激光焊接技术特性及应用

合集下载

激光焊接技术应用3篇

激光焊接技术应用3篇

激光焊接技术应用第一篇:激光焊接技术的基本原理及应用激光焊接技术是一种高效、高精度的焊接方法,被广泛应用于航空航天、汽车、电子、医疗、机械等行业。

它主要利用激光束的高能量密度和狭窄聚焦的特性,将金属材料熔化并凝固成为一体。

下面将详细介绍激光焊接技术的基本原理及应用。

一、激光焊接技术的基本原理激光焊接技术是通过高能量密度的激光束对金属材料进行加热,使其熔化和凝固,实现金属之间的连接。

在激光焊接过程中,激光束被聚焦到比光束直径更小的区域内,形成数十万至数百万度的高温点。

这样的高温点可以迅速将金属熔化融合,并形成稳定的焊接连接。

激光焊接技术具有以下几个基本特点:1. 较高的功率密度:利用激光束的高能量密度加热金属材料,可以迅速进行熔化和凝固,实现高效、快速的焊接。

2. 狭窄的焊接区域:激光束可被聚焦到小于0.2mm的区域内,能够实现高精度、高质量的焊接。

3. 快速焊接速度:激光焊接可达到每秒10米的快速焊接速度,能够快速完成大批量的生产任务。

二、激光焊接技术的应用激光焊接技术被广泛应用于各种各样的工业领域。

下面是具体的应用举例:1. 航空航天领域:激光焊接技术能够实现高强度、高质量的金属结构焊接,因此在航空航天领域被广泛应用。

它可以用于制造飞机引擎部件、机身连接结构等。

2. 汽车行业:激光焊接技术可以用于汽车制造中的零部件制造和组装。

它可以用于车身、引擎、制动系统等组件的焊接,保证汽车安全性和性能。

3. 电子行业:激光焊接技术可以制造电子产品中的电池、触摸屏、芯片等关键部件。

它可以实现高精度的焊接,提高了产品的质量和可靠性。

4. 医疗行业:激光焊接技术可以用于医用器械的制造中。

例如,可以使用激光焊接技术制造人工关节、牙齿种植体等。

5. 其他行业:激光焊接技术还可以用于钢结构、家用电器、建筑材料等领域。

例如,它可以用于建筑钢结构的连接和家用电器中的焊接。

总之,激光焊接技术的应用领域非常广泛,优势明显,随着技术的不断发展,激光焊接技术将在各行各业的应用中得到更加广泛的推广和使用。

激光焊接分类及应用领域

激光焊接分类及应用领域

激光焊接分类及应用领域激光焊接是一种常见的焊接技术,适用于多种材料的焊接,如金属、塑料、玻璃等。

根据激光器的类型和应用需求,激光焊接可以分为几个不同的分类。

以下是对激光焊接分类及其应用领域的详细解释。

1. 激光传统焊接:激光传统焊接是最常见的激光焊接技术,主要应用于金属材料的焊接。

它使用高能量密度的激光束将金属材料加热到熔化点,然后通过材料的表面张力和焊接材料的强度来进行连接。

这种焊接技术通常用于汽车、航空航天、电子设备制造等行业。

2. 激光深熔焊接:激光深熔焊接是一种高能量激光焊接技术,常用于金属材料的厚板焊接。

它通过将激光束聚焦到很小的点上,产生高能量密度,使材料瞬间融化并深入焊缝,在快速冷却的情况下形成均匀的焊缝。

这种焊接技术主要应用于航空航天、船舶制造、石油化工等需要高强度焊缝的领域。

3. 激光合金焊接:激光合金焊接是一种特殊的焊接技术,使用激光束将两个或多个不同材料的金属零件熔化在一起,形成均匀的合金焊缝。

这种焊接技术通常应用于金属零件的制造和修复,如汽车制造、管道连接、电子设备组装等。

