河北省石家庄市新乐市2020-2021学年八年级下学期期中数学试题

合集下载

2020-2021学年八年级下期中数学试卷及答案解析

2020-2021学年八年级下期中数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b =2a+bC .a 2−b 2a−b=a +bD .(−120)0=04.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)−2=(x+y)2(x−y)2. A .1个 B .2个C .3个D .4个6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A .2个B .3个C .4个D .5个二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x 道题,根据题意,可列出关于x 的不等式为 . 8.若关于x 的分式方程2x−3+x+m 3−x=2有增根,则m 的值为 .9.如图所示,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG =24cm ,WG =8cm ,WC =6cm ,求阴影部分的面积为 cm 2.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为11.不等式组﹣1<x <4的整数解有 个.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 .三.解答题(共5小题,满分30分,每小题6分) 13.(6分)计算题(1)分解因式:2x 2y ﹣8xy +8y (2)解方程:x x−1=3x 2−2x+114.(6分)先化简,再求值:(2−x−1x+1)÷x 2+6x+9x 2−1,其中x =2.15.(6分)如图,△ABC 的顶点坐标分别为A (0,1),B (3,3),C (1,3). (1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1. (2)①画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2; ②直接写出点B 2的坐标为 .16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .四.解答题(共3小题,满分24分,每小题8分) 18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:的解;(2)不等式kx+b<0的解集是;(3)当x时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.19.(8分)若一多项式除以2x2﹣3,得到的商式为x+4,余式为3x+2,求此多项式.20.(8分)若3x−5x2−2x−3=ax−3−bx+1(a,b为常数),求(a+2b)b的值.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?22.(9分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B (b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,又是中心对称图形,故此选项正确; B 、不是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、不是轴对称图形,是中心对称图形,故此选项错误; 故选:A .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个【解答】解:式子“3x >y ;4x ﹣3y ≥1;4x <0,”属于不等式, 故选:B .3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b=2a+bC .a 2−b 2a−b=a +bD .(−120)0=0 【解答】解:A 、原式=−23,错误; B 、原式=a+bab ,错误; C 、原式=(a+b)(a−b)a−b =a +b ,正确;D 、原式=1,错误; 故选:C .4.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB【解答】解:∵AC =AD ,BC =BD , ∴AB 是线段CD 的垂直平分线, 故选:C .5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)=(x+y)2(x−y). A .1个B .2个C .3个D .4个【解答】解:①(3b 22a )3=27b 68a 3,故选项错误;②(2x x+y )2=4x 2x 2+2xy+y 2,故选项错误;③−a+b −a−b =a−b a+b,故选项错误;④−x+y x−y =−1,故选项正确;⑤x+y x+y=1,故选项错误;⑥(x−y)−2(x+y)=(x+y)2(x−y),故选项正确;所以正确的有2个. 故选:B .6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A.2个B.3个C.4个D.5个【解答】解:①∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AC=BC,∵CE=12BC,F是AC的中点,∴CF=CE,∴∠E=∠CFE,∵∠ACB=∠E+∠CFE=60°,∴∠E=30°,∴∠BGE=90°,∴EG⊥AB,故①正确;②设AG=x,则AF=FC=CE=2x,∴FG=√3x,BE=6x,Rt△BGE中,BG=3x,EG=3√3x,∴EF=EG﹣FG﹣3√3x−√3x=2√3x,∴GF=12EF,故②正确;③如图,过N作NH⊥AC于H,连接BN,等边三角形ABC,∵AD⊥BC,∴AD平分∠BAC,BN=CN,∵MN⊥AB,∴NH=NM,∵MN是BG的垂直平分线,∴BN=NG,∴BN=CN=NG,在Rt△NGM和Rt△NCH中,{MN=NHGN=NC,∴Rt△NGM≌Rt△NCH(HL),∴∠GNM=∠CNH,∴∠MNH=∠CNG,∵∠ANM=∠ANH=60°,∴∠CNG=120°,故③正确;④∵MN是BG的垂直平分线,∴BM=MG=32x,∴AM=x+32x=52x,等边△ABC中,AD⊥BC,∴∠BAD=30°,∴MN=5√3x 6,∴GN=√GM2+MN2=(32x)2+(53x6)2=√39x2≠FG,故④不正确;⑤∵BN=CN=NG,∴∠DCN=∠DBN,∠NBM=∠NGM,∵∠ACN=∠ACB﹣∠DCN=60°﹣∠DBN=∠ABN=∠NGM,∵MG=32x,MN=5√36x,∴MG≠MN,∴∠NGM≠∠MNG,∴∠MNG≠∠ACN,故⑤不正确;其中正确的有:①②③,一共3个,故选:B.二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160.【解答】解:设他答对x道题,则答错或不答的题数为(20﹣x)道,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160,故答案为:10x﹣5(20﹣x)>160.8.若关于x的分式方程2x−3+x+m3−x=2有增根,则m的值为﹣1.【解答】解:方程两边都乘(x﹣3),得2﹣x﹣m=2(x﹣3)∵原方程增根为x=3,∴把x=3代入整式方程,得2﹣3﹣m=0,解得m=﹣1.故答案为:﹣1.9.如图所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为168cm2.【解答】解:∵直角梯形ABCD沿AD方向平移到梯形EFGH,∴HG=CD=24,∴DW=DC﹣WC=24﹣6=18,∵S阴影部分+S梯形EDWF=S梯形DHGW+S梯形EDWF,∴S阴影部分=S梯形DHGW=12(DW+HG)×WG=12×(18+24)×8=168(cm2).故答案为168.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为23【解答】解:由图知△DEF 是由△ABC 向右平移3个单位,再向下平移2个单位得到的, ∴a =3、b =2, 则ba=23,故答案为:23.11.不等式组﹣1<x <4的整数解有 4 个.【解答】解:在﹣1<x <4范围内的整数只有0,1,2,3, 所以等式﹣1<x <4的整数解有4个, 故答案为4.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 26 .【解答】解:∵BO 平分∠ABC , ∴∠MBO =∠CBO , ∵MN ∥BC , ∴∠MOB =∠CBO , ∴∠MOB =∠MBO , ∴OM =BM , 同理CN =NO ,∴BM+CN=MN,∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=12+14=26.故答案为:26.三.解答题(共5小题,满分30分,每小题6分)13.(6分)计算题(1)分解因式:2x2y﹣8xy+8y(2)解方程:xx−1=3x2−2x+1【解答】解:(1)原式=2y(x2﹣4x+4)=2y(x﹣2)2;(2)去分母得:2x=﹣3x+2x﹣2,解得:x=−2 3,经检验x=−23是分式方程的解.14.(6分)先化简,再求值:(2−x−1x+1)÷x2+6x+9x2−1,其中x=2.【解答】解:(2−x−1x+1)÷x2+6x+9x2−1=2(x+1)−(x−1)x+1⋅(x+1)(x−1)(x+3)2=2x+2−x+1x+1⋅(x+1)(x−1)(x+3)2=x+3 x+1⋅(x+1)(x−1)(x+3)2=x−1 x+3,当x=2时,原式=2−12+3=15.15.(6分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1.(2)①画出△ABC绕原点O逆时针旋转90°的△A2B2C2;②直接写出点B2的坐标为(﹣3,3).【解答】解:(1)如图,△A 1B 1C 1为所作; (2)①画如图,△A 2B 2C 2为所作;②点B 2的坐标为(﹣3,3). 故答案为(﹣3,3).16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.【解答】解:解方程组{x +y =m +22x −y =5m +4得:{x =2m +2y =−m ,根据题意,得:{2m +2≥0−m >0,解得:﹣1≤m <0, 则整数m =﹣1.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .【解答】证明:如图,连接DF,∵D是CB的中点,∴CD=BD.∵将△ACD沿AD折叠后得到△AED,∴CD=ED,∠AED=∠C=90°,∴BD=ED,∠DEF=90°,∵BF∥AC,∠C=90°,∴∠CBF=180°﹣∠ACB=90°,∴∠DBF=∠DEF=90°,在Rt△DBF和Rt△DEF中,{DF=DFDE=DB,∴Rt△DBF≌Rt△DEF(HL),∴BF=EF.四.解答题(共3小题,满分24分,每小题8分)18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:{y=2x−1y=−12x+32的解;(2)不等式kx+b<0的解集是x>3;(3)当x≤1时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.【解答】解:(1)把A (0,﹣1),P (1,1)分别代入y =mx ﹣n 得{−n =−1m −n =1,解得{m =2n =1,所以直线l 1的解析式为y =2x ﹣1,把P (1,1)、B (3,0)分别代入y =kx +b 得{k +b =13k +b =0,解得{k =−12b =32, 所以直线l 2的解析式为y =−12x +32,所以交点P 的坐标(1,1)是一元二次方程组{y =2x −1y =−12x +32的解; (2)不等式kx +b <0的解集为x >3; (3)当x ≤1时,kx +b ≥mx ﹣n ;(4)当y =0时,2x ﹣1=0,解得x =12,则M 点的坐标为(12,0);当x =0时,y =−12x +32=32,则N 点坐标为(0,32),所以四边形OMPN 的面积=S △ONB ﹣S △PMB =12×3×32−12×(3−12)×1 =1.故答案为{y =2x −1y =−12x +32;x >3;≤1.19.(8分)若一多项式除以2x 2﹣3,得到的商式为x +4,余式为3x +2,求此多项式. 【解答】解:根据题意得:(2x 2﹣3)(x +4)+3x +2=2x 3+8x 2﹣10. 20.(8分)若3x−5x 2−2x−3=a x−3−bx+1(a ,b 为常数),求(a +2b )b 的值.【解答】解:a x−3−bx+1=ax+a−bx+3b(x−3)(x+1)=(a−b)x+a+3bx 2−2x−3,∵3x−5x 2−2x−3=a x−3−bx+1,∴{a −b =3a +3b =−5, 解得,{a =1b =−2,∴(a +2b )b =[1+2×(﹣2)]﹣2=(﹣3)﹣2=19.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同. (1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?【解答】解:(1)设甲品牌消毒剂每瓶的价格为x 元;乙品牌消毒剂每瓶的价格为(3x ﹣50)元, 由题意得:300x=4003x−50,解得:x =30,经检验,x =30是原方程的解且符合实际意义, 3x ﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元; (2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40﹣y )瓶, 由题意得:30y +40(40﹣y )=1400, 解得:y =20, ∴40﹣y =40﹣20=20,答:购买了20瓶乙品牌消毒剂.22.(9分)如图1,在平面直角坐标系中,直线AB 分别交y 轴、x 轴于点A (0,a ),点B(b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.【解答】解:(1)∵a2−4a+4+√2b+2=0,∴(a−2)2+√2b+2=0,∵(a﹣2)2≥0,√2b+2≥0,∴a﹣2=0,2b+2=0,∴a=2,b=﹣1;(2)由(1)知a=2,b=﹣1,∴A(0,2),B(﹣1,0),∴OA=2,OB=1,∵△ABC是直角三角形,且∠ACB=45°,∴只有∠BAC=90°或∠ABC=90°,Ⅰ、当∠BAC=90°时,如图1,∵∠ACB =∠ABC =45°, ∴AB =CB ,过点C 作CG ⊥OA 于G , ∴∠CAG +∠ACG =90°, ∵∠BAO +∠CAG =90°, ∴∠BAO =∠ACG , 在△AOB 和△BCP 中, {∠CGA =∠AOB =90°∠ACG =∠BAO AC =AB, ∴△AOB ≌△CGA (AAS ), ∴CG =OA =2,AG =OB =1, ∴OG =OA ﹣AG =1, ∴C (2,1),Ⅱ、当∠ABC =90°时,如图2,同Ⅰ的方法得,C (1,﹣1);即:满足条件的点C (2,1)或(1,﹣1) (3)①如图3,由(2)知点C (1,﹣1), 过点C 作CL ⊥y 轴于点L ,则CL =1=BO ,在△BOE 和△CLE 中, {∠OEB =∠LEC ∠EOB =∠ELC BO =CL, ∴△BOE ≌△CLE (AAS ), ∴BE =CE , ∵∠ABC =90°, ∴∠BAO +∠BEA =90°, ∵∠BOE =90°, ∴∠CBF +∠BEA =90°, ∴∠BAE =∠CBF , 在△ABE 和△BCF 中, {∠BAE =∠CBF AB =BC ∠ABE =∠BCF, ∴△ABE ≌△BCF (ASA ), ∴BE =CF , ∴CF =12BC ;②点C 到DE 的距离为1.如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,由①知BE=CF,∵BE=12BC,∴CE=CF,∵∠ACB=45°,∠BCF=90°,∴∠ECD=∠DCF,∵DC=DC,∴△CDE≌△CDF(SAS),∴∠BAE=∠CBF,∴CK=CH=1.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是60°;②线段AC,CD,CE之间的数量关系是AC=CD+CE.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.【解答】解:(1)①∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由旋转知,AD=AE,∠DAE=60°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=60°,故答案为60°;②由(1)知,△ABD≌△ACE,∴BD=CE,∴BC=BD+CD=CE+CD,∵△ABC是等边三角形,∴AC=BC,∴AC=CE+CD,故答案为AC=CE+CD;(2)在△ABC中,AB=AC,∠BAC=90°,∴BC=√2AC,由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD,∴√2AC=CE+CD;(3)由(2)知,△ABD≌△ACE,∴∠ACE=∠ABD,在△ABC中,AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,∵∠DAE=90°,∴∠BCE+∠DAE=180°,∴点A,D,C,E在以DE为直径的圆上,∵AC与DE交于点F,∴AF是直径DE上的一点到点A的距离,即:当AF⊥DE时,AF最小,∴∠CFD=90°,∴∠CDF=90°﹣∠ACB=45°,∵∠ADE=45°,∴∠ADC=90°,∴四边形ADCE是矩形,∴AF最小=12AC=4.。

河北省2020年八年级下学期期中考试数学试卷

河北省2020年八年级下学期期中考试数学试卷

河北省八年级下学期期中考试数学试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若二次根式有意义,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤12.(3分)下列各式计算正确的是()A.B.(a>0)C.=×D.3.(3分)与不是同类二次根式的是()A.B.C.D.4.(3分)若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()A.30°B.45°C.60°D.75°5.(3分)等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.36.(3分)若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.157.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°8.(3分)如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE:EF:BE为()A.4:1:2 B.4:1:3 C.3:1:2 D.5:1:29.(3分)如图,△ABC中,点D,E,F分别在三边上,DE∥CA,DF∥BA.下列四个判断不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC,且AB=AC,那么四边形AEDF是菱形10.(3分)如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.1311.(3分)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.312.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.4﹣2D.3﹣4二、填空题(本大题共6小题;每小题3分,共18分,把答案写在题中横线上)13.(3分)的整数部分是a,小数部分是b,则a﹣b的值是.14.(3分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是.15.(3分)如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是.16.(3分)如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于.17.(3分)在正方形ABCD中,E在BC上,BE=2,CE=1,P是BD上的动点,则PE和PC的长度之和最小是.18.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.三、解答下列各题(本题有8个小题,共66分)19.(8分)(1)÷﹣×+(2)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.20.(7分)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.21.(7分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.22.(8分)如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,求AE的长.23.(8分)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?24.(8分)如图所示,平行四边形ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=60°,BE=2,CF=1,连接DE,求△DEC的面积.25.(10分)如图,正方形ABCD中,点E,F是对角线BD上两点,DE=BF.(1)判断四边形AECF是什么特殊四边形,并证明;(2)若EF=4,DE=BF=2,求四边形AECF的周长.26.(10分)如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.八年级下学期期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若二次根式有意义,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1考点:二次根式有意义的条件.分析:根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵二次根式有意义,∴x﹣1≥0,∴x≥1.故选B.点评:本题考查的是二次根式有意义的条件,根据题意列出关于x的不等式是解答此题的关键.2.(3分)下列各式计算正确的是()A.B.(a>0)C.=×D.考点:二次根式的加减法;二次根式的性质与化简;二次根式的乘除法.分析:根据二次根式的化简,二次根式的乘除及加减运算,分别进行各选项的判断即可.解答:解:A、﹣2=﹣,运算正确,故本选项正确;B、=2a,原式计算错误,故本选项错误;C、=×=6,原式计算错误,故本选项错误;D、÷=,原式计算错误,故本选项错误;故选A.点评:本题考查了二次根式的混合运算及二次根式的化简,属于基础题.3.(3分)与不是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:根据同类二次根式的意义,将题中的根式化简,找到被开方数相同者即可.解答:解:=A、=与被开方数不同,不是同类二次根式;B、=与被开方数相同,是同类二次根式;C、=与被开方数相同,是同类二次根式;D、=与被开方数相同,是同类二次根式.故选:A.点评:此题主要考查了同类二次根式的定义,即化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.4.(3分)若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()A.30°B.45°C.60°D.75°考点:平行四边形的性质.分析:首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.解答:解:设平行四边形中两个内角分别为x°,3x°,则x+3x=180,解得:x=45°,∴其中较小的内角是45°.故选B.点评:此题考查了平行四边形的性质.注意平行四边形的邻角互补.5.(3分)等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.3考点:等边三角形的性质.分析:根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.解答:解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC•AD=×2×=,故选B.点评:本题考查的是等边三角形的性质,熟知等腰三角形“三线合一”的性质是解题的关键.6.(3分)若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.15考点:勾股定理.分析:本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.解答:解:当12是斜边时,第三边是=;当12是直角边时,第三边是=13.故选B.点评:如果给的数据没有明确,此类题一定要分情况求解.7.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°考点:勾股定理.分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.解答:解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.点评:本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.8.(3分)如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE:EF:BE为()A.4:1:2 B.4:1:3 C.3:1:2 D.5:1:2考点:平行四边形的性质.专题:计算题.分析:根据平行四边形的性质和已知条件进行求解.解答:解:∵平行四边形∴∠CDE=∠DEA∵DE是∠ADC的平分线∴∠CDE=∠ADE∴∠DEA=∠ADE∴AE=AD=4∵F是AB的中点∴AF=AB=3∴EF=AE﹣AF=1,BE=AB﹣AE=2∴AE:EF:BE=4:1:2.故选A.点评:本题直接通过平行四边形性质的应用以及角的等量代换、线段之间的关系解题.9.(3分)如图,△ABC中,点D,E,F分别在三边上,DE∥CA,DF∥BA.下列四个判断不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC,且AB=AC,那么四边形AEDF是菱形考点:矩形的判定;平行四边形的判定.分析:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故以上答案都正确.解答:解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.故选C点评:本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定.10.(3分)如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.13考点:平行四边形的性质.分析:根据平行四边形性质得出AD=BC=6,AB=CD=5,OA=OC,AD∥BC,推出∠EAO=∠FCO,证△AEO≌△CFO,推出AE=CF,OE=OF=2,求出DE+CF=DE+AE=AD=6,即可求出答案.解答:解:∵四边形ABCD是平行四边形,∴AD=BC=6,AB=CD=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴AE=CF,OE=OF=2,∴DE+CF=DE+AE=AD=6,∴四边形EFCD的周长是EF+FC+CD+DE=2+2+6+5=15,故选B.点评:本题考查了平行四边形性质,全等三角形的性质和判定的应用,关键是求出DE+CF 的长和求出OF长.11.(3分)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.3考点:平移的性质;等边三角形的性质;菱形的判定与性质.分析:先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断④正确.解答:解:△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选D.点评:本题考查了平移的性质、等边三角形的性质、平行四边形的判定与性质及菱形的判定,解答本题的关键是先判断出△ACD是等边三角形,难度一般.12.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.4﹣2D.3﹣4考点:正方形的性质.专题:压轴题.分析:根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.解答:解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.二、填空题(本大题共6小题;每小题3分,共18分,把答案写在题中横线上)13.(3分)的整数部分是a,小数部分是b,则a﹣b的值是4﹣.考点:估算无理数的大小.分析:只需首先对估算出大小,从而求出其整数部分a,再进一步表示出其小数部分即可解决问题.解答:解:∵<,∴2<3,所以a=2,b=﹣2;故a﹣b=2﹣(﹣2)=4﹣.故答案为:4﹣.点评:此题主要考查了无理数的估算能力,能够正确的估算出无理数的大小,是解答此类题的关键.14.(3分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是﹣.考点:勾股定理;实数与数轴.专题:压轴题.分析:在直角三角形中根据勾股定理求得OB的值,即OA的值,进而求出数轴上点A 表示的数解答:解:∵OB==,∴OA=OB=,∵点A在数轴上原点的左边,∴点A表示的数是﹣,故答案为:﹣.点评:本题考查了实数与数轴、勾股定理的综合运用.15.(3分)如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是(7,3).考点:平行四边形的性质;坐标与图形性质.分析:首先过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,易证得△ODE≌△CBF,则可得CF=DE=3,BF=OE=2,继而求得OF的长,则可求得顶点C的坐标.解答:解:过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,∴∠OED=∠BFC=90°,∵平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),∴OB∥CD,OD∥BC,∴DE=CF=3,∠DOE=∠CBF,在△ODE和△CBF中,,∴△ODE≌△CBF(AAS),∴BF=OE=2,∴OF=OB+BF=7,∴点C的坐标为:(7,3).故答案为:(7,3).点评:此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ODE≌△CBF是关键.16.(3分)如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于150°.考点:平行四边形的性质;矩形的性质.分析:首先过点A作AE⊥BC于点E,由将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,可得AE=AB,即可求得∠ABC的度数,继而求得各内角度数.解答:解:过点A作AE⊥BC于点E,∵将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,∴AE=AB,∴∠ABC=30°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°﹣∠ABC=150°,∴这个平行四边形的最大内角等于150°.故答案为:150°.点评:此题考查了平行四边形的性质以及矩形的性质.注意根据题意求得AE=AB是关键.17.(3分)在正方形ABCD中,E在BC上,BE=2,CE=1,P是BD上的动点,则PE和PC的长度之和最小是.考点:轴对称-最短路线问题;正方形的性质.分析:连接AC、AE,由正方形的性质可知A、C关于直线BD对称,故AE的长即为PE+PC 的最小值,再根据勾股定理求出AE的长即可.解答:解:如图所示:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PE+PC的最小值,∵BE=2,CE=1,∴BC=AB=2+1=3,在Rt△ABE中,∵AE===,∴PE与PC的和的最小值为.故答案为:.点评:本题考查的是轴对称﹣最短路线问题及正方形的性质,熟知“两点之间,线段最短”是解答此题的关键.18.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为(2,4)或(3,4)或(8,4).考点:矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理.专题:动点型.分析:当△ODP是腰长为5的等腰三角形时,有三种情况,需要分类讨论.解答:解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD﹣DE=5﹣3=2,∴此时点P坐标为(2,4);(2)如答图②所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===3,∴此时点P坐标为(3,4);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).故答案为:(2,4)或(3,4)或(8,4).点评:本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏.三、解答下列各题(本题有8个小题,共66分)19.(8分)(1)÷﹣×+(2)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.考点:分式的化简求值;二次根式的混合运算.分析:(1)先将二次根式化简,然后进行加减;(2)先将括号内的部分相减,因式分解后约分即可.解答:(1)解:原式=4﹣+2=4+;(2)解:原式=÷=•=﹣,当a=+1,b=﹣1时,原式=﹣.点评:(1)本题考查了二次根式的混合运算,熟悉二次根式的化简是解题的关键;(2)本题考查了分式的化简求值,熟悉因式分解是解题的关键.20.(7分)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点:平行四边形的性质.专题:证明题.分析:根据平行四边形的对边平行且相等可得AD=EF,AD∥EF,再根据两直线平行,同位角相等可得∠ACB=∠FEB,根据等边对等角求出∠ACB=∠B,从而得到∠FEB=∠B,然后根据等角对等边证明即可.解答:证明:∵四边形ADEF为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.点评:本题考查了平行四边形对边平行且相等的性质,平行线的性质,等角对等边的性质,熟练掌握各性质是解题的关键.21.(7分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.考点:菱形的性质.专题:证明题.分析:根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等证明即可.解答:证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.点评:本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.22.(8分)如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,求AE的长.考点:翻折变换(折叠问题).专题:计算题.分析:先根据折叠的性质得到∠DBC=∠DBE,再由AD∥BC得到∠DBC=∠BDE,则∠DBE=∠BDE,于是可判断BE=DE设AE=x,则DE=BE=8﹣x,然后在Rt△ABE中利用勾股定理得到x2+62=(8﹣x)2,再解方程即可.解答:解:∵△BDC′是由△BDC折叠得到,∴∠DBC=∠DBE,∵AD∥BC,∴∠DBC=∠BDE,∴∠DBE=∠BDE,∴BE=DE设AE=x,则DE=AD﹣AE=8﹣x,BE=8﹣x,在Rt△ABE中,∵AE2+AB2=BE2,∴x2+62=(8﹣x)2,解得x=,即AE的长为.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.23.(8分)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?考点:勾股定理的应用.分析:根据题意画出图形,利用勾股定理建立方程,求出x的值即可.解答:解:画图解决,通过建模把距离转化为线段的长度.由题意得:AB=20,DC=30,BC=50,设EC为x肘尺,BE为(50﹣x)肘尺,在Rt△ABE和Rt△DEC中,AE2=AB2+BE2=202+(50﹣x)2,DE2=DC2+EC2=302+x2,又∵AE=DE,∴x2+302=(50﹣x)2+202,x=20,答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺另解:设:这条鱼出现的地方离比较高的棕榈树的树根肘尺,则这条鱼出现的地方离比较低的棕榈树的树根(50﹣x)肘尺.得方程:x2+302=(50﹣x)2+202可解的:x=20;答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺.点评:本题考查勾股定理的正确运用;善于挖掘题目的隐含信息是解决本题的关键.24.(8分)如图所示,平行四边形ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=60°,BE=2,CF=1,连接DE,求△DEC的面积.考点:平行四边形的性质.分析:根据平行四边形中对角、对边分别相等,∠B=∠ADC=60°,再根据已知边长,由勾股定理可求出AE、AD的长,则EC的长可求,△DEC的面积可求.解答:解:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,AB=CD,AD=BC.∵AE⊥BC,∴在Rt△ABE中,BE=2,AB=4,AE=2,∴CD=AB=4,∵CF=1,∴DF=3,∵AF⊥DC,∠D=60°∴在Rt△ADF中,AD=6∴EC=BC﹣BE=AD﹣BE=6﹣2=4.S△DEC=EC×AE=×4×2=4.点评:运用平行四边形的性质解决以下问题,如求角的度数、线段的长度,证明角相等或互补,证明线段相等或倍分等.25.(10分)如图,正方形ABCD中,点E,F是对角线BD上两点,DE=BF.(1)判断四边形AECF是什么特殊四边形,并证明;(2)若EF=4,DE=BF=2,求四边形AECF的周长.考点:正方形的性质;勾股定理;菱形的判定.分析:(1)连接AC,交BD于点O.利用正方形的性质得出AC⊥BD,OA=OC=OB=OD,进一步得出OE=OF,证得四边形AECF是菱形;(2)利用菱形的性质和勾股定理求得即可.解答:解:(1)四边形AECF是菱形,理由如下:连接AC,交BD于点O,∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB=OD∴DE=BF∴OE=OF∴四边形AECF是菱形;(2)∵EF=4,DE=BF=2,∴AC=BD=8,∴AE=,∴四边形AECF的周长为8.点评:此题考查正方形的性质,菱形的判定,勾股定理等知识点,注意结合已知条件合理作出辅助线解决问题.26.(10分)如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.考点:正方形的判定;全等三角形的判定与性质;等腰直角三角形.专题:几何综合题;压轴题.分析:(1)连接AD,根据直角三角形的性质可得AD=BD=DC,从而证明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,则△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,从而证出△PDQ 是等腰直角三角形;(2)若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.解答:(1)证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,在△BPD和△AQD中,,∴△BPD≌△AQD(SAS),∴PD=QD,∠ADQ=∠BDP,∵∠BDP+∠ADP=90°∴∠ADP+∠ADQ=90°,即∠PDQ=90°,∴△PDQ为等腰直角三角形;(2)解:当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:∵∠BAC=90°,AB=AC,D为BC中点,∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,∴△ABD是等腰直角三角形,当P为AB的中点时,DP⊥AB,即∠APD=90°,又∵∠A=90°,∠PDQ=90°,∴四边形APDQ为矩形,又∵DP=AP=AB,∴矩形APDQ为正方形(邻边相等的矩形为正方形).点评:本题考查正方形的判定:邻边相等的矩形为正方形.也考查了等腰直角三角形斜边上的中线等于斜边的一半.。

