-x ,a ≤1x-1,而1x-1在x =1时取得最小值0,故a ≤0.同理,由x -2≤ax +1,得a ≥-2,所以a 的取值范围是[-2,0].答案:D12.(2017·高考天津卷)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:依题意a =g (-log 25.1)=(-log 25.1)·f (-log 25.1)=log 25.1f (log 25.1)=g (log 25.1). 因为f (x )在R 上是增函数,可设0<x 1<x 2,则f (x 1)<f (x 2).从而x 1f (x 1)<x 2f (x 2),即g (x 1)<g (x 2).所以g (x )在(0,+∞)上亦为增函数.又log 25.1>0,20.8>0,3>0,且log 25.1<log 28=3,20.8<21<3,而20.8<21=log 24<log 25.1, 所以3>log 25.1>20.8>0,所以c >a >b .故选C.答案:C二、填空题13.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.解析:f (-x )=ln(e -3x +1)-ax =ln 1+e 3x e3x -ax =ln(1+e 3x )-3x -ax ,依题意得,对任意x ∈R , 都有f (-x )=f (x ),即ln(1+e 3x )-3x -ax =ln(1+e 3x )+ax ,化简得2ax +3x =0(x ∈R),因此2a +3=0,解得a =-32. 答案:-3214.(2017·高考山东卷)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f ((x +2)+4)=f ((x +2)-2),即f (x +6)=f (x ), ∴f (x )是周期为6的周期函数,∴f (919)=f (153×6+1)=f (1).又f (x )是定义在R 上的偶函数,∴f (1)=f (-1)=6,即f (919)=6.答案:615.已知函数f (x )=⎩⎪⎨⎪⎧ a -x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a的取值范围为________.解析:要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧ a >1,a -2>0,f 1≤0,即⎩⎪⎨⎪⎧ a >1,a >2,a -2-1≤0,所以⎩⎪⎨⎪⎧ a >1,a >2,a ≤3,解得2<a ≤3,即a 的取值范围是(2,3].答案:(2,3]16.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≤0,2x ,x >0,则满足f (x )+f (x -12)>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论. 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0. 当0<x ≤12时,原不等式为2x +x +12>1,显然成立. 当x >12时,原不等式为2x +2x -12>1,显然成立. 综上可知,x >-14. 答案:(-14,+∞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

寒假作业(二) 函数的图象与性质(注意速度和准度)一、“12+4”提速练1.已知函数y =2x +1,x ∈{x ∈Z|0≤x <3},则该函数的值域为( ) A .{y |1≤y <7} B .{y |1≤y ≤7} C .{1,3,5,7}D .{1,3,5}解析:选D 由题意可知,函数的定义域为{0,1,2},把x =0,1,2代入函数解析式可得y =1,3,5,所以该函数的值域为{1,3,5}.2.函数f (x )=ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为( ) A .(-1,1] B .(0,1] C .[0,1]D .[1,+∞)解析:选B 由条件知⎩⎪⎨⎪⎧1+1x >0,x ≠0,1-x 2≥0.即⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1.则x ∈(0,1].∴原函数的定义域为(0,1].3.(2017·成都第一次诊断性检测)已知定义在R 上的奇函数f (x )满足f (x +3)=f (x ),且当x ∈⎣⎡⎭⎫0,32时,f (x )=-x 3,则f ⎝⎛⎭⎫112=( ) A .-18 B.18C .-1258 D.1258解析:选B 由f (x +3)=f (x )知,函数f (x )的周期为3,又函数f (x )为奇函数,所以f ⎝⎛⎭⎫112=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=⎝⎛⎭⎫123=18. 4.(2018届高三·长沙四校联考)函数y =ln|x |-x 2的图象大致为()解析:选A 令f (x )=ln|x |-x 2,定义域为(-∞,0)∪(0,+∞)且f (-x )=ln|x |-x 2=f (x ),故函数y =ln|x |-x 2为偶函数,其图象关于y 轴对称,排除B 、D ;当x >0时,y =ln x -x 2,则y ′=1x -2x ,当x ∈⎝⎛⎭⎫0,22时,y ′=1x -2x >0,y =ln x -x 2单调递增,排除C.故A 符合.5.已知函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D 当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74.6.(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D ∵f (x )为奇函数,∴f (-x )=-f (x ). ∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1, ∴1≤x ≤3.7.