高等数学公式手册

合集下载

大学高数公式大全

大学高数公式大全

向量在轴上的投影:Pr ju AB = AB cos,是AB与u轴的夹角。
Pr a
bju=(aa1
+
a2
)
=
Pr
ja1
+
b cos = axbx
Pr ja2 + ayby
+
azbz
,是一个数量,
两向量之间的夹角:cos =
axbx + ayby + azbz
ax 2 + ay 2 + az 2 bx 2 + by 2 + bz 2
1 tg tg ctg( ) = ctg ctg 1
ctg ctg
·和差化积公式:
sin + sin = 2sin + cos −
2
2
sin − sin = 2 cos + sin −
2
2
cos + cos = 2 cos + cos −
2
2
cos − cos = 2sin + sin −
i c = ab = ax
j ay
k az
,
c
=
a
b
sin .例:线速度:v
=
w r.
bx by bz
向量的混合积:[abc]
=
(a
b)
c
=
ax bx
ay by
az bz
=
a
b
c
cos
,为锐角时,
cx cy cz
代表平行六面体的体积。
4 / 12
高等数学公式
平面的方程: 1、点法式:A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0,其中n = {A, B,C}, M 0 (x0 , y0 , z0 )

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

高等数学重要公式(必记)

高等数学重要公式(必记)

高等数学重要公式(必记)一、导数公式:二、基本积分表:三、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:四、三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学的公式大全1

高等数学的公式大全1

六、高阶导数的运算法则 (1) ⎡ ⎣u ( x ) ± v ( x ) ⎤ ⎦ (3) ⎡ ⎣u ( ax + b ) ⎤ ⎦
(n) (n)
= u ( x)
( n)
± v ( x)
( n)
(2) ⎡ ⎣ cu ( x ) ⎤ ⎦ (4) ⎡ ⎣u ( x ) ⋅ v ( x ) ⎤ ⎦
( n)
= cu ( n ) ( x )
x x x
1
u = ax
u = sin x
u = cos x
∫ f ( sin x ) ⋅ cos xdx = ∫ f ( sin x )d ( sin x )
∫ f ( cos x ) ⋅ sin xdx = − ∫ f ( cos x )d ( cos x ) ∫ f ( tan x ) ⋅ sec
⑵ x = μx
μ
μ −1
⑶ ( sin x )′ = cos x
2
⑸ ( tan x )′ = sec x
⑹ ( cot x )′ = − csc x
2
⑻ ( csc x )′ = − csc x ⋅ cot x ⑽ a
( )′ = e
x
x
( )′ = a
x
x
ln a
⑾ ( ln x )′ =
1 x
tan( A − B) = tan A − tan B 1 + tan A tan B cot A ⋅ cot B + 1 cot( A − B) = cot B − cot A
sin 2 A = 2sin A cos A
cos 2 A = cos 2 A − sin 2 A = 1 − 2sin 2 A = 2 cos 2 A − 1

高等数学公式

高等数学公式

高等数学公式高等数学涵盖了广泛的内容,包括微积分、线性代数、复变函数等。

下面是一些常用的高等数学公式:微积分公式:1. 导数的定义:f'(x) = lim(h->0) [(f(x+h) - f(x))/h]2. 导数的基本运算法则:- (常数法则) (k*f(x))' = k*f'(x)- (加法法则) (f(x) + g(x))' = f'(x) + g'(x)- (乘法法则) (f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)- (商法则) (f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/(g(x))^23. 微分与积分的关系(牛顿-莱布尼茨公式):∫[a,b] f'(x) dx = f(b) - f(a)线性代数公式:1. 矩阵乘法:设 A 是 m✖n 矩阵,B 是 n✖p 矩阵,则 AB 是 m✖p 矩阵。

2. 矩阵转置:(A')ij = Aji,即将矩阵的行与列互换得到的新矩阵。

3. 逆矩阵:若A 是一个可逆矩阵,则存在一个矩阵A^-1,使得 A * A^-1 = I,其中 I 是单位矩阵。

4. 行列式:设 A 是一个 n✖n 矩阵,则其行列式为 det(A) = ∑[σ∈Sn] (ε(σ) * ∏[i=1 to n] a[i,σ(i)]),其中ε(σ) 是置换σ 的符号。