(冀教版)2020-2021学年八年级数学下册期中真题模拟试卷(一)含答案

(冀教版)2020-2021学年八年级数学下册期中真题模拟试卷(一)含答案

冀教版2020-2021学年下册期中真题模拟试卷八年级数学班级: 姓名: 学号: 分数:(考试时间:120分钟 试卷满分:120分)一.选择题(共10小题,满分30分,每小题3分)1.对于2y x +,213a +,13a ,x z y -+,(2)k n n-,2x x ,其中分式有( )A .1个B .2个C .3个D .4个2.将分式2x yx y-中的x ,y 的值同时扩大为原来的3倍,则分式的值( )A .扩大6倍B .扩大9倍C .不变D .扩大3倍3.若方程323x x k=++的根为正数,则k 的取值范围是( ) A .2k <B .32k -<<C .3k ≠-D .2k <且3k ≠-4.若双曲线3k y x-=在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( ) A .3k ≠B .3k <C .3k …D .3k >5.满足下列条件的ABC ∆中,不是直角三角形的是( ) A .222b c a =- B .::3:4:5a b c =C .C A B ∠=∠-∠D .::3:4:5A B C ∠∠∠=6.在函数22(k y k x --=为常数)的图象上有三个点1(2,)y -,2(1,)y -,1(2,3)y ,函数值1y ,2y ,3y 的大小为( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>7.如图,在ABC ∆中,8AB =,10BC =,6AC =,则BC 边上的高AD 为( )A .8B .9C .245D .108.函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( ) A . B .C .D .9.如图,在边长为1个单位长度的小正方形网格中,点A 、B 都是格点(即网格线的交点),则线段AB 的长度为( )A .33B .5C .6D .4210.如图,矩形ABCD 中,8AB =,把矩形沿直线AC 折叠,点B 落在点E 处,AE 交CD 于点F ,若254AF =,则AD 的长为( )A .3B .4C .5D .6二.填空题(共10小题,满分30分,每小题3分)11.若分式211x x --的值为零,则x = .12.设函数21(1)my m x -=-,当m = 时,该函数是反比例函数.13.今年我国多地发现猪瘟疫情,疫情发生后,农业农村部第一时间采取措施,使疫情得到了有效控制.疫情是由一种病毒引起的,这种病毒的直径约85纳米(1纳米0.000000001=米).数据85纳米用科学记数法可以表示为 米. 14.计算:111x x x -=-- . 15.如图,小华将升旗的绳子拉到竖直旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,此时绳子末端距离地面2m ,则绳子的长度为 m .16.有一块田地的形状和尺寸如图,则它的面积为 .17.ABC ∆的三边分别是a 、b 、c ,且满足2|8|(6)0a b -+-=,则当2c = 时,ABC ∆是直角三角形.18.已知点A 在反比例函数ky x=的图象上,AB y ⊥轴,点C 在x 轴上,2ABC S ∆=,则反比例函数的解析式为 .19.如图,在函数8(0)y x x=>的图象上有点1P 、2P 、3P ⋯、n P 、1n P +,点1P 的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点1P 、2P 、3P ⋯、n P 、1n P +分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为1S 、2S 、3S ⋯、n S ,则1S = ,n S = .(用含n 的代数式表示)20.如图是放在地面上的一个长方体盒子,其中18AB cm =,12BC cm =,10BF cm =,点M 在棱AB 上,且6AM cm =,点N 是FG 的中点,一只蚂蚁要沿着长方体盒子的表面从点M 爬行到点N ,它需要爬行的最短路程为 .三.解答题(共7小题,满分60分) 21.(6分)计算: (1)222311mm m-+--;(2)22()()2a b aab b ab b--÷-g .22.(8分)先化简,再求值:221(1)211x x x x x +÷+-+-,其中2x =.23.(8分)解方程:6133x x x +=-+24.(8分)环保局对某企业排污情况进行检测,结果显示,所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0/mg L,环保局要求该企业立即整改,在15天以内(含γ与时间x(天)的变15天)排污达标,整改过程中,所排污水中硫化物的浓度(/)mg L化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度γ与时间x成反比例关系(1)求整改过程中硫化物的浓度γ与时间x的函数表达式(要求标注自变量x的取值范围)(2)该企业所排污水中硫化物的浓度,能否在15天以内(含15天)排污达标?为什么?⊥于A,25.(10分)如图,铁路上A、B两点相距25km,C、D为两村庄,DA ABCB km=,现在要在铁路AB上建一个土特产品=,10DA km⊥于B,已知15CB AB收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?26.(10分)某服装店用960元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售. (1)该服装店第一次购买了此种服装多少件? (2)两次出售服装共盈利多少元?27.(10分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,8OA =,点D 为对角线OB 的中点,若反比例函数1k y x=在第一象限内的图象与矩形的边BC 交于点F ,与矩形边AB 交于点E ,反比例函数图象经过点D ,且1tan 2BOA ∠=,设直线EF 的表达式为2y k x b =+.(1)求反比例函数表达式;(2)直接写出直线EF 的函数表达式 ; (3)当0x >时,直接写出不等式12k k x b x+>的解集 ; (4)将矩形折叠,使点O 与点F 重合,折痕与x 轴正半轴交于点H ,与y 轴正半轴交于点G ,直接写出线段OG 的长 .参考答案与解析一.选择题(共10小题,满分30分,每小题3分)1.对于2y x +,213a +,13a ,x z y -+,(2)k n n-,2x x ,其中分式有( )A .1个B .2个C .3个D .4个【解析】213a +,x z y -+,(2)k n n-,2x x 是分式,共4个;故选:D .2.将分式2x yx y-中的x ,y 的值同时扩大为原来的3倍,则分式的值( )A .扩大6倍B .扩大9倍C .不变D .扩大3倍【解析】Q 把分式2x yx y -中的x 与y 同时扩大为原来的3倍, ∴原式变为:222279933x y x y x yx y x y x y ==⨯---, ∴这个分式的值扩大9倍.故选:B . 3.若方程323x x k=++的根为正数,则k 的取值范围是( ) A .2k <B .32k -<<C .3k ≠-D .2k <且3k ≠-【解析】方程两边都乘以(3)()x x k ++得:3()2(3)x k x +=+,3326x k x +=+, 3263x x k -=-, 63x k =-,Q 方程323x x k =++的根为正数,630k ∴->,解得:2k <,Q 分式方程的解为正数,30x +≠,0x k +≠, 3x ≠-,3k ≠,即k 的范围是2k <, 故选:A . 4.若双曲线3k y x-=在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( ) A .3k ≠ B .3k <C .3k …D .3k >【解析】Q 双曲线3k y x -=在每一个象限内,y 随x 的增大而减小,30k ∴-> 3k ∴>故选:D .5.满足下列条件的ABC ∆中,不是直角三角形的是( ) A .222b c a =- B .::3:4:5a b c =C .C A B ∠=∠-∠D .::3:4:5A B C ∠∠∠=【解析】A 、222b c a =-,222a b c +=,故能组成直角三角形,不符合题意;B 、222345+=,故能组成直角三角形,不符合题意;C 、C A B ∠=∠-∠,A B C ∠=∠+∠,故能组成直角三角形,不符合题意;D 、::3:4:5A B C ∠∠∠=,518075345C ∠=︒⨯=︒++,故不能组成直角三角形,符合题意.故选:D .6.在函数22(k y k x --=为常数)的图象上有三个点1(2,)y -,2(1,)y -,1(2,3)y ,函数值1y ,2y ,3y 的大小为( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>【解析】220k --<Q ,∴函数图象位于二、四象限,1(2,)y -Q ,2(1,)y -位于第二象限,21-<-, 210y y ∴>>;又1(2Q ,3)y 位于第四象限,30y ∴<, 213y y y ∴>>.故选:B .7.如图,在ABC ∆中,8AB =,10BC =,6AC =,则BC 边上的高AD 为( )A .8B .9C .245D .10【解析】8AB =Q ,10BC =,6AC =, 2226810∴+=,ABC ∴∆是直角三角形,90BAC ∠=︒,则由面积公式知,1122ABC S AB AC BC AD ∆==g g ,245AD ∴=. 故选:C .8.函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( ) A . B .C .D .【解析】Q 一次函数y x m =+中10k =>,∴一次函数图象单调递增,B ∴、D 选项不合适;A 、一次函数图象过第一、 三、 四象限,0m <;反比例函数图象在第一、 三象限,0m >.A ∴不合适;C 、一次函数图象过第一、 二、 三象限,0m >;反比例函数图象在第一、 三象限,0m >.C ∴合适;故选:C .9.如图,在边长为1个单位长度的小正方形网格中,点A 、B 都是格点(即网格线的交点),则线段AB 的长度为( )A .33B .5C .6D .42【解析】由勾股定理得:22345AB =+=;故选:B .10.如图,矩形ABCD 中,8AB =,把矩形沿直线AC 折叠,点B 落在点E 处,AE 交CD 于点F ,若254AF =,则AD 的长为( )A .3B .4C .5D .6【解析】//DC AB Q ,FCA CAB ∴∠=∠,又FAC CAB ∠=∠,FAC FCA ∴∠=∠,254FA FC ∴==,FD FE ∴=,8DC AB ==Q ,254AF =,257844FD FE ∴==-=,6AD BC EC ∴===, 故选:D .二.填空题(共10小题,满分30分,每小题3分)11.若分式211x x --的值为零,则x = 1- .【解析】由题意得:210x -=,且10x -≠,解得:1x =-, 故答案为:1-. 12.设函数21(1)m y m x -=-,当m = 0 时,该函数是反比例函数.【解析】21(1)my m x -=-Q 是反比例函数,∴21110m m ⎧-=-⎨-≠⎩,解之得0m =.故当0m =时,该函数是反比例函数. 故答案为:0.13.今年我国多地发现猪瘟疫情,疫情发生后,农业农村部第一时间采取措施,使疫情得到了有效控制.疫情是由一种病毒引起的,这种病毒的直径约85纳米(1纳米0.000000001=米).数据85纳米用科学记数法可以表示为 88.510-⨯ 米. 【解析】85纳米850.000000001=⨯米88.510-=⨯. 故答案为:88.510-⨯.14.计算:111x x x -=-- 1 . 【解析】原式11x x -=-1=.故答案为:1.15.如图,小华将升旗的绳子拉到竖直旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,此时绳子末端距离地面2m ,则绳子的长度为 17 m .【解析】设绳子的长度为xm ,则AC AD xm ==,(2)AB x m =-,8BC m =,在Rt ABC ∆中,222AB BC AC +=,即222(2)8x x -+=,解得:17x =, 即绳子的长度为17m . 故答案为:17.16.有一块田地的形状和尺寸如图,则它的面积为 96 .【解析】连接AC , ACD ∆Q 是直角三角形,22228610AB AD CD ∴=+=+=,因为222101213+=,所以ABC ∆是直角三角形,则要求的面积即是两个直角三角形的面积差, 即1124106822⨯⨯-⨯⨯ 12024=- 96=.故答案为:96.17.ABC ∆的三边分别是a 、b 、c ,且满足2|8|(6)0a b -+-=,则当2c = 100或28 时,ABC ∆是直角三角形.【解析】根据题意可得:80a -=,60b -=, 解得:8a =,6b =,所以当ABC ∆是直角三角形时,2222268100c a b =+=+=或222228628c a b =-=-=,故答案为:100或28. 18.已知点A 在反比例函数ky x=的图象上,AB y ⊥轴,点C 在x 轴上,2ABC S ∆=,则反比例函数的解析式为 4y x=- .【解析】Q 反比例函数的图象在第二象限, 0k ∴<. 2ABC S ∆=Q ,∴122AB OB =g , 4AB OB ∴=g ,4k ∴=-,即反比例函数的解析式为4y x =-.故答案为:4y x =-.19.如图,在函数8(0)y x x=>的图象上有点1P 、2P 、3P ⋯、n P 、1n P +,点1P 的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点1P 、2P 、3P ⋯、n P 、1n P +分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为1S 、2S 、3S ⋯、n S ,则1S = 4 ,n S = .(用含n 的代数式表示)【解析】当2x =时,1P的纵坐标为4, 当4x =时,2P 的纵坐标为2, 当6x =时,3P 的纵坐标为43,当8x =时,4P 的纵坐标为1, 当10x =时,5P 的纵坐标为:45, ⋯则1882(42)42[]212(11)S =⨯-==-⨯⨯+;242882(2)22[]33222(21)S =⨯-=⨯=-⨯⨯+; 341882(1)22[]33232(31)S =⨯-=⨯=-⨯⨯+;⋯8882[]22(1)(1)Sn n n n n =-=++;故答案为:4;8(1)n n +.20.如图是放在地面上的一个长方体盒子,其中18AB cm =,12BC cm =,10BF cm =,点M 在棱AB 上,且6AM cm =,点N 是FG 的中点,一只蚂蚁要沿着长方体盒子的表面从点M 爬行到点N ,它需要爬行的最短路程为 20cm .【解析】如图1,18AB cm =Q ,12BC GF cm ==,10BF cm =, 18612BM ∴=-=,10616BN =+=,22121620MN ∴=+=; 如图2,18AB cm =Q ,12BC GF cm ==,10BF cm =, 186618PM ∴=-+=,10NP =,2218102106MN ∴=+=. 202106<Q ,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故答案为:20cm三.解答题(共7小题,满分60分) 21.(6分)计算: (1)222311mm m-+--; (2)22()()2a b aab b ab b--÷-g . 【解析】(1)原式23(1)(1)(1)(1)mm m m m -=-+-+-1(1)(1)mm m -+=+- 11m =+;(2)原式22()4ab a b a b a b b =--g g 34a =.22.(8分)先化简,再求值:221(1)211x x x x x +÷+-+-,其中2x =. 【解析】原式2221(1)(1)1x x x x x ++-=÷-- 22(1)(1)(1)x x x x x x +=÷-+-2(1)1x xx x =÷-- 21(1)x x x x -=-g11x =-.当2x =时,原式1121==-. 23.(8分)解方程:6133x x x +=-+ 【解析】方程两边乘(3)(3)x x -+,得(3)6x x ++2(3)9x x -=-, 解得:1x =,检验:当1x = 时,(3)(3)0x x -+≠, 所以,原分式方程的解为1x =.24.(8分)环保局对某企业排污情况进行检测,结果显示,所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0/mg L ,环保局要求该企业立即整改,在15天以内(含15天)排污达标,整改过程中,所排污水中硫化物的浓度(/)mg L γ与时间x (天)的变化规律如图所示,其中线段AB 表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度γ与时间x 成反比例关系(1)求整改过程中硫化物的浓度γ与时间x 的函数表达式(要求标注自变量x 的取值范围) (2)该企业所排污水中硫化物的浓度,能否在15天以内(含15天)排污达标?为什么?【解析】(1)分情况讨论:①当03x 剟时, 设线段AB 对应的函数表达式为y kx b =+; 把(0,10)A ,(3,4)B 代入得: 1034b k b =⎧⎨+=⎩, 解得:210k b =-⎧⎨=⎩,210y x ∴=-+;②当3x >时,设my x =,把(3,4)代入得:3412m =⨯=, 12y x ∴=;综上所述:当03x 剟时,210y x =-+;当3x >时,12y x =;(2)能;理由如下: 令121y x ==,则12x =,31215<<,故能在15天以内不超过最高允许的1.0/mg L .25.(10分)如图, 铁路上A 、B 两点相距25km ,C 、D 为两村庄,DA AB ⊥于A ,CB AB ⊥于B ,已知15DA km =,10CB km =,现在要在铁路AB 上建一个土特产品收购站E ,使得C 、D 两村到E 站的距离相等, 则E 站应建在距A 站多少千米处?【解析】 设AE xkm =,C Q 、D 两村到E 站的距离相等,DE CE ∴=,即22DE CE =,由勾股定理, 得22221510(25)x x +=+-,10x =.故:E 点应建在距A 站 10 千米处 .26.(10分)某服装店用960元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售. (1)该服装店第一次购买了此种服装多少件? (2)两次出售服装共盈利多少元?【解析】(1)设该服装店第一次购买了此种服装x 件,则第二次购进2x 件, 根据题意得:222096052x x -=,解得:30x =,经检验,30x =是原方程的根,且符合题意. 答:该服装店第一次购买了此种服装30件. (2)46(30302)9602220960⨯+⨯--=(元). 答:两次出售服装共盈利960元.27.(10分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,8OA =,点D 为对角线OB 的中点,若反比例函数1k y x=在第一象限内的图象与矩形的边BC 交于点F ,与矩形边AB 交于点E ,反比例函数图象经过点D ,且1tan 2BOA ∠=,设直线EF 的表达式为2y k x b =+.(1)求反比例函数表达式;(2)直接写出直线EF 的函数表达式 152y x =-+ ;(3)当0x >时,直接写出不等式12k k x b x+>的解集 ; (4)将矩形折叠,使点O 与点F 重合,折痕与x 轴正半轴交于点H ,与y 轴正半轴交于点G ,直接写出线段OG 的长 .【解析】(1)在Rt AOB ∆中,1tan 2AB BOA OA ∠==Q , 118422AB OA ∴==⨯=,B ∴点坐标为(8,4),Q 点D 为对角线OB 的中点,(4,2)D ∴,把(4,2)D 代入1k y x =得1428k =⨯=, ∴反比例函数表达式为8y x =; (2)当8x =时,81y x ==,则(8,1)E ,当4y =时,84x =,解得2x =,则(2,4)F ,把(8,1)E ,(2,4)F 代入2y k x b =+得228124k b k b +=⎧⎨+=⎩,解得2125k b ⎧=-⎪⎨⎪=⎩, 所以直线EF 的解析式为152y x =-+;(3)不等式12k k x b x +>的解集为28x <<;(4)连接GF ,如图,设OG t =,则4CG t =-, Q 将矩形折叠,使点O 与点F 重合,GF OG t ∴==,21 / 21 在Rt CGF ∆中,2222(4)t t +-=,解得52t =,即OG 的长为52. 故答案为152y x =-+;28x <<;52.。

2020-2021学年八年级下学期期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列属于最简二次根式的是()A.√8B.√5C.√4D.√1 3【解答】解:A.√8=2√2,不符合题意;B.√5是最简二次根式;C.√4=2,不符合题意;D.√13=√33,不符合题意;故选:B.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.√3C.2D.√5【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB=√AC2−BC2=√22−12=√3,故选:B.3.下列各式中,化简后能与√2合并的是()A.√12B.√8C.√23D.√0.2【解答】解:A、√12=2√3,不能与√2合并;B、√8=2√2,能与√2合并;C、√23=√63,不能与√2合并;D、√0.2=√55,不能与√2合并;故选:B.4.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.5.下列命题是真命题的是()A.如果a2=b2,那么a=bB.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠BD.三角形的一个外角等于它的两个内角之和【解答】解:A、如果a2=b2,那么a=b或a=﹣b,故原题说法错误;B、0的平方根是0,故原题说法正确;C、如果∠A与∠B是内错角,∠A不一定等于∠B,故原题说法错误;D、三角形的一个外角等于与它不相邻的两个内角之和,故原题说法错误;故选:B.6.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.7.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,7【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C 、52+122=132,故能构成直角三角形;D 、52+62≠72,故不能构成直角三角形.故选:C .8.如图,下面不能判断四边形ABCD 是平行四边形的是( )A .AB =CD ,AB ∥CDB .∠A =∠C ,∠B =∠DC .AB =CD ,AD ∥BC D .AB =CD ,AD =BC 【解答】解:A 、∵AB =CD ,AB ∥CD ,∴四边形ABCD 是平行四边形,正确;B 、∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形,正确;C 、∵AB =CD ,AD ∥BC ,不能得出四边形ABCD 是平行四边形,错误;D 、∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,正确;故选:C .9.如图,▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,则阴影部分的面积为( )A .3B .6C .12D .24【解答】解:∵▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,∴S ▱ABCD =3×2=6,AD ∥BC ,∴OA =OC ,∠OAE =∠OCF ,在△AOE 和△COF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,同理:S △EOG =S △FOH ,S △DOG =S △BOH ,∴S阴影=S△ABD=12S▱ABCD=12×6=3.故选:A.10.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°;②BD=√7;③S平行四边形ABCD=AB•AC;④OE=14AD;⑤S△APO=√310中,正确的个数是()A.2B.3C.4D.5【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=12AB=12,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=√12−(12)2=√32,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=12+(32)2=√72,∴BD=2OD=√7,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=12AB,∵AB=12BC,∴OE=14BC=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=√3 2,∴S△AOE=S△EOC=12OE•OC=12×12×√32=√38,∵OE∥AB,∴EPAP =OEAB=12,∴S△POES△AOP =12,∴S△AOP=23S△AOE=23×√38=√312;故⑤错误;本题正确的有:①②③④,4个,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算√3x⋅√13xy(x>0)结果为x√y.【解答】解:原式=√3x⋅13xy=√x2y=x√y.故答案为:x√y.12.若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.13.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA 的延长线于点E,则AE的长为3.【解答】解:在平行四边形ABCD中,AB=2,BC=5,∴CD=AB=2,AD=BC=5,AD∥BC,∴∠DFC=∠FCB,∵CE平分∠DCB,∴∠DCF=∠BCF,∴∠DFC=∠DCF,∴DC=DF=2,∴AF=3,∵AB∥CD,∴∠E=∠DCF,又∵∠EF A=∠DFC,∠DFC=∠DCF,∴∠AEF=∠EF A,∴AE=AF=3,故答案为:3.14.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为 2.2m.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).故答案为:2.2.15.如图,在等边△ABC 中,BC =5cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s ),当t = 53或5 时,以A 、C 、E 、F 为顶点四边形是平行四边形.【解答】解:①当点F 在C 的左侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BC ﹣BF =5﹣2t (cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t =5﹣2t ,解得:t =53;②当点F 在C 的右侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BF ﹣BC =2t ﹣5(cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AEFC 是平行四边形,即t =2t ﹣5,解得:t =5;综上可得:当t =53s 或5s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.故答案为:53或5. 三.解答题(共8小题,满分75分)16.(8分)计算下列各题(1)(√2+1)(√2−1)+(√3−2)2(2)−12√1024×5.【解答】解:(1)原式=2﹣1+5﹣4√3=6﹣4√3;(2)原式=−12×2×4√5=−4√5.17.(9分)计算题:(1)2√12÷12√50×12√34−35√2;(2)先化简,再求值.(6x √y x +3y √xy 3)﹣(4x √x y +√36xy ),其中x =32,y =27. 【解答】解:(1)原式=2×2×12√12÷50×34−35√2=2×310√2−35√2=35√2−35√2 =0;(2)原式=6x √y x +3y √xy 3−4x √x y −√36xy=6√xy +3√xy −4x y √xy −6√xy =(3−4x y )√xy =3y−4x y √xy , 当x =32,y =27时,原式=81−627√812=252√2.18.(9分)如图,在▱ABCD 中,E 为BC 边上一点,且AB =AE .(1)求证:△ABC ≌△EAD ;(2)若∠B =65°,∠EAC =25°,求∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD ,∴∠EAD =∠AEB ,又∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠EAD ,在△ABC 和△EAD 中,{AB =AE ∠ABC =∠EAD BC =AD,∴△ABC ≌△EAD (SAS ).(2)解:∵AB =AE ,∴∠B=∠AEB,∴∠BAE=50°,∴∠BAC=∠BAE+∠EAC=50°+25°=75°,∵△ABC≌△EAD,∴∠AED=∠BAC=75°.19.(9分)观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=1120(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:√1+1n2+1(n+1)2=1+1n(n+1);(3)利用上述规律计算:√5049+164(仿照上式写出过程)【解答】解:(1)√1+142+152=1+14−15=1120;故答案为:1120;(2)√1+1n2+1(n+1)2=1+1n−1n+1=1+1n(n+1);故答案为:√1+1n2+1(n+1)2=1+1n(n+1);(3)√5049+164=√1+172+182=1156.20.(9分)如图,方格中的点A、B、C、D、E称为格点(格线的交点),以这5个格点中的3点为顶点画三角形,一共可以画多少个?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?【解答】解:如图,一共可以画9个三角形,其中,△ABE,△BCE,△CDE是直角三角形、△ACD,△BCD,ABD是钝角三角形、△ADE,△AEC,△BDE是锐角三角形,△AEC,△CDE是等腰三角形.21.(10分)如图所示,已知O为坐标原点,矩形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(﹣4,8),连接BD,将△ABD沿直线BD翻折至△A′BD,交CD于点E.(1)求点A′坐标.(2)试在x轴上找点P,使A'P+PB的长度最短,请求出这个最短距离.【解答】解:(1)∵点C的坐标为(﹣4,8),∴OD=BC=4,CD=OB=8,连接AA′,与BD交于点G,过A′作A′F⊥OB于点F,由折叠知,A′B=OA=8,OG=A′G,OA′⊥BD,∴S△OBD=12BD⋅OG=12OD⋅OB,∴OG=OD⋅OBBD=√4+8=8√55,∴OA′=2OG=16√5 5,设OF =x ,则BF =8﹣x ,∵OA ′2﹣OF 2=A ′F 2=A ′B 2﹣BF 2,即(16√55)2−x 2=82−(8−x)2, 解得,x =165,即OF =165, ∴A′F =2−OF 2=325,∴A ′(−325,165);(2)作A ′点关于x 轴的对称点A ″,连接BA ″,与x 轴交于点P ,则A 'P +PB =A ″P +PB =A ″B 的值最小,∴A ″(−325,−165),∵B (0,8),∴A″B =√(325)2+(8+165)2=8√655故A 'P +PB 的长度的最短距离为8√655.22.(10分)在平行四边形ABCD 中,以AB 为边作等边△ABE ,点E 在CD 上,以BC 为边作等边△BCF ,点F 在AE 上,点G 在BA 延长线上且FG =FB .(1)若CD =6,AF =3,求△ABF 的面积;(2)求证:BE =AG +CE .【解答】(1)解:∵△ABE是等边三角形,∴∠BAF=60°,AB=AE,∵四边形ABCD是平行四边形,∴AB=CD=6,∴AE=AB=6,∵AF=3,∴AF=EF,∴S△ABF=12S△ABE=12•√34•62=9√32.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.∵△ABE,△FBC都是等边三角形,∴BA=BE,BF=BC,∠ABE=∠FBC=60°,∴∠ABF=∠EBC,∴△ABF≌△EBC(SAS),∴AF=EC,∵AB∥CD,∴∠CEJ=∠F AH,∵∠FHA=∠J=90°,∴△FHA≌△CJE(AAS),∴FH=CJ,AH=EJ,∵FB=FG=FC,FH=CJ,∴Rt△FGH≌Rt△CJF(HL),∴GH=FJ,∵AH=EJ,∴EF=AG,∵BE=AE=AF+EF,∴BE=EC+AG.23.(11分)如图,已知∠A=90°,BD=BE,BC是边DE的中线,BC=15.(1)若AB=7,求AC的长度;(2)若DE=16,求△BED的周长.【解答】解:(1)在Rt△ABC中,∵∠A=90°,BC=15,AB=7,∴AC=√BC2−AB2=√152−72=4√11.(2)∵BD=BE,CD=CE=8,∴BC⊥DE,∴∠BCD=∠BCE=90°,∴BD=BE=√BC2+CD2=√152+82=17,∴△BDE的周长=17+17+16=50.。

2020-2021石家庄市八年级数学下期中试题及答案

2020-2021石家庄市八年级数学下期中试题及答案
2020-2021 石家庄市八年级数学下期中试题及答案
一、选择题
1.在学校的体育训练中,小杰投掷实心球的 7 次成绩如统计图所示,则这 7 次成绩的中位 数和平均数分别是( )
A.9.7 m ,9.9 m
B.9.7 m ,9.8 m
C.9.8 m ,9.7 m
D.9.8 m ,9.9 m
2.如图,一个梯子 AB 斜靠在一竖直的墙 AO 上,测得 AO 4 米.若梯子的顶端沿墙下
C.0 或-2
D.2
9.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离
(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散
步情景的是( )
A.从家出发,休息一会,就回家 B.从家出发,一直散步(没有停留),然后回家 C.从家出发,休息一会,返回用时 20 分钟 D.从家出发,休息一会,继续行走一段,然后回家 10.如图,在正方形 ABCD 外侧,作等边三角形 ADE,AC、BE 相交于点 F,则∠CFE 为 ()
【详解】
解:设 BO xm ,依题意,得 AC 1, BD 1, AO 4 . 在 Rt AOB 中,根据勾股定理得 AB2 AO2 OB2 42 x2 , 在 Rt COD 中,根据勾股定理 CD2 CO2 OD2 (4 1)2 (x 1)2 , 42 x2 (4 1)2 (x 1)2 ,
∵BE=BF,OE=OF, ∴BO⊥EF, ∴在 Rt△BEO 中,∠BEF+∠ABO=90°, 由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC, ∴∠BAC=∠ABO, 又∵∠BEF=2∠BAC, 即 2∠BAC+∠BAC=90°, 解得∠BAC=30°,

