初中数学知识点总结(几何部分)

合集下载

(完整版)初中数学总复习(几何知识点整理)

(完整版)初中数学总复习(几何知识点整理)

初中数学总复习(几何知识点整理)(一):【知识梳理】1.直线、射线、线段之间的区别:联系:射线是直线的一部分.线段是射线的一部分,也是直线的一部分.2。

直线和线段的性质:(1)直线的性质:①经过两点直线,即两点确定一条直线;②两条直线相交,有交点。

(2)线段的性质:两点之间的所有连线中,线段最短,即两点之间,线段最短.3。

角的定义:有公共端点的所组成的图形叫做角;角也可以看成是由一条射线绕着它的端点旋转而成的图形.(1) 角的度量:把平角分成180份,每一份是1°的角,1°=6 0′,1′= 6 0″(2)角的分类:(3)相关的角及其性质:①余角:如果两个角的和是直角,那么称这两个角互为余角.②补角:如果两个角的和是平角,那么称这两个角互为补角.③对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.④互为余角的有关性质:①∠1+∠2=90°⇔∠1、∠2互余;②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2 ∠3.⑤互为补角的有关性质:①若∠A +∠B=180○⇔∠A、∠B互补;②同角或等角的补角相等.如果∠A+∠C=180○,∠A+∠B=180°,则∠B ∠C.⑥对顶角的性质:对顶角相等.(4)角平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.4.同一平面内两条直线的位置关系是:相交或平行5.“三线八角”的认识:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角即位置相同的角;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.6.平行线的性质:(1)两条平行线被第三条直线所截, 角相等,角相等,同旁内角互补.(2)过直线外一点直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上7。

任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.8.平行线的定义:在同一平面内.的两条直线是平行线。

初中数学重要知识点总结

初中数学重要知识点总结

初中数学重要知识点总结1、基本概念在几何学中,线是由无数个点组成的图形,没有宽度和厚度。

根据端点的个数,可以分为直线、射线和线段。

直线没有端点,用一个字母或两个点表示;射线有一个端点,用一个字母和一个点表示;线段有两个端点,用两个字母或一个字母和一个点表示。

2、直线的性质两点确定一条直线。

也就是说,通过两个点可以画出一条直线,并且只有一条直线。

3、画一条线段等于已知线段可以使用度量法或尺规作图法来画一条与已知线段相等的线段。

4、线段的大小比较方法线段的大小可以用度量法或叠合法进行比较。

5、线段的中点(二等分点)、三等分点、四等分点等线段的中点是将线段平均分成两条相等线段的点。

可以通过作直线和连接两个端点来找到线段的中点。

6、线段的性质在两点之间,线段最短。

也就是说,在连接两点的所有连线中,线段最短。

7、两点的距离两点的距离是连接两点的线段长度。

8、点与直线的位置关系一个点可以在直线上或直线外。

如果一个点在直线上,那么这个点就在这条直线上。

如果一个点在直线外,那么这个点与直线上各点连接的所有线段中,垂线段最短。

除了以上基本概念和性质之外,还有一些定理和推论,如等边三角形、等腰三角形和角的表示法等。

在几何学中,这些概念和性质都是非常重要的基础知识,需要认真研究和掌握。

2、角的分类角可以分为五种类型:锐角、直角、钝角、平角和周角。

其中锐角是指角度小于90度的角,直角是指角度等于90度的角,钝角是指角度大于90度小于180度的角,平角是指角度等于180度的角,周角是指角度等于360度的角。

4、角的比较方法有两种方法可以比较角的大小:度量法和叠合法。

度量法是通过测量角的度数来比较大小,叠合法是通过将一个角叠在另一个角上来比较大小。

5、画一个角等于已知角有三种方法可以画一个角等于已知角:借助三角尺能画出15度的倍数的角,在0度到180度之间共能画出11个角;借助量角器能画出给定度数的角;用尺规作图法可以画出任意角度的角。