4. 激光透明材料焊接:激光透明材料焊接是一种专门用于玻璃、陶瓷等透明材料的焊接技术。

由于透明材料对激光束的吸收较小,传统的焊接方法很难实现对透明材料的焊接。

而激光焊接技术利用了激光束的高能量密度和聚焦能力,能够有效地加热透明材料表面,形成均匀的焊接缝。

这种焊接技术适用于光学元件、光纤通信设备、医疗器械等领域。

5. 激光微细焊接:激光微细焊接是一种高精度、高质量的焊接技术,可以实现微小尺寸零件的连接。

它通常用于电子设备制造、精密仪器仪表、医疗器械等领域,例如焊接电子芯片、微型传感器、细线连接等。

总结起来,激光焊接是一种广泛应用于各行各业的焊接技术,可以根据不同的材料和应用需求进行分类。

通过激光传统焊接、激光深熔焊接、激光合金焊接、激光透明材料焊接和激光微细焊接等不同的焊接方式,可以实现对金属、塑料、玻璃等材料的高效、高质量焊接。

激光焊接技术特点及应用领域

激光焊接技术特点及应用领域

激光焊接技术特点及应用领域摘要:激光焊接技术是一种先进的焊接技术,由于激光焊接技术自身的优点,加之近年来不断发展和创新,激光焊接正在逐渐取代传统的焊接技术。

本文对通过从激光焊接的性质、种类、特点、优缺点及应用现状的分析,较全面地介绍对这种先进焊接技术。

关键词:激光焊接技术种类特点方法应用激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明。

激光指在能量相应于两个能级能量差的光子作用下,诱导在高能态的原子向低能态跃迁,并同时发射出相同能量的光子。

其产生的基本条件包括泵浦源、激活介质和谐振腔等。

激光具有方向性好、单色性好、相干性好和光脉冲可以极窄的特点。

激光焊接是激光加工技术应用的重要方面之一。

激光焊接技术的发展历经了固体受激物质→气体受激物质→固体受激物质、脉冲激光焊接→连续激光焊接、低功率→高功率、薄板→厚件、低速→高速、低频→高频及低效→高效的历史。

激光焊接技术以其独具的深宽比高,焊缝宽度小,热影响区小、变形小,焊接速度快,焊缝质量高,无气孔,可精确控制,聚焦光点小,定位精度高,易实现自动化等优点,在各种加工制造业中得到了高度重视。

1 激光焊接技术激光焊接是以高功率聚焦的激光束为热源,熔化材料形成焊接接头的高精度高效率焊接方法。

激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,当高强度激光束照射在材料表面上时,部分光能将被材料吸收而转变成热能,使材料熔化,从而达到焊接的目的。

一般要根据金属材料的光学性质(如反射和吸收)和热学性质(如熔点、热传导率、热扩散率、熔化潜热等)来决定所使用的激光的功率密度和脉宽等,对普通金属来说,光强吸收系数大约在105~109cm-1数量级。

如果激光的功率密度为105~109瓦/cm2,则在金属表面的穿透深度为微米数量级。

为避免焊接时产生金属飞溅或陷坑,要控制激光功率密度,使金属表面温度维持在沸点附近。

对一般金属,激光功率密度常取105~106瓦/cm2左右。

激光焊接的原理及应用技术

激光焊接的原理及应用技术

激光焊接的原理及应用技术1. 激光焊接的原理激光焊接是一种利用激光器产生的高能密度激光束,通过瞬时加热工件表面,使其局部融化并冷却固化,从而实现工件的连接的焊接方法。