2020-2021学年八年级下期中数学试题及答案解析

2020-2021学年八年级下期中数学试题及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共12小题,满分36分,每小题3分) 1.下列各方程组中,属于二元一次方程组的是( ) A .{x =0y =2B .{x +y =0z +y =2C .{x +y =01x+y =2D .{x +y =0xy =2【解答】解:A 、该方程组符合二元一次方程组的定义,故本选项符合题意; B 、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意; C 、该方程组的第二个方程是分式方程,不是二元一次方程组,故本选项不符合题意; D 、该方程组中的第二个方程的最高次数2,不是二元一次方程组,故本选项不符合题意; 故选:A .2.如图是12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是( )A .56B .512C .59D .712【解答】解:如图所示:12个大小相同的小正方形,其中5个小正方形已涂上阴影, 则随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是:512.故选:B .3.如图,∠DAC 是△ABC 的一个外角,AE 平分∠DAC ,且AE ∥BC ,则△ABC 一定是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【解答】证明:∵AE 平分∠DAC ,∴∠1=∠2,∵AE∥BC,∴∠1=∠C,∠B=∠2,∴∠B=∠C,即AB=AC,∴△ABC是等腰三角形.故选:C.4.下列命题中,真命题是()A.两个锐角的和一定是钝角B.相等的角是对顶角C.垂线段最短D.带根号的数一定是无理数【解答】解:A、两个锐角的和可能是锐角、直角或钝角,故原命题错误,是假命题,不符合题意;B、相等的角不一定是对顶角,故原命题错误,不符合题意;C、垂线段最短,正确,是真命题,符合题意;D、带根号的数不一定是无理数,如√4,故原命题错误,不符合题意,故选:C.5.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为s甲2、s乙2,若x甲=x乙,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A 不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B 不符合题意; 根据平均数和方差的意义可得选项C 符合题意; 一个抽奖活动中,中奖概率为120,表示中奖的可能性为120,不代表抽奖20次就有1次中奖,因此选项D 不符合题意; 故选:C .6.如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠D =74°,则∠B 的度数为( )A .74°B .32°C .22°D .16°【解答】解:∵CD =CE ,∠D =74°, ∴∠DEC =∠D =74°,∴∠C =180°﹣74°﹣74°=32°, ∵AB ∥CD , ∴∠B =∠C =32°, 故选:B .7.已知方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,则一次函数y =2x +3与y =ax +c 的图象的交点坐标是( ) A .(﹣1,1)B .(1,﹣1)C .(2,﹣2)D .(﹣2,2)【解答】解:∵方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,∴一次函数y =2x +3与y =ax +c 的图象的交点坐标是(﹣1,1), 故选:A .8.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是( ) A .5B .6C .7D .8【解答】解:设袋中白球有x 个,根据题意得:x x+14=0.3,解得:x =6,经检验:x =6是分式方程的解,故选:B .9.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺. A .25B .20C .15D .10【解答】解:设索长x 尺,竿子长y 尺, 依题意,得:{x −y =5y −12x =5, 解得:{x =20y =15.故选:B .10.如图,把一个长方形纸片沿EF 折叠后,点C 、D 分别落在M 、N 的位置.若∠EFB =65°,则∠AEN 等于( )A .25°B .50°C .65°D .70°【解答】解:∵∠EFB =65°,AD ∥CB , ∴∠DEF =65°,由折叠可得∠NEF =∠DEF =65°, ∴∠AEN =180°﹣65°﹣65°=50°, 故选:B .11.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .{x +y =83x −y =12B .{x −y =83x −y =12C .{x +y =183x +y =12D .{x −y =83x +y =12【解答】解:设这个队胜x 场,负y 场, 根据题意,得{x +y =83x −y =12.故选:A .12.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km【解答】解:设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,如图:设AB =xkm ,AC =ykm ,根据题意得: {2x +2y =210×2x −y +x =210, 解得:{x =140y =70.∴乙在C 地时加注行驶70km 的燃料,则AB 的最大长度是140km .或者:设AC =ykm 即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足一下两个条件:①注满乙车;②刚好够甲车从C 回到A .从A 到C ,甲、乙两车都行驶了AC ,即乙车耗油量为ykm ,也即甲车注入燃料量为ykm ,注入后甲车剩余ykm (刚好返回A 地),所以对于甲车,y +y +y =210,所以y =70.从乙车角度,从C 出发是满燃料,所以AB 为:105+70÷2=140(km ). 故选:B .二.填空题(共6小题,满分18分,每小题3分)13.把命题“对顶角相等”改写成“如果…那么…”的形式: 如果两个角是对顶角,那么这两个角相等 .【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等, 故答案为:如果两个角是对顶角,那么这两个角相等.14.甲乙两人同解方程组{ax +by =2cx −7y =8时,甲正确解得{x =3y =−2,乙因抄错c 而得{x =−2y =2,则a +c = 2 .【解答】解:{ax +by =2①cx −7y =8②把{x =3y =−2代入②得:3c +14=8, 解得:c =﹣2,把{x =3y =−2和{x =−2y =2代入①得:{3a −2b =2−2a +2b =2, 解得:{a =4b =5,所以a +c =4+(﹣2)=2, 故答案为:2.15.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为13,那么盒子内白色乒乓球的个数为 4 .【解答】解:盒子内乒乓球的个数为2÷13=6(个), 白色乒乓球的个数6﹣2=4(个) 故答案为4.16.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那它停在4号板上的概率是116.【解答】解:因为4号板的面积占了总面积的116,故停在4号板上的概率为116,故答案为:116.17.如图,已知AB ∥CD ∥EF ,则∠1,∠2,∠3之间的数量关系是 ∠1﹣∠3+∠2=180° .【解答】解:∵CD ∥EF ,∴∠2+∠CEF =180°, ∵AB ∥EF , ∴∠1=∠3+∠CEF , ∴∠CEF =∠1﹣∠3, ∴∠2+∠1﹣∠3=180°, 即∠1﹣∠3+∠2=180°. 故答案为:∠1﹣∠3+∠2=180°.18.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题.如图所示,已知AB ∥CD ,∠BAE =78°,∠DCE =120°,则∠E 的度数是 42° .【解答】解:如图,延长DC 交AE 于F , ∵AB ∥CD ,∠BAE =78°, ∴∠CFE =78°, 又∵∠DCE =120°,∴∠E =∠DCE ﹣∠CFE =120°﹣78°=42°. 故答案为:42°.三.解答题(共6小题,满分66分)19.(12分)解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下:解: ① + ② ,得3x +4y =10,④ ② + ③ ,得5x +y =11,⑤ ⑤ 与 ④ 联立,得方程组 {3x +4y =10,④5x +y =11,⑤(1)请补全小曹同学的解答过程:(2)若m 、n 、p 、q 满足方程组{m +n +p +q =42(m +n)+3p −q =163(m +n)−2p +q =6,则m +n ﹣2p +q = ﹣2 .【解答】解:(1)方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下: 解:①+②,得3x +4y =10,④ ②+③,得5x +y =11,⑤ ⑤与④联立,得方程组 {3x +4y =10,④5x +y =11,⑤ 解得:{x =2y =1把{x =2y =1代入①得:2+1+z =2, 解得:z =﹣1,∴原方程组的解是{x =2y =1z =−1故答案为:①,②,②,③,⑤,④.(2){m +n +p +q =4①2(m +n)+3p −q =16②3(m +n)−2p +q =6③②﹣①×2得:p ﹣3q =8④, ③﹣①×3得:﹣5p ﹣2q =﹣6⑤, 由④与⑤组成方程组{p −3q =8−5p −2q =−6解得:{p =2q =−2,代入①得:m +n =4 ∴m +n ﹣2p +q =﹣2 故答案为:﹣2.20.(10分)(1)解方程组:{x +2y =1,①3x −2y =11,②(2)计算:√4+|﹣2|+√−273+(﹣1)2016.【解答】解:(1)①+②得:4x =12, 解得:x =3;把x =3代入①得:y =﹣1, 则方程组的解为{x =3y =−1;(2)原式=2+2﹣3+1 =4﹣3+1 =1+1 =2.21.(10分)(1)解方程组:{23x −34y =124(x −y)−3(2x +y)=17; (2)已知关于x 、y 的方程组{x −y =a +32x +y =5a 的解满足x >y >0,化简|a |+|3﹣a |.【解答】解:(1)原方程化为{8x −9y =6①2x +7y =−17②,①﹣②×4得:﹣37y =74, 解得y =﹣2,把y =﹣2代入①得x =−32, ∴原方程组的解为{x =−32y =−2;(2)由方程组{x −y =a +32x +y =5a ,解得{x =2a +1y =a −2,由x >y >0,得{2a +1>a −2a −2>0,解得a>2,当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.22.(12分)已知:如图,点D、E、F、G都在△ABC的边上,DE∥AC,且∠1+∠2=180°(1)求证:AD∥FG;(2)若DE平分∠ADB,∠C=40°,求∠BFG的度数.【解答】证明:(1)∵DE∥AC∴∠2=∠DAC∵∠l+∠2=180°∴∠1+∠DAC=180°∴AD∥GF(2)∵ED∥AC∴∠EDB=∠C=40°∵ED平分∠ADB∴∠2=∠EDB=40°∴∠ADB=80°∵AD∥FG∴∠BFG=∠ADB=80°23.(10分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?【解答】解:公平.画树状图得:从表中可以得到:P 积为奇数=26=13,P 积为偶数=46=23,∴小明的积分为26×2=23,小刚的积分为46×1=46=23.24.(12分)5G 时代的到来,将给人类生活带来巨大改变.现有A 、B 两种型号的5G 手机,进价和售价如表所示:型号价格进价(元/部) 售价(元/部) A3000 3400 B 3500 4000某营业厅购进A 、B 两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A 、B 两种型号手机各多少部?(2)若营业厅再次购进A 、B 两种型号手机共30部,其中B 型手机的数量不多于A 型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?【解答】解:(1)设营业厅购进A 、B 两种型号手机分别为a 部、b 部,{3000a +3500b =32000(3400−3000)a +(4000−3500)b =4400, 解得,{a =6b =4, 答:营业厅购进A 、B 两种型号手机分别为6部、4部;(2)设购进A 种型号的手机x 部,则购进B 种型号的手机(30﹣x )部,获得的利润为w 元,w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,∵B型手机的数量不多于A型手机数量的2倍,∴30﹣x≤2x,解得,x≥10,∵w=﹣100x+15000,k=﹣100,∴w随x的增大而减小,∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.四.解答题(共2小题,满分30分)25.(14分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.26.(16分)探究与发现:【探究一】我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系,并证明你探究的数量关系.【探究二】三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.【探究三】若将△ADC改成任意四边形ABCD呢?已知:如图③,在四边形ABCD中,DP、CP分别平分∠BDC和∠ACD,试利用上述结论直接写出∠A+∠B与∠P的数量关系2∠P=∠B+∠A.【解答】解:探究一:∠FDC+∠ECD=180°+∠A.理由如下:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∠FDC+∠ECD=180°+∠A.理由如下:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°−12∠ADC−12∠ACD,=180°−12(∠ADC+∠ACD),=180°−12(180°﹣∠A),=90°+12∠A;探究三:2∠P=∠B+∠A.理由如下:∵DP,CP分别平分∠BDC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°−12∠ADC−12∠BCD=180°−12(∠ADC+∠BCD)=180°−12(360°﹣∠A﹣∠B)=12(∠A+∠B).即2∠P=∠B+∠A.故答案为:2∠P=∠B+∠A.。

河北省石家庄市八年级下学期数学期中考试试卷

河北省石家庄市八年级下学期数学期中考试试卷

河北省石家庄市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB 于E ,PF⊥AC于F ,则EF的最小值为().A . 4B . 4.8C . 5.2D . 62. (2分)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A . 3B . 4C . 5D . 63. (2分) (2017八下·西安期末) 如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A .B .C .D .4. (2分) (2017八下·兴隆期末) 己知直线1:y=(m﹣3)x+m+2经过第一、二、四象限,则m的取值范围是()A .B .C .D .5. (2分) (2019八下·南山期中) 如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF= ;④S△AEF= .其中正确的有()A . 1个B . 2个C . 3个D . 4个6. (2分)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示.(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示.(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示.(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF:S圆=3:4π以上结论正确的有()A . 1个B . 2个C . 3个D . 4个7. (2分)(2018·河东模拟) 如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A .B .C .D .8. (2分) (2013八下·茂名竞赛) 如图,正方形中,,点在边上,且将沿对折至,延长交边于点连结下列结论:①② ③ ④ 其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共9题;共10分)9. (1分)(2018·龙东) 在函数y= 中,自变量x的取值范围是________.10. (1分) (2017八上·高邑期末) 计算的结果是________.11. (1分)点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,y1-y2________0(填“>”或“<”).12. (1分) (2013八下·茂名竞赛) 如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E 为AD中点,点P在轴上移动.小明同学写出了两个使△P OE为等腰三角形的P点坐标(,)和(,).请你写出其余所有符合这个条件的P点坐标________.13. (1分)(2017·武汉模拟) 如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为________.14. (2分)(2017八上·西湖期中) 有一组平行线,过点作于,作,且,过点作交直线于点,在直线上取点使,则为________三角形,若直线与间的距离为,与间的距离为,则 ________.15. (1分) (2019八上·合肥期中) 小敏从地出发向地行走,同时小聪从地出发向地行走,如图,相交于点的两条线段分别表示小敏、小聪离地的距离与已用时间之间的关系,则 ________时,小敏、小聪两人相距.16. (1分) (2020八下·横县期末) 如图,矩形ABCD中DF平分∠ADC交BC于点F,EF⊥AD交AD于点E,若EF=4,AF=5,则AD等于________.17. (1分)如图,在长和宽分别是8和7矩形内,放置了如图中5个大小相同的正方形,则正方形的边长是________.三、解答题 (共9题;共90分)18. (5分) (2020七下·京口月考) 根据题意结合图形填空:已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.答:是,理由如下:∵AD⊥BC,EG⊥BC(▲_)∴∠4=∠5=90°(_▲)∴AD∥EG(▲_)∴∠1=∠E(▲)∠2=∠3(▲_)∵∠E=∠3(▲)∴▲(等量代换)∴AD是∠BAC的平分线(▲)19. (5分)计算:(a≥0,b≥0).20. (10分) (2019八下·博白期末) 某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式:(2)该商品计划最多投入8000元用于购买这两种商品,则至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?21. (15分)(2019·青白江模拟) 如图①,在矩形ABCD中,AB= ,AD=3,点E是边AD靠近A的三等分点,点P是BC延长线上一点,且EP⊥EB,点G是BE上任意一点,过G作GH∥BP,交EP于点H.将△EGH绕点E 逆时针旋转α(0<α<90°),得到△EMN(M、N分别是G、H的对应点).(1)求BP的长;(2)求的值;(3)如图②当α=60°时,点M恰好落在GH上,延长BM交NP于点Q,取EP的中点K,连接QK.若点G在线段EB上运动,问QK是否有最小值?若有最小值,请求出点G运动到EB的什么位置时,QK有最小值及最小值是多少,若没有最小值,请说明理由.22. (10分) (2017八下·常熟期中) 如图,在一正方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.23. (10分) (2018八下·江海期末) 如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O(用尺规作图,保留作图痕迹,不要求写作法);(2)求证:AF=CE.24. (10分)(2020·晋中模拟) 如图,在四边形ABCD中,对角线AC、BD交于点O ,AB∥DC , AB=BC ,BD平分∠ABC ,过点C作CE⊥AB交AB的延长线于点E ,连接OE .(1)求证:四边形ABCD是菱形;(2)若AB=2 ,BD=4,求OE的长.25. (10分)已知:在平面直角坐标系中,点A、B分别在x轴正半轴上,且线段OA、OB(OA<OB)的长分别等于方程的两个根,点C在轴正半轴上,且OB=2OC.(1)求A、B、C三点坐标;(2)将△OBC绕点C顺时针旋转90°后得到,求直线的表达式.26. (15分)(2018·深圳模拟) 已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共9题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共90分)18-1、19-1、答案:略20-1、20-2、21-1、答案:略21-2、答案:略21-3、答案:略22-1、答案:略22-2、23-1、23-2、答案:略24-1、24-2、答案:略25-1、答案:略25-2、答案:略26-1、26-2、答案:略26-3、答案:略第11 页共11 页。

2020-2021学年八年级下期中考试数学试题及答案解析

2020-2021学年八年级下期中考试数学试题及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共8小题,满分24分,每小题3分) 1.下列调查适合采用全面调查(普查)方式的是( ) A .翠湖的水质情况B .某品牌节能灯的使用寿命C .乘坐动车时对乘客的安检D .端午节期间市场上粽子质量情况 2.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是180° D .抛一枚硬币,落地后正面朝上 3.分式2−x x−3有意义的x 的取值范围为( )A .x ≠2B .x ≠3C .x =2D .x =34.下列各式中,正确的是( ) A .ab =a 2b2 B .2(x−1)1−x 2=−21+xC .ab+1a=b +1D .a 2+b 2a+b=a +b5.下列图标中,是中心对称图形的是( )A .B .C .D .6.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲,乙两人合作完成需要( )小时 A .1a+1bB .1abC .1a+bD .aba+b7.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,添加下列一个条件,能使平行四边形ABCD 成为菱形的是( )A.AO=BO B.AC=AD C.AB=BC D.OD=AC8.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=√2DF;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF.其中正确结论的序号为()A.①②④B.①②C.①④D.①②③④二.填空题(共10小题,满分30分,每小题3分)9.已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是.10.为了了解某市2019年10000名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体;②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本;④样本容量是200.其中说法正确的有(填序号).11.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于12019,则密码的位数至少要设置位.12.下列说法中:①在367人中至少有两个人的生日相同;②一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖;③一副扑克牌中,随意抽取一张是红桃K,这是随机事件;④一个不透明的口袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性;以上说法中正确的有(填序号).13.计算2m−2+m2−m的结果是.14.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC 绕点A顺时针旋转到位置①可得到点P1,此时AP1=√2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+√2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+√2;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.15.菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为.16.如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD 上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是.17.若关于x的分式方程6x−1=x+3x(x−1)−kx无解,则k的值为.18.如图,F是矩形ABCD内一点,AF=BF.连结DF并延长交BC于点G,且点C与AB 的中点E恰好关于直线DG对称.若AD=9,则AB的长为.三.解答题(共10小题,满分96分)19.(8分)先化简,再求值:(2x2x+1−14x2+2x)÷(1−4x2+14x),其中x=3.20.(8分)解方程:xx−3+6x+3=121.(8分)如图,在3×3正方形方格中,有3个小正方形涂成了黑色,所形成的图案如图所示,图中每块小正方形除颜色外完全相同.(1)一个小球在这个正方形方格上自由滚动,那么小球停在黑色小正方形的概率是多少?(2)现将方格内空白的小正方形(A、B、C、D、E、F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.22.(8分)为了了解同学们寒假期间每天健身的时间t(分),校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表,已知C组所在扇形的圆心角为108°.组别频数统计A(t<20)8B(20<40)12C(40t<60)aD(60≤t<80)15E(80)b请根据如图图表,解答下列问题:(1)填空:这次被调查的同学共有人,a=,b=,m=;(2)求扇形统计图中扇形E的圆心角度数;(3)该校共有学生1200人,请估计每天健身时间不少于1小时的人数.23.(10分)如图,已知点A(2,4)、B(1,1)、C(3,2).(1)将△ABC绕点O逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为;(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为;(3)在平面直角坐标系内找点D,使得A、B、C、D为顶点的四边形为平行四边形,则点D的坐标为.24.(10分)如图,▱ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG 于点E,连接AE,AE⊥AD.(1)若BG=1,BC=√10,求EF的长度;(2)求证:AB−√2BE=CF.25.(10分)受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?26.(10分)如图,矩形ABCD,延长CD至点E,使DE=CD,连接AC,AE,过点C作CF∥AE交AD的延长线于点F,连接EF.(1)求证:四边形ACFE是菱形;(2)连接BE 交AD 于点G .当AB =2,∠ACB =30°时,求BG 的长.27.(12分)阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如4x−1,x+1x 2当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:x+1x−1,x 2+1x+1假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:x+1x−1=(x−1)+2x−1=1+2x−1.解决问题:(1)下列分式中属于真分式的是( ) A .x 2x−1B .x−1x+1C .32x−1D .x 2+1x 2−1(2)将假分式3x+1x−1、x 2+1x+1分别化为带分式;(3)若假分式2x 2+3x−6x+3的值为整数,请直接写出所有符合条件的整数x 的值.28.(12分)如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示. ①线段DG 与BE 之间的数量关系是 ; ②直线DG 与直线BE 之间的位置关系是 ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分) 1.下列调查适合采用全面调查(普查)方式的是( ) A .翠湖的水质情况B .某品牌节能灯的使用寿命C .乘坐动车时对乘客的安检D .端午节期间市场上粽子质量情况【解答】解:A 、调查翠湖的水质情况适合抽样调查; B 、调查某品牌节能灯的使用寿命适合抽样调查; C 、乘坐动车时对乘客的安检必须全面调查;D 、调查端午节期间市场上粽子质量情况适合抽样调查; 故选:C .2.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是180° D .抛一枚硬币,落地后正面朝上【解答】解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意; B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意; C 、三角形的内角和是180°,是必然事件,故本选项符合题意; D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意; 故选:C . 3.分式2−x x−3有意义的x 的取值范围为( )A .x ≠2B .x ≠3C .x =2D .x =3【解答】解:由题意得:x ﹣3≠0, 解得:x ≠3, 故选:B .4.下列各式中,正确的是( ) A .ab =a 2b2 B .2(x−1)1−x 2=−21+xC .ab+1a=b +1D .a 2+b 2a+b=a +b【解答】解:ab 与a 2b 在a =0或a =b 时才成立,故选项A 不正确;2(x−1)1−x =2(x−1)(1+x)(1−x)=−21+x,故选项B 正确;ab+1a =b +1a,故选项C 不正确; a 2+b 2a+b不能化简,故选项D 不正确;故选:B .5.下列图标中,是中心对称图形的是( )A .B .C .D .【解答】解:A 、不属于中心对称图形; B 、属于中心对称图形; C 、不属于中心对称图形; D 、不属于中心对称图形; 故选:B .6.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲,乙两人合作完成需要( )小时 A .1a+1bB .1abC .1a+bD .aba+b【解答】解:甲和乙的工作效率分别是1a,1b,合作的工作效率是1a+1b,所以合作完成需要的时间是11a +1b=1b+a ab=ab a+b.故选:D .7.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,添加下列一个条件,能使平行四边形ABCD 成为菱形的是( )A.AO=BO B.AC=AD C.AB=BC D.OD=AC【解答】解:A、AO=BO,对角线相等的平行四边形是矩形,不一定是菱形,命题错误;B、AC=AD,不能判断▱ABCD是菱形,错误;C、根据菱形的定义可得,当AB=BC时▱ABCD是菱形,正确;D、OD=AC,不能判断▱ABCD是菱形,错误;故选:C.8.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=√2DF;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF.其中正确结论的序号为()A.①②④B.①②C.①④D.①②③④【解答】解:∵PE⊥BC于点E,PF⊥CD于点F,CD⊥BC,∴PF∥BC,∴∠DPF=∠DBC,∵四边形ABCD是正方形∴∠DBC=45°∴∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC=DF,在Rt△DPF中,DP2=DF2+PF2=DF2+DF2=2DF2,∴PD=√2DF.故①正确;②∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2BC=8,故②正确;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45°,∴当∠P AD=45°或67.5°或90°时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.④∵四边形PECF为矩形,∴PC=EF,∠PFE=∠ECP,∵正方形为轴对称图形,∴AP=PC,∴AP=EF,故④正确;故选:A.二.填空题(共10小题,满分30分,每小题3分)9.已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是9.【解答】解:∵一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,∴第三组频数是:40﹣10﹣8﹣7﹣6=9.故答案为:9.10.为了了解某市2019年10000名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体;②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本;④样本容量是200.其中说法正确的有①③④(填序号).【解答】解:①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.11.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于12019,则密码的位数至少要设置4位.【解答】解:因为取一位数时一次就拨对密码的概率为110;取两位数时一次就拨对密码的概率为1100;取三位数时一次就拨对密码的概率为11000;取四位数时一次就拨对密码的概率为110000.故一次就拨对的概率小于12019,密码的位数至少需要4位.故答案为:4.12.下列说法中:①在367人中至少有两个人的生日相同;②一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖;③一副扑克牌中,随意抽取一张是红桃K,这是随机事件;④一个不透明的口袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性;以上说法中正确的有①、③(填序号).【解答】解:①在367人中至少有两个人的生日相同,正确;②一次摸奖活动的中奖率是1%,那么摸100次不一定会中一次奖,错误;③一副扑克牌中,随意抽取一张是红桃K,这是随机事件,正确;④一个不透明的口袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性小于于摸到白球的可能性,错误;故答案为:①、③.13.计算2m−2+m2−m的结果是﹣1.【解答】解:原式=2m−2−mm−2=2−mm−2=−(m−2)m−2=﹣1,故答案为:﹣1.14.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC 绕点A顺时针旋转到位置①可得到点P1,此时AP1=√2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+√2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+√2;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672√2.【解答】解:由题意可得:AP1=√2,AP2=1+√2,AP3=2+√2;AP4=2+2√2;AP5=3+2√2;AP6=4+2√2;AP7=4+3√2;AP8=5+3√2;AP9=6+3√2;∵2013=3×671,∴AP2013=(2013﹣671)+671√2=1342+671√2,∴AP2014=1342+671√2+√2=1342+672√2.故答案为:1342+672√2.15.菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为√29或√13.【解答】解:∵四边形ABCD是菱形,AC=4,BD=2,∴AO=12AC=2,BO=12BD=1,①如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交F A的延长线于G,则BG=AO=2,AG=OB=1,FG=AF+AG=4+1=5,在Rt△BFG中,BF=√BG2+FG2=√22+52=√29;②如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,则BG=AO=2,FG=AF﹣AG=4﹣1=3,在Rt△BFG中,BF=√BG2+FG2=√22+32=√13,综上所述,BF长为√29或√13.故答案为:√29或√13.16.如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD 上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是10√33.【解答】解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,∴AB=2BM,∠A′MB=90°,MN∥BC.∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.∴A′B=AB=2BM.在Rt△A′MB中,∵∠A′MB=90°,∴sin∠MA′B=BM BA′=12,∴∠MA′B=30°,∵MN∥BC,∴∠CBA′=∠MA′B=30°,∵∠ABC=90°,∴∠ABA ′=60°,∴∠ABE =∠EBA ′=30°,∴BE =AB cos30°=5√32=10√33. 故答案为:10√33. 17.若关于x 的分式方程6x−1=x+3x(x−1)−kx 无解,则k 的值为 ﹣3或﹣5 . 【解答】解:方程两边同时乘以x (x ﹣1),得6x =x +3﹣k (x ﹣1),∴(5+k )x =3+k ,∵方程无解,∴k =﹣5,∵x =0和x =1是方程的增根,∴3+k =0,∴k =﹣3,故答案为﹣3或﹣5.18.如图,F 是矩形ABCD 内一点,AF =BF .连结DF 并延长交BC 于点G ,且点C 与AB的中点E 恰好关于直线DG 对称.若AD =9,则AB 的长为 6√3 .【解答】解:连接EF 、EG 、EC ,如图所示:∵四边形ABCD 是矩形,∴BC =AD =9,AD ∥BC ,∠BAD =∠ABC =90°,∴AB ⊥AD ,∵AF =BF ,点E 是AB 的中点,∴EF ⊥AB ,∴EF ∥AD ∥BC ,∴EF 是梯形ABGD 的中位线,∠EFG =∠CGF ,∴EF =12(AD +BG ),设BG =x ,则CG =9﹣x ,EF =12(9+x ),∵点C 与AB 的中点E 关于直线DG 对称,∴EG =CG ,∠CGF =∠EGF ,∴∠EFG =∠EGF ,∴EG =EF ,∴EF =CG ,∴12(9+x )=9﹣x , 解得:x =3,∴BG =3,EG =CG =6,∴BE =√EG 2−BG 2=√62−32=3√3,∴AB =2BE =6√3;故答案为:6√3.三.解答题(共10小题,满分96分)19.(8分)先化简,再求值:(2x 2x+1−14x 2+2x)÷(1−4x 2+14x ),其中x =3. 【解答】解:原式=4x 2−12x(2x+1)÷4x−4x 2−14x =(2x+1)(2x−1)2x(2x+1)•4x −(2x−1)2=−22x−1, 当x =3时,原式=−25.20.(8分)解方程:x x−3+6x+3=1【解答】解:方程两边乘 (x ﹣3)(x +3),得 x (x +3)+6 (x ﹣3)=x 2﹣9,解得:x =1,检验:当 x =1 时,(x ﹣3)(x +3)≠0,所以,原分式方程的解为x =1.21.(8分)如图,在3×3正方形方格中,有3个小正方形涂成了黑色,所形成的图案如图所示,图中每块小正方形除颜色外完全相同.(1)一个小球在这个正方形方格上自由滚动,那么小球停在黑色小正方形的概率是多少?(2)现将方格内空白的小正方形(A 、B 、C 、D 、E 、F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.【解答】解:(1)由题意可得,小球停在黑色小正方形的概率是39=13, 即小球停在黑色小正方形的概率是13; (2)中心对称的情况是:(BE )、(CD )、(AF ),(EB ),(DC ),(F A ),则新图案是中心对称图形的概率是:65×6=15, 即新图案是中心对称图形的概率是15.22.(8分)为了了解同学们寒假期间每天健身的时间t (分),校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表,已知C 组所在扇形的圆心角为108°.组别频数统计 A (t <20) 8B(20<40)12C(40t<60)aD(60≤t<80)15E(80)b请根据如图图表,解答下列问题:(1)填空:这次被调查的同学共有60人,a=18,b=7,m=25;(2)求扇形统计图中扇形E的圆心角度数;(3)该校共有学生1200人,请估计每天健身时间不少于1小时的人数.【解答】解:(1)12÷20%=60(人),15÷60=25%,因此m=25,∵C组所在扇形的圆心角为108°,∴C组的人数a=60×108360=18(人),b=60﹣15﹣18﹣12﹣8=7(人),故答案为:60,18,7,25;(2)扇形统计图中扇形E的圆心角度数为360°×760=42°,答:扇形统计图中扇形E的圆心角度数为42°;(3)每天健身时间不少于1 小时的人数是1200×15+760=440(人),答:该校1200名学生中每天健身时间不少于1小时的大约有440人.23.(10分)如图,已知点A(2,4)、B(1,1)、C(3,2).(1)将△ABC绕点O逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为(﹣2,3);(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为(﹣2,﹣4);(3)在平面直角坐标系内找点D,使得A、B、C、D为顶点的四边形为平行四边形,则点D的坐标为(4,5)或(0,3)或(2,﹣1).【解答】解:(1)如图,△A1B1C1即为所求,点C1的坐标为(﹣2,3).故答案为(﹣2,3).(2)△A2B2C2即为所求,点A2的坐标为(﹣2,﹣4)故答案为(﹣2,﹣4).(3)如图,满足条件的点D的坐标为(4,5)或(0,3)或(2,﹣1).故答案为(4,5)或(0,3)或(2,﹣1).24.(10分)如图,▱ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG 于点E,连接AE,AE⊥AD.(1)若BG=1,BC=√10,求EF的长度;(2)求证:AB−√2BE=CF.【解答】解:(1)∵CG⊥AB,BG=1,BC=√10,∴CG=√BC2−BG2=√(√10)2−12=3.∵∠ABF=45°,∴△BGE是等腰直角三角形,∴EG=BG=1,∴EC=CG﹣EG=3﹣1=2,∵在平行四边形ABCD中,AB∥CD,∠ABF=45°,CG⊥AB,∴∠CFE=∠ABF=45°,∠FCE=∠BGE=90°,∴△ECF是等腰直角三角形,∴EF=√EC2+CF2=√22+22=2√2;(2)证明:过E作EH⊥BE交AB于H,∵∠ABF=45°,∠BEH=90°,∴△BEH是等腰直角三角形,∴BH=√BE2+EH2=√2BE,BE=HE,∴∠BHE=45°,∴∠AHE=180°﹣∠BHE=180°﹣45°=135°,由(1)知,△BGE和△ECF都是等腰直角三角形,∴∠BEG=45°,CE=CF,∴∠BEC=180°﹣∠BEG=180°﹣45°=135°,∴∠AHE=∠CEB,∵AE⊥AD,∴∠DAE=90°,∴∠BAD=∠DAE+∠EAB=90°+∠EAB,由(1)知,∠FCE=90°,∴∠BCD =∠FCE +∠BCG =90°+∠BCG ,∵在平行四边形ABCD 中,∠BAD =∠BCD ,∴90°+∠EAB =90°+∠BCG ,∴∠EAB =∠BCG ,即∠EAH =∠BCE ,在△△EAH 和△BCE 中,{∠EAH =∠BCE ∠EHA =∠BEC EH =BE∴△EAH ≌△BCE (AAS ),∴AH =CE =CF ,∴AB −√2BE =AB ﹣BH =AH =CF ,即AB −√2BE =CF .25.(10分)受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?【解答】解:(1)设该商场购进的第一批“84”消毒液单价为x 元/瓶,依题意得:2×8000x=17600x+1. 解得,x =10.经检验,x =10是原方程的根.所以该商场购进的第一批消毒液的单价为10元/瓶;(2)共获利:(800010+1760010+1−200)×13+200×13×0.9﹣(8000+17600)=5340(元).在这两笔生意中商场共获得5340元.26.(10分)如图,矩形ABCD ,延长CD 至点E ,使DE =CD ,连接AC ,AE ,过点C 作CF ∥AE 交AD 的延长线于点F ,连接EF .(1)求证:四边形ACFE 是菱形;(2)连接BE 交AD 于点G .当AB =2,∠ACB =30°时,求BG 的长.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠ADC =90°,∴AF ⊥CE ,∵CD =DE ,∴AE =AC ,EF =CF ,∴∠EAD =∠CAD ,∵AE ∥CF ,∴∠EAD =∠AFC ,∴∠CAD =∠CF A ,∴AC =CF ,∴AE =EF =AC =CF ,∴四边形ACFE 是菱形;(2)解:如图,∵四边形ABCD 是矩形,∴∠ABC =∠BCE =90°,CD =AB ,∵AB =2,CD =DE ,∴BC =2√3,CE =4,∴BE =√BC 2+CE 2=2√7,∵AB =CD =DE ,∠BAE =∠EDG =90°,∠AGB =∠DGE ,∴△ABG ≌△DEG (AAS ),∴BG =EG ,∴BG =12BE =√7.27.(12分)阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如4x−1,x+1x 当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:x+1x−1,x 2+1x+1假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:x+1x−1=(x−1)+2x−1=1+2x−1.解决问题:(1)下列分式中属于真分式的是( )A .x 2x−1B .x−1x+1C .32x−1 D .x 2+1x 2−1 (2)将假分式3x+1x−1、x 2+1x+1分别化为带分式; (3)若假分式2x 2+3x−6x+3的值为整数,请直接写出所有符合条件的整数x 的值.【解答】解:(1)选(C );(2)3x+1x−1=3(x−1)+4x−1=3+4x−1; x 2+1x+1=(x 2−1)+2x+1=(x+1)(x−1)+2x+1=x ﹣1+2x+1; (3)原式=(2x−3)(x+3)+3x+3 =2x ﹣3+3x+3,由x 是整数,原分式的值也为整数,∴x +3=±1或±3,∴x =﹣6、﹣4、﹣2、0.28.(12分)如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示.①线段DG 与BE 之间的数量关系是 DG =BE ;②直线DG 与直线BE 之间的位置关系是 DG ⊥BE ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).【解答】解:(1)①如图②中,∵四边形ABCD 和四边形AEFG 是正方形,∴AE =AG ,AB =AD ,∠BAD =∠EAG =90°,∴∠BAE =∠DAG ,在△ABE 和△DAG 中,{AB =AD ∠BAE =∠DAG AE =AG,∴△ABE ≌△ADG (SAS ),∴BE =DG ;②如图2,延长BE 交AD 于T ,交DG 于H .由①知,△ABE ≌△DAG ,∴∠ABE =∠ADG ,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴ABAD =AEAG=12,∴△ABE∽△ADG,∴∠ABE=∠ADG,BEDG =1 2,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE ⊥DG ;(3)如图④中,作ET ⊥AD 于T ,GH ⊥BA 交BA 的延长线于H .设ET =x ,AT =y .∵△AHG ∽△ATE ,∴GH ET =AH AT =AG AE =2,∴GH =2x ,AH =2y ,∴4x 2+4y 2=4,∴x 2+y 2=1,∴BG 2+DE 2=(2x )2+(2y +2)2+x 2+(4﹣y )2=5x 2+5y 2+20=25.。