初中数学几何的总结知识点

初中数学几何的总结知识点

初中数学几何的总结知识点一、几何基本概念1. 点、线、面的基本概念2. 线段、射线、角的基本概念3. 有向线段,边界二、角的性质1. 同位角、余角、邻补角、对顶角2. 锐角、直角、钝角、平角3. 角的度量、角的度分秒制三、相交线和平行线1. 同位角相等2. 对顶角相等3. 垂直线、垂直平行线的判定4. 平行线的性质:平行线性质的等价命题、平行线的性质四、三角形1. 三角形的分类2. 三角形内角和定理3. 三角形的边对角和定理4. 三角形的外角和定理5. 三角形的相似性质6. 相似三角形的判定、相似三角形的性质7. 角平分线定理、中位线定理五、全等三角形1. 全等三角形的对应角、对应边性质2. 全等三角形的判定六、直角三角形1. 勾股定理2. 直角三角形的性质和判定七、平行四边形1. 平行四边形的性质2. 矩形、正方形、菱形、长方形的性质3. 平行四边形的判定八、多边形1. 多边形的命名和分类2. 多边形内角和定理3. 多边形外角和定理4. 等边多边形的性质5. 正多边形的性质九、圆1. 圆的基本概念2. 圆的性质3. 圆周角和圆心角4. 弧长和面积5. 切线和切点6. 相交弦定理7. 立体几何体的基本概念8. 空间直角坐标系与距离十、空间图形1. 空间的基本概念2. 空间图形的基本元素3. 空间图形的分类4. 体积的计算5. 柱、锥、台、球的表面积和体积以上是初中数学几何的基本知识点,同学们要在平时多加强练习,掌握这些知识点,从而提高数学水平。

初中数学(几何)知识点总结

初中数学(几何)知识点总结

初中数学(几何)知识点总结图形的初步认识考点一、直线、射线和线段1、几何图形分类:2、点、线、面、体(1)几何图形的组成(2)点动成线,线动成面,面动成体。

3、直线的概念:4、射线的概念:5、线段的概念:6、点、直线、射线和线段的表示7、直线的性质8、线段的性质9、线段垂直平分线的性质定理及逆定理考点二、角1、角的相关概念:平角、直角、锐角、钝角、余角、补角。

2、角的表示3、角的度量4、角的性质5、角的平分线及其性质:考点三、相交线1、相交线中的角:临补角,对顶角,同位角,内错角,同旁内角。

2、垂线:垂足,垂线的性质。

考点四、平行线1、平行线的概念2、平行线公理及其推论3、平行线的判定:4、平行线的性质考点五、命题、定理、证明1、命题的概念:2、命题的分类(按正确、错误与否分)3、公理4、定理:用推理的方法判断为正确的命题叫做定理。

5、证明:判断一个命题的正确性的推理过程叫做证明。

考点六、投影与视图1、投影:投影的定义、平行投影、中心投影。

2、视图:主视图、俯视图、左视图。

三角形考点一、三角形1三角形的概念:2、三角形中的主要线段:角平分线、中线、高线。

3、三角形的稳定性:4、三角形的特性与表示5、三角形的分类6、三角形的三边关系定理及推论7、三角形的内角和定理及推论8、三角形的面积:考点二、全等三角形1、全等三角形的概念2、全等三角形的表示和性质3、三角形全等的判定4、全等变换(1)平移变换(2)对称变换(3)旋转变换。