复变函数公式:1. 欧拉公式:e^(iθ) = cos(θ) + i*sin(θ)2. 求导公式(柯西-黎曼条件):- 如果 f(z) = u(x,y) + i*v(x,y) 是可微的,则 u 和 v 的一阶偏导数存在且满足以下条件:- ∂u/∂x = ∂v/∂y,即 u 对 x 的偏导数等于 v 对 y 的偏导数- ∂u/∂y = -∂v/∂x,即 u 对 y 的偏导数等于 v 对 x 的偏导数这只是高等数学中的一小部分公式,还有其他更多的公式和定理,但这些公式是学习高等数学的基础,是非常重要的。

普通高校高等数学公式大全

普通高校高等数学公式大全

普通高校高等数学公式大全导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学公式大全

高等数学公式大全

高等数学公式大全在数学领域中,高等数学是一门较为复杂和抽象的学科,它涵盖了许多不同的概念和公式。

在本文中,我们将介绍一些高等数学中常见的重要公式,这些公式将帮助我们更好地理解和应用高等数学的知识。

微积分微积分是高等数学中最为重要的分支之一,它涉及到函数的极限、导数、积分等概念。

下面列举一些微积分中常用的公式:导数公式1.基本导数公式:–$\\frac{d}{dx}c = 0$–$\\frac{d}{dx}x^n = nx^{n-1}$–$\\frac{d}{dx}(u \\pm v) = \\frac{du}{dx} \\pm \\frac{dv}{dx}$–$\\frac{d}{dx}(uv) = u\\frac{dv}{dx} +v\\frac{du}{dx}$2.常见函数的导数:–$\\frac{d}{dx}e^x = e^x$–$\\frac{d}{dx}\\ln(x) = \\frac{1}{x}$–$\\frac{d}{dx}\\sin(x) = \\cos(x)$–$\\frac{d}{dx}\\cos(x) = -\\sin(x)$积分公式1.基本积分公式:–$\\int k\\,dx = kx + C$–$\\int x^n\\,dx = \\frac{1}{n+1}x^{n+1} + C$2.常见函数的积分:–$\\int e^x\\,dx = e^x + C$–$\\int \\sin(x)\\,dx = -\\cos(x) + C$–$\\int \\cos(x)\\,dx = \\sin(x) + C$线性代数线性代数是数学的一个重要分支,它主要研究向量空间和线性映射。

下面介绍一些线性代数中常用的公式:矩阵运算公式1.矩阵加法和减法:–A+A=A+A–A−A=−(A−A)2.矩阵乘法:–(AA)A=A(AA)3.行列式的性质:–$\\det(AB) = \\det(A) \\det(B)$–$\\det(A^{-1}) = \\frac{1}{\\det(A)}$向量运算公式1.点积:–$A \\cdot B = |A||B|\\cos(\\theta)$2.叉积:–$A \\times B = |A||B|\\sin(\\theta)n$微分方程微分方程是描述变量之间关系的数学方程,下面是一些微分方程中常见的公式:1.一阶线性微分方程:–$\\frac{dy}{dx} + P(x)y = Q(x)$2.二阶常系数线性齐次微分方程:–AA″+AA′+AA=0概率论与统计学概率论与统计学是应用广泛的数学分支,下面列出一些与概率论与统计学相关的公式:概率分布1.正态分布:–$f(x) =\\frac{1}{\\sqrt{2\\pi}\\sigma}e^{\\frac{-(x-\\mu)^2}{2\\sigma^2}}$2.伯努利分布:–A(A=A)=A A(1−A)1−A统计学1.均值公式:–$\\bar{x} = \\frac{\\sum_{i=1}^n x_i}{n}$2.方差公式:–$\\sigma^2 = \\frac{\\sum_{i=1}^n (x_i - \\bar{x})^2}{n}$以上是高等数学中的部分重要公式,它们在各个数学领域中都有着重要的作用。

高等数学公式手册

高等数学公式手册

高等数学公式导数公式:基本积分表:三角函数的有理式积分:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x adx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Caxa x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n n n arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xxxx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==αααααααααααααααα1sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg ·正弦定理:RC cB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgxarctgx x x -=-=2arccos 2arcsin ππ 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