2020-2021学年八年级下学期期中考试数学试题及答案

2020-2021学年八年级下学期期中考试数学试题及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.使函数y=√x+1x有意义的自变量x的取值范围为()A.x≠0B.x≥﹣1C.x≥﹣1且x≠0D.x>﹣1且x≠0【解答】解:由题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:C.2.下列各图能表示y是x的函数是()A.B.C.D.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x 的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.3.下列各式属于最简二次根式的是()A.√8B.√x2+1C.√y2D.√1 2【解答】解:A、√8含有能开方的因数,不是最简二次根式,故本选项错误;B、√x2+1符合最简二次根式的定义,故本选项正确;C、√y2含有能开方的因式,不是最简二次根式,故本选项错误;D、√12被开方数含分母,故本选项错误;故选:B.4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是()A.14cm B.8cm C.9cm D.10cm【解答】解:由勾股定理得,AC=√AB2+BC2=√62+82=10cm,∵四边形ABCD是矩形,∴OA=OD=12AC=12×10=5cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=52cm,AF=12×8=4cm,AE=12OA=52cm,∴△AEF的周长=52+4+52=9cm.故选:C.6.如图,数轴上表示实数√5的点可能是()A.点P B.点Q C.点R D.点S【解答】解:∵2<√5<3,∴数轴上表示实数√5的点可能是点Q.故选:B.7.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y =mnx 的图象过一、三象限,无符合项;(4)当m <0,n >0时,mn <0,一次函数y =mx +n 的图象一、二、四象限,正比例函数y =mnx 的图象过二、四象限,无符合项.故选:C .8.如果直线y =kx +b 经过一、二、四象限,则k ,b 的取值分别是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【解答】解:由一次函数y =kx +b 的图象经过第一、二、四象限,又由k <0时,直线必经过二、四象限,故知k <0.再由图象过一、二象限,即直线与y 轴正半轴相交,所以b >0.故选:C .9.如图所示的图象所表示的函数的关系式为( )A .y =32|x ﹣1|(0≤x ≤2)B .y =32−32|x ﹣1|(0≤x ≤2)C .y =32−|x ﹣1|(0≤x ≤2)D .y =1﹣|x ﹣1|(0≤x ≤2)【解答】解:观察图象可知,图象上已知三点坐标为(0,0),(1,32)(2,0),代入每个解析式检验可知:A 、点(0,0)不符合函数解析式;B 、点(0,0),(1,32),(2,0),都符合函数解析式;C 、点(0,0)不符合函数解析式;D 、点(1,32)不符合函数解析式. 只有B 符合.故选:B .10.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=12×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=−13x2+53x(0<x<5),纵观各选项,只有D选项符合.故选:D.二.填空题(共5小题,满分15分,每小题3分)11.若点A(2,y1),B(﹣1,y2)都在直线y=﹣2x+1上,则y1与y2的大小关系是y1<y2.【解答】解:∵直线y=﹣2x+1的比例系数为﹣2,∴y随x的增大而减小,∵2>﹣1,∴y1<y2,故答案为y1<y2.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要612元钱.【解答】解:由勾股定理,AC=2−BC2=√132−52=12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.故答案为:612.13.无论m为何值直线y=x+2m与直线y=﹣x+4的交点都不可能在第三象限.【解答】解:y=﹣x+4是一次函数,∵k=﹣1<0,∴图象过二、四象限,又∵b=4>0,∴图象过第一象限,∴一定不过第三象限;∴直线y =x +2m 与y =﹣x +4的交点不可能在第三象限.故答案为:三.14.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C ′,再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB =3,BC =4,则折痕EF 的长为 2512 .【解答】解:设BC ′与AD 交于N ,EF 与AD 交于M ,根据折叠的性质可得:∠NBD =∠CBD ,AM =DM =12AD ,∠FMD =∠EMD =90°, ∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC =4,∠BAD =90°,∴∠ADB =∠CBD ,∴∠NBD =∠ADB ,∴BN =DN ,设AN =x ,则BN =DN =4﹣x ,∵在Rt △ABN 中,AB 2+AN 2=BN 2,∴32+x 2=(4﹣x )2,∴x =78,即AN =78,∵C ′D =CD =AB =3,∠BAD =∠C ′=90°,∠ANB =∠C ′ND ,∴△ANB ≌△C ′ND (AAS ),∴∠FDM =∠ABN ,∴tan ∠FDM =tan ∠ABN ,∴AN AB =MF MD ,∴783=MF 2,∴MF =712, 由折叠的性质可得:EF ⊥AD ,∴EF ∥AB ,∵AM =DM ,∴ME =12AB =32,∴EF =ME +MF =32+712=2512.故答案为:2512.15.已知一次函数y =mx +2m +8与x 轴、y 轴交于点A 、B ,若图象经过点C (2,4).过点C 作x 轴的平行线,交y 轴于点D ,在△OAB 边上找一点E ,使得△DCE 构成等腰三角形,则点E 坐标为 (0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5) .【解答】解:∵一次函数y =mx +2m +8的图象经过点C (2,4),∴4=2m +2m +8,解得m =﹣1,∴一次函数为y =﹣x +6,∵与x 轴、y 轴交于点A 、B ,∴A (6,0),B (0,6),如图,∵C (2,4),∴C 点在直线AB 上,以D 为圆心,以2为半径作圆,交OB 于B 和E 2,此时E (0,6)或(0,2);以B 为圆心,以2为半径作圆,交AB 于E 3和E 4,此时E(2−√2,4+√2)或(2+√2,4−√2),作DC的垂直平分线交OA于E5,交AB于E6,此时E5(1,0),E6(1,5);综上,点E坐标为(0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5);故答案为(0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5).三.解答题(共8小题,满分75分)16.(8分)计算:−√24÷√2−√13×√12+√48.【解答】解:−√24÷√2−√13×√12+√48=﹣2√6÷√2−√4+4√3=﹣2√3−2+4√3=2√3−2.17.(8分)如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE 2+AD 2=BE 2+BC 2,设AE =x ,则BE =AB ﹣AE =(25﹣x ),∵DA =15km ,CB =10km ,∴x 2+152=(25﹣x )2+102,解得:x =10,∴AE =10km ,∴收购站E 应建在离A 点10km 处.18.(9分)四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)连接BF 、AC 、DE ,当BF ⊥AE 时,求证:四边形ACED 是平行四边形.【解答】证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AD ∥BC ,∵AE 平分∠BAD ,∴∠EAB =∠EAD =∠AEB ,∴AB =BE ,∴BE =CD .(2)∵BA =BE ,BF ⊥AE ,∴AF =EF ,∵AD ∥CE ,∴∠DAF =∠CEF ,在△ADF 和△ECF 中,{∠DAF =∠CEF AF =FE ∠AFD =∠CFE,∴△DAF ≌△CEF∴AD =CE ,∵AD ∥CE ,∴四边形ADEC 是平行四边形.19.(9分)如图,已知一次函数y =kx +b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求一次函数的解析式;(2)求点C 和点D 的坐标;(3)求△AOB 的面积.【解答】解:(1)把A (﹣2,﹣1),B (1,3)代入y =kx +b 得 {−2k +b =−1k +b =3, 解得 {k =43b =53. 所以一次函数解析式为y =43x +53;(2)令y =0,则0=43x +53,解得x =−54,所以C 点的坐标为(−54,0),把x =0代入y =43x +53得y =53,所以D 点坐标为(0,53), (3)△AOB 的面积=S △AOD +S △BOD=12×53×2+12×53×1=52.20.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF、BF.(1)求证:四边形BFDE是矩形;(2)若CF=6,BF=8,DF=10,求证:AF平分∠DAB.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC=√FC2+FB2=10,∴AD=BC=DF=10,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.21.(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.22.(10分)如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P 为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=13PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.【解答】解:(1)证明:∵∠ABC =90°∴∠BAP +∠APB =90°∵BQ ⊥AP∴∠APB +∠QBC =90°,∴∠QBC =∠BAP ,在△ABP 于△BCQ 中,{∠ABP =∠BCQAB =BC ∠BAP =∠QBC,∴△ABP ≌△BCQ (ASA ),∴BP =CQ ,(2)由翻折可知,AB =BC ',连接BN ,在Rt △ABN 和Rt △C 'BN 中,AB =BC ',BN =BN ,∴Rt △ABN ≌△Rt △C 'BN (HL ),∴AN =NC ',∵BP =13PC ,AB =8,∴BP =2=CQ ,CP =DQ =6,设AN =NC '=a ,则DN =8﹣a ,∴在Rt △NDQ 中,(8﹣a )2+62=(a +2)2解得:a =4.8,即AN =4.8.(3)解:过Q 点作QG ⊥BM 于G ,由(1)知BP =CQ =BG =x ,BM =MQ .设MQ =BM =y ,则MG =y ﹣x ,∴在Rt △MQG 中,y 2=82+(y ﹣x )2,∴y =32x +x 2. ∴S △BMC ′=S △BMQ ﹣S △BC 'Q =12BM ⋅QG −12BC′⋅QC′=12(32x +x 2)×8−12×8x , =128x −2x .23.(11分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?最大利润是多少?【解答】解:(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意得{10a +20b =400020a +10b =3500, 解得{a =100b =150. 答:每台A 型电脑销售利润为100元,每台B 型电脑的销售利润为150元;(2)①根据题意得,y =100x +150(100﹣x ),即y =﹣50x +15000;②据题意得,100﹣x ≤2x ,解得x ≥3313, ∵y =﹣50x +15000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,此时最大利润是y =﹣50×34+15000=13300.即商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是13300元.。

河北省2020年八年级下学期期中考试数学试卷3

河北省2020年八年级下学期期中考试数学试卷3

精选资料河北省八年级放学期期中考试数学试卷一、选择题(共16 小题,每题 3 分,满分48 分)1.( 3 分)以下式子必定是二次根式的是()A.B.C.D.2.( 3 分)以下式子中,属于最简二次根式的是()A.B.C.D.3.( 3 分)已知,则 2xy的值为()A .﹣15B. 15C.D.4.( 3 分)在 ?ABCD 中,以下结论必定正确的选项是()A .A C⊥BD B.∠ A+ ∠ B=180 °C. A B=AD D.∠A≠∠C5.( 3 分)若平行四边形中两个内角的度数比为A .60°B. 90°1: 2,则此中较小的内角是()C. 120°D. 45°6.( 3 分)以下命题中,真命题是()A.对角线相等的四边形是矩形B.对角线相互垂直的四边形是菱形C.对角线相互均分的四边形是平行四边形D .对角线相互垂直均分的四边形是正方形7.( 3 分)如图,一个平行四边形的活动框架,对角线是两根橡皮筋,若改变框架的性状,则∠ α也随之变化,两条对角线长度也在发生改变,当∠ α是()度时,两条对角线长度相等.A .30B. 45C. 60D. 908.( 3 分)由线段a,b, c 构成的三角形不是直角三角形的是()A .a=15 , b=8 ,c=17B . a=12, b=14 ,c=15精选资料C. a=,b=4,c=5 D . a=7, b=24, c=259.( 3 分)如图,点 E 在正方形 ABCD 内,知足∠ AEB=90 °,AE=6 ,BE=8 ,则暗影部分的面积是()A .48B. 60C. 76D. 8010.( 3 分)按序连结矩形四边中点所得的四边形必定是()A .正方形B.矩形C.菱形D.等腰梯形11.(3 分)实数 a, b 在数轴上的地点以下图,则化简的结果是()A .﹣ 2b B.﹣ 2a C. 2( b﹣a)D. 012.( 3 分)如图,在边长为 2 的正方形 ABCD 中, M 为边 AD 的中点,延伸 MD 至点 E,使ME=MC ,以 DE 为边作正方形 DEFG ,点 G 在边 CD 上,则 DG 的长为()A.B.C.D.13.( 3 分)如图,在菱形 ABCD 中,∠ BAD=80 °, AB 的垂直均分线交对角线 AC 于点 F,垂足为 E,连结 DF ,则∠ CDF 等于()A .50°B. 60°C. 70°D. 80°精选资料14.( 3 分)如,平行四形ABCD 中, AB :BC=3 :2,∠DAB=60 EB=1 :2,F 是 BC 的中点, D 分作 DP⊥ AF 于 P,DQ ⊥ CE 于°,E 在 AB 上,且 AE :Q, DP:DQ 等于()A .3:4B.:2C.:2D.2 :15.( 3 分)甲乙两艘客同走开港口,航行的速度都是每分40m,甲客用 15 分到达点 A ,乙客用 20 分抵达点 B,若 A 、 B 两点的直距离1000m,甲客沿着北偏30°的方向航行,乙客的航行方向可能是()A .南偏 60°B.南偏西 60°C.北偏西 30°D.南偏西 30°16.( 3 分)将正方形 1 作以下操作:第 1 次:分接各中点如2,获得 5 个正方形;第 2 次:将 2 左上角正方形按上述方法再切割如3,获得 9 个正方形⋯,以此推,根据以上操作,若要获得2013 个正方形,需要操作的次数是()A .502B. 503C. 504D. 505二、填空(共 4 小,每小 3 分,分 12 分)17.( 3 分)先化再求:当a=9 , a+=.18.( 3 分)如,一根 18cm 的筷子置于底面直径 5cm.高 12cm 柱形水杯中,露在水杯外面的度hcm, h 的取范是.19.( 3 分)如, ?ABCD 中,∠ ABC=60 °,E、F 分在 CD 和 BC 的延上, AE ∥ BD , EF⊥ BC,EF= , AB 的是.20.( 3 分)如图,正方形 ABCD 的边长为 1,以对角线 AC 为边作第二个正方形,再以对角线AE 为边作第三个正方形 AEGH ,这样下去,第 n 个正方形的边长为.三、解答题(共 6 小题,满分60 分)21.( 8 分)计算:3﹣+﹣.22.( 8 分)已知:在Rt△ ABC中,∠ C=90°,∠A=60 °, a=,求b、 c 的长.23.( 10 分)如图,在4×3 正方形网格中,每个小正方形的边长都是1(1)分别求出线段AB 、 CD 的长度;(2)在图中画线段EF 、使得 EF 的长为,以AB、CD、EF三条线段可否构成直角三角形,并说明原因.24.( 10 分)如图,已知 ?ABCD ,过 A 作 AM ⊥BC 于 M ,交 BD 于 E,过 C 作 CN ⊥ AD 于N ,交 BD 于 F,连结 AF、 CE .求证:四边形 AECF 为平行四边形.25.( 12 分)自习课上,张玉看见同桌刘敏在练习本上写的题目是“求二次根式中实数 a 的取值范围”,她告诉刘敏说:你把题目抄错了,不是“”,而是“”,刘敏说:哎呀,真抄错了,幸亏不影响结果,反正a和a﹣3都在根号内.试问:刘敏说得对吗?就是说,依照解题和依照解题的结果同样吗?26.( 12 分)如图,在 Rt△ ABC 中,∠B=90 °, AC=60cm ,∠ A=60 °,点 D 从点 C 出发沿 CA 方向以 4cm/秒的速度向点 A 匀速运动,同时点 E 从点 A 出发沿 AB 方向以 2cm/秒的速度向点 B 匀速运动,当此中一个点抵达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒( 0< t≤15).过点 D 作 DF⊥ BC 于点 F,连结 DE , EF.(1)求证: AE=DF ;(2)四边形AEFD 能够成为菱形吗?假如能,求出相应的t 值,假如不可以,说明原因;(3)当 t 为什么值时,△ DEF 为直角三角形?请说明原因.八年级放学期期中数学试卷参照答案与试题分析一、选择题(共16 小题,每题 3 分,满分48 分)1.( 3 分)以下式子必定是二次根式的是()A.B.C.D.考点:二次根式的定义.剖析:依据二次根式的观点“形如(a≥0)的式子,即为二次根式”,进行剖析.解答:解:依据二次根式的观点,知A 、 B、 C 中的被开方数都不会恒大于等于0,故错误;2D、由于 x +2> 0,因此必定是二次根式,故正确.应选:评论:D.本题考察了二次根式的观点,特别要注意a≥0 的条件.2.( 3 分)以下式子中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.专题:计算题.剖析:判断一个二次根式能否为最简二次根式主要方法是依据最简二次根式的定义进行,或直观地察看被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再察看.解答:解:A、=3,故 A 错误;B、是最简二次根式,故 B 正确;C、=2,不是最简二次根式,故 C 错误;D、=,不是最简二次根式,故 D 错误;应选: B.评论:本题考察了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.( 3 分)已知,则 2xy的值为()A .﹣15B. 15C.D.考点:二次根式存心义的条件.剖析:第一依据二次根式存心义的条件求出x的值,而后辈入式子求出y 的值,最后求出 2xy 的值.解答:解:要使存心义,则,解得 x=,故 y= ﹣ 3,∴2xy=2 × ×(﹣ 3) =﹣ 15.应选: A.评论:本题主要考察二次根式存心义的条件,解答本题的重点是求出 x 和 y 的值,本题难度一般.4.( 3 分)在 ?ABCD 中,以下结论必定正确的选项是()A .A C⊥BD B.∠A+∠B=180 °C.A B=AD D.∠A≠∠C考点:平行四边形的性质.剖析:由四边形 ABCD 是平行四边形,可得AD ∥ BC,即可证得∠ A+ ∠ B=180 °.解答:解:∵四边形 ABCD 是平行四边形,∴AD ∥BC,∴∠ A+ ∠ B=180 °.应选 B.评论:本题考察了平行四边形的性质.本题比较简单,注意掌握数形联合思想的应用.5.( 3 分)若平行四边形中两个内角的度数比为 A .60° B. 90°1: 2,则此中较小的内角是()C. 120°D. 45°考点:平行四边形的性质.剖析:第一设平行四边形中两个内角的度数分别是 x°, 2x°,由平行四边形的邻角互补,即可得方程 x+2x=180 ,既而求得答案.解答:解:设平行四边形中两个内角的度数分别是x°, 2x°,则 x+2x=180 ,解得: x=60,∴此中较小的内角是:60°.应选 A.评论:本题考察了平行四边形的性质.注意平行四边形的邻角互补.6.( 3 分)以下命题中,真命题是()A.对角线相等的四边形是矩形B.对角线相互垂直的四边形是菱形C.对角线相互均分的四边形是平行四边形D .对角线相互垂直均分的四边形是正方形考点:正方形的判断;平行四边形的判断;菱形的判断;矩形的判断;命题与定理.剖析: A 、依据矩形的定义作出判断;B、依据菱形的性质作出判断;C、依据平行四边形的判断定理作出判断;D、依据正方形的判断定理作出判断.解答:解: A 、两条对角线相等且相互均分的四边形为矩形;故本选项错误;B、对角线相互垂直的平行四边形是菱形;故本选项错误;C、对角线相互均分的四边形是平行四边形;故本选项正确;D、对角线相互垂直均分且相等的四边形是正方形;故本选项错误;应选 C.评论:本题综合考察了正方形、矩形、菱形及平行四边形的判断.解答本题时,一定理清矩形、正方形、菱形与平行四边形间的关系.7.( 3 分)如图,一个平行四边形的活动框架,对角线是两根橡皮筋,若改变框架的性状,则∠ α也随之变化,两条对角线长度也在发生改变,当∠ α是()度时,两条对角线长度相等.A .30B. 45C. 60D. 90考点:平行四边形的性质;矩形的判断与性质.剖析:依据矩形的判断方法:对角线相等的平行四边形是矩形,得出四边形是矩形,再由矩形的性质:矩形的四个角都是直角,即可得出结果.解答:解:当∠ α=90°时,两条对角线长度相等;以下图:原因以下:∵四边形是平行四边形,两条对角线相等,∴四边形是矩形,∴∠ α=90 °;应选: D.评论:本题考察了平行四边形的性质、矩形的判断与性质;娴熟掌握矩形的判断与性质是解决问题的重点.8.( 3 分)由线段a,b, c 构成的三角形不是直角三角形的是()A .a=15 , b=8 ,c=17B . a=12, b=14 ,c=15C. a=, b=4, c=5 D . a=7, b=24, c=25考点:勾股定理的逆定理.剖析:先依据已知 a、b、c 的值求出两小边的平方和,求出大边的平方,看看能否相等即可.解答:解: A 、∵ a=15,b=8 , c=17,∴a 2+b2=c2,∴线段 a, b, c 构成的三角形是直角三角形,故本选项错误;B、∵ a=12, b=14,c=15 ,∴a 2+b2≠c2,∴线段 a, b, c 构成的三角形不是直角三角形,故本选项正确;C、∵ a=,b=8,c=17,∴b 2+c2=a2,∴线段 a, b, c 构成的三角形是直角三角形,故本选项错误;D、∵ a=7, b=24 ,c=25,222,∴a +b =c∴线段 a, b, c 构成的三角形是直角三角形,故本选项错误;应选 B.评论:本题考察了勾股定理的逆定理的应用,解本题的重点是看看两小边的平方和能否等于大边的平方,注意:假如一个三角形的两边a、b 的平方和等于第三边 c 的平方,那么这个三角形是直角三角形.9.( 3 分)如图,点 E 在正方形 ABCD 内,知足∠ AEB=90 °,AE=6 ,BE=8 ,则暗影部分的面积是()A .48B. 60C. 76D. 80考点:勾股定理;正方形的性质.剖析:由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB ,用S 暗影部分 =S 正方形 ABCD ﹣S△ABE 求面积.解答:解:∵ ∠ AEB=90 °, AE=6 ,BE=8 ,∴在 Rt△ ABE 中, AB 2=AE2+BE2=100 ,∴S 暗影部分 =S 正方形ABCD﹣ S△ABE,=AB 2﹣×AE ×BE=100﹣×6×8=76.应选: C.评论:本题考察了勾股定理的运用,正方形的性质.重点是判断△ABE 为直角三角形,运用勾股定理及面积公式求解.10.( 3 分)按序连结矩形四边中点所得的四边形必定是()A .正方形B.矩形C.菱形D.等腰梯形考点:菱形的判断;三角形中位线定理;矩形的性质.专题:压轴题.剖析:由于题中给出的条件是中点,因此可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解答:解:连结 AC 、 BD ,在△ ABD 中,∵AH=HD , AE=EB∴E H= BD ,同理 FG= BD , HG= AC , EF=AC ,又∵ 在矩形 ABCD 中, AC=BD ,∴E H=HG=GF=FE ,∴四边形 EFGH 为菱形.应选 C.精选资料评论:本题考察了菱形的判断,菱形的鉴别方法是说明一个四边形为菱形的理论依照,用三种方法:① 定义,② 四边相等,③ 对角线相互垂直均分.常11.(3 分)实数 a, b 在数轴上的地点以下图,则化简的结果是()A .﹣ 2b B.﹣ 2a C. 2( b﹣a)D. 0考点:实数与数轴;二次根式的性质与化简.剖析:由数轴可知a<﹣ 1,0< b< 1,因此 a﹣ b< 0,化简即可解答.解答:解:由数轴可知a<﹣ 1, 0< b< 1,∴a﹣ b< 0,∴=﹣ a﹣b+( a﹣ b) =﹣ a﹣ b+a﹣ b=﹣ 2b.应选: A.评论:本题主要考察了实数与数轴之间的对应关系,要修业生正确依据数在数轴上的地点判断数的符号以及绝对值的大小,再依据运算法例进行判断.12.( 3 分)如图,在边长为 2 的正方形 ABCD 中, M 为边 AD 的中点,延伸 MD 至点 E,使ME=MC ,以 DE 为边作正方形 DEFG ,点 G 在边 CD 上,则 DG 的长为()A .B.C.D.考点:正方形的性质;勾股定理.剖析:利用勾股定理求出CM 的长,即DG 的长.解答:解:∵ 四边形ABCD是正方形,ME 的长,有DE=DG ,能够求出M 为边 DA 的中点,DE ,从而获得∴DM=AD=DC=1 ,精选资料∴CM==,∴ME=MC=,∵ED=EM ﹣DM=﹣1,∵四边形 EDGF 是正方形,∴DG=DE=﹣1.应选: D.评论:本题考察了正方形的性质和勾股定理的运用,属于基础题目.°, AB的垂直均分线交对角线AC于点F,13.( 3 分)如图,在菱形ABCD 中,∠ BAD=80垂足为 E,连结 DF ,则∠ CDF 等于()A .50°B. 60°C. 70°D. 80°考点:菱形的性质;全等三角形的判断与性质;线段垂直均分线的性质.专题:几何综合题.剖析:连结 BF ,依据菱形的对角线均分一组对角求出∠ BAC,∠ BCF=∠ DCF,四条边都相等可得 BC=DC ,再依据菱形的邻角互补求出∠ ABC,而后依据线段垂直均分线上的点到线段两头点的距离相等可得AF=BF ,依据等边平等角求出∠ ABF=∠ BAC,从而求出∠CBF,再利用“边角边”证明△ BCF 和△ DCF 全等,依据全等三角形对应角相等可得∠C DF= ∠ CBF .解答:解:如图,连结BF ,在菱形 ABCD 中,∠ BAC=∠ BAD=×80°=40°,∠ BCF=∠DCF,BC=DC,∠ABC=180 °﹣∠ BAD=180 °﹣80°=100°,∵EF 是线段 AB 的垂直均分线,∴AF=BF ,∠ ABF= ∠BAC=40 °,∴∠ CBF= ∠ ABC ﹣∠ABF=100 °﹣40°=60°,∵在△BCF 和△DCF 中,,∴△ BCF ≌ △DCF ( SAS ),∴∠ CDF= ∠ CBF=60 °.应选: B.评论:本题考察了菱形的性质,全等三角形的判断与性质,线段垂直均分线上的点到线段两头点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的重点.14.( 3 分)如图,平行四边形ABCD 中, AB :BC=3 :2,∠DAB=60EB=1 :2,F 是 BC 的中点,过 D 分别作 DP⊥ AF 于 P,DQ ⊥ CE 于°,E 在 AB 上,且 AE :Q,则 DP:DQ 等于()A .3:4B.:2C.:2D.2:考点:平行四边形的性质;三角形的面积;勾股定理.剖析:连结 DE 、DF ,过 F 作 FN ⊥ AB 于 N,过 C 作 CM ⊥AB 于 M ,依据三角形的面积和平行四边形的面积得出S△DEC=S△DFA=S 平行四边形ABCD,求出 AF×DP=CE ×DQ ,设 AB=3a ,BC=2a ,则 BF=a ,BE=2a ,BN= a,BM=a ,FN=a,CM=a,求出 AF=a,CE=2a,代入求出即可.解答:解:连结 DE、DF,过 F 作 FN⊥AB 于 N,过 C 作 CM⊥ AB 于 M,∵依据三角形的面积和平行四边形的面积得:S△DEC=S△DFA=S 平行四边形ABCD,即 AF ×DP= CE×DQ ,∴A F ×DP=CE ×DQ,∵四边形 ABCD 是平行四边形,∴AD ∥BC,∵∠ DAB=60 °,∴∠ CBN= ∠ DAB=60 °,∴∠ BFN= ∠ MCB=30 °,∵AB : BC=3 : 2,∴设 AB=3a ,BC=2a ,∵AE : EB=1 : 2,F 是 BC 的中点,∴B F=a , BE=2a ,BN= a, BM=a ,由勾股定理得: FN=a , CM=a ,AF==a ,CE==2a ,∴ a?DP=2 ∴D P :DQ=2a?DQ :.应选: D .评论: 本题考察了平行四边形面积,勾股定理,三角形的面积,含30 度角的直角三角形等知识点的应用,重点是求出AF ×DP=CE ×DQ 和求出 AF 、 CE的值.15.( 3 分)甲乙两艘客轮同时走开港口,航行的速度都是每分钟 达点 A ,乙客轮用 20 分钟抵达点 B ,若 A 、 B 两点的直线距离为 东 30°的方向航行,则乙客轮的航行方向可能是()A .南 偏东 60°B . 南偏西 60°C . 北偏西 30°40m ,甲客轮用 15 分钟到1000m ,甲客轮沿着北偏D .南偏西 30°考点 : 勾股定理的逆定理;方向角. 剖析: 先求出甲乙两艘客轮走的行程,得出 6002+8002=10002,求出 ∠AOB=90 °即可.解答:解:如图:∵甲乙两艘客轮同时走开港口,航行的速度都是每分钟 40m ,甲客轮用 乙客轮用 20 分钟抵达点 B ,∴甲客轮走了 40×15=600 ( m ),乙客轮走了 40×20=800 ( m ),15 分钟抵达点A ,∵A 、B 两点的直线距离为1000m ,22 2∴∠ AOB=90 °,∵甲客轮沿着北偏东30°的方向航行,精选资料∴乙客沿着南偏60°的方向航行,故 A.点:本考了勾股定理的逆定理的用,果一个三角形的两a、 b 的平方和等于斜解此的关是求出∠ AOB=90 °,注意:如 c 的平方,那么个三角形是直角三角形.16.( 3 分)将正方形 1 作以下操作:第 1 次:分接各中点如 2,获得 5 个正方形;第 2 次:将 2 左上角正方形按上述方法再切割如 3,获得 9 个正方形⋯,以此推,依据以上操作,若要获得 2013 个正方形,需要操作的次数是()A .502B. 503C. 504D. 505考点:律型:形的化.剖析:依据正方形的个数化可第n 次获得 2013 个正方形,4n+1=2013 ,求出即可.解答:解:∵第 1 次:分接各中点如2,获得 4+1=5 个正方形;第 2 次:将 2 左上角正方形按上述方法再切割如3,获得 4×2+1=9 个正方形⋯,以此推,依据以上操作,若第n 次获得 2013 个正方形,4n+1=2013 ,解得: n=503.故: B.点:此主要考了形的化,依据已知得出正方形个数的化律是解关.二、填空(共 4 小,每小 3 分,分 12 分)17.( 3 分)先化再求:当a=9 , a+=17 .考点:二次根式的性与化.剖析:依据非数的性,把原式化a+|1 a|,再把 a=9 代入算即可.解答:解:原式 =a+|1 a|,∵a=9,∴原式 =9+|1 9|=9+8=17 ,故故答案17.点:本考了二次根式的化求,解答此,要弄清以下:①定:一般地,形如(a≥0)的代数式叫做二次根式.当a> 0 ,表示a的算平方根;当a=0 ,=0;当 a< 0 ,非二次根式(在一元二次方程中,若根号下数,无数根).② 性:=|a|.18.( 3 分)如图,一根长 18cm 的筷子置于底面直径为 5cm.高为 12cm 圆柱形水杯中,露在水杯外面的长度 hcm,则 h 的取值范围是 5cm≤h≤6cm.考点:勾股定理的应用.剖析:依据杯子内筷子的长度的取值范围得出杯子外面长度的取值范围,即可得出答案.解答:解:∵将一根长为18cm 的筷子,置于底面直径为5cm,高为 12cm 的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,x=12 ,最长时等于杯子斜边长度是: x==13,∴h的取值范围是:(18﹣ 13)cm≤h≤( 18﹣12) cm,即 5cm≤h≤6cm.故答案为: 5cm≤h≤6cm.评论:本题主要考察了勾股定理的应用,正确得出杯子内筷子的取值范围是解决问题的重点.19.( 3 分)如图, ?ABCD 中,∠ABC=60 °,E、F 分别在 CD 和 BC 的延伸线上, AE ∥ BD ,EF⊥ BC,EF= ,则 AB 的长是 1.考点:平行四边形的判断与性质;含30 度角的直角三角形;勾股定理.剖析:依据平行四边形性质推出AB=CD , AB ∥ CD,得出平行四边形ABDE ,推出DE=DC=AB ,依据直角三角形性质求出CE 长,即可求出 AB 的长.解答:解:∵四边形 ABCD 是平行四边形,∴AB ∥ DC , AB=CD ,∵AE ∥BD ,∴四边形 ABDE 是平行四边形,∴AB=DE=CD ,即D为CE中点,∵EF⊥BC,∴∠EFC=90 °,∵AB∥CD,∴∠ DCF= ∠ ABC=60 °,∴∠ CEF=30 °,∵EF=,∴CE==2,∴A B=1 ,故答案: 1.点:本考了平行四形的性和判断,平行性,勾股定理,直角三角形斜上中性,含 30 度角的直角三角形性等知点的用,此合性比,是一道比好的目.20.( 3 分)如,正方形ABCD 的 1,以角AC 作第二个正方形,再以角 AE 作第三个正方形AEGH ,这样下去,第n 个正方形的()n﹣1.考点:正方形的性.:律型.剖析:第一求出 AC 、AE 、HE 的度,而后猜命中含的数学律,即可解决.解答:解:∵四形 ABCD 正方形,∴A B=BC=1 ,∠B=90 °,∴AC 2=12+12,AC=;同理可求: AE= ()2,HE=()3⋯,∴第 n 个正方形的a n=() n﹣ 1.故答案() n﹣ 1.点:主要考了正方形的性、勾股定理及其用;坚固掌握正方形相关定理并能灵巧运用.三、解答(共 6 小,分60 分)21.( 8 分)算: 3+.考点:二次根式的加减法.剖析:先行二次根式的化,而后归并.解答:解:原式 =32+3=.点:本考了二次根式的加减法,解答本的关是掌握二次根式的化以及归并.22.( 8 分)已知:在Rt△ ABC 中,∠ C=90°,∠A=60 °, a=,求b、c的.考点:勾股定理;含30 度角的直角三角形.精选资料剖析:依据三角函数求出 b 的长,再利用勾股定理求出 c 的长.解答:解:如图:∵=tan60°,∴b===;∴c===2.评论:本题考察了勾股定理、含30°角的直角三角形,娴熟利用三角函数是解题的重点.23.( 10 分)如图,在4×3 正方形网格中,每个小正方形的边长都是1(1)分别求出线段AB 、CD的长度;(2)在图中画线段EF 、使得EF 的长为,以AB 、 CD 、 EF 三条线段可否构成直角三角形,并说明原因.考点:勾股定理;勾股定理的逆定理.专题:作图题.剖析:(1)利用勾股定理求出AB 、 CD 的长即可;(2)依据勾股定理的逆定理,即可作出判断.解答:解:( 1) AB==; CD==2 .(2)如图, EF== ,∵CD 2+EF2=8+5=13 ,AB2=13 ,∴CD 2+EF2=AB2,∴以 AB 、 CD、EF 三条线能够构成直角三角形.评论:本题考察了勾股定理、勾股定理的逆定理,充足利用网格是解题的重点.24.( 10 分)如图,已知 ?ABCD ,过 A 作 AM ⊥BC 于 M ,交 BD 于 E,过 C 作 CN ⊥ AD 于N ,交 BD 于 F,连结 AF、 CE .求证:四边形 AECF 为平行四边形.考点:平行四边形的判断与性质;全等三角形的判断与性质.专题:证明题.剖析:由条件可证明△ ABE ≌ △ CDF,可证得 AE=CF ,且 AE ∥CF,由平行四边形的判断可证得四边形AECF 为平行四边形.解答:证明:在 ?ABCD 中, AD ∥BC, AB=CD ,∠ABC= ∠ ADC ,∴∠ ABD= ∠ CDB ,又∵ AM ⊥BC,CN⊥AD ,∴∠ BAM= ∠ DCN ,在△ ABE 和△ CDF 中,,∴△ ABE ≌△ CDF ( ASA ),∴A E=CF ,∠ AEB= ∠ CFD ,∴∠ AEF= ∠ CFE,∴A E ∥ CF,∴四边形 AECF 为平行四边形.评论:本题主要考察平行四边形的判断和性质,掌握平行四边形的判断和性质是解题的关键,即①两组对边分别平行 ? 四边形为平行四边形,②两组对边分别相等 ? 四边形为平行四边形,③一组对边平行且相等 ? 四边形为平行四边形,④两组对角分别相等 ? 四边形为平行四边形,⑤对角线相互均分 ? 四边形为平行四边形.25.( 12 分)自习课上,张玉看见同桌刘敏在练习本上写的题目是“求二次根式中实数 a 的取值范围”,她告诉刘敏说:你把题目抄错了,不是“”,而是“”,刘敏说:哎呀,真抄错了,幸亏不影响结果,反正a和a﹣3都在根号内.试问:刘敏说得对吗?就是说,依照解题和依照解题的结果同样吗?考点:二次根式的乘除法;分式存心义的条件;二次根式存心义的条件.剖析:本题需注意的是,被开方数为非负数,按计算,则 a 和 a﹣ 3 可为同号的两个数,即同为正,或同为负;而按计算,只有同为正的状况.解答:解:刘敏说得不对,结果不同样.按计算,则a≥0,a﹣ 3> 0 或 a≤0, a﹣3< 0解之得, a> 3 或 a≤0;而按计算,则只有a≥0, a﹣ 3> 0解之得, a> 3.评论:二次根式的被开方数是非负数,分母不为0,是本题确立取值范围的主要依照.26.( 12 分)如图,在 Rt△ ABC 中,∠B=90 °, AC=60cm ,∠ A=60 °,点 D 从点 C 出发沿 CA 方向以 4cm/秒的速度向点 A 匀速运动,同时点 E 从点 A 出发沿 AB 方向以 2cm/秒的速度向点 B 匀速运动,当此中一个点抵达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒( 0< t≤15).过点 D 作 DF⊥ BC 于点 F,连结 DE , EF.(1)求证: AE=DF ;(2)四边形AEFD 能够成为菱形吗?假如能,求出相应的t 值,假如不可以,说明原因;(3)当 t 为什么值时,△ DEF 为直角三角形?请说明原因.考点:相像形综合题.剖析:(1)利用 t 表示出 CD 以及 AE 的长,而后在直角△ CDF 中,利用直角三角形的性质求得 DF 的长,即可证明;(2)易证四边形 AEFD 是平行四边形,当 AD=AE 时,四边形 AEFD 是菱形,据此即可列方程求得 t 的值;(3)分两种状况议论即可求解.解答:(1)证明:∵直角△ ABC 中,∠ C=90°﹣∠ A=30 °.∴A B= AC= ×60=30cm .∵C D=4t , AE=2t ,又∵ 在直角△ CDF 中,∠ C=30 °,∴D F= CD=2t ,∴D F=AE ;解:( 2)∵DF∥ AB , DF=AE ,∴四边形 AEFD 是平行四边形,当 AD=AE 时,四边形 AEFD 是菱形,即60﹣ 4t=2t,解得: t=10,即当 t=10 时, ?AEFD 是菱形;(3)当 t=时△ DEF是直角三角形(∠EDF=90°);当 t=时,△ DEF是直角三角形(∠ DEF=90°).原因以下:当∠ EDF=90 °时, DE ∥ BC.∴∠ ADE= ∠ C=30°∴A D=2AE即 t+4t=60解得: t=12∴t=12 时,∠ EDF=90 °.当∠DEF=90 °时, DE ⊥ EF,∵四边形 AEFD 是平行四边形,∴AD ∥ EF,∴DE⊥AD ,∴△ ADE 是直角三角形,∠ADE=90°,∵∠ A=60 °,∴∠ DEA=30 °,∴A D= AE ,AD=AC ﹣ CD=60 ﹣ 4t, AE=DF=CD=2t ,∴60﹣4t=t ,解得 t=12.综上所述,当 t=时△ DEF是直角三角形(∠ EDF=90°);当t=12时,△DEF是直角三角形(∠ DEF=90 °).评论:本题考察了直角三角形的性质,菱形的判断与性质,正确利用t 表示DF、AD 的长是重点.。