考点三、等腰三角形1、等腰三角形的性质2、等腰三角形的判定3、三角形中的中位线四边形考点一、四边形的相关概念1、四边形:2、对角线:3、四边形的不稳定性:4、四边形的内角和定理及外角和定理5、多边形的内角和定理、外角和定理:6、多边形的对角线条数的计算公式:考点二、平行四边形1、平行四边形的概念:2、平行四边形的性质3、平行四边形的判定4、两条平行线的距离:5、平行四边形的面积:考点三、矩形1、矩形的概念2、矩形的性质3、矩形的判定4、矩形的面积:S矩形=长×宽=ab考点四、菱形1、菱形的概念2、菱形的性质3、菱形的判定4、菱形的面积:考点五、正方形1、正方形的概念:2、正方形的性质3、正方形的判定4、正方形的面积:考点六、梯形1、梯形的相关概念、分类:2、梯形的判定3、等腰梯形的性质4、等腰梯形的判定5、梯形的面积6、梯形中位线定理解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余:2、在直角三角形中,30°角所对的直角边等于斜边的一半。

初中数学几何知识点总结(最新最全)

初中数学几何知识点总结(最新最全)

初中数学几何知识点总结1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

初中数学几何知识点总结归纳

初中数学几何知识点总结归纳

初中数学几何知识点总结归纳初中数学几何知识点总结归纳在初中数学中,几何是一个重要的部分,几何学习主要涉及到形状、图形、空间和位置的概念和变换。

本文将从以下几个方面总结归纳初中数学几何的知识点。

一、直线与角1. 直线:直线是没有弯曲的最短路径,它有无限多个点。

2. 角:角是由两条射线在一个共同顶点上的拓展形成的,可以分为钝角(大于90°),直角(90°)和锐角(小于90°)。

3. 平行线:平行线是在同一个平面上从不相交的直线。

4. 垂直线:垂直线是两条互相垂直的线段。

5. 余角:两个角的余角是它们的和等于90°的角。

二、多边形1. 正多边形:正多边形是有n个等边且等角的边构成的多边形。

2. 等腰三角形:等腰三角形是有两条边相等的三角形。

3. 等边三角形:等边三角形是三边都相等的三角形。

4. 直角三角形:直角三角形是有一个直角(90°)的三角形。

5. 锐角三角形:锐角三角形是三个内角都小于90°的三角形。

6. 钝角三角形:钝角三角形是三个内角中有一个大于90°的三角形。

三、梯形与平行四边形1. 梯形:梯形是一个有两条平行边的四边形。

2. 平行四边形:平行四边形是两对相对的边都平行的四边形。

3. 矩形:矩形是一个拥有四个直角的平行四边形。

4. 正方形:正方形是一个具有四个相等边且四个直角的矩形。

四、圆与圆周1. 圆:圆是一个平面上所有距离圆心相等的点的集合。

2. 圆周率:圆周率是圆的周长与直径的比值,约等于3.14159。

3. 弧:一个弧是圆上的一部分。

4. 弦:弦是连接圆上两点的线段。

五、相似与全等1. 相似图形:相似图形是具有相同形状但比例不同的图形。

2. 全等图形:全等图形是具有相同形状和尺寸的图形。

3. 比例:比例是两个量之间的相对大小关系。

4. 对应边:两个相似图形中位置相对应的边称为对应边。

六、立体几何1. 空间几何:空间几何涉及到三维图形的概念和变换。

初中数学几何知识点总结

初中数学几何知识点总结

初中数学几何知识点总结一、几何基础知识1. 点、线、面- 点:没有大小,只有位置。

- 线:由无数个点组成,有长度,没有宽度。

- 面:由无数个线组成,有长度和宽度,没有厚度。

2. 直线、射线、线段- 直线:无限延伸的线,没有端点。

- 射线:有一个端点,另一端无限延伸。

- 线段:有两个端点,长度有限。

3. 角- 邻角:有共同顶点和边的两个角。

- 对顶角:由两条相交线形成的相对的两个角。

- 平角:两条射线的夹角为180度。

- 周角:两条射线重合,夹角为360度。

二、几何图形的性质1. 三角形- 内角和:三角形的内角和为180度。

- 三边关系:任意两边之和大于第三边。

- 海伦公式:计算三角形面积的公式,需要知道三边长度。

2. 四边形- 矩形:对边平行且相等,四个角都是直角。

- 平行四边形:对边平行。

- 菱形:四边相等,对角线互相垂直且平分。

- 梯形:有一组对边平行。

3. 圆- 圆心:圆的中心点。

- 半径:圆心到圆上任意一点的距离。

- 直径:通过圆心的最长线段,等于半径的两倍。

- 圆周率π:圆的周长与直径的比值。

三、几何图形的计算1. 面积- 三角形面积:基础公式、海伦公式。

- 四边形面积:长乘宽(矩形)、平行四边形的面积公式。

- 圆的面积:π乘以半径的平方。

2. 体积- 长方体:长乘宽乘高。

- 立方体:边长的三次方。

- 圆柱体:底面积乘以高。

- 圆锥体:底面积乘以高再乘以1/3。

3. 周长- 三角形周长:三边之和。

- 四边形周长:四边之和。

- 圆的周长:2π乘以半径。

四、几何图形的变换1. 平移- 描述:图形在平面上沿着某一方向移动一定距离。

- 影响:位置变化,形状和大小不变。

2. 旋转- 描述:图形绕一点或一轴旋转一定角度。

- 影响:位置变化,形状和大小不变。

3. 轴对称- 描述:图形关于某一直线(对称轴)对称。

- 影响:图形的一半可以通过折叠与另一半完全重合。

五、几何证明1. 证明方法- 直接证明:通过已知条件直接得出结论。

最新初中数学几何知识点总结(7篇)

最新初中数学几何知识点总结(7篇)

最新初中数学几何知识点总结(7篇)最新初中数学几何知识点总结(7篇)学会倾听和理解他人的观点和需要,并与他们建立积极的互动关系。

学习如何制定有效的沟通策略和技能,以更好的传达信息和支持成功。