最全高等数学公式手册

最全高等数学公式手册

= ∫ sec 2 xdx = tgx + C
∫a
∫ sec x ⋅ tgxdx = sec x + C ∫ csc x ⋅ ctgxdx = − csc x + C
ax ∫ a dx = ln a + C
x
2
∫ shxdx = chx + C ∫ chxdx = shx + C ∫
dx x ±a
2 2
平面的方程: 1、点法式:A( x − x0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0,其中n = { A, B, C}, M 0 ( x0 , y 0 , z 0 ) 2、一般方程:Ax + By + Cz + D = 0 x y z 3、截距世方程: + + = 1 a b c 平面外任意一点到该平面的距离:d = Ax0 + By0 + Cz 0 + D A2 + B 2 + C 2
高等数学复习公式
高等数学公式
导数公式:
(tgx)′ = sec 2 x (ctgx)′ = − csc 2 x (sec x)′ = sec x ⋅ tgx (csc x)′ = − csc x ⋅ ctgx (a x )′ = a x ln a (log a x)′ =
基本积分表:
(arcsin x)′ =
三角函数的有理式积分:
2u 1− u 2 x 2du sin x = , cos x = , u = tg , dx = 2 2 2 1+ u 1+ u 2 1+ u
第 1 页 共 15 页
高等数学复习公式

高等数学公式大全(很全的,考高分就靠他了)

高等数学公式大全(很全的,考高分就靠他了)

高等数学公式基本积分表:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ导数公式:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学公式汇总(大全)

高等数学公式汇总(大全)