2020-2021学年八年级下学期期中数学试题及答案解析

2020-2021学年八年级下学期期中数学试题及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是( )A .B .C .D . 解:A 、不是轴对称图形,故此选项不合题意;B 、不是轴对称图形,故此选项不合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不合题意.故选:C .2.(3分)以长度分别为下列各组数的线段为边,构成的三角形不是直角三角形的是( )A .6,8,10B .7,24,25C .√5,√3,√2D .1.5,2,3解:A 、∵62+82=102,∴能构成直角三角形,故本选项不符合题意;B 、∵72+242=252,∴能构成直角三角形,故本选项不符合题意;C 、∵(√2)2+(√3)2=(√5)2,∴能构成直角三角形,故本选项不符合题意;D 、∵1.52+22≠32,∴不能构成直角三角形,故本选项符合题意;故选:D .3.(3分)已知函数y ={x 2+1(x <2)10x(x ≥2),当y =6时,x 的值是( ) A .−√5 B .53 C .−√5或√5 D .√5或53 解:∵函数y ={x 2+1(x <2)10x(x ≥2), ∴当x <2时,x 2+1=6,得x 1=−√5,x 2=√5(不合题意,舍去),当x ≥2时,10x =6,得x =53(不合题意,舍去), 故当y =6时,x 的值是−√5,故选:A .4.(3分)如图,三个正比例函数的图象分别对应表达式:①y =ax ②y =bx ③y =cx ,将a ,b ,c 从小到大排列为( )A.a<b<c B.a<c<b C.b<a<c D.c<b<a解:根据三个函数图象所在象限可得a<0,b>0,c>0,再根据直线越陡,|k|越大,则b>c.则a<c<b,故选:B.5.(3分)如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.6.(3分)用“配方法”解一元二次方程x2﹣16x+24=0,下列变形结果,正确的是()A.(x﹣4)2=8B.(x﹣4)2=40C.(x﹣8)2=8D.(x﹣8)2=40解:x2﹣16x+24=0x2﹣16x+64=﹣24+64(x﹣8)2=40故选:D.7.(3分)如图,在▱ABCD中,对角线AC、BD交于点O,E是BC边上的中点,若OE=2,AD=5,则▱ABCD的周长为()A.9B.16C.18D.20解:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,∵E是BC边上的中点,∴OE是△ABC的中位线,∴AB=2OE=4,∵AD=5,∴▱ABCD的周长=2×(4+5)=18,故选:C.8.(3分)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=600解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.9.(3分)如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,F A,下列条件能判定四边形AECF为矩形的是()A.BE=EO B.EO=12AC C.AC⊥BE D.AE=AF解:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,A、BE=EO时,不能判定四边形AECF为矩形;故选项A不符合题意;B、EO=12AC时,EF=AC,∴四边形AECF为矩形;故选项B符合题意;C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;故选:B.10.(3分)小刘下午5点30分放学匀速步行回家,途中路过鲜花店为过生日的妈妈选购了一束鲜花,6点20分到家,已知小刘家距学校3千米,下列图象中能大致表示小刘离学校的距离S(千米)与离校的时间t(分钟)之的关系的是()A.B.C.D.解:∵小刘家距学校3千米,∴离校的距离随着时间的增大而增大,∵路过鲜花店为过生日的妈妈选购了一束鲜花,∴中间有一段离家的距离不再增大,离校50分钟后离校的距离最大,即3千米.综合以上C符合,故选:C.11.(3分)若关于x的方程kx2﹣x+3=0有实数根,则k的取值范围是()A.k≤12B.k≤112C.k≤12且k≠0D.k≤112且k≠0解:当k=0时,﹣x+3=0,解得x=3,当k≠0时,方程kx2﹣x+3=0是一元二次方程,根据题意可得:△=1﹣4k×3≥0,解得k≤112,k≠0,综上k≤1 12,故选:B.12.(3分)如图,在矩形ABCD中,AD=√2AB,∠BAD的平分线交BC于点E,DH⊥AE 于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=√2AB,∵AD=√2AB,∴AE=AD,在△ABE和△AHD中,{∠BAE =∠DAE ∠ABE =∠AHD =90°AE =AD,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED =12(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵AB =AH ,∵∠AHB =12(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =67.5°=∠AED ,∴OE =OH ,∵∠DHO =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DHO =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD ,在△BEH 和△HDF 中,{∠EBH =∠OHD =22.5°BE =DH ∠AEB =∠HDF =45°,∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;∵HE =AE ﹣AH =BC ﹣CD ,∴BC ﹣CF =BC ﹣(CD ﹣DF )=BC ﹣(CD ﹣HE )=(BC ﹣CD )+HE =HE +HE =2HE .故④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C .二.填空题(共6小题,满分18分,每小题3分)13.(3分)若√1−x x有意义,则自变量x 的取值范围是 x ≤1且x ≠0 . 解:由题意得,1﹣x ≥0,x ≠0,解得,x ≤1且x ≠0,故答案为:x ≤1且x ≠0.14.(3分)若m 是关于x 的方程x 2﹣2x ﹣3=0的解,则代数式4m ﹣2m 2+2的值是 ﹣4 .解:∵m 是关于x 的方程x 2﹣2x ﹣3=0的解,∴m 2﹣2m ﹣3=0,∴m 2﹣2m =3,∴4m ﹣2m 2+2=﹣2(m 2﹣2m )+2=﹣2×3+2=﹣4.故答案为:﹣4.15.(3分)如图,在菱形ABCD 中,∠B =50°,点E 在CD 上,若AE =AC ,则∠BAE =115 °.解:∵四边形ABCD 是菱形,∴CA 平分∠BCD ,AB ∥CD ,∴∠BAE +∠AEC =180°,∠B +∠BCD =180°,∴∠BCD=180°﹣∠B=180°﹣50°=130°,∴∠ACE=12∠BCD=65°,∵AE=AC,∴∠AEC=∠ACE=65°,∴∠BAE=180°﹣∠AEC=115°;故答案为:115.16.(3分)已知正比例函数y=kx的图象经过点A(﹣4,3),则函数图象经过第二、四象限.解:∵正比例函数y=kx的图象经过点A(﹣4,3),∴3=﹣4k,∴k=−34<0,∴正比例函数y=kx的图象经过第二、四象限.故答案为:第二、四.17.(3分)如图,在矩形ABCD中,AB=16,AD=12,E为AB边上一点,将△BEC沿CE翻折,点B落在点F处,当△AEF为直角三角形时,BE=6或12.解:如图,若∠AEF=90°,∵∠B=∠BCD=90°=∠AEF,∴四边形BCFE是矩形,∵将△BEC沿着CE翻折,∴CB=CF,∴四边形BCFE是正方形,∴BE=BC=AD=12;如图,若∠AFE=90°,∵将△BEC沿着CE翻折,∴CB=CF=12,∠B=∠EFC=90°,BE=EF,∵∠AFE+∠EFC=180°,∴点A,点F,点C三点共线,∴AC=√AB2+BC2=√144+256=20,∴AF=AC﹣CF=8,∵AE2=AF2+EF2,∴(16﹣BE)2=64+BE2,∴BE=6,(3)若∠EAF=90°,∵CD=16>CF=BC=12,∴点F不可能落在直线AD上,∴不存在∠EAF=90°,综上所述:BE=6或12.故答案为:6或12.18.(3分)如图,已知点A坐标为(√3,1),B为x轴正半轴上一动点,则∠AOB度数为30°,在点B运动的过程中AB+12OB的最小值为√3.解:过A作AC⊥x轴于点C,延长AC到点D,使AC=CD,过D作DE⊥OA于点E,与x轴交于点F,∵点A坐标为(√3,1),∴AC=CD=1,OC=√3,∴tan∠AOB=ACOC=1√3=√33,∴∠AOB=30°,∴∠DAE=60°,EF=12OF,∴DE=AD•sin60°=√3,当点B与点F重合时,AB+12OB=AF+12OF=DF+EF=DE=√3,根据垂线段最短定理知,此时AB+12OB=√3为最小值.故答案为30°;√3.三.解答题(共8小题,满分66分)19.(6分)选用适当的方法,解下列方程:(1)2x2+5x+2=0;(2)(2x+3)2=4 (2x+3).解(1)∵a=2,b=5,c=2,∵b2﹣4ac=52﹣4×2×2=9>0,∴x=−5±√92×2=−5±34,∴x1=−12,x2=﹣2.(2)∵(2x+3)2=4(2x+3),∴(2x+3)2﹣4(2x+3)=0,∴(2x+3)(2x+3﹣4)=0,则2x+3=0或2x+3﹣4=0,解得x1=−32,x2=12.20.(6分)已知正比例函数的图象过点P(3,﹣3).(1)求这个正比例函数的表达式;(2)已知点A(a2,﹣4)在这个正比例函数的图象上,求a的值.解:(1)把P(3,﹣3)代入正比例函数y=kx,得3k=﹣3,k=﹣1,所以正比例函数的解析式为y=﹣x;(2)把点A(a2,﹣4)代入y=﹣x得,﹣4=﹣a2,解得a=±2.21.(8分)一辆装满货物的卡车,高2.5米,宽1.6米,要开进上边是半圆,下边是长方形的桥洞,如图所示,已知半圆的直径为2m,长方形的另一条边长是2.3m.(1)此卡车是否能通过桥洞?试说明你的理由.(2)为了适应车流量的增加,先把桥洞改为双行道,要使宽为1.2m,高为2.8m的卡车能安全通过,那么此桥洞的宽至少增加到多少?解:(1)如图,M,N为卡车的宽度,过M,N作AB的垂线交半圆于C,D,过O作OE⊥CD,E为垂足,CD=MN=1.6米,AB=2米,由作法得,CE=DE=0.8米,又∵OC=OA=1米,在Rt△OCE中,OE=√OC2−CE2≈0.6(米),∴CM=2.3+0.6=2.9>2.5.∴这辆卡车能通过.(2)如图:根据题意可知:CG=BE=2.8米,BG=OF=1.2米,EF=AD=2.3米,∴BF=0.5米∴根据勾股定理有:OA2=OB2=BF2+OF2=0.52+1.22=1.32(米),∴OA=1.3米,∴桥洞的宽至少增加到1.3×2=2.6(米).22.(8分)已知关于x的一元二次方程x2+6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2﹣x1﹣x2≥8,求m的取值范围.解:(1)∵方程有实数根,∴△=36﹣4(2m+1)=36﹣8m﹣4=32﹣8m≥0,解得:m≤4.故m的取值范围是m≤4;(2)∵x1,x2是方程x2+6x+(2m+1)=0的两个实数根,∴x1+x2=﹣6,x1•x2=2m+1,∵2x1x2﹣x1﹣x2≥8,∴2(2m+1)+6≥8,解得m≥0,由(1)可得m≤4,∴m的取值范围是0≤m≤4.23.(9分)2020年,受新冠肺炎疫情影响.口罩紧缺,某网店以每袋8元(一袋十个)的成本价购进了一批口罩,二月份以一袋14元的价格销售了256袋,三、四月该口罩十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400袋.(1)求三、四这两个月销售量的月平均增长率;(2)为回馈客户.该网店决定五月降价促销.经调查发现.在四月份销量的基础上,该口罩每袋降价1元,销售量就增加40袋,当口罩每袋降价多少元时,五月份可获利1920元?解:(1)设三、四这两个月销售量的月平均增长率为x,依题意,得:256(1+x)2=400,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:三、四这两个月销售量的月平均增长率为25%.(2)设口罩每袋降价y元,则五月份的销售量为(400+40y)袋,依题意,得:(14﹣y﹣8)(400+40y)=1920,化简,得:y2+4y﹣12=0,解得:y1=2,y2=﹣6(不合题意,舍去).答:当口罩每袋降价2元时,五月份可获利1920元.24.(9分)如图,AM∥BN,C是BN上一点,AB=BC,BD平分∠ABN,分别交AC,AM 于点O,D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO;(2)求证:四边形ABCD是菱形;(3)若DE=AB=2,求菱形ABCD的面积.(1)证明:∵AB=BC,BD平分∠ABN,∴AO=CO.∵AM∥BN,∴∠DAC=∠ACB.在△ADO和△CBD中,{∠DAO=∠BCD,AO=CO,∠AOD=∠COB,,∴△ADO≌△CBO(ASA);(2)证明:由(1)得△ADO≌△CBD.∴AD=CB.又∵AM∥BN,∴四边形ABCD是平行四边形.∵AB=BC,∴四边形ABCD是菱形;(3)解:由(2)得四边形ABCD是菱形.∴AC⊥BD,OB=OD.又∵DE⊥BD,∴AC∥DE.又∵AM∥BN,∴四边形ACED平行四边形.∴AC=DE=2.∴AO=1.在Rt△AOB中,由勾股定理得:BO=√AB2−AO2=√22−12=√3,∴BD=2BO=2√3.∴S菱形ABCD=12AC•BD=12×2×2√3=2√3.25.(10分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B (0,8).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F ,记旋转角为α(0°<α<90°).(Ⅰ)如图①,当α=30°时,求点D 的坐标;(Ⅱ)如图②,当点E 落在AC 的延长线上时,求点D 的坐标;(Ⅲ)当点D 落在线段OC 上时,求点E 的坐标(直接写出结果即可).解:(I )过点D 作DG ⊥x 轴于G ,如图①所示:∵点A (6,0),点B (0,8).∴OA =6,OB =8,∵以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,∴AD =AO =6,α=∠OAD =30°,DE =OB =8,在Rt △ADG 中,DG =12AD =3,AG =√3DG =3√3,∴OG =OA ﹣AG =6﹣3√3,∴点D 的坐标为(6﹣3√3,3);(Ⅱ)过点D 作DG ⊥x 轴于G ,DH ⊥AE 于H ,如图②所示:则GA =DH ,HA =DG ,∵DE =OB =8,∠ADE =∠AOB =90°,∴AE =√AD 2+DE 2=√62+82=10,∵12AE ×DH =12AD ×DE , ∴DH =AD×DE AE=6×810=245, ∴OG =OA ﹣GA =OA ﹣DH =6−245=65,DG =2−AG 2=√62−(245)2=185,∴点D 的坐标为(65,185);(Ⅲ)连接AE ,作EG ⊥x 轴于G ,如图③所示:由旋转的性质得:∠DAE =∠AOC ,AD =AO ,∴∠AOC =∠ADO ,∴∠DAE =∠ADO ,∴AE ∥OC ,∴∠GAE =∠AOD ,∴∠DAE =∠GAE ,在△AEG 和△AED 中,{∠AGE =∠ADE =90°∠GAE =∠DAE AE =AE,∴△AEG ≌△AED (AAS ),∴AG =AD =6,EG =ED =8,∴OG =OA +AG =12,∴点E 的坐标为(12,8).26.(10分)[模型建立](一线三等角)(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;[模型应用](2)如图2,直线l1:y=43x+4与坐标轴交于点A、B,直线l2经过点A与直线l1垂直,求直线l2的函数表达式.(3)如图3,平面直角坐标系内有一点B(6,﹣8),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+2上的动点且在第四象限内.若△CPD成为等腰直角三角形,请直接写出点D的坐标.(1)证明:如图1所示:∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∴∠ACD +∠BEC =90°,又∵∠ACD +∠DAC =90°,∴∠DAC =∠ECB ,在△BEC 和△CDA 中,∵{∠CEB =∠ADC∠ECB =∠DAC BC =AC,∴△BEC ≌△CDA (AAS );(2)解:如图2,在l 2上取D 点,使AD =AB ,过D 点作DE ⊥OA ,垂足为E ,∵直线y =43x +4与坐标轴交于点A 、B ,∴A (﹣3,0),B (0,4),∴OA =3,OB =4,由(1)同理得△BOA ≌△AED (AAS ),∴DE =OA =3,AE =OB =4,∴OE =7,∴D (﹣7,3),设l 2的解析式为y =kx +b ,∴{−7k +b =3−3k +b =0,解得:{k =−34b =−94, ∴直线l 2的函数表达式为:y =−34x −94;(3)解:分三种情况:①如图3,∠CPD =90°时,过P 作MH ∥x 轴,过D 作DH ∥y 轴,MH 和DH 交于H ,∵△CPD 是等腰直角三角形,∠CPD =90°,∴CP =PD ,同理得△CMP ≌△PHD (AAS ),∴DH =PM =6,PH =CM ,设PH =a ,则D (6+a ,a ﹣8﹣6),∵点D 是直线y =﹣2x +2上的动点且在第四象限内.∴a ﹣8﹣6=﹣2(6+a )+2,解得:a =43,∴D (223,−383); ②如图4,∠PCD =90°,此时P 与A 重合,过D 作DE ⊥y 轴于E ,∵△CPD 是等腰直角三角形,同理得△AOC ≌△CED ,∴OA =CE =6,OC =DE =8,∴D (8,﹣14);③如图5,∠CDP =90°,过点D 作MQ ∥x 轴,延长AB 交MQ 于Q ,则∠Q =∠DMC =90°,∵△CDP 是等腰直角三角形,同理得△PQD ≌△DMC ,∴PQ =DM ,DQ =CM ,设CM =b ,则DM =6﹣b ,AQ =8+b ,∴D (6﹣b ,﹣8﹣b ),∵点D 是直线y =﹣2x +2上的动点且在第四象限内,∴﹣8﹣b =﹣2(6﹣b )+2,解得:b =23,∴D (163,−263); 综上,点D 的坐标为(223,−383)或(8,﹣14)或(163,−263).。