下面就让小编给大家带来最新初中数学几何知识点总结,希望大家喜欢!最新初中数学几何知识点总结篇1诱导公式的本质所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

常用的诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)=sin kzcos(2k)=cos kztan(2k)=tan kzcot(2k)=cot kz公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin()=-sincos()=-costan()=tancot()=cot公式三:任意角与 -的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:sin()=sincos()=-costan()=-tancot()=-cot最新初中数学几何知识点总结篇21、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

2、有理数的概念及分类3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

(2)相反数:符号不同、绝对值相等的两个数互为相反数。

若a、b互为相反数,则a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

(3)绝对值最小的数是0;绝对值是本身的数是非负数。

4、任何数的绝对值是非负数。

最小的正整数是1,最大的负整数是-1。

初中数学(几何)知识点总结

初中数学(几何)知识点总结
真命题(正确的命题) 命题
假命题(错误的命题) 所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。 所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。 3、公理 人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。 4、定理:用推理的方法判断为正确的命题叫做定理。 5、证明:判断一个命题的正确性的推理过程叫做证明。 6、证明的一般步骤 (1)根据题意,画出图形。(2)根据题设、结论、结合图形,写出已知、求证。(3)经过分析,找出由已知推 出求证的途径,写出证明过程。 考点六、投影与视图 1、投影 投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。 平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。 中心投影:由同一点发出的光线所形成的投影称为中心投影。 2、视图 当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。物体的三视图特指主视图、俯视图、左 视图。 主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。 俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。 左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。
初中数学(几何)知识点总结
图形的初步认识
考点一、直线、射线和线段 1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。 平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。 2、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 3、直线的概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 4、射线的概念:直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。 5、线段的概念:直线上两个点和它们之间的部分叫做线段。这两个点叫做线段的端点。 6、点、直线、射线和线段的表示 在几何里,我们常用字母表示图形。 一个点可以用一个大写字母表示。一条直线可以用一个小写字母表示。一条射线可以用端点和射线上另一点来表 示。一条线段可用它的端点的两个大写字母来表示。 注意: (1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。 (2)直线和射线无长度,线段有长度。 (3)直线无端点,射线有一个端点,线段有两个端点。 (4)点和直线的位置关系有线面两种: ①点在直线上,或者说直线经过这个点。②点在直线外,或者说直线不经过这个点。 7、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 8、线段的性质 (1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。 (2)连接两点的线段的长度,叫做这两点的距离。 (3)线段的中点到两端点的距离相等。 (4)线段的大小关系和它们的长度的大小关系是一致的。 9、线段垂直平分线的性质定理及逆定理 垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。 线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 考点二、角 1、角的相关概念 有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。 当角的两边在一条直线上时,组成的角叫做平角。