(2017·衡阳四中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72B .f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52C .f ⎝⎛⎭⎫72<f ⎝⎛⎭⎫52<f (1)D .f ⎝⎛⎭⎫52<f (1)<f ⎝⎛⎭⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2),即函数f (x )的图象关于x =2对称,又因为函数y =f (x )在区间[0,2]上单调递增,所以函数y =f (x )在区间[2,4]上单调递减.因为f (1)=f (3),72>3>52,所以f ⎝⎛⎭⎫72<f (3)<f ⎝⎛⎭⎫52,即f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52. 8.设函数f (x )=x 3(a x +m ·a -x )(x ∈R ,a >0且a ≠1)是偶函数,则实数m 的值为( )A .-1B .1C .2D .-2解析:选A 法一:因为函数f (x )=x 3(a x +m ·a -x )(x ∈R ,a >0且a ≠1)是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以-x 3(a -x +m ·a x )=x 3(a x +m ·a -x ),即x 3(1+m )(a x +a -x )=0对任意的x ∈R 恒成立,所以1+m =0,即m =-1.法二:因为f (x )=x 3(a x +m ·a -x )是偶函数,所以g (x )=a x +m ·a-x是奇函数,且g (x )在x=0处有意义,所以g (0)=0,即1+m =0,所以m =-1.9.若函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:选D ∵函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,图象开口向上,对称轴为x =a ,∴a <1.∴g (x )=f (x )x =x +ax -2a .若a ≤0,则g (x )=x +ax -2a 在(-∞,0),(0,+∞)上单调递增.若0<a <1,则g (x )=x +ax -2a 在(a ,+∞)上单调递增,故g (x )在(1,+∞)上单调递增.综上可得g (x )=x +ax -2a 在(1,+∞)一定是增函数.10.已知f (x )=⎩⎪⎨⎪⎧-ln x -x ,x >0,-ln (-x )+x ,x <0,则关于m 的不等式f ⎝⎛⎭⎫1m <ln 12-2的解集为( ) A.⎝⎛⎭⎫0,12 B .(0,2) C.⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12 D .(-2,0)∪(0,2)解析:选C 因为函数f (x )的定义域(-∞,0)∪(0,+∞)关于原点对称,又当x >0时,-x <0,f (-x )=-ln x -x =f (x ),同理,当x <0时,也有f (-x )=f (x ),所以f (x )为偶函数.因为f (x )在(0,+∞)上为减函数,且f (2)=-ln 2-2=ln 12-2,所以由偶函数的性质知f ⎝⎛⎭⎫⎪⎪⎪⎪1m <f (2),且m ≠0,所以⎪⎪⎪⎪1m >2,且m ≠0,解得0<m <12或-12<m <0. 11.若函数f (x )=x 2+ln(x +a )与g (x )=x 2+e x -12(x <0)的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .(-∞,e)B .(e ,+∞)C .(0,e)D .(0, e ]解析:选C 若函数f (x )与g (x )的图象上存在关于y 轴对称的点,则f (x )与g (-x )=x 2+e -x -12(x >0)的图象有交点,也就是方程ln(x +a )=e -x -12有正数解,即函数y =e -x -12与函数y =ln(x +a )的图象在(0,+∞)上有交点,结合图象可知,只需ln a <e 0-12,∴ln a <12,∴0<a < e.12.已知函数f (x )的定义域为D ,若对任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数.设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f ⎝⎛⎭⎫x 3=12f (x );③f (1-x )=2-f (x ),则f ⎝⎛⎭⎫13+f ⎝⎛⎭⎫18=( ) A.32 B .1C .2 D.52解析:选A 令x =1,可得f (1)=2,那么f ⎝⎛⎭⎫13=12f (1)=1,令x =12,可得f ⎝⎛⎭⎫12=1,f ⎝⎛⎭⎫16=12f ⎝⎛⎭⎫12=12,令x =13,可得f ⎝⎛⎭⎫19=12f ⎝⎛⎭⎫13=12,因为函数是非减函数,所以12=f ⎝⎛⎭⎫19≤f ⎝⎛⎭⎫18≤f ⎝⎛⎭⎫17≤f ⎝⎛⎭⎫16=12,所以f ⎝⎛⎭⎫18=f ⎝⎛⎭⎫17=12,所以f ⎝⎛⎭⎫13+f ⎝⎛⎭⎫18=1+12=32. 13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________. 解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x )(-1≤x <0).又f (x )的周期为2,所以f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-2-12=f ⎝⎛⎭⎫-12=2×⎝⎛⎭⎫-12×12=-12. 答案:-1214.已知函数f (x )=4+x 2ln 1+x 1-x在区间⎣⎡⎦⎤-12,12上的最大值与最小值分别为M 和m ,则M +m =________.