河北省石家庄市2020-2021学年八年级下学期期中数学试题(word版 含答案)

河北省石家庄市2020-2021学年八年级下学期期中数学试题(word版 含答案)

河北省石家庄市2020-2021学年八年级下学期期中数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 2.下列调查中,适合用抽样调查的是( )A .防疫期间对进入校园的人员进行体温检测B .对乘坐高铁的乘客进行安检C .调查一批防疫口罩的质量情况D .对新研发导弹的零部件进行检查3.在函数15y x =-中,自变量x 的取值范围是( ) A .x≠5 B .x=5 C .x >5 D .x <5 4.点P (-2,1)到y 轴的距离为( )A .-2B .1C .2D .125.如图,A 看B 的方向是北偏东60°, B 看A 的方向是( )A .南偏东30°B .南偏西30°C .南偏东60°D .南偏西60° 6.在平面直角坐标系中,将点A(-1,-2)向右平移3个单位长度得到点B ,则点B 的坐标为( )A .(-1,1)B .(2,-2)C .(-4,-2)D .(-1,-5) 7.声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如下表:下列结论错误的是( )A .在这个变化中,音速是气温的函数B .y 随x 的增大而增大C.当气温为30℃时,音速为350米/秒D.温度每升高5℃,音速增加3米/秒8.据物业公司统计,某小区十二月份1日至5日每天用水量情况如图所示.那么这5天用水量最多是()A.1日B.2日C.3日D.5日9.小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量A B作直线AB,则直线AB()10.经过点(1,3),(1,2)A.过点(0,3)B.平行于x轴C.经过原点D.平行于y轴11.下列曲线中不能表示y是x的函数的是()A.B.C.D.12.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满为120分,成绩为整数),绘制成下图所示的统计图.由图可知,成绩不低于90分的共有( )A .27人B .30人C .70人D .73人13.点()1,3M a a +-在x 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,214.今年某校有2000名学生参加线上学习,为了解这些学生的数学成绩,从中抽取100名考生的数学成绩进行统计分析,以下说法正确的是( )A .2000名学生是总体B .每位学生的数学成绩是个体C .这100名学生是总体的一个样本D .100名学生是样本容量15.“单词的记忆效率“是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.如图,描述了某次单词复习中小华,小红,小刚和小强四位同学的单词记忆效率y 与复习的单词个数x 的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )A .小华B .小红C .小刚D .小强16.周末,小明骑自行车从家里出发去游玩。

2020-2021石家庄市初二数学下期中一模试卷附答案

2020-2021石家庄市初二数学下期中一模试卷附答案

2020-2021石家庄市初二数学下期中一模试卷附答案一、选择题1.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .2.下列四组线段中,可以构成直角三角形的是( )A .1,2,3B .2,3,4C .1, 2,3D .2,3,53.如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A .B .C .D .4.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A .①②④B .①③④C .③④D .①②5.如图,在正方形OABC 中,点A 的坐标是()3,1-,则C 点的坐标是( )A .()1,3B .()2,3C .()3,2D .()3,16.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米7.下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A .1个B .2个C .3个D .4个8.若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( )A .2B .﹣2C .4D .﹣49.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A.83B.8C.43D.610.已知直角三角形中30°角所对的直角边长是23cm,则另一条直角边的长是()A.4cm B.43 cm C.6cm D.63 cm11.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD12.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°二、填空题13.如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第1个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第2个内接正方形HIKJ;再取线段KJ 的中点Q,在△QHI内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.14.一次函数y=(m+2)x+3-m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是____.15.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=_______.16.如图在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB ,当AD =_____,平行四边形CDEB 为菱形.17.已知51,x =-则226x x +-=____________________.18.如图所示的网格是正方形网格,则BAC DAE ∠-∠=__________︒(点A ,B ,C ,D ,E 是网格线交点).19.如图,在矩形ABCD 中,AD=9cm ,AB=3cm ,将其折叠,使点D 与点B 重合,则重叠部分(△BEF)的面积为_________cm 2.20.如图,ABC V 是以AB 为斜边的直角三角形,4AC =,3BC =,P 为AB 上一动点,且PE AC ⊥于E ,PF BC ⊥于F ,则线段EF 长度的最小值是________.三、解答题21.如图,BD 是▱ABCD 的对角线,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F ,求证:AE=CF .22.如图1,在△ABC 中,∠ACB=90°,AC=BC ,∠EAC=90°,点M 为射线AE 上任意一点(不与A 重合),连接CM ,将线段CM 绕点C 按顺时针方向旋转90°得到线段CN ,直线NB 分别交直线CM 、射线AE 于点F 、D .(1)直接写出∠NDE 的度数;(2)如图2、图3,当∠EAC 为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM 与AB 交于G ,BD=62+,其他条件不变,求线段AM 的长.23.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n 次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形,如图1,平行四边形ABCD 中,若1,2AB BC ==,则平行四边形ABCD 为1阶准菱形.(1)判断与推理:① 邻边长分别为2和3的平行四边形是__________阶准菱形;② 小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形ABCD 沿着BE 折叠(点E 在AD 上)使点A 落在BC 边上的点F ,得到四边形ABFE ,请证明四边形ABFE 是菱形.(2)操作、探究与计算:① 已知平行四边形ABCD 的邻边分别为1,(1)a a >裁剪线的示意图,并在图形下方写出a 的值;② 已知平行四边形ABCD 的邻边长分别为,()a b a b >,满足6,5a b r b r =+=,请写出平行四边形ABCD 是几阶准菱形.24.综合与探究一列快车从甲地匀速驶往乙地,同时一列慢车从乙地匀速驶往甲地.设慢车行驶的时间为xh ,两车之间的距离为ykm ,图中的折线表示y 与x 之间的关系,根据图象解决以下问题:(1)甲、乙两地之间的距离为___________km ;(2)求快车与慢车的速度;(3)求慢车行驶多少时间后,两车之间的距离为500km .25.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.(1)分别求每台A 型, B 型挖掘机一小时挖土多少立方米?(2)若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y1的图象可知a< 0,b> 0;由y2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y1的图象可知a< 0,b> 0;由y2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y1的图象可知a> 0,b> 0;由y2的图象可知a<0,b<0,两结论相矛盾,故错误;故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k及b值的关系是解题的关键.2.C解析:C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A.∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B.∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C.∵12+)2=2,∴以1选项正确;D)2+32≠523,5为边组成的三角形不是直角三角形,故本选项错误.故选C.【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.3.A解析:A【解析】【分析】当OP垂直于直线y=kx+b时,由垂线段最短可知:OP<2,故此函数在y轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O作OP垂直于直线y=kx+b,∵OP垂直于直线y=kx+b,∴OP<2,且点P的横坐标<0.故此当x<0时,函数有最小值,且最小值<2,根据选项可知A符合题意.故选:A.【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x<0时,函数有最小值,且最小值小于2是解题的关键.4.C解析:C【解析】【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.A解析:A【解析】【分析】作CD⊥x轴于D,作AE⊥x轴于E,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(-3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3)即可.【详解】解:如图所示:作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,则∠AEO=∠ODC =90°,∴∠OAE+∠AOE=90°,∵四边形OABC 是正方形,∴OA=CO ,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD ,在△AOE 和△OCD 中,AEO ODC OAE COD OA CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△OCD (AAS ),∴AE=OD ,OE=CD ,∵点A 的坐标是(-3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C (1,3),故选:A .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解题的关键.6.C解析:C【解析】解:A .小丽从家到达公园共用时间20分钟,正确;B .公园离小丽家的距离为2000米,正确;C .小丽在便利店时间为15﹣10=5分钟,错误;D .便利店离小丽家的距离为1000米,正确.故选C .7.C解析:C【解析】【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.8.B解析:B【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.D解析:D【解析】【分析】连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【详解】解:如图,连接OB,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=23, ∴AC=2BC=43,∴AB=22AC BC -=22(43)(23)-=6,故选D .【点睛】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.10.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm ,由勾股定理得:22AB AC -,故选C .11.B解析:B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.B解析:B【解析】试题解析:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选B.二、填空题13.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【解析:【解析】【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在Rt△ABC中,AB=AC=3,∴∠B=∠C=45°,BC=AB=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=BC=2,∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴,∴EI=KI=HI,∵DH=EI,∴HI=DE=()2﹣1×3,则第n个内接正方形的边长为:3×()n﹣1.故第2019个内接正方形的边长为:3×()2018.故答案是:3×()2018.【点睛】考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.14.-2<m<3【解析】【分析】【详解】解:由已知得:解得:-2<m<3故答案为:-2<m<3解析:-2<m<3【解析】【分析】【详解】解:由已知得:20 30 mm>>+⎧⎨-⎩,解得:-2<m<3.故答案为:-2<m<3.15.【解析】【分析】连接FC根据三角形中位线定理可得FC=2MN继而根据四边形ABCD四边形EFGB是正方形推导得出GBC三点共线然后再根据勾股定理可求得FC 的长继而可求得答案【详解】连接FC∵MN 分别 解析:132 【解析】【分析】连接FC ,根据三角形中位线定理可得FC=2MN ,继而根据四边形ABCD ,四边形EFGB 是正方形,推导得出G 、B 、C 三点共线,然后再根据勾股定理可求得FC 的长,继而可求得答案.【详解】连接FC ,∵M 、N 分别是DC 、DF 的中点,∴FC=2MN ,∵四边形ABCD ,四边形EFGB 是正方形,∴∠FGB=90°,∠ABG=∠ABC=90°,FG=BE=5,BC=AB=7,∴∠GBC=∠ABG+∠ABC=180°,即G 、B 、C 三点共线,∴GC=GB+BC=5+7=12,∴FC=22FG GC +=13,∴MN=132, 故答案为:132.【点睛】本题考查了正方形的性质,三角形中位线定理,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.16.【解析】【分析】首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分邻边相等推知OD=OBCD=CB ;最后Rt △BOC 中根据勾股定理得OB 的值则【详解】解:如图连接CE 交AB 于点O ∵Rt △解析:75【解析】【分析】首先根据勾股定理求得AB =5;然后利用菱形的对角线互相垂直平分、邻边相等推知OD =OB ,CD =CB ;最后Rt △BOC 中,根据勾股定理得,OB 的值,则2AD AB OB =-.【详解】解:如图,连接CE 交AB 于点O .∵Rt △ABC 中,90ACB ∠=︒,AC =4,BC =3 ∴225AB AC BC =+= (勾股定理)若平行四边形CDEB 为菱形时,CE ⊥BD ,且OD =OB ,CD =CB . ∵1122AB OC AC BC ⋅=⋅, ∴12.5OC = ∴在Rt △BOC 中,根据勾股定理得,2222129355OB BC OC ⎛⎫=-=-= ⎪⎝⎭, ∴725AD AB OB =-=故答案是:75. 【点睛】本题考查菱形的判定与性质,解题的关键是熟记菱形的判定方法.17.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型解析:-2【解析】【分析】直接代入,根据二次根式的运算法则即可求出答案.【详解】 解:当51x =时, 原式2(51)51)6=+-52512526=-+-2=-【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.【解析】【分析】连接CGAG根据勾股定理的逆定理可得∠CAG=90°从而知△CAG是等腰直角三角形根据平行线的性质和三角形全等可知∠BAC-∠DAE=∠ACG即可得解【详解】解:如图连接CGAG由勾解析:45【解析】【分析】连接CG、AG,根据勾股定理的逆定理可得∠CAG=90°,从而知△CAG是等腰直角三角形,根据平行线的性质和三角形全等,可知,∠BAC-∠DAE=∠ACG,即可得解.【详解】解:如图,连接CG、AG,由勾股定理得:AC2=AG2=12+22=5,CG2=12+32=10,∴AC2+AG2=CG2,∴∠CAG=90°,∴△CAG是等腰直角三角形,∴∠ACG=45°,∵CF∥AB,∴∠ACF=∠BAC,在△CFG和△ADE中,∵CF=AD, ∠CFG=∠ADE=90°, FG=DE,∴△CFG≌△ADE(SAS),∴∠FCG=∠DAE,∴∠BAC-∠DAE=∠ACF-∠FCG=∠ACG=45°,故答案为:45.【点睛】本题考查了勾股定理的逆定理,勾股定理,三角形的全等的性质, 等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.19.5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC∠BCF=∠DCF=90°又知折叠使点D和点B重合根据折叠的性质可得C′F=CF在RT△BCF中根据勾股定理可得BC2+CF2=B解析:5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=5,所以△BEF的面积=12BF×AB=12×5×3=7.5.点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.20.【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC 则PC=EF所以要使EF即PC最短只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值【详解】连接PC∵PE⊥ACPF⊥B解析:12 5【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【详解】连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴12AC•BC=12AB•PC,∴PC=125.∴线段EF长的最小值为125;故答案是:125.【点睛】本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC ⊥AB 时,PC 取最小值是解答此题的关键.三、解答题21.详见解析.【解析】试题分析:根据平行四边形的性质可得AB=CD ,AB ∥CD ,再由平行线的性质证得∠ABE=∠CDF ,根据AE ⊥BD ,CF ⊥BD 可得∠AEB=∠CFD=90°,由AAS 证得△ABE ≌△CDF ,根据全等三角形的性质即可证得结论.试题解析:证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠ABE=∠CDF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ),∴AE=CF .考点:平行四边形的性质;全等三角形的判定及性质.22.(1)∠NDE=90°;(2)不变,证明见解析;(3)∴6【解析】【分析】(1)根据题意证明△MAC ≌△NBC 即可;(2)与(1)的证明方法相似,证明△MAC ≌△NBC 即可;(3)作GK ⊥BC 于K ,证明AM=AG ,根据△MAC ≌△NBC ,得到∠BDA=90°,根据直角三角形的性质和已知条件求出AG 的长,得到答案.【详解】解:(1)∵∠ACB=90°,∠MCN=90°,∴∠ACM=∠BCN ,在△MAC 和△NBC 中,{AB BCACM BCN MC NC=∠=∠=,∴△MAC ≌△NBC ,∴∠NBC=∠MAC=90°,又∵∠ACB=90°,∠EAC=90°,∴∠NDE=90°;(2)不变,在△MAC ≌△NBC 中,{AB BCACM BCN MC NC=∠=∠=,∴△MAC ≌△NBC ,∴∠N=∠AMC ,又∵∠MFD=∠NFC ,∠MDF=∠FCN=90°,即∠NDE=90°;(3)作GK ⊥BC 于K ,∵∠EAC=15°,∴∠BAD=30°,∵∠ACM=60°,∴∠GCB=30°,∴∠AGC=∠ABC+∠GCB=75°,∠AMG=75°,∴AM=AG ,∵△MAC ≌△NBC ,∴∠MAC=∠NBC ,∴∠BDA=∠BCA=90°,∵∴,设BK=a ,则GK=a ,CK=a ,∴,∴a=1,∴KB=KG=1,,,∴.【点睛】本题考查几何变换综合题.23.(1)① 2,②证明见解析;(2)①见解析,②▱ABCD是10阶准菱形.【解析】【分析】(1)①根据邻边长分别为2和3的平行四边形经过两次操作,即可得出所剩四边形是菱形,即可得出答案;②根据平行四边形的性质得出AE∥BF,进而得出AE=BF,即可得出答案;(2)①利用3阶准菱形的定义,即可得出答案;②根据a=6b+r,b=5r,用r表示出各边长,进而利用图形得出▱ABCD是几阶准菱形.【详解】解:(1)①利用邻边长分别为2和3的平行四边形经过两次操作,所剩四边形是边长为1的菱形,故邻边长分别为2和3的平行四边形是2阶准菱形;故答案为:2;②由折叠知:∠ABE=∠FBE,AB=BF,∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE是菱形;(2)①如图所示:,②答:10阶菱形,∵a=6b+r ,b=5r ,∴a=6×5r+r=31r ; 如图所示:故▱ABCD 是10阶准菱形.【点睛】此题主要考查了图形的剪拼以及菱形的判定,根据已知n 阶准菱形定义正确将平行四边形分割是解题关键.24.(1)720(2)120/v km h =快,80/v km h =慢(3)1.1h 或6.25h .【解析】【分析】(1)根据题意结合图象即可得出结果.(2)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h ,快车的速度为bkm/h ,依此列出方程组,求解即可;(3)分相遇前相距500km 和相遇后相遇500km 两种情况求解即可.【详解】解:(1)甲、乙两地的距离为720km ,故答案为:720;(2)设慢车的速度为akm/h ,快车的速度为bkm/h ,根据题意,得3.6()720(9 3.6) 3.6a b a b +=⎧⎨-=⎩解得80120a b =⎧⎨=⎩故答案为120/v km h =快,80/v km h =慢(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km .即相遇前:()80120720500x +=-,解得 1.1x =,快车7201206h ÷=到乙地,∵慢车行驶20km 两车之间的距离为500km ,∵慢车行驶20km 需要的时间是()200.2580h =, ∴()60.25 6.25x h =+=,故 1.1x h =或6.25,两车之间的距离为500km .【点睛】本题考查了一次函数的应用.主要利用了路程、时间、速度三者之间的关系,第(3)问要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.25.(1)每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米; (2)共有三种调配方案.方案一: A 型挖据机7台,B 型挖掘机5台;方案二: A 型挖掘机8台,B 型挖掘机4台;方案三: A 型挖掘机9台,B 型挖掘机3台.当A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用. 详解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得 35165,47225,x y x y +=⎧⎨+=⎩解得30,15.x y =⎧⎨=⎩所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米.(2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有()12m -台.根据题意,得 43004180W m =⨯+⨯ ()124808640m m -=+,因为()()430415121080430041801212960m m m m ⎧⨯+⨯-≥⎪⎨⨯+⨯-≤⎪⎩,解得69m m ≥⎧⎨≤⎩, 又因为12m m ≠-,解得6m ≠,所以79m ≤≤.所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台;方案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台;方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800Q >,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.。

2020-2021石家庄市初二数学下期中一模试卷带答案

2020-2021石家庄市初二数学下期中一模试卷带答案

2020-2021石家庄市初二数学下期中一模试卷带答案一、选择题1.按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x 张,摆放的椅子为y 把,则y 与x 之间的关系式为( )A .y =6xB .y =4x ﹣2C .y =5x ﹣1D .y =4x+22.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .3.已知P (x ,y )是直线y =1322x -上的点,则4y ﹣2x +3的值为( ) A .3 B .﹣3 C .1 D .04.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为,CE 且D 点落在对角线'D 处.若3,4,AB AD ==则ED 的长为( )A .32B .3C .1D .435.有一直角三角形纸片,∠C =90°BC =6,AC =8,现将△ABC 按如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( )A .27B .74C .72D .46.下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A .1个B .2个C .3个D .4个7.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°8.如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .63C .93D .159.如图,四边形ABCD 是轴对称图形,且直线AC 是否对称轴,AB ∥CD ,则下列结论:①AC ⊥BD ;②AD ∥BC ;③四边形ABCD 是菱形;④△ABD ≌△CDB .其中结论正确的序号是( )A .①②③B .①②③④C .②③④D .①③④10.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km )与散步所用的时间(min )之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )A .从家出发,休息一会,就回家B .从家出发,一直散步(没有停留),然后回家C .从家出发,休息一会,返回用时20分钟D .从家出发,休息一会,继续行走一段,然后回家11.对于次函数21y x =-,下列结论错误的是( )A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x =D .图象经过第一、二、三象限12.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .4二、填空题13.23(1)0m n -+=,则m+n 的值为 .14.已知菱形的周长为20㎝ ,两条对角线的比为3:4,则菱形的面积为___________.15.123x x --有意义的x 的取值范围是_____. 16.211a a a a--=,则a 的取值范围是________ 17.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,30ACB ∠=o ,则AOB ∠的大小为______ .18.如果最简二次根式22x-3与9-4x 是同类二次根式,那么x =______.19.如图,已知一次函数y=kx+b 的图象与x 轴交于点(3,0),与y 轴交于点(0,2),不等式kx+b≥2解集是_______.20.(1)计算填空:24= ,20.8 = ,2(3)-= , 223⎛⎫- ⎪⎝⎭= (2)根据计算结果,回答:2a 一定等于a 吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(3)利用你总结的规律,计算:2( 3.15)π- 三、解答题21.如图,正方形网格的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,若C 在格点上,且满足13,32AC BC ==.(1)在图中画出符合条件的ABC V ;(2)若BD AC ⊥于点D ,则BD 的长为 .22.如图,ABC V 是边长为1的等边三角形,BCD V 是等腰直角三角形,且90BDC ∠=︒.(1)求BD 的长.(2)连接AD 交BC 于点E ,求AD AE 的值. 23.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店,买到彩笔后继续往家走.如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是 米;(2)AB 表示的实际意义是 ;(3)小颖本次从学校回家的整个过程中,走的路程是多少米?(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?24.如图,在平面直角坐标系中,点(6,0)A -,(4,3)B -,边AB 上有一点(,2)P m ,点C ,D 分别在边OA ,OB 上,联结CD ,//CD AB ,联结PC ,PD ,BC .(1)求直线AB 的解析式及点P 的坐标;(2当CQ BQ =时,求出点C 的坐标;(3)在(2)的条件下,点R 在射线BC 上,ABO RBO S S ∆∆=,请直接写出点R 的坐标.25.先化简,再求值:21142()111x x x x +-÷+--,其中x=﹣【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】观察可得,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.第x 张餐桌共有6+4(x-1)=4x+2,由此即可解答.【详解】有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,∵多一张餐桌,多放4把椅子,∴第x 张餐桌共有6+4(x-1)=4x+2.∴y 与x 之间的关系式为:y =4x +2.故选D .【点睛】本题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律即可求得y 与x 之间的关系式.2.C解析:C【解析】【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y 1的图象可知a> 0,b> 0;由y 2的图象可知a<0,b<0,两结论相矛盾,故错误; 故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k 及b 值的关系是解题的关键.3.B解析:B【解析】【分析】根据点P (x ,y )是直线y=1322x -上的点,可以得到y 与x 的关系,然后变形即可求得所求式子的值.【详解】∵点P (x ,y )是直线y=1322x -上的点, ∴y=1322x -, ∴4y=2x-6,∴4y-2x=-6,∴4y-2x+3=-3,故选B .【点睛】 本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.4.A解析:A【解析】【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得DEC V ≌'V D EC ,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,再根据勾股定理可得方程2222(4)x x +=-,解方程即可求得结果.【详解】解:∵四边形ABCD 是长方形,3,4AB AD ==,∴3,4====AB CD AD BC ,90ABC ADC ∠=∠=︒,∴ABC V 为直角三角形,∴5AC ===,根据折叠可得:DEC V ≌'V D EC ,∴'3==CD CD ,'DE D E =,'90∠=∠=︒CD E ADC ,∴'90∠=︒AD E ,则AD'E △为直角三角形,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,在'V Rt AD E 中,由勾股定理得:222''+=AD D E AE ,即2222(4)x x +=-, 解得:32x =,故选:A.【点睛】此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.B解析:B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.6.C解析:C【解析】【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.7.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.8.C解析:C【解析】【分析】证明30????,求出BC即可解决问题.BAE EAC ACE【详解】解:Q四边形ABCD是矩形,∴∠=︒,B90Q,EA=EC∴∠=∠,EAC ECAQ,??EAC BAE又∵将纸片沿AE折叠,点B恰好落在AC上,\????,BAE EAC ACE30Q,AB=3\==BC∴矩形ABCD的面积是3gAB BC=故选:C.【点睛】本题考查矩形的性质,翻折变换,直角三角形30°角性质等知识,解题的关键是灵活运用所学知识解决问题.9.B解析:B【解析】【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【详解】解:如图,因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵AB BC AD DC BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB(SSS),正确.故正确的结论是:①②③④.故选B.【点睛】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.10.D解析:D【解析】【分析】利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D.【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.11.D解析:D 【解析】 【分析】根据一次函数的性质对D 进行判断;根据一次函数图象上点的坐标特征对A 、B 进行判断;根据一次函数的几何变换对C 进行判断. 【详解】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意; 故选:D . 【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题.12.A解析:A 【解析】 【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形. 【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形, 故④选项正确, 故选A . 【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.二、填空题13.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m -3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质解析:2 【解析】试题分析:几个非负数之和为零,则每个非负数都为零.根据非负数的性质可得:m -3=0且n+1=0,解得:m=3,n=-1,则m+n=3+(-1)=2. 考点:非负数的性质14.【解析】【分析】【详解】解:已知菱形的周长为20㎝可得菱形的边长为5cm 设两条对角线长分别为3x4x 根据勾股定理可得()2+(2x )2=102解得x=2则两条对角线长分别为6cm8所以菱形的面积为故解析:224cm . 【解析】 【分析】 【详解】解:已知菱形的周长为20㎝ ,可得菱形的边长为5cm ,设两条对角线长分别为3x ,4x , 根据勾股定理可得(32x )2+( 2x )2=102, 解得,x=2, 则两条对角线长分别为6cm 、8,所以菱形的面积为2168242cm ⨯⨯=. 故答案为:224cm . 【点睛】本题考查菱形的性质;勾股定理.15.x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0列不等式组求解【详解】由题意得 解得x≥2且x≠3故答案为x≥2且x≠3【点睛】本题主要考查自变量的取值范解析:x≥2且x≠3 【解析】 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,列不等式组求解. 【详解】 由题意,得20{30x x -≥-≠ ,解得x≥2且x≠3. 故答案为x≥2且x≠3. 【点睛】本题主要考查自变量的取值范围.用到的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.16.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数 解析:01a <≤【解析】 【分析】根据二次根式得非负性求解即可. 【详解】=成立, 则有:10a ->,0a ≠ ,0,即:0a >, ∴01a <≤, 故答案为:01a <≤. 【点睛】本题考查的是二次根式的取值范围,在二次根式里被开方数,必须是非负数.17.【解析】【分析】根据矩形的性质可得∠ABC 的度数OA 与OB 的关系根据等边三角形的判定和性质可得答案【详解】∵ABCD 是矩形∴∠ABC=90°∵∠ACB=30°∴∠BAO=90°﹣∠ACB=60°∵O 解析:60o【解析】 【分析】根据矩形的性质,可得∠ABC 的度数,OA 与OB 的关系,根据等边三角形的判定和性质,可得答案. 【详解】∵ABCD 是矩形,∴∠ABC =90°.∵∠ACB =30°,∴∠BAO =90°﹣∠ACB =60°. ∵OA =OB ,∴△ABO 是等边三角形,∴∠AOB =60°. 故答案为:60°. 【点睛】本题考查了矩形的性质,利用矩形的性质得出∠ABC 的度数是解答本题的关键.18.2【解析】由题意得:2x-3=9-4x 解得:x=2故答案为:2【点睛】本题考查同类二次根式的概念同类二次根式是化为最简二次根式后被开方数相同的二次根式称为同类二次根式解析:2 【解析】由题意得:2x-3=9-4x ,解得:x=2, 故答案为:2.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.19.x≤0【解析】【分析】由一次函数y=kx+b 的图象过点(02)且y 随x 的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y 随x 的增大而减小∵一次函数y=kx解析:x≤0 【解析】 【分析】由一次函数y=kx+b 的图象过点(0,2),且y 随x 的增大而减小,从而得出不等式kx+b≥2的解集. 【详解】解:由一次函数的图象可知,此函数是减函数,即y 随x 的增大而减小, ∵一次函数y=kx+b 的图象与y 轴交于点(0,2), ∴当x≤0时,有kx+b≥2. 故答案为x≤0. 【点睛】本题考查的是一次函数与一元一次不等式的关系,能利用数形结合求出不等式的解集是解答此题的关键.20.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a ;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为解析:(1)4, 0.8,3,23;(2a ;(3)3.15﹣π. 【解析】 【分析】(1)依据被开方数即可计算得到结果;(2a ; (3)原式利用得出规律计算即可得到结果. 【详解】解:(124,3====;故答案为:4,0.8,3,23;(2a ,|a|;(3)2( 3.15)π-=|π﹣3.15|=3.15﹣π. 【点睛】此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.三、解答题21.(1)见解析; (2)513【解析】 【分析】(1)结合网格图利用勾股定理确定点C 的位置即可得解; (2)根据三角形的面积列出关于BD 方程,求解即可得到答案. 【详解】 解:(1)如图:∵小正方形的边长均为1∴3AE =,2CE =;3BF CF == ∴2213AC AE CE =+=2232BC BF CF +=∴ABC V 即为所求. (2)如图:∵由网格图可知5AB =,3CH =,13AC =32BC =22ABC AB CH AC BDS ⋅⋅==V 13532BD ⋅⨯=∴1313BD =. 【点睛】本题考查了勾股定理在网格图中的的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题. 22.(1)22(2)3+3AD AE =【解析】 【分析】(1)已知BC=AB=AC=1,则在等腰直角△BCD 中,由勾股定理即可求BC(2)易证△ABD ≌△ACD ,从而得E 点BC 的中点,再根据等腰三角形的三线合一结合勾股定理即可求AE ,DE ,即可求得ADAE的值 【详解】解:(1)∵△ABC 是边长为1的等边三角形, ∴BC=1∵△BCD 是等腰直角三角形,∠BDC=90°∴由勾股定理:BC 2=BD 2+DC 2,BD=DC 得,BC 2=2BD 2,则1222=故BD 的长为22(2)∵△ABC 是边长为1的等边三角形,△BCD 是等腰直角三角形 ∴易证得△ABD ≌△ACD (SSS ) ∴∠BAE=∠CEA∴E 为BC 中点,得BE=EC ,AE ⊥BC∴在Rt △AEC 中,由勾股定理得==同理得12== ∵AD=AE+ED∴1AD AE ED ED AE AE AE +==+=故3AD AE =. 【点睛】此题主要考查等腰三角形“三线合一”性质,熟练运用等腰三角形“三线合一”性质是解题的关键.23.(1)2600;(2)小颖在文具用品店停留了10分钟;(3)小颖本次在从学校回家的整个过程中,走的路程是3400米;(4)小颖从文具用品店回到家步行的速度是90米/分. 【解析】 【分析】(1)根据函数图象,可知小颖家与学校的距离是2600米;(2)由函数图象可知,20~30分钟的路程没变,所以AB 表示的实际意义是小颖在文具用品店停留了10分钟;(3)小颖本次从学校回家的整个过程中,走的路程为26002180014003400+-=()(米). (4)用小颖从文具用品店回到家的路程除以所用时间即可. 【详解】(1)根据函数图象,可知小颖家与学校的距离是2600米; (2)AB 表示的实际意义是小颖在文具用品店停留了10分钟; (3)26002180014003400+-=()(米).(列的式子只要合理都可) ∴小颖本次在从学校回家的整个过程中,走的路程是3400米.(4)1800503090/()(米分)÷-=. ∴小颖从文具用品店回到家步行的速度是90米/分.【点睛】考查一次函数的应用,读懂函数的图象,明确每一段图象所表示的实际意义是解题的关键. 24.(1)直线AB 解析式为y =32x +9,P 点坐标为(-143,2)(2)C 点坐标为(-2,0)(3)R (2,-6).【解析】【分析】(1)由A、B两点的坐标,利用待定系数法可求得直线AB的解析式,再把P点坐标代入直线解析式可求得P点坐标;(2)由条件可证明△BPQ≌△CDQ,可证得四边形BDCP为平行四边形,由B、P的坐标可求得BP的长,则可求得CD的长,利用平行线分线段成比例可求得OC的长,则可求得C的坐标;(3)由条件可知AR∥BO,故可先求出直线OB,BC的解析式,再根据直线平行求出AR 的解析式,联立直线AR、BC即可求出R点坐标.【详解】(1)设直线AB解析式为y=kx+b,把A、B两点坐标代入可得4360k bk b-+=⎧⎨-+=⎩,解得329kb⎧=⎪⎨⎪=⎩,∴直线AB解析式为y=32x+9,∵(,2)P m在直线AB上,∴2=−32m+9,解得m=-143,∴P点坐标为(-143,2);(2)∵//CD AB,∴∠PBQ=∠DCQ,在△PBQ和△DCQ中PBQ DCQCQ BQPQB DQC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PBQ≌△DCQ(ASA),∴BP=CD,∴四边形BDCP为平行四边形,∵(4,3)B-,(-143,2),∴CD =BP3=, ∵A (-6,0),∴OA =6,AB= ∵CD ∥AB , ∴△COD ∽△AOB∴CO CDAO AB=,即6CO =,解得CO =2,∴C 点坐标为(-2,0); (3)∵ABO RBO S S ∆∆=, ∴点A 和点R 到BO 的距离相等, ∴BO ∥AR ,设直线BO 的解析式为y=nx ,把(4,3)B -代入得3=-4n ,解得n=-34x ∴直线BO 的解析式为y=-34x , ∴设直线AR 的解析式为y=-34x+e , 把A(-6,0)代入得0=-34×(-6)+e 解得e=-92∴直线AR 的解析式为y=-34x-92, 设直线BC 解析式为y =px +q ,把C 、B 两点坐标代入可得4320k b k b -+=⎧⎨-+=⎩,解得323k b ⎧=-⎪⎨⎪=-⎩,∴直线AB 解析式为y =-32x-3, 联立3942332y x y x ⎧=--⎪⎪⎨⎪=--⎪⎩解得26x y =⎧⎨=-⎩∴R (2,-6).【点睛】本题为一次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、勾股定理、平行四边形的判定和性质、相似三角形的判定与性质、三角形的面积等知识点,解题的关键是熟知待定系数法求出函数解析式.25.12x -+,3- 【解析】 【分析】原式括号中两项通分并利用同分母分式的加减法则计算,再把除法转化成乘法约分即可得到结果. 【详解】 解:原式=2111x x x ----÷2421xx +-=221x --÷2421x x +- =221x --×2142x x-+ =22(2)x -+=﹣12x+,当x=﹣原式==。