初中数学几何知识点总结7篇

初中数学几何知识点总结7篇

初中数学几何知识点总结7篇初中数学几何知识点总结7篇良好的知识积累和传承是推动文明延续和发展的重要保障。

教育公平和机会平等是实现知识人才培养和利用的重要前提。

下面就让小编给大家带来初中数学几何知识点总结,希望大家喜欢!初中数学几何知识点总结1一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

由圆的意义可知:圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。

心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。

连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。

由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角则两个钝角之和180°与三角形内角和等于180°矛盾。

∴不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

初中数学知识点几何部分总结大全

初中数学知识点几何部分总结大全

初中数学知识点几何部分总结大全几何是初中数学中的一个重要部分,它主要研究空间和图形的相关性质和关系。

以下是初中数学几何部分的知识点总结:1.点、线、面的概念:-点是空间中没有大小和形状,只有位置的对象。

-线是由无数个点按顺序排列而成的。

-面是由无数条线相互交织而成的。

2.角度的概念:-角是由两条射线共享端点所组成,可以用角度来表示。

-角度可以通过用直角来度量,直角为90度,钝角大于90度,锐角小于90度。

3.角的分类:-锐角:小于90度的角。

-直角:等于90度的角。

-钝角:大于90度但小于180度的角。

-平角:等于180度的角。

4.角的性质:-相邻角:公共边在同一直线上,且角的内部没有其它角的角对。

-对顶角:两个相交的角,且每个角的两个边分别与另一个角的两个边重合。

-互补角:两个角的度数和为90度。

-补角:两个角的度数和为180度。

5.三角形的分类:-根据边的长度:等边三角形、等腰三角形、普通三角形。

-根据角的大小:锐角三角形、直角三角形、钝角三角形。

6.三角形的性质:-三角形的内角和为180度。

-三角形的外角和为360度。

-三角形的任意两边之和大于第三边。

-等边三角形的三个内角相等,且都为60度。

-等腰三角形的两个底角相等。

-直角三角形的两个锐角之和为90度。

7.四边形的分类:-正方形:具有四个相等的边和四个直角的四边形。

-长方形:具有四个直角,但边的长度不一定相等的四边形。

-平行四边形:具有两对平行边的四边形。

-菱形:具有四个相等边的四边形。

-梯形:具有两对边平行的四边形。

8.圆的概念:-圆是平面上任意两点之间距离相等的点的轨迹。

-圆心是圆上所有点到圆心距离相等的点。

9.圆的性质:-圆上的任意弧所对的圆心角是恒定的。

-同样的圆心角所对的弧长是相等的。

-半径相等的圆的面积相等。

-直径是圆的一个重要性质,它是通过圆心且两端点在圆上的一条线段,直径的一半为半径。

初中数学几何知识点

初中数学几何知识点

1、点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N 条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。

射线只有一个端点。

③将线段的两端无限延长就形成了直线。

直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。

始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

初中数学知识点总结(几何部分)

初中数学知识点总结(几何部分)