高等数学公式汇总(大全)导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学公式手册

高等数学公式手册

PKU高等数学公式手册适用于北京大学高等数学B和C及全国硕士研究生入学统一考试数学一和数学二的复习备考目录(一)三角函数公式 (1)1.同角三角函数间的基本关系式 (1)2.诱导公式 (1)3.加法公式 (1)4.和差化积公式 (1)5.积化和差公式 (1)6.倍角公式 (2)7.半角公式 (2)8.降幂公式 (2)9.万能公式 (2)10.辅助角公式 (2)11.反三角函数性质 (2)12.正弦定理 (2)13.余弦定理 (3)(二)常用不等式 (3)1.涉及绝对值的不等式 (3)2.伯努利(Bernoulli)不等式 (3)3.均值不等式(HM-GM-AM-QM不等式) (3)4.涉及三角函数的不等式 (3)(三)二项式定理(牛顿公式) (3)(一)极限 (4)1.基本概念 (4)2.基本性质与存在条件 (4)3.几个重要极限 (5)4.极限的四则运算 (5)5.无穷小和无穷大 (5)(二)连续 (6)1.函数的连续性 (6)2.函数的间断点 (6)3.闭区间上连续函数的性质 (7)(一)导数(或微商) (8)1.基本概念 (8)2.基本初等函数导数公式 (8)3.导数运算法则 (8)(二)微分 (9)1.基本概念 (9)2.基本初等函数微分公式 (9)3.微分运算法则 (10)(三)微分中值定理及其应用 (10)1.微分中值定理 (10)2.泰勒(Taylor)定理 (10)(四)导数及微分的应用 (11)1.微分在近似计算中的应用 (11)2.利用导数研究函数及平面曲线的性态 (11)3.平面曲线的曲率 (12)(一)不定积分 (14)1.基本概念与性质 (14)2.基本积分公式 (14)3.基本积分法 (14)4.扩展积分公式 (15)5.几种特殊类型函数的积分 (15)(二)定积分 (16)1.基本概念与性质 (16)2.微积分基本公式 (17)3.定积分的计算 (17)4.定积分的应用 (18)(三)广义积分 (20)1.无穷积分 (20)2.瑕积分 (21)(一)向量代数 (23)1.向量的线形运算 (23)2.向量的坐标 (23)3.向量的数量积、向量积与混合积 (24)4.向量的关系 (24)(二)空间平面与直线 (25)1.平面方程 (25)2.直线方程 (25)3.直线、平面间的关系 (26)(三)空间曲面与直线 (27)1.空间曲面方程 (27)2.空间曲线方程 (27)3.常见曲面与曲线 (27)(一)多元函数的基本概念 (29)1.区域 (29)2.二元函数的极限 (29)3.二元函数的连续性 (30)(二)偏导数与全微分 (30)1.偏导数(或偏微商) (30)2.全微分 (31)(三)方向导数与梯度 (31)1.方向导数(或方向微商) (31)2.梯度 (32)(四)复合函数及隐函数的微分法 (32)1.复合函数的微分法 (32)3.二元函数的泰勒公式 (33)(五)空间曲线的切线与法平面.曲面的切平面与法线 (34)1.空间曲线的切线与法平面 (34)2.曲面的切平面与法线 (35)(六)多元函数微分学在极值问题中的应用 (35)1.二元函数的极值 (35)2.条件极值问题 (35)3.用最小二乘法求经验公式 (36)(一)二重积分 (37)1.基本概念与性质 (37)2.二重积分的计算 (37)3.二重积分的应用 (39)(二)三重积分 (39)1.基本概念与性质 (39)2.三重积分的计算 (40)3.三重积分的应用 (41)(三)第一型曲线积分(对弧长的曲线积分) (42)1.基本概念与性质 (42)2.第一型曲线积分的计算 (43)3.第一型曲线积分的应用 (43)(四)第二型曲线积分(对坐标的曲线积分) (43)1.基本概念与性质 (43)2.第二型曲线积分的计算 (44)3.两类曲线积分之间的关系 (45)4.格林(Green)公式及其应用 (45)(五)第一型曲面积分(对面积的曲面积分) (46)1.基本概念与性质 (46)2.第一型曲面积分的计算 (46)3.第一型曲面积分的应用 (46)(六)第二型曲面积分(对坐标的曲面积分) (47)1.基本概念与性质 (47)2.第二型曲面积分的计算 (47)3.两类曲面积分之间的关系 (48)4.高斯(Gauss)公式.通量与散度 (48)5.斯托克斯(Stokes)公式.环量与旋度 (49)(一)数项级数 (51)1.数项级数的概念和性质 (51)2.正项级数 (51)3.交错级数 (52)4.任意项级数 (53)(二)幂级数 (53)1.函数项级数的有关概念 (53)2.幂级数的有关概念 (53)4.函数的幂级数展开 (55)(三)傅里叶级数(傅氏级数) (56)1.三角函数系的正交性 (56)2.周期为2π的函数的傅里叶级数 (56)3.周期为2l的函数的傅里叶级数 (57)4.定义在[-l,l]或[0,l]上的函数的傅里叶级数 (58)5.傅里叶级数的复数形式与频谱分析 (59)(一)一阶微分方程的解法 (61)1.基本类型的微分方程 (61)2.可化为基本类型的微分方程 (62)(二)线形微分方程的概念和解的性质 (63)1.线性微分方程的概念 (63)2.线性微分方程解的叠加原理 (63)3.线性微分方程解的结构 (63)(三)二阶线性常系数微分方程 (64)1.二阶线性常系数齐次微分方程的解法 (64)2.二阶线性常系数非齐次微分方程的解法 (64)3.欧拉(Euler)方程及其解法 (65)4.微分方程的幂级数解法 (65)一、基础准备(一)三角函数公式1.同角三角函数间的基本关系式 (1)平方关系 22sin cos 1αα+= 22tan 1sec αα+=22cot 1csc αα+=(2)积的关系sin tan cos ααα=⋅ cos cot sin ααα=⋅ tan sin sec ααα=⋅cot cos csc ααα=⋅sec tan csc ααα=⋅csc cot sec ααα=⋅(3)倒数关系tan cot 1αα⋅=sin csc 1αα⋅=cos sec 1αα⋅=2.诱导公式口诀:“奇变偶不变,符号看象限” 3.加法公式sin()sin cos cos sin αβαβαβ±=± cos()cos cos sin sin αβαβαβ±=tan tan tan()1tan tan αβαβαβ±±=⋅cot cot 1cot()cot cot αβαββα⋅±=±4.和差化积公式sin sin 2sincos22αβαβαβ+-+=sin sin 2cossin22αβαβαβ+--= cos cos 2cos cos 22αβαβαβ+-+=cos cos 2sinsin22αβαβαβ+--=-5.积化和差公式1sin cos [sin()sin()]2αβαβαβ=++-1cos sin [sin()sin()]2αβαβαβ=+--1cos cos [cos()cos()]2αβαβαβ=++-1sin sin [cos()cos()]2αβαβαβ=-+--6.倍角公式 (1)二倍角22tan sin 22sin cos 1tan ααααα==+2222cos2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-2cot 1cot 22cot ααα-=22sec cot tan sec21tan cot tan ααααααα+==-- 11csc2sec csc (tan cot )22ααααα==+(2)三倍角3sin34sin 3sin ααα=-+3cos34cos 3cos ααα=-323tan tan tan 313tan αααα-=- 32cot 3cot cot 33cot 1αααα-=- 7.半角公式sin 2α=cos 2α=1cos sin tan2sin 1cos ααααα-==+ 1cos sin cot2sin 1cos ααααα+===- 8.降幂公式21sin (1cos2)2αα=-21cos (1cos2)2αα=+31sin (3sin sin3)4ααα=-31cos (3cos cos3)4ααα=+41sin (34cos2cos4)8ααα=-+41cos (34cos2cos4)8ααα=++9.万能公式22tan2sin 1tan2ααα=+221tan 2cos 1tan2ααα-=+ 22tan 2tan 1tan2ααα=-10.辅助角公式sin cos ) (tan )B A B Aαααϕϕ+=+=11.反三角函数性质πarcsin arccos 2αα=-πarctan arccot 2αα=- 12.正弦定理 2 ()sin sin sin a b cR R A B C===为三角形外接圆半径13.余弦定理 2222cos c a b ab C =+-(二)常用不等式1.涉及绝对值的不等式 a b a b +≤+a b a b -≤-1212n n a a a a a a +++≤++2.伯努利(Bernoulli )不等式 (1)1,1n x nx x +≥+∀≥-3.均值不等式(HM-GM-AM-QM 不等式)对于多个非负实数,其最小值≤调和均值≤几何均值≤算术均值≤加权均值≤最大值(或Min ≤HM ≤GM ≤AM≤QM ≤Max ),即:对于n 个非负实数i a ,有:min()max() ()1ii i i ia n a a a na≤≤≤∑∑当且仅当所有相等时等号成立特别地,对于两个非负实数a 和b ,有:2min(,)max(,) ()2ab a b a b a b a b a b +≤≤=+当且仅当时等号成立4.涉及三角函数的不等式()sin tan ,0,π2x x x x <<∀∈sin ,R x x x <∀∈(三)二项式定理(牛顿公式)1220(1)(1)(1)() ()2!!nnk n k kn n n n k kn n k n n n n n k a b C a b a na b a b a b b n k ----=---++==++++++∑为正整数二、函数 极限 连续(一)极限1.基本概念 (1)极限的定义①设()f x 在0x 的某个去心邻域内有定义,若存在常数A ,对于0ε∀>,0δ∃>,使得当00x x δ<-<时,()f x A ε-<恒成立,则称A 为当0x x →的函数()f x 的极限,记作0lim ()x xf x A →=或0() ()f x A x x →→。