2020-2021学年八年级下期中考试数学试卷及答案

2020-2021学年八年级下期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A .(﹣3,1)B .(−13,3)C .(﹣3,﹣1)D .(13,3) 7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32) 二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 颜色的球的可能性最大.10.在整数20180419中,数字“1”出现的频率是 .11.已知反比例函数y =3x ,x >0时,y 0,这部分图象在第 象限,y 随着x值的增大而 .12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC的度数为 度.13.如图,菱形ABCD 的两条对角线AC ,BD 相交于点O ,E 是AB 的中点,若AC =6,BD=8,则OE 的长为 .14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=.15.如图,正方形ABCD,∠EAF=45°,当点E,F分别在对角线BD、边CD上,若FC =6,则BE的长为.16.点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.17.如图,反比例函数y=kx位于第二象限的图象上有A,B两点,过A作AD⊥x轴于点D,过点B作BC⊥y轴于点C.已知,S△OCD=32,S△OAB=12,则反比例函数解析式为.三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.22.【阅读】如图1,四边形OABC中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC 的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[,];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为.(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查【解答】解:A、对我市七年级学生身高的调查,因范围较广,不宜采用全面调查,故A 不符合题意;B、对我国研制的“C919”大飞机零部件的调查,因涉及安全问题,宜采用全面调查,故B符合题意;C、对我市各乡镇猪肉价格的调查,因范围较广,不宜采用全面调查,故C不符合题意;D、对我国“东风﹣41”洲际弹道导弹射程的调查,因破坏性较强,宜采用抽样调查,故D不符合题意;故选:B.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定【解答】解:“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是必然事件,故选:A.4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.【解答】解:当k>0时,一次函数过一二三象限,反比例函数过一三象限;当k<0时,一次函数过一二四象限,反比例函数过二四象限;故选:B.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(−13,3)C.(﹣3,﹣1)D.(13,3)【解答】解:∵反比例函数y=kx的图象经过(﹣1,3),∴k=﹣1×3=﹣3,∴反比例函数解析式为y=−3 x.当x =﹣3时,y =−3−3=1, ∴反比例函数y =−3x 的图象经过点(﹣3,1),反比例函数y =−3x 的图象不经过点(﹣3,﹣1);当x =−13时,y =−3−13=9, ∴反比例函数y =−3x 的图象不经过点(−13,3);当x =13时,y =−313=−9,∴反比例函数y =−3x 的图象不经过点(13,3).故选:A .7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°【解答】解:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°﹣120°)=30°,∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′﹣∠C ′AB ′=120°﹣30°=90°.故选:D .8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32)【解答】解:如图:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥⊥x 轴于点F ,过点A 作AN ⊥BF 于点N ,过点C 作CM ⊥x 轴于点M ,∵∠EAO +∠AOE =90°,∠AOE +∠MOC =90°, ∴∠EAO =∠COM , 又∵∠AEO =∠CMO , ∴∠AEO ∽△COM , ∴EO AE=CM MO=12,∵∠BAN +∠OAN =90°,∠EAO +∠OAN =90°, ∴∠BAN =∠EAO =∠COM , 在△ABN 和△OCM 中 {∠BNA =∠CMO ∠BAN =∠COM AB =OC, ∴△ABN ≌△OCM (AAS ), ∴BN =CM ,∵点A (﹣1,2),点B 的纵坐标是72,∴BN =32, ∴CM =32,∴MO =3,∴点C 的坐标是:(3,32).故选:D .二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 白 颜色的球的可能性最大. 【解答】解:∵一只不透明的袋子中有1个红球,2个绿球和3个白球,这些球除颜色外都相同,∴P (红球)=16,P (绿球)=26=13,(白球)=36=12, ∴摸到白球的可能性最大. 故答案为:白.10.在整数20180419中,数字“1”出现的频率是14.【解答】解:∵在整数20180419中,数字“1”出现了2次, ∴数字“1”出现的频率是28=14;故答案为:14.11.已知反比例函数y =3x ,x >0时,y > 0,这部分图象在第 一 象限,y 随着x 值的增大而 减小 .【解答】解:反比例函数y =3x ,x >0时,y >0,这部分图象在第一象限,y 随着x 值的增大而减小.故答案为:>;一;减小.12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 100或40 度.【解答】解:∵四边形ABCD 是平行四边形, ∴∠BCA =∠CAD =40°, ①如图1,∠BAC =∠BCA =40°, ∠B =180°﹣40°×2=100°, 则∠ADC =100°;②如图2,∠B=∠BCA=40°,则∠ADC=40°.综上所述,∠ADC的度数为100或40度.故答案为:100或40.13.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD =8,则OE的长为 2.5.【解答】解:∵四边形ABCD是菱形,AC=6,BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中位线,在Rt△AOD中,AB=√OA2+OB2=√32+42=5,则OE=12AB=2.5.故答案为:2.5.14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=4.【解答】解:设反比例函数解析式为y=kx+1(k≠0),∵当x=1时,y=2,∴2=k1+1,解得k =4,∴反比例函数解析式为y =4x+1, 把x =0代入y =4x+1得:y =4, 故答案为:4.15.如图,正方形ABCD ,∠EAF =45°,当点E ,F 分别在对角线BD 、边CD 上,若FC =6,则BE 的长为 3√2 .【解答】解:作△ADF 的外接圆⊙O ,连接EF 、EC ,过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N (如图) ∵∠ADF =90°, ∴AF 为⊙O 直径,∵BD 为正方形ABCD 对角线, ∴∠EDF =∠EAF =45°, ∴点E 在⊙O 上, ∴∠AEF =90°,∴△AEF 为等腰直角三角形, ∴AE =EF ,在△ABE 与△CBE 中{AB =CB∠ABE =∠CBE BE =BE ,∴△ABE ≌△CBE (SAS ), ∴AE =CE , ∴CE =EF , ∵EM ⊥CF ,CF =6, ∴CM =12CF =3,∵EN ⊥BC ,∠NCM =90°,∴四边形CMEN 是矩形, ∴EN =CM =3, ∵∠EBN =45°, ∴BE =√2EN =3√2, 故答案为:3√2.16.点P ,Q ,R 在反比例函数y =kx (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为275.【解答】解:∵CD =DE =OE , ∴可以假设CD =DE =OE =a , 则P (k 3a,3a ),Q (k2a,2a ),R (ka,a ),∴CP =k3a ,DQ =k2a ,ER =ka , ∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.17.如图,反比例函数y =k x位于第二象限的图象上有A ,B 两点,过A 作AD ⊥x 轴于点D ,过点B 作BC ⊥y 轴于点C .已知,S △OCD =32,S △OAB =12,则反比例函数解析式为 y =−9x .【解答】解:作BE ⊥x 轴于E , 设A (m ,km ),∵S △OCD =32,∴12OD •OC =32,即12(﹣m )•OC =32,∴OC =−3m, ∴B (−mk 3,−3m), ∵S △OAB =12,∴S 梯形ABED =S △OAB ﹣S △AOD +S △BOE =12, ∴12(k m−3m)(m +mk3)=12, 解得k =±9,∵反比例函数y =kx 位于第二象限. ∴k =﹣9,∴反比例函数的解析式是y =−9x, 故答案为y =−9x .三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树240棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?【解答】解:(1)由题意可得:20×4×3=240;故答案为:240;(2)设y与x的函数表达式为:y=kx(k≠0),∵当x=20时,y=3.∴3=k 20∴k=60,∴y=60 x,当x=80时,y=6080=34;(3)把y=1.5代入y=60x,得1.5=60 x,解得:x=40,根据反比例函数的性质,y随x的增大而减小,所以为了能在1.5h内完成任务,至少需要40人参加植树.19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.【解答】解:(1)读图可得:A类有60人,占30%,则本次一共调查了60÷30%=200人,因此本次一共调查了200名学生.(2)“B”有200﹣60﹣30﹣10=100人,如图1所示.(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%,则3000×(15%+5%)=3000×20%=600人,因此学校有600人平均每天参加体育锻炼在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【解答】解:(1)如图所示,△A′B′C′即为所作;点B的对应点B'的坐标的坐标为(0,﹣6);(2)如图所示,点D的坐标为(﹣5,﹣3)或(﹣7,3)或(3,3).21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.【解答】解:(1)∵四边形ABCD 是矩形, ∴AD ∥BC , ∴∠DAG =∠AHB , 在△ADG 和△HAB 中, {∠DAG =∠AHB ∠DGA =∠B AD =AH, ∴△ADG ≌△HAB (AAS ), ∴DG =AB =6;(2)∵EF 是BD 的垂直平分线, ∴BO =DO ,BE =DE , ∵AD ∥BC , ∴∠EDO =∠FBO , 在△DEO 和△BFO 中, {∠EDO =∠FBO DO =BO ∠DOE =∠BOF, ∴△DEO ≌△BFO (ASA ), ∴OE =OF ,∴四边形BFDE 是平行四边形, 又∵BE =DE ,∴四边形BFDE 是菱形.22.【阅读】如图1,四边形OABC 中,OA =a ,OC =8,BC =6,∠AOC =∠BCO =90°,经过点O 的直线l 将四边形分成两部分,直线l 与OC 所成的角设为θ,将四边形OABC 的直角∠OCB 沿直线l 折叠,点C 落在点D 处,我们把这个操作过程记为FZ [θ,a ].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[45°,16];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)【解答】解:(1)点D与OA的中点重合,如图1,由折叠得:∠COP=∠DOP=45°,∠C=∠ODP=90°,∴CP=PD,∵OP=OP,∴Rt△OCP≌Rt△ODP(HL),∴OC =OD =8,∵D 为OA 的中点,∴OA =a =16,则这个操作过程为FZ [45°,16];故答案为:45°,16;(2)延长MD 、OA ,交于点N ,如图2.∵∠AOC =∠BCO =90°,∴∠AOC +∠BCO =180°,∴BC ∥OA ,∴∠B =∠DAN .在△BDM 和△ADN 中,{∠B =∠DAN BD =AD ∠BDM =∠ADN,∴△BDM ≌△ADN (ASA ),∴DM =DN .∵∠ODM =∠OCM =90°,∴根据线段垂直平分线的性质可得OM =ON ,∴根据等腰三角形的性质可得∠MOD =∠NOD .由折叠可得∠MOD =∠MOC =θ,∴∠COA =3θ=90°,∴θ=30°;【应用】①过点B作BH⊥OA于点H,如图3.∵∠COA=90°,∠COF=45°,∴∠FOA=45°.∵点B与点E关于直线l对称,∴∠OF A=∠OFB=90°,∴∠OAB=45°,∴∠HBA=90°﹣45°=45°=∠HAB,∴BH=AH.∵CO⊥OA,BH⊥OA,∴CO∥BH.∵BC∥OA,∴四边形BCOH是平行四边形,∴BH=CO=8,OH=CB=6,∴OA=OH+AH=OH+BH=6+8=14.∴a的值为14.②过点B作BH⊥OA于点H,过点F作OA的对称点Q,连接AQ、EQ,OB,如图4,则有∠QAO=∠F AO=45°,QA=F A,∴∠QAF=90°.在Rt△BHA中,AB=√BH2+AH2=8√2.在Rt△OF A中,∠AFO=90°,∠AOF=∠OAF=45°=7√2,∴AF=OF=2∴AQ=AF=7√2.在Rt△OCB中,OB=√OC2+BC2=√82+62=10.在Rt△OFB中,BF=AB﹣AF=8√2−7√2=√2.由折叠可得EF=BF=√2,∴AE=AF﹣EF=7√2−√2=6√2.在Rt△QAE中,EQ2=AE2+AQ2=(6√2)2+(7√2)2=170.根据两点之间线段最短可得:当点E、P、Q三点共线时,PE+PF=PE+PQ最短,最小值为线段EQ长.∴PE+PF的最小值的是√170.23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为24°.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为∠P=14(3x+y).(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论∠P=90°+12∠C−32∠A.【解答】解:(1)如图1中,∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)如图2中,设∠BAP =∠P AD =x ,∠BCP =∠PCD =y ,则有{x +∠B =y +∠P x +∠P =y +∠D, ∴∠B ﹣∠P =∠P ﹣∠D ,∴P =12(∠B +∠D )=12(28°+20°)=24°.故答案为24°(3)如图3中,设∠CBJ =∠JBF =x ,∠ADP =∠PDE =y .则有{∠P +x =∠A +y ∠P +180°−x =∠C +180°−y, ∴2∠P =∠A +∠C ,∴∠P =12(30°+18°)=24°.(4)如图4中,设∠CAP =α,∠CDP =β,则∠P AB =3α,∠PDB =3β,则有{∠P +β=∠C +α∠P +3α=∠B +3β, ∴4∠P =3∠C +∠B ,∴∠P =14(3x +y ),故答案为∠P =14(3x +y ).(5)如图5中,延长AB 交PD 于J ,设∠PBJ =x ,∠ADP =∠PDE =y .则有∠A +2x =∠C +180°﹣2y ,∴x +y =90°+12(∠C ﹣∠A ),∵∠P +x +∠A +y =180°,∴∠P =90°−12∠C −12∠A .故答案为∠P =90°−12∠C −12∠A .。

2020-2021学年八年级下期中考试数学试卷及答案解析

2020-2021学年八年级下期中考试数学试卷及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程是()A.2x+3y=4B.x2=0C.x2﹣2x+1>0D.1x=x+22.下列结论不正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相垂直的平行四边形是菱形C.平行四边形对角相等对边相等D.矩形的对角线相等3.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐4.已知一次函数y=kx+b,y随x的增大而减小,且b<0,则在直角坐标系内它的大致图象是()A.B.C.D.5.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A .9.7m ,9.8mB .9.7m ,9.7mC .9.8m ,9.9mD .9.8m ,9.8m6.如图,直线y =kx +b (k <0)经过点P (1,1),当kx +b ≥x 时,则x 的取值范围为( )A .x ≤1B .x ≥1C .x <1D .x >17.关于x 的方程x 2+2(m ﹣1)x +m 2﹣m =0有两个实数根α,β,且α2+β2=12,那么m 的值为( )A .﹣1B .﹣4C .﹣4或1D .﹣1或48.两条直线y 1=ax ﹣b 与y 2=bx ﹣a 在同一坐标系中的图象可能是图中的( )A .B .C .D .9.下列各点在直线y =2x +6上的是( )A .(﹣5,4)B .(﹣7,20)C .(23,223)D .(−72,1) 10.在平面直角坐标系中,正方形A 1B 1C 1D 1,D 1E 1E 2B 2,A 2D 2C 2D 2,D 2E 3E 4B 3,A 3B 3C 3D 3,…,按如图所示的方式放置,其中点B1在y轴上,点C1,E1,E2,C2,E3,E4,C3,…,在x轴上已知正方形A1,B1,C1,D1,的边长为1,∠OB1C1=30°,B1C1∥B2C2∥B3C3,…,则正方形A n B n∁n D n的边长是()A.(12)n B.(12)n−1C.(√33)n D.(√33)n﹣1二.填空题(共8小题,满分24分,每小题3分)11.关于x的一次函数y=(k+2)x﹣2k+1,其中k为常数且k≠﹣2①当k=0时,此函数为正比例函数;②无论k取何值,此函数图象必经过(2,5);③若函数图象经过(m,a2),(m+3,a2﹣2)(m,a为常数),则k=−83;④无论k取何值,此函数图象都不可能同时经过第二、三、四象限.上述结论中正确的序号有.12.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s甲2=0.2,S乙2=0.08,成绩比较稳定的是(填“甲”或“乙”).13.某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目创新能力综合知识语言表达测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是分.14.写出一个一元二次方程,它的二次项系数为1,其中一个根为﹣3,另一个根为2,这个一元二次方程是.15.如图,菱形ABCD的对角线长分别为2和4,EF∥DC分别交AD,BC于点E,F,在EF上任取两点G,H,那么图中阴影部分的面积为.16.如图,直线l:y=−√3x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴正半轴于点A3;…,按此作法进行下去点A2020的坐标为.17.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.18.在正方形ABCD中,点G在AB上,点H在BC上,且∠GDH=45°,DG、DH分别与对角线AC交于点E、F,则线段AE、EF、FC之间的数量关系为.三.解答题(共9小题,满分66分)19.(7分)解方程(1)用直接开平方法解3(x﹣1)2﹣6=0;(2)用配方法解x2﹣6x+3=0;(3)用公式法解9x2+10x=4;(4)用因式分解法解2x2﹣5x=0.20.(7分)如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.21.(7分)已知关于x的一元二次方程x2﹣(2k+1)x+12k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.22.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?23.(7分)如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD 的边AB ,CD ,DA 上,AH =2,连结CF .(1)当DG =2时,求证:四边形EFGH 是正方形;(2)当△FCG 的面积为2时,求DG 的值.24.(7分)如图,在平面直角坐标系中,过点A (0,6)的直线AB 与直线OC 相交于点C(2,4)动点P 沿路线O →C →B 运动.(1)求直线AB 的解析式;(2)当△OPB 的面积是△OBC 的面积的14时,求出这时点P 的坐标; (3)是否存在点P ,使△OBP 是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.25.(7分)已知关于x 的方程(a 2﹣1)(x x−1)2﹣(2a +7)(x x−1)+1=0有实根. (1)求a 取值范围;(2)若原方程的两个实数根为x 1,x 2,且x 1x 1−1+x 2x 2−1=311,求a 的值.26.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB 和线段CD 分别表示小泽和小帅离甲地的距离y (单位:千米)与时间x (单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为 千米/小时;点C 的坐标为 ;(2)求线段AB 对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?27.(10分)如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程是()A.2x+3y=4B.x2=0C.x2﹣2x+1>0D.1x=x+2【解答】解:A、含有两个未知数,不是一元二次方程;B、符合一元二次方程的定义,是一元二次方程;C、含有不等号,不是一元二次方程;D、含有分式,不是一元二次方程.故选:B.2.下列结论不正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相垂直的平行四边形是菱形C.平行四边形对角相等对边相等D.矩形的对角线相等【解答】解:A.对角线互相垂直平分且相等的四边形是正方形,故本选项错误;B.对角线互相垂直的平行四边形是菱形,故本选项正确;C.平行四边形对角相等,对边相等,故本选项正确;D.矩形的对角线相等,故本选项正确;故选:A.3.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐【解答】解:∵甲、乙两队的方差分别是1.7、2.4,∴S甲2<S乙2,∴甲队身高更整齐;故选:B.4.已知一次函数y=kx+b,y随x的增大而减小,且b<0,则在直角坐标系内它的大致图象是()A.B.C.D.【解答】解:∵一次函数y=kx+b,y随x的增大而减小,且b<0,∴k<0,b<0,∴该函数图象经过第二、三、四象限,故选:B.5.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,9.7m出现了2次,最多,所以众数为9.7m,故选:B.6.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>1【解答】解:由题意,将P(1,1)代入y=kx+b(k<0),可得k+b=1,即k﹣1=﹣b,整理kx+b≥x得,(k﹣1)x+b≥0,∴﹣bx+b≥0,由图象可知b>0,∴x﹣1≤0,∴x≤1,故选:A.7.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4【解答】解:∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.8.两条直线y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A .B .C .D .【解答】解:根据一次函数的图象与性质分析如下:A .y 1=ax ﹣b :a >0,b <0;y 2=bx ﹣a :a <0,b <0.A 错误;B .y 1=ax ﹣b :a >0,b <0;y 2=bx ﹣a :a >0,b <0.B 正确;C .y 1=ax ﹣b :a >0,b >0;y 2=bx ﹣a :a <0,b <0.C 错误;D .y 1=ax ﹣b :a >0,b >0;y 2=bx ﹣a :a >0,b <0.D 错误; 故选:B .9.下列各点在直线y =2x +6上的是( ) A .(﹣5,4)B .(﹣7,20)C .(23,223) D .(−72,1)【解答】解:A 、当x =﹣5时,y =2×(﹣5)+6=﹣4, ∴点(﹣5,4)不在直线y =2x +6上; B 、当x =﹣7时,y =2×(﹣7)+6=﹣8, ∴点(﹣7,20)不在直线y =2x +6上; C 、当x =23时,y =2×23+6=223, ∴点(23,223)在直线y =2x +6上;D 、当x =−72时,y =2×(−72)+6=﹣1, ∴点(−72,1)不在直线y =2x +6上. 故选:C .10.在平面直角坐标系中,正方形A 1B 1C 1D 1,D 1E 1E 2B 2,A 2D 2C 2D 2,D 2E 3E 4B 3,A 3B 3C 3D 3,…,按如图所示的方式放置,其中点B 1在y 轴上,点C 1,E 1,E 2,C 2,E 3,E 4,C 3,…,在x 轴上已知正方形A 1,B 1,C 1,D 1,的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A n B n ∁n D n 的边长是( )A .(12)nB .(12)n−1C .(√33)nD .(√33)n ﹣1【解答】解:∵正方形A 1B 1C 1D 1的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3, ∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°, ∴D 1E 1=C 1D 1sin30°=12,则B 2C 2=B 2E 2cos30°=√33=(√33)1,同理可得:B 3C 3=13=(√33)2, 故正方形A n B n ∁n D n 的边长是:(√33)n ﹣1, 故选:D .二.填空题(共8小题,满分24分,每小题3分)11.关于x 的一次函数y =(k +2)x ﹣2k +1,其中k 为常数且k ≠﹣2 ①当k =0时,此函数为正比例函数; ②无论k 取何值,此函数图象必经过(2,5);③若函数图象经过(m ,a 2),(m +3,a 2﹣2)(m ,a 为常数),则k =−83; ④无论k 取何值,此函数图象都不可能同时经过第二、三、四象限. 上述结论中正确的序号有 ②③④ .【解答】解:①当k =0时,此函数为y =2x +1,不是正比例函数,故本结论错误; ②∵y =(k +2)x ﹣2k +1=(x ﹣2)k +2x +1, ∴当x =2时,y =5,∴无论k 取何值,此函数图象必经过(2,5),故本结论正确; ③∵函数图象经过(m ,a 2),(m +3,a 2﹣2)(m ,a 为常数),∴{(k +2)m −2k +1=a 2①(k +2)(m +3)−2k +1=a 2−2②, ②﹣①,得3(k +2)=﹣2,解得k =−83,故本结论正确; ④如果此函数图象同时经过第二、三、四象限, 那么{k +2<0−2k +1<0,此不等式组无解,所以无论k 取何值,此函数图象都不可能同时经过第二、三、四象限,故本结论正确. 即上述结论中正确的序号有②③④. 故答案为②③④.12.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s 甲2=0.2,S 乙2=0.08,成绩比较稳定的是 乙 (填“甲”或“乙”). 【解答】解:∵S 甲2=0.2,S 乙2=0.08, ∴S 甲2>S 乙2,∴成绩比较稳定的是乙; 故答案为:乙.13.某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目 创新能力 综合知识 语言表达 测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是 77 分.【解答】解:根据题意,该应聘者的素质测试平均成绩是:70×510+80×310+90×210=77(分). 故答案为:77.14.写出一个一元二次方程,它的二次项系数为1,其中一个根为﹣3,另一个根为2,这个一元二次方程是 x 2+x ﹣6=0 . 【解答】解:设这个方程为ax 2+bx +c =0. ∵该方程的二次项系数为1,两根分别为﹣3和2, ∴a =1,−ba =−3+2,ca=−3×2,∴b=1,c=﹣6,∴这个方程为x2+x﹣6=0.故答案为:x2+x﹣6=0.15.如图,菱形ABCD的对角线长分别为2和4,EF∥DC分别交AD,BC于点E,F,在EF上任取两点G,H,那么图中阴影部分的面积为2.【解答】解:∵四边形ABCD是菱形,对角线长分别为2和4,∴AB∥DC,AD∥BC,菱形ABCD的面积=12×2×4=4,∵EF∥DC,∴EF∥DC∥AB,∴四边形ABFE和四边形CDEF是平行四边形,∴△ABH的面积=12平行四边形ABFE的面积,△CDG的面积=12平行四边形CDEF的面积,∴△ABH的面积+△CDG的面积=12菱形ABCD的面积=2,∴图中阴影部分的面积=4﹣2=2;故答案为:2.16.如图,直线l:y=−√3x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴正半轴于点A3;…,按此作法进行下去点A2020的坐标为(﹣22019,0).【解答】解:已知点A 1坐标为(﹣1,0),且点B 1在直线y =−√3x 上,可知B 1点坐标为(﹣1,√3),由题意可知OB 1=√12+(√3)2=2,故A 2点坐标为(﹣2,0), 同理可求的B 2点坐标为(﹣2,2√3),按照这种方法逐个求解便可发现规律,A 2020点坐标为(﹣22019,0), 故答案为(﹣22019,0).17.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt △ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为6017.【解答】解:∵四边形CDEF 是正方形, ∴CD =ED ,DE ∥CF ,设ED =x ,则CD =x ,AD =5﹣x , ∵DE ∥CF ,∴∠ADE =∠C ,∠AED =∠B , ∴△ADE ∽△ACB , ∴DE BC =AD AC , ∴x 12=5−x5,x =6017, 故答案为:6017.18.在正方形ABCD 中,点G 在AB 上,点H 在BC 上,且∠GDH =45°,DG 、DH 分别与对角线AC 交于点E 、F ,则线段AE 、EF 、FC 之间的数量关系为 EF 2=AE 2+CF 2 .【解答】解:如图,将△DCH 绕点D 顺时针旋转90°,得△DAM ,则△DAM ≌△DCH 则DM =DH ,AM =CH ,∠CDH =∠ADM在DM 上截取DN =DF ,连接NE ,AN 在△DAN 和△DCF 中 {DA =DC∠ADN =∠CDF DN =DF; ∴△DAN ≌△DCF (SAS ) ∴AN =CF ,∠DAN =∠DCF =45° 又∵∠DAC =45° ∴∠NAE =90° ∴AN 2+AE 2=NE 2 ∵∠GDH =45°, ∴∠NDE =45° 在△DNE 和△DFE 中 {DN =DF∠NDE =∠FDE DE =DE ∴△DNE ≌△DFE ∴NE =EF 又∵AN =CF ∴CF 2+AE 2=EF 2故答案为:EF2=AE2+CF2.三.解答题(共9小题,满分66分)19.(7分)解方程(1)用直接开平方法解3(x﹣1)2﹣6=0;(2)用配方法解x2﹣6x+3=0;(3)用公式法解9x2+10x=4;(4)用因式分解法解2x2﹣5x=0.【解答】解:(1)∵3(x﹣1)2=6,∴(x﹣1)2=2则x﹣1=±√2,∴x1=1+√2,x2=1−√2;(2)∵x2﹣6x=﹣3,∴x2﹣6x+9=﹣3+9,即(x﹣3)2=6,则x﹣3=±√6,∴x1=3+√6,x2=3−√6;(3)∵9x2+10x﹣4=0,∴a=9,b=10,c=﹣4,则△=102﹣4×9×(﹣4)=244>0,∴x=−b±√b2−4ac2a=−10±2√6118=−5±√619,即x1=−5+√619,x2=−5−√619;(4)∵2x2﹣5x=0,∴x(2x﹣5)=0,则x=0或2x﹣5=0,解得x1=0,x2=2.5.20.(7分)如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.【解答】证明:∵菱形ABCD , ∴BA =BC ,∠A =∠C , ∵BE ⊥AD ,BF ⊥CD , ∴∠BEA =∠BFC =90°, 在△ABE 与△CBF 中 {∠BEA =∠BFC ∠A =∠C BA =BC, ∴△ABE ≌△CBF (AAS ), ∴AE =CF .21.(7分)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0. (1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值. 【解答】解:(1)∵△=[﹣(2k +1)]2﹣4×1×(12k 2﹣2)=4k 2+4k +1﹣2k 2+8 =2k 2+4k +9=2(k +1)2+7>0,∵无论k 为何实数,2(k +1)2≥0, ∴2(k +1)2+7>0,∴无论k 为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x 1+x 2=2k +1,x 1x 2=12k 2﹣2, ∵x 1﹣x 2=3, ∴(x 1﹣x 2)2=9,∴(x 1+x 2)2﹣4x 1x 2=9, ∴(2k +1)2﹣4×(12k 2﹣2)=9,化简得k 2+2k =0, 解得k =0或k =﹣2.22.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg ,众数是 1.5kg . (2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5, ∴这20条鱼质量的中位数是1.4+1.52=1.45(kg ),众数是1.5kg ,故答案为:1.45kg ,1.5kg . (2)x =1.2×1+1.3×4+1.4×5+1.5×6+1.6×2+1.7×220=1.45(kg ), ∴这20条鱼质量的平均数为1.45kg ;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.23.(7分)如图,在矩形ABCD 中,AD =6,CD =8,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求DG的值.【解答】(1)证明:在矩形ABCD中,有∠A=∠D=90°,∴∠DGH+∠DHG=90°.在菱形EFGH中,EH=GH∵AH=2,DG=2,∴AH=DG,∴Rt△AEH≌Rt△DHG(HL).∴∠AHE=∠DGH.∴∠AHE+∠DHG=90°.∴∠EHG=90°.∴四边形EFGH是正方形.(2)过F作FM⊥DC于Q,则∠FQG=90°.∴∠A=∠FQG=90°.连接EG.由矩形和菱形性质,知AB∥DC,HE∥GF,∴∠AEG=∠QGE,∠HEG=∠FGE,∴∠AEH=∠QGF.∵EH=GF,∴△AEH≌△QGF(AAS).∴FQ=AH=2.∵S△FCG=12CG•FQ=12×CG×2=2,∴CG=2.24.(7分)如图,在平面直角坐标系中,过点A (0,6)的直线AB 与直线OC 相交于点C(2,4)动点P 沿路线O →C →B 运动.(1)求直线AB 的解析式;(2)当△OPB 的面积是△OBC 的面积的14时,求出这时点P 的坐标; (3)是否存在点P ,使△OBP 是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.【解答】解:(1)∵点A 的坐标为(0,6),∴设直线AB 的解析式为y =kx +6,∵点C (2,4)在直线AB 上,∴2k +6=4,∴k =﹣1,∴直线AB 的解析式为y =﹣x +6;(2)由(1)知,直线AB 的解析式为y =﹣x +6,令y =0,∴﹣x +6=0,∴x =6,∴B (6,0),∴S △OBC =12OB •y C =12,∵△OPB 的面积是△OBC 的面积的14, ∴S △OPB =14×12=3, 设P 的纵坐标为m ,∴S △OPB =12OB •m =3m =3,∴m =1,∵C (2,4),∴直线OC 的解析式为y =2x ,当点P 在OC 上时,x =12,∴P (12,1), 当点P 在BC 上时,x =6﹣1=5,∴P (5,1),即:点P (12,1)或(5,1);(3)∵△OBP 是直角三角形,∴∠OPB =90°,当点P 在OC 上时,由(2)知,直线OC 的解析式为y =2x ①,∴直线BP 的解析式的比例系数为−12,∵B (6,0),∴直线BP 的解析式为y =−12x +3②,联立①②,解得{x =65y =125, ∴P (65,125),当点P 在BC 上时,由(1)知,直线AB 的解析式为y =﹣x +6③,∴直线OP 的解析式为y =x ④,联立③④解得,{x =3y =3, ∴P (3,3),即:点P 的坐标为(65,125)或(3,3).25.(7分)已知关于x 的方程(a 2﹣1)(x x−1)2﹣(2a +7)(x x−1)+1=0有实根.(1)求a 取值范围; (2)若原方程的两个实数根为x 1,x 2,且x 1x 1−1+x 2x 2−1=311,求a 的值.【解答】解:(1)设x x−1=y ,则原方程化为:(a 2﹣1)y 2﹣(2a +7)y +1=0 (2),①当方程(2)为一次方程时,即a 2﹣1=0,a =±1.若a =1,方程(2)的解为y =19,原方程的解为x =−18满足条件;若a =﹣1,方程(2)的解为y =15,原方程的解为x =−14满足条件;∴a =±1.②当方程为二次方程时,a 2﹣1≠0,则a ≠±1,要使方程(a 2﹣1)y 2﹣(2a +7)y +1=0 (2)有解,则△=(2a +7)2﹣4(a 2﹣1)=28a +53≥0,解得:a ≥−5328,此时原方程没有增根,∴a 取值范围是a ≥−5328.综上,a 的取值范围是a ≥−5328.(2)设x 1x 1−1=y 1,x 2x 2−1=y 2,则则y 1、y 2是方程(a 2﹣1)y 2﹣(2a +7)y +1=0的两个实数根,由韦达定理得:y 1+y 2=2a+7a 2−1, ∵y 1+y 2=311, ∴2a+7a 2−1=311, 解得:a =−83或10,又∵a ≥−5328,∴a =10.26.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB 和线段CD 分别表示小泽和小帅离甲地的距离y (单位:千米)与时间x (单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为 16 千米/小时;点C 的坐标为 (0.5,0) ;(2)求线段AB 对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?【解答】解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C 的横坐标为:1﹣8÷16=0.5,∴点C 的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB 对应的函数表达式为y =kx +b (k ≠0),∵A (0.5,8),B (2.5,24),∴{0.5k +b =82.5k +b =24, 解得:{k =8b =4, ∴线段AB 对应的函数表达式为y =8x +4(0.5≤x ≤2.5);(3)当x =2时,y =8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.27.(10分)如图①,已知直线y =﹣2x +4与x 轴、y 轴分别交于点A 、C ,以OA 、OC 为边在第一象限内作长方形OABC .(1)求点A 、C 的坐标;(2)将△ABC 对折,使得点A 的与点C 重合,折痕交AB 于点D ,求直线CD 的解析式(图②);(3)在坐标平面内,是否存在点P (除点B 外),使得△APC 与△ABC 全等?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:x=5 2此时,AD=52,D(2,52)(2分)设直线CD为y=kx+4,把D(2,52)代入得52=2k+4(1分)解得:k=−3 4∴直线CD解析式为y=−34x+4(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=52,PD=BD=4−52=32,AP=BC=2由AD×PQ=DP×AP得:52PQ=3∴PQ=6 5∴x P=2+65=165,把x=165代入y=−34x+4得y=85此时P(165,85) (也可通过Rt △APQ 勾股定理求AQ 长得到点P 的纵坐标) ③当点P 在第二象限时,如图同理可求得:CQ =85∴OQ =4−85=125此时P(−65,125)综合得,满足条件的点P 有三个,分别为:P 1(0,0);P 2(165,85);P 3(−65,125).。