初中数学知识点总结(几何部分)初中数学可谓是数学知识体系的基础,掌握初中数学知识对于后面的学习至关重要。

几何学是初中数学中很重要的一部分,其主要研究图形的性质及其变化。

下面,我们就来总结一下初中数学几何学部分的重点知识。

一、图形的性质在初中几何学中,一个最基本的概念就是图形。

图形是由各种简单的几何元素所组成的,如线段、直线、角、面等。

了解图形的基本性质,是初中几何学学习的第一步。

1、点、线、面点是几何学中最基本的元素,没有大小、形状和方向。

线是由点所组成的,有长度、方向、但没有宽度。

而面是有长度和宽度,并且有形状,但没有厚度的几何元素。

2、相似与全等相似和全等是初中几何学中非常重要且基本的概念。

如果两个或多个图形大小形状相同,就称为全等图形;如果两个或多个图形形状相同但大小不同,就称为相似图形。

全等与相似在几何中起到了极为重要的作用,例如在定理的证明中,根据相似的性质可以判断出两个角相等。

二、平面图形的基本属性1、三角形三角形是初中数学中最基本的平面图形之一,具有三个角和三条边。

三角形具有很多的基本性质,例如角的性质、直角三角形、等腰三角形等等。

2、四边形四边形是由四条直线段组成的封闭平面。

不同类型的四边形具有不同的性质,如矩形、正方形、平行四边形等。

其中矩形具有较为突出的性质,如矩形的对角线相等等。

3、圆圆是由一定的长度为直径的线段所组成,由此围成的区域称为圆形。

圆的基本属性包括:直径、半径、圆心角和弧等。

初中阶段,学生主要了解到圆和平面内一些特殊点的性质。

三、空间图形的基本属性1、长方体、正方体长方体和正方体在初中数学中占据着重要的地位。

它们不仅有自己独特的性质,还具有面对生活、工程应用情境的重要意义。

2、球体球是定义在三维空间的基本几何体。

球的基本属性包括半径、直径、表面积和体积等。

球体在现实生活中的应用也很广泛,例如机器零件、建筑物等。

四、初中几何概念的运用1、相似图形相似图形是初中几何学学习的重要部分,学生需要了解两个或者多个图形之间的相似、全等的概念和推算方法。

初中数学几何知识点总结

初中数学几何知识点总结

初中数学几何知识点总结一、线与角1、直线直线没有端点,可以向两端无限延伸,不可度量长度。

2、射线射线只有一个端点,可以向一端无限延伸,不可度量长度。

3、线段线段有两个端点,不可以延伸,可以度量长度。

4、直线、射线、线段的区别与联系(1)区别:直线没有端点,射线有一个端点,线段有两个端点;直线和射线不可度量长度,线段可以度量长度。

(2)联系:射线和线段都是直线的一部分。

5、角(1)角的定义:由一点引出的两条射线所组成的图形叫做角。

这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的表示方法:用三个大写字母表示,顶点字母写在中间,如∠AOB。