解析:令g (x )=x 2ln 1+x1-x,则g (-x )=(-x )2ln 1-x 1+x =-x 2ln 1+x1-x =-g (x ),所以函数g (x )为奇函数,其图象关于原点对称,则函数g (x )=f (x )-4的最大值M -4和最小值m -4之和为0,即M -4+m -4=0,∴M +m =8.答案:815.(2018届高三·江西师大附中月考)已知函数f (x )=⎪⎪⎪⎪2x -a2x 在[0,1]上单调递增,则a的取值范围为________.解析:令2x =t ,t ∈[1,2],则y =⎪⎪⎪⎪t -at 在[1,2]上单调递增.当a =0时,y =|t |=t 在[1,2]上单调递增显然成立;当a >0时,函数y =⎪⎪⎪⎪t -at ,t ∈(0,+∞)的单调递增区间是[a ,+∞),此时a ≤1,即0<a ≤1时成立;当a <0时,函数y =⎪⎪⎪⎪t -a t =t -at ,t ∈(0,+∞)的单调递增区间是[-a ,+∞),此时-a ≤1,即-1≤a <0时成立.综上可得a 的取值范围是[-1,1].答案:[-1,1]16.已知函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如:函数f (x )=2x +1(x ∈R)是单函数.给出下列命题:①函数f (x )=x 2(x ∈R)是单函数; ②指数函数f (x )=2x (x ∈R)是单函数;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数. 其中真命题的序号是________.解析:对于①,当x 1=2,x 2=-2时,f (x 1)=4=f (x 2),故①错;对于②,f (x )=2x 为单调递增函数,故②正确;而③④显然正确.答案:②③④二、能力拔高练1.当a >0时,函数f (x )=(x 2+2ax )e x 的图象大致是( )解析:选B 由f (x )=0,得x 2+2ax =0,解得x =0或x =-2a ,∵a >0,∴x =-2a <0,故排除A 、C ;当x 趋近于-∞时,e x 趋近于0,故f (x )趋近于0,排除D.2.设曲线y =f (x )与曲线y =x 2+a (x >0)关于直线y =-x 对称,且f (-2)=2f (-1),则a =( )A .0 B.13 C.23D .1解析:选C 依题意得,曲线y =f (x ),即为-x =(-y )2+a (y <0),化简后得y =--x -a ,即f (x )=--x -a ,于是有-2-a =-21-a ,解得a =23.3.已知定义在D =[-4,4]上的函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,-4≤x ≤0,2|x -2|,0<x ≤4,对任意x ∈D ,存在x 1,x 2∈D ,使得f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最大值与最小值之和为( )A .7B .8C .9D .10解析:选C 作出函数f (x )的图象如图所示,由任意x ∈D ,f (x 1)≤f (x )≤f (x 2)知,f (x 1),f (x 2)分别为f (x )的最小值和最大值,由图可知|x 1-x 2|max =8,|x 1-x 2|min =1,所以|x 1-x 2|的最大值与最小值之和为9,故选C.4.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递减,若不等式f (x 3-x 2+a )+f (-x 3+x 2-a )≥2f (1)对x ∈[0,1]恒成立,则实数a 的取值范围为( )A.⎣⎡⎦⎤2327,1 B.⎣⎡⎦⎤-2327,1 C .[1,3]D .(-∞,1]解析:选B ∵函数f (x )是定义域在R 上的偶函数,且-x 3+x 2-a =-(x 3-x 2+a ),∴f (x 3-x 2+a )+f (-x 3+x 2-a )≥2f (1)对x ∈[0,1]恒成立等价于2f (x 3-x 2+a )≥2f (1)对x ∈[0,1]恒成立,又∵f (x )在[0,+∞)上单调递减,∴-1≤x 3-x 2+a ≤1对x ∈[0,1]恒成立.设g (x )=x 3-x 2,则g ′(x )=x (3x -2),则g (x )在⎣⎡⎭⎫0,23上单调递减,在⎝⎛⎦⎤23,1上单调递增,又g (0)=g (1)=0,g ⎝⎛⎭⎫23=-427,∴g (x )∈⎣⎡⎦⎤-427,0. ∴⎩⎪⎨⎪⎧a ≤1,a -427≥-1,∴a ∈⎣⎡⎦⎤-2327,1. 5.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x >0,x +1,x ≤0,g (x )=log 2x ,若f (a )+f (g (2))=0,则实数a 的值为________.解析:因为函数f (x )=⎩⎪⎨⎪⎧x 2,x >0,x +1,x ≤0,g (x )=log 2x ,所以g (2)=log 22=1,f (g (2))=f (1)=1, 由f (a )+f (g (2))=0,得f (a )=-1.当a >0时,因为f (a )=a 2>0,所以此时不符合题意; 当a ≤0时,f (a )=a +1=-1,解得a =-2. 答案:-26.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P(x,y)的轨迹方程是y=f(x),则对函数y=f(x)有下列判断:①函数y=f(x)是偶函数;②对任意的x∈R,都有f(x+2)=f(x-2);③函数y=f(x)在区间[2,3]上单调递减;④函数y=f(x)在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y=f(x)的图象可以判断出,图象关于y轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x增大,图象是往上的,在区间[4,6)上图象是往下的,所以①②④正确,③错误.答案:①②④。

相关文档
最新文档