高数的全部公式大全

高数的全部公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学公式手册(来自wps支持国产办公软件) (1)

高等数学公式手册(来自wps支持国产办公软件) (1)

高等数学公式手册一些初等函数:两个重要极限:三角函数公式: ·诱导公式:函数 角A sin cos tg ctg -α -sinα cosα -tgα -ctgα 90°-α cosα sinαctgαtgα 90°+α cosα -sinα -ctgα -tgα 180°-α sinα-cosα -tgα-ctgα 180°+α -sinα -cosα tgα ctgα 270°-α -cosα -sinα ct gα tgα 270°+α -cosα sinα -ctgα -tgα360°-α -sinα cosα -tgα -ctgα 360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ导数公式:基本积分表:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学公式手册

高等数学公式手册
2、一般方程: Ax By Cz D 0
3、截距世方程:x y z 1 abc
平面外任意一点到该平 面的距离:d Ax0 By0 Cz0 D A2 B2 C2
空间直线的方程:x x0 m
y y0 n
z z0 p
t
,
其中s
{m,
n,
p};
x 参数方程: y
x0 y0
mt nt
·正弦定理: a b c 2R sin A sin B sin C
·余弦定理:c2 a2 b2 2abcosC
·反三角函数性质: arcsin x arccos x arctgx arcctgx
2
2
高阶导数公式——莱布尼兹(Leibniz)公式:
n
(uv)(n) Cnk u (nk )v(k ) k 0
设f x (x0 , y0 ) f y (x0 , y0 ) 0,令:f xx (x0 , y0 ) A, f xy (x0 , y0 ) B, f yy (x0 , y0 ) C
AC 则: AC
B2 B2
0时, AA
0, 0,
( (
x0 x0
, ,
y0 y0
)为极大值 )为极小值
0时, 无极 值
AC
B2
0时, 不确定
重积分及其应用:
f (x, y)dxdy f (r cos ,r sin )rdrd
D
D
曲面z f (x, y)的面积A D
1
z x
2
z y
2
dxdy
平面薄片的重心: x
Mx
x(x, y)d
D
, y
My
y(x, y)d
dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

相关文档
最新文档