用一个大写字母表示,前提是顶点处只有一个角,如∠A。

用数字表示,如∠1。

用希腊字母表示,如∠α。

(3)角的度量:把半圆平均分成 180 等份,每一份所对的角的大小是 1 度,记作 1°。

(4)角的分类:锐角:小于 90°的角。

直角:等于 90°的角。

钝角:大于 90°而小于 180°的角。

平角:等于 180°的角。

周角:等于 360°的角。

(5)角的大小比较:度量法:用量角器量出角的度数,然后比较大小。

叠合法:把两个角的顶点和一条边重合,通过另一条边的位置关系比较大小。

(6)角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

二、相交线与平行线(1)对顶角:两条直线相交,有公共顶点,没有公共边的两个角叫做对顶角。

对顶角相等。

(2)邻补角:两条直线相交,有公共顶点,有一条公共边的两个角叫做邻补角。

邻补角互补。

2、垂线(1)垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

(2)垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

初中数学几何知识点总结

初中数学几何知识点总结

初中数学几何知识点总结初中数学中,几何是一个重要的分支。

它既是考验学生空间想象力和推理能力的知识点,也是日常生活中经常用到的领域。

在学习几何知识点时,需要掌握一些基础概念、公式和定理,下面就是初中数学几何知识点总结。

一、基础概念1. 点:没有大小和形状,只有位置的基本要素。

2. 直线:由无数个点连成的轨迹,没有宽度和厚度。

3. 射线:一个端点不断延伸的轨迹,只有一个端点。

4. 线段:同一直线上的两个点和这两个点之间的点构成的轨迹,有起点和终点。

5. 角:由两条射线和它们的公共端点组成的图形,用度数表示。

6. 多边形:由线段首尾相连的端点组成的封闭图形。

7. 圆:平面上所有到圆心距离相等的点的轨迹。

8. 球:空间上所有到球心距离相等的点的轨迹。

二、公式1. 长方形的面积公式:面积=长×宽。

2. 正方形的面积公式:面积=边长×边长。

3. 三角形的面积公式:面积=底边长×高/2。

4. 梯形的面积公式:面积=(上底+下底)×高/2。

5. 圆的周长公式:周长=2πr,其中r为半径。

6. 圆的面积公式:面积=πr²,其中r为半径。

7. 球的表面积公式:表面积=4πr²,其中r为半径。

8. 球的体积公式:体积=4/3πr³,其中r为半径。

三、定理1. 同位角定理:同位角互相相等,即相邻角或对角线的内角。

2. 同周角定理:在同一圆周上或在同心圆上的角,它们的度数相等。

3. 直角三角形的勾股定理:a²+b²=c²,其中a、b为两条直角边,c为斜边。

4. 等腰三角形的基本定理:等腰三角形的底角相等。

5. 同面积三角形定理:如果三角形ABC和DEF的底边相等、高相等,则它们的面积相等。

6. 平行四边形的定理:对边平行且相等的四边形是平行四边形,它的对角线互相平分,对边互相相等。

7. 三角形中位线定理:三角形垂线交于一点,中线的交点为重心,中线长为底边长的一半。

初中数学几何知识点总结

初中数学几何知识点总结

初中数学几何知识点总结几何是数学中的一个重要分支,主要研究空间形状、尺寸、相对位置以及它们的性质和变换。

初中阶段学习的数学几何知识点涉及了平面几何和立体几何两部分内容。

下面将对初中数学几何知识点进行总结。

一、平面几何1. 点、线、面点是最基本的几何概念,它没有长度、宽度和高度,只有位置。

线是由无数个点连成的,是长度没有宽度的集合。

面是由线段围成的区域,有长度和宽度,但没有高度。

2. 角角由两条射线共同端点组成,分为锐角、钝角、直角等不同类型。

3. 多边形多边形是由若干条线段组成的简单闭合图形,主要包括三角形、四边形、五边形等。

4. 平行线和垂直线平行线是在同一个平面内没有交点的直线,垂直线是互相垂直的两条直线。

5. 圆圆是平面内所有离圆心的距离都相等的点的集合,圆的半径、直径、圆心、圆周等是圆的重要特性。

6. 相似形两个图形中对应角相等,对应边成比例,则它们是相似形。

7. 等腰三角形、等边三角形等腰三角形是两边相等的三角形,等边三角形是三边都相等的三角形。

二、立体几何1. 空间中的点、线、面和平面几何相似,立体几何中也有点、线、面的概念,只不过它们是在三维空间中存在的。

2. 立体图形立体图形是一个有长度、宽度和高度的空间图形,主要包括立方体、正方体、棱柱、棱锥、圆柱、圆锥等。

3. 体积和表面积立体图形的体积和表面积是立体几何中的重要概念,它们是描述立体图形大小的重要参数。

4. 正多面体正多面体是所有面都是全等正多边形,每个顶点都是相同的正多边形构成的多面体,主要包括正四面体、正六面体、正八面体等。

通过学习平面几何和立体几何的知识点,可以帮助学生理解空间中的形状、结构以及它们的性质和变换。

在数学中,几何知识还与其他学科有着密切的关联,学好几何知识对于整个数学学科的学习具有重要的作用。

初中数学几何知识点总结到这里,希望对大家有所帮助。

初中数学几何知识点总结大全

初中数学几何知识点总结大全

初中数学几何知识点总结大全(转)(2010-08-24 16:21:45)▼标签:教育1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c 有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