2020-2021石家庄市初二数学下期中第一次模拟试卷(及答案)

2020-2021石家庄市初二数学下期中第一次模拟试卷(及答案)

2020-2021石家庄市初二数学下期中第一次模拟试卷(及答案)一、选择题1.下列运算正确的是( )A .347+=B .1232=C .2(-2)2=-D .14216= 2.下列命题中,真命题是( )A .四个角相等的菱形是正方形B .对角线垂直的四边形是菱形C .有两边相等的平行四边形是菱形D .两条对角线相等的四边形是矩形3.如右图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角△ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .4.如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .2C .3D .65.如图,在正方形OABC 中,点A 的坐标是()3,1-,则C 点的坐标是( )A .()1,3B .()2,3C .()3,2D .()3,16.函数y =11x x +-中,自变量x 的取值范围是( ) A .x >-1 B .x >-1且x ≠1 C .x ≥一1 D .x ≥-1且x ≠17.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C .5D .3 8.下列各组数据中能作为直角三角形的三边长的是( ) A .1,2,2 B .1,1,3 C .4,5,6D .1,3,2 9.菱形ABCD 中,AC =10,BD =24,则该菱形的周长等于( )A .13B .52C .120D .240 10.如图,要测量被池塘隔开的A ,B 两点的距离,小明在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,并分别找出它们的中点D ,E ,连接DE ,现测得DE =45米,那么AB 等于( )A .90米B .88米C .86米D .84米 11.对于次函数21y x =-,下列结论错误的是( )A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x =D .图象经过第一、二、三象限12.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .125二、填空题 13.菱形ABCD 中,边长为10,对角线AC =12.则菱形的面积为__________.14.如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB V 的面积为___.15.计算:2(21)+=__________.16.如图,点E 在正方形ABCD 的边AB 上,若1EB =,2EC =,那么正方形ABCD 的面积为_.17.如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.18.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.19.矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.20.在平行四边形ABCD 中,若∠A+∠C=140°,则∠B= .三、解答题21.甲、乙两座仓库分别有农用车12辆和6辆.现在需要调往A 县10辆,需要调往B 县8辆,已知从甲仓库调运一辆农用车到A 县和B 县的运费分别为40元和80元;从乙仓库调运一辆农用车到A 县和B 县的运费分别为30元和50元.(1)设乙仓库调往A 县农用车x 辆,求总运费y 关于x 的函数关系式;(2)若要求总运费不超过900元,问共有几种调运方案?试列举出来.(3)求出总运费最低的调运方案,最低运费是多少元?22.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店,买到彩笔后继续往家走.如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是 米;(2)AB 表示的实际意义是 ;(3)小颖本次从学校回家的整个过程中,走的路程是多少米?(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?23.如图1,在菱形ABCD 中,8AB =,83BD =,点P 是BD 上一点,点Q 在AB 上,且PA PQ =,设PD x =.(1)当PA AB ⊥时,如图2,求PD 的长;(2)设AQ y =,求y 关于x 的函数关系式及其定义域;(3)若BPQ ∆是以BQ 为腰的等腰三角形,求PD 的长.24.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.25.已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;(2)当3x=时,求y的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C进行判断;根据分母有理化和二次根式的性质对D进行判断.【详解】A32,所以A选项错误;B、原式=23B选项错误;C、原式=2,所以C选项错误;D 14621366=⨯,所以D选项正确.故选D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.A解析:A【解析】分析:根据菱形的判断方法、正方形的判断方法和矩形的判断方法逐项分析即可.详解:A选项:∵四个角相等的菱形,∴四个角为直角的菱形,即为正方形,故是真命题;B选项:对角线垂直的四边形可能是梯形,故对角线垂直的四边形是菱形是假命题;C选项:当相等的边是对边时,它不是菱形,故有两边相等的平行四边形是菱形是假命题;D选项:两条对角线相等的四边形可能是等腰梯形,故两条对角线相等的四边形是矩形是假命题;故选A.点睛:考查的是命题与定理,熟知正方形、菱形、矩形的判定定理与性质是解答此题的关键,用举反例来证明命题是假命题是判断命题真假的常用方法.3.A解析:A【解析】【分析】先做出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∠AOB=∠ADC,∠OAB=∠DAC,AB=AC∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.4.C解析:C【解析】【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=AD=3,CM⊥AD,∴CM==3,∴PA+PM=PC+PM=CM=3.故选:C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.解析:A【解析】【分析】作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,由AAS 证明△AOE ≌△OCD ,得出AE=OD ,OE=CD ,由点A 的坐标是(-3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C (1,3)即可.【详解】解:如图所示:作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,则∠AEO=∠ODC =90°,∴∠OAE+∠AOE=90°,∵四边形OABC 是正方形,∴OA=CO ,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD ,在△AOE 和△OCD 中,AEO ODC OAE COD OA CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△OCD (AAS ),∴AE=OD ,OE=CD ,∵点A 的坐标是(-3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C (1,3),故选:A .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解题的关键.6.D解析:D【解析】根据题意得:1010x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠1.7.C解析:C【解析】【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE的长.【详解】如图所示:22BE+=125故选:C.【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.8.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠3)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+32=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.9.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO=OD=12,AO=OC=5,13AB ∴==,故菱形的周长为52.故选B.10.A解析:A【解析】【分析】根据中位线定理可得:AB =2DE =90米.【详解】解:∵D 是AC 的中点,E 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB . ∵DE =45米,∴AB =2DE =90米.故选A .【点睛】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.11.D解析:D【解析】【分析】根据一次函数的性质对D 进行判断;根据一次函数图象上点的坐标特征对A 、B 进行判断;根据一次函数的几何变换对C 进行判断.【详解】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题. 12.B解析:B【解析】【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】 连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4, ∴222243AB BE +=+=5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245 , ∵FE=BE=EC ,∴∠BFC=90°, ∴CF=2222246()5BC BF -=-185 . 故选B .【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键. 二、填空题13.96【解析】【分析】已知ABAC 根据勾股定理即可求得AO 的值根据对角线长即可计算菱形ABCD 的面积【详解】解:∵四边形ABCD 是菱形AC=12∴AO=AC=6∵菱形对角线互相垂直∴△ABO 为直角三角解析:96【解析】【分析】已知AB ,AC ,根据勾股定理即可求得AO 的值,根据对角线长即可计算菱形ABCD 的面积.【详解】解:∵四边形ABCD 是菱形,AC=12,∴AO=12AC=6, ∵菱形对角线互相垂直,∴△ABO 为直角三角形,∴BO=22AB OA -=8,BD=2BO=16, ∴菱形ABCD 的面积=12AC•BD=12×12×16=96. 故答案为:96.【点睛】本题考查了菱形对角线互相垂直平分的性质,菱形各边长相等的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理求AO 的值是解题的关键.14.10【解析】【分析】分别令x=0y=0可得AB 坐标即可求出OAOB 的长利用三角形面积公式即可得答案【详解】∵直线交x 轴于点A 交y 轴于点B∴令则;令则;∴∴∴的面积故答案为10【点睛】本题考查一次函数解析:10【解析】【分析】分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.【详解】∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB V 的面积1210102=⨯⨯=. 故答案为10【点睛】本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积.15.3+2【解析】【分析】【详解】解:故答案为:3+2解析:【解析】【分析】【详解】解:222故答案为:.16.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b2解析:3.【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,BC==∴正方形ABCD的面积23==,BC故答案为:3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE分别是BCCDAD 的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=解析:AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形,然后根据矩形的性质得出AC⊥BD.【详解】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.【点睛】本题主要综合考查了三角形中位线定理及矩形的判定定理,属于中等难度题型.解答这个问题的关键就是要明确矩形的性质以及中位线的性质.18.5°【解析】【分析】【详解】四边形ABCD是矩形AC=BDOA=OCOB=ODOA=OB═OC∠OAD=∠ODA∠OAB=∠OBA∠AOE=∠OAD+∠ODA=2∠OA D∠EAC=2∠CAD∠EAO解析:5°【解析】【分析】【详解】Q四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,Q∠EAC=2∠CAD,∴∠EAO=∠AOE,Q AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.19.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD 是矩形,∴OA=12AC ,OB=12BD ,AC=BD ∴OA=OB ,∵∠A0B=60°,∴△AOB 是等边三角形,∴OA=OB=AB=5, ∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.20.110°【解析】试题解析:∵平行四边形ABCD∴∠A+∠B=180°∠A=∠C∵∠A+∠C=140°∴∠A=∠C=70°∴∠B=110°考点:平行四边形的性质解析:110°【解析】试题解析:∵平行四边形ABCD ,∴∠A+∠B=180°,∠A=∠C ,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.考点:平行四边形的性质.三、解答题21.(1)20860y x =+(06)x ≤≤;(2)3种;方案一:甲调往A :10辆;乙往A :0辆;甲调往B :2辆;乙调往B :6辆; 方案二:甲调往A :9辆;乙往A :1辆;甲调往B :3辆;乙调往B :5辆;方案三:甲调往A :8辆;乙往A :2辆;甲调往B :4辆;乙调往B :4辆;(3)方案一的总运费最少为860元.【解析】【分析】(1)若乙仓库调往A 县农用车x 辆,那么乙仓库调往B 县农用车、甲给A 县调农用车、以及甲县给B 县调车数量都可表示出来,然后依据各自运费,把总运费表示即可; (2)若要求总运费不超过900元,则可根据(1)列不等式确定x 的取值,从而求解; (3)在(2)的基础上,结合一次函数的性质求出最低运费即可.【详解】解:(1)乙仓库调往A 县农用车x 辆,则调往B 县农用车()6x -辆.(6)x ≤ A 县需10辆车,故甲给A 县调10x -辆,给B 县调车(2)x +辆∴40(10)80(2)3050(6)y x x x x =-++++-化简得20860y x =+(06)x ≤≤(2)总运费不超过900,即900y ≤代入(1)结果得20860900x +≤解得2x ≤又因为x 为非负整数∴012x =,,即如下三种方案方案一:甲调往A :10辆;乙往A :0辆;甲调往B :2辆;乙调往B :6辆. 方案二:甲调往A :9辆;乙往A :1辆;甲调往B :3辆;乙调往B :5辆. 方案三:甲调往A :8辆;乙往A :2辆;甲调往B :4辆;乙调往B :4辆. (3)总运费20860y x =+,其中06x ≤≤∵200k =>∴y 随x 的增大而增大∴当x 取最小时,运费y 最小代入0x =得200860860y =⨯+=∴方案为(2)中方案1:甲往A :10辆;乙往A :0辆;甲往B :2辆;乙往B :6辆.总运费最少为860元.【点睛】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景-建立模型-解释、应用和拓展”的数学学习模式.22.(1)2600;(2)小颖在文具用品店停留了10分钟;(3)小颖本次在从学校回家的整个过程中,走的路程是3400米;(4)小颖从文具用品店回到家步行的速度是90米/分.【解析】【分析】(1)根据函数图象,可知小颖家与学校的距离是2600米;(2)由函数图象可知,20~30分钟的路程没变,所以AB 表示的实际意义是小颖在文具用品店停留了10分钟;(3)小颖本次从学校回家的整个过程中,走的路程为26002180014003400+-=()(米).(4)用小颖从文具用品店回到家的路程除以所用时间即可.【详解】(1)根据函数图象,可知小颖家与学校的距离是2600米;(2)AB 表示的实际意义是小颖在文具用品店停留了10分钟;(3)26002180014003400+-=()(米).(列的式子只要合理都可) ∴小颖本次在从学校回家的整个过程中,走的路程是3400米.(4)1800503090/()(米分)÷-=. ∴小颖从文具用品店回到家步行的速度是90米/分.【点睛】考查一次函数的应用,读懂函数的图象,明确每一段图象所表示的实际意义是解题的关键.23.(1)PD =3(2)x-8(3≤x ≤3)(3)【解析】【分析】(1)先根据菱形的边长和对角线的长得到∠ABO =30°,再根据PA AB ⊥,求出AP 的长,故可得到DP 的长;(2)作HP ⊥AB ,根据AP=PQ ,得到AH=QH=12y ,BH=8-12y ,BP=BD-DP=再根据(1)可得HP=12x ,在Rt △BPH 中,BP 2=HB 2+HP 2,化简即可求解,再求出x 的取值范围;(3)根据题意作图,由等腰三角形的性质可得△AQP 是等边三角形,故可得到DP 的长.【详解】(1)∵8AB =,BD =∴BO=12BD ⊥BD故=4=12AB ∴∠ABO =30°=∠ADO ∵PA AB ⊥∴∠APB =90°-∠ABO =60°故∠PAD=∠APB -∠ADO =30°即∠PAD=∠ADO∴DP=AP设AP=x ,则BP=2x ,在Rt △ABP 中,BP 2=AB 2+AP 2即(2x )2=82+x 2解得x=3故PD=83;(2)作HP⊥AB,∵AP=PQ∴AH=QH=1 2 y∴BH=BQ+QH=(8-y)+12y=8-12y,BP=BD-DP=83-x,由(1)可得HP=12BP=43-12x在Rt△BPH中,BP2=HB2+HP2即(83-x)2=(8-12y)2+(43-12x)2∵83-x>0,8-12y>0,43-12x>0∴化简得y=3x-8∵0≤3x-8≤8∴x的取值范围为83≤x≤1633∴y关于x的函数关系式是y=3x-8(83≤x≤163);(3)如图,若BPQ是以BQ为腰的等腰三角形,则∠QPB=∠QBP=30°,∴∠AQP=∠QPB+∠QBP=60°∵∠BAP=90°-∠QBP=60°,∴△APQ是等边三角形,∠APQ=60°∴∠QPB +∠APQ=90°,则AP⊥BP,故O点与P点重合,∴PD=DO=12BD3【点睛】此题主要考查菱形的性质综合,解题的关键是熟知菱形的性质及含30度的直角三角形的性质.24.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量; ()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.25.(1)2733y x =+;(2)y 的值是133. 【解析】【分析】(1)设该直线解析式为()0y kx b k =+≠,把(-2,1)和(1,3)代入可得关于k 、b 的二元一次方程组,解方程组求出k 、b 的值即可得答案;(2)把x=3代入(1)中所求的解析式,求出y 值即可得答案.【详解】(1)设该直线解析式为()0y kx b k =+≠,∵一次函数图象经过(-2,1)和(1,3)两点,∴213k b k b -+=⎧⎨+=⎩,解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩. 故该一次函数解析式为:2733y x =+; (2)把3x =代入(1)中的函数解析2733y x =+得:27133333y =⨯+=, ∴3x =时,y 的值是133. 【点睛】 本题主要考查了待定系数法求一次函数解析式,根据一次函数图象上的点的坐标特征列出方程组求解是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.函数 的自变量的取值范围是()
A. B. C. D.
8.已知点 ,则直线 与 轴, 轴的位置关系分别为()
A.平行,垂直B.平行、平行C.垂直、平行D.垂直、垂直
9.下列变量之间的关系不是函数关系的是()
A.一天的气温和时间B. 中的 与 的关系
C.在银行中利息与时间D.正方形的周长与面积
10.函数 与 的图像相交于点 ,则()
15.D
【分析】
通过图表中数据,可求调查人数,于是可以得到喜欢羽毛球的所占得百分比,然后用样本估计总体,总人数中喜欢羽毛球的占比与样本中相同,即可求出全校喜欢羽毛球的人数.
【详解】
解:调查人数= 人,
参加羽毛球活动的人数= 人,
故选:D.
【点睛】
本题考查统计图表的制作方法以及图表中数据之间的相互关系,样本估计总体是统计中常用的思想方法.
16.B
【解析】
【分析】
过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.
【详解】
过C作CD⊥AB于D,如图,
3.C
【详解】
试题分析: ,故答案选C.
考点:用样本估计总体的统计思想.
4.B
【解析】
试题分析:一次函数 的图象过(1,0)、(0,-1)两个点,观察图象可得,只有选项B符合要求,故选B.
考点:一次函数的图象.
5.D
【详解】
易知点A到x轴的距离为3,OB=2,∴ ,
故选D.
6.D
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.

解得: .
故选:A.
【点睛】
本题考查了两条直线的交点问题:两条直线的交点坐Байду номын сангаас,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.
11.D
【解析】
【分析】
先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.
【详解】
解:∵点P(m﹣3,m﹣1)在第二象限,
A.y= xB.y=20xC.y= +xD.y=
14.当实数 的取值使得 有意义时,函数 中 的取值范围是()
A. B. C. D.
15.为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有-名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.
24.其工厂甲.乙两个部门各有员工 人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取 名员工进行了生产技能测试,测试成绩(百分制)如下:
甲:78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
【点睛】
本题考查了统计的知识,完成本题要注意细心分析所给条件及选项,同时注意抽查与普查的区别.
2.A
【分析】
在平面直角坐标系中,第一象限的点的横坐标大于0,纵坐标大于0,据此判断出点 所在的象限是第一象限.
【详解】
解: , ,
在平面直角坐标系中,点 所在的象限是第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
13.A
【解析】
∵这本书每20页厚1mm,
∴这本书每页厚为 mm,
∴ .
故选A.
14.B
【分析】
根据二次根式有意义易得x的取值范围,代入所给函数可得y的取值范围.
【详解】
解:由题意得 ,
解得 ,

即 .
故选:B.
【点睛】
本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x的取值是解决本题的关键.
(3)若按照乙部门的样本数据画出扇形统计图,则表示生产技能优秀部分的圆心角是度;
得出结论:
(4)估计乙部门生产技能优秀的员工人数为;
(5)可以推断出部门员工的生产技能水平较高,你的理由为(说出一条即可)
25. 两地相距 ,甲、乙二人分别骑自行车和摩托车沿相同路线匀速行驶,由 地到达 地.他们行驶的路程 与甲出发后的时间 之间的函数图像如图所示.
若该校学生共有 人,则该校参加羽毛球活动的人数约为人
A. B. C. D.
16.在平面直角坐标系中,已知直线 与 轴、 轴分别交于 、 两点,点 是 轴上一动点,要使点 关于直线 的对称点刚好落在 轴上,则此时点 的坐标是()
A. B. C. D.
二、填空题
17.若正比例函数 (k是常数, )的图象经过第二、四象限,则的值可以是_______(写出一个即可).
x

﹣2
0
1
m

y

5
1
0
1
n

(4)在平面直角坐标系xOy中,作出函数y=|2x﹣1|的图象;
(5)根据函数的图象,写出函数y=|2x﹣1|的一条性质.
参考答案
1.C
【分析】
根据所给条件对依据各选项调查方式、样本等概念进行分析确定即可.
【详解】
解:A,由于是中随机调查400个家长,没有全部调查全部家长,不是抽查,所以题干说法错误.
三、解答题
21.如图是小明所在学校的平面示意图,请你建立适当的坐标系来描述食堂位置.
22.我市对教师试卷讲评课中学生参与的深度与度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项,评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:
乙:93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述数据
(1)按如下分数段整理、描述这两组样本数据:
成绩人数部门


(说明:成绩 分及以上为生产技能优秀, 分为生产技能良好, 分为生产技能合格, 分以下为生产技能不合格)
(2)若按照甲部门的样本数据,在列频数分布表时,若取组距为 ,则 这小组的频数为,频率为;
故选:B.
【点睛】
本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,图象经过一、三象限;当k<0时,y随x的增大而减小,图象经过二、四象限;当b>0时,此函数图象交y轴于正半轴;当b<0时,此函数图象交y轴于负半轴.
【详解】
解:点A(1,-2)关于x轴对称的点的坐标是(1,2),
故选:D.
【点睛】
此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.
7.C
【分析】
根据被开方数大于等于0列式计算即可得解.
【详解】
解:根据题意得, ,
解得 .
故选:C.
【点睛】
本题考查了二次根式有意义的条件,关键要掌握二次根式的被开方数是非负数.
18.如果花 元购买篮球,那么所购买的篮球总数 (个)与单价 (元)之间的关系为____.
19.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图申第五小组对应的圆心角度数是____.
20.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间t(时)变化的图像(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20km.其中正确的说法有______.
(1)函数y=|2x﹣1|的自变量x的取值范围是;
(2)已知:
①当x= 时,y=|2x﹣1|=0;
②当x> 时,y=|2x﹣1|=2x﹣1
③当x< 时,y=|2x﹣1|=1﹣2x;
显然,②和③均为某个一次函数的一部分.
(3)由(2)的分析,取5个点可画出此函数的图象,请你帮小东确定下表中第5个点的坐标(m,n),其中m=;n=;:
A.70B.720C.1680D.2370
4.在平面直角坐标系中,一次函数 的图象是()
A. B. C. D.
5.在平面直角坐标系xoy中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO的面积为( )
A.15B.7.5C.6D.3
6.点 关于 轴对称的点的坐标是()
A. B. C. D.
A.调查方式是普查B.该校只有 个家长持反对态度
C.该校约有 的家长持反对态度D.样本容量是
2.在平面直角坐标系中,点 所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限,
3.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为( )
∴ ,
解得:1<m<3,
故选:D.
【点睛】
本题考查不等式组的解法,在数轴上表示不等式组的解集等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.
12.B
【分析】
根据一次函数的增减性,可得 ;从而可得 ,据此判断直线 经过的象限.
相关文档
最新文档