初中数学中的几何知识点归纳

初中数学中的几何知识点归纳

初中数学中的几何知识点归纳几何是一门涉及形状、大小、位置关系的数学学科。

在中学数学中,几何是一个重要的部分,它帮助我们理解和解决与空间相关的问题。

下面将对初中数学中的几何知识点进行归纳和总结。

1. 图形的性质和分类在几何学中,我们会学习各种不同形状的图形,并了解它们的性质和分类。

常见的几何图形包括点、线、线段、射线、角、三角形、四边形、多边形、圆等。

我们需要学会识别并了解它们的基本特征。

2. 直线、平行线和垂直线直线是由无穷多个点组成的,在平面上没有弯曲。

平行线是指在同一个平面内永远不相交的两条线,它们之间的距离保持相等。

垂直线是指相交时所成角度为九十度的两条线。

3. 角的概念和测量角是由两条线或线段首尾相交形成的,我们通常用角的顶点表示。

角的大小可以用度来度量,一个完整的角大小为360度。

根据角的度数,我们可以将其分为锐角(小于90度)、直角(等于90度)和钝角(大于90度)。

4. 三角形的性质和分类三角形是由三条边和三个顶点组成的图形。

根据边长和角度的关系,三角形可以分为等边三角形、等腰三角形和普通三角形。

等边三角形的三边相等,等腰三角形的两边相等,普通三角形没有任何两边相等。

5. 四边形的性质和分类四边形是由四条边和四个顶点组成的图形。

根据四边形的对边和角的关系,我们可以将四边形分为平行四边形、矩形、正方形、菱形和梯形等。

平行四边形的对边平行,矩形的对边相等且对角线相等,正方形是矩形的特殊情况,菱形的对角线相等,梯形有一对对边平行。

6. 圆的性质和圆的计算圆是由所有与一个确定的点(圆心)距离相等的点组成的。

圆的性质包括圆心角、弧长、弦和切线等。

圆心角是以圆心为顶点的角,它的度数是其所对应的弧长的一半。

弧长是圆上的一段弯曲部分的长度。

弦是连接圆上任意两点的线段。

切线是与圆只有一个交点的直线。

7. 三角形的相似如果两个三角形的对应角度相等,那么它们是相似的。

相似的三角形有相等的对应角度,但可能长度不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学知识点(李平子倾心总结,直接上!)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边1形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2, S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合23104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理 一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121①直线L 和⊙O 相交 d <r ②直线L 和⊙O 相切 d=r ③直线L 和⊙O 相离 d >r122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理 圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心 126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等 128如果两个圆相切,那么切点一定在连心线上 129①两圆外离 d >R+r②两圆外切 d=R+r③两圆相交 R-r <d <R+r(R >r)④两圆内切 d=R-r(R >r) ⑤两圆内含d <R-r(R >r)130定理 相交两圆的连心线垂直平分两圆的公共弦 131定理 把圆分成n(n≥3)等份:⑴依次连结各分点所得的多边形是这个圆的内接正n 边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形132定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆133正n 边形的每个内角都等于(n-2)×180°/n 134定理 正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形135正n 边形的面积Sn=p n r n /2 p n 表示正n 边形的周长,r n 为内切圆半径136正三角形面积√3a 2/4,a 表示边长137如果在一个顶点周围有k 个正n 边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4(镶嵌问题) 138内公切线长= d 2-(R+r)2外公切线长= d 2-(R-r)2139乘法与因式分解 a 2-b 2=(a+b)(a-b)a 3+b 3=(a+b)(a 2-ab+b 2) a 3-b 3=(a-b)(a 2+ab+b 2)140、弦切角定理及其推论:(1)弦切角:顶点在圆上,并且一边和圆相交,另一边和圆相切的角叫做弦切角。

相关文档
最新文档