其原理主要包括以下几个方面:1.激光束的产生:激光器通过在激活介质中产生受激辐射,使光源被放大和高度集中,最终形成激光束。

常用的激光器有Nd:YAG激光器和CO2激光器等。

2.激光束的聚焦:激光束经过透镜的聚焦,使光斑变小,能量密度增大,从而实现对工件表面的局部加热。

3.工件的表面反射与吸收:激光束在工件表面的反射与吸收决定了焊接的效果和速度。

通常选择适合工件材料的激光波长以及表面特性,以提高激光能量的吸收和减少反射。

4.瞬时加热与冷却固化:激光束聚焦后,对工件局部加热,使其达到熔点并融化。

然后,在激光束停止作用后,工件迅速冷却固化,从而实现焊接。

5.辅助装置:为了实现更好的焊接效果,常常使用辅助装置,如气体保护装置、焊缝支撑装置等,以控制焊接过程中的温度、压力和形状,从而实现高质量的焊接。

2. 激光焊接的应用技术激光焊接作为一种高效、精确的焊接方法,广泛应用于多个领域。

以下是激光焊接的一些主要应用技术:1.金属焊接:激光焊接在金属焊接领域有着广泛的应用。

它可以用于焊接各种金属材料,如钢、铝、铜等。

激光焊接具有焊接速度快、热影响区小、焊缝质量高等优点,在汽车制造、航空航天等领域得到广泛应用。

2.电子设备焊接:激光焊接可以精确控制焊接过程中的温度和形状,非常适用于微电子器件的焊接。

常见的应用包括电路板的微焊接、半导体器件的封装焊接等。

3.光纤连接:激光焊接在光纤通信领域也有重要应用。

激光焊接可以实现光纤端面的精确对接,提高光纤连接的质量和稳定性,从而提高光纤通信的效果。

4.医疗器械焊接:激光焊接在医疗器械的生产过程中起着重要作用。

激光焊接可以实现对生物材料的精确焊接,如钛合金、不锈钢等,用于制作人工关节、牙科器械等医疗器械。

5.精细零件焊接:激光焊接在微细零件的焊接上表现出优势。

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势激光焊接技术是一种高精度、高效率的焊接技术,已经广泛应用于许多领域。

下面将介绍激光焊接技术的应用及其发展趋势。

1. 电子制造业:激光焊接技术可以用于微细电子元件的焊接,如集成电路芯片的焊接,具有高精度、高质量的特点。

激光焊接技术还可以用于手机、电脑等电子产品的组装,可以提高产品的生产效率和质量。

2. 汽车制造业:激光焊接技术可以用于汽车零部件的焊接,如车身、底盘等部件的连接。

激光焊接技术具有高焊接速度、窄焊缝宽度、焊接强度高等优点,可以提高汽车制造过程中的焊接质量和效率。

4. 医疗器械制造业:激光焊接技术可以用于医疗器械制造过程中的焊接,如激光焊接手术器械的连接。

激光焊接可以提供高精度焊接,减少了传统焊接过程中可能带来的感染和污染的风险。

1. 高功率激光焊接技术:随着科技的不断发展,激光焊接技术的功率不断提高,从而提高了焊接的速度和质量。

目前,已经有大功率激光焊接技术应用于汽车制造和航空航天等领域。

2. 激光焊接自动化:随着机器人技术的发展,激光焊接技术与机器人技术的结合越来越紧密,实现了激光焊接的自动化。

通过机器人进行激光焊接可以提高生产效率和质量,并减少劳动力成本。

3. 激光焊接微尺度加工:随着激光技术的不断发展,激光焊接技术应用于微尺度加工领域的研究也不断深入。

激光纳米焊接技术可以实现纳米级的焊接,为微电子器件的制造提供了新的可能性。

4. 激光焊接材料的研究:随着材料科学的不断发展,新的材料在激光焊接中的应用也得到了研究。

激光和纳米材料的相结合可以实现高强度、高精度的焊接。

激光焊接技术已经得到了广泛应用,并且在不断发展中。

随着技术的进步,激光焊接技术将在更多领域发挥重要作用,并为人们的生产和生活带来更多的便利。

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势激光焊接技术是一种高能量密度焊接技术,是将激光束聚焦在焊缝上,通过熔化和凝固来实现焊接的一种方法。

激光焊接技术具有高速度、高质量、高灵活性等优点,被广泛应用于航空航天、汽车制造、电子设备、医疗器械等行业。

本文将介绍激光焊接技术的应用及其发展趋势。

一、激光焊接技术的应用领域1.航空航天领域航空航天领域对焊接材料的质量要求非常高,激光焊接技术的高能量密度可以实现深度焊接,并减少热影响区域,从而实现高质量的焊接。

激光焊接技术广泛应用于飞机发动机、航天器结构件等领域。

2.汽车制造领域汽车制造领域对焊接的要求也非常苛刻,激光焊接技术可以实现高速度焊接,提高生产效率,同时由于激光束的小尺寸和高能量密度,可以实现对焊接部位的精确控制,提高焊接质量,减少焊接变形。

3.电子设备领域激光焊接技术在电子设备领域的应用主要是焊接微小器件和电路板。

激光焊接技术可以实现对微小器件的定位焊接,提高焊接精度。

并且由于激光焊接技术不接触焊接材料,可以避免对电子元器件的损伤,提高产品的可靠性。

4.医疗器械领域激光焊接技术在医疗器械领域应用广泛,如激光焊接人造关节、激光焊接医用钛合金等。

激光焊接技术可以实现对材料的精确加热,避免对材料的过热和氧化,保证焊接质量,提高产品的可靠性。

1.高功率激光焊接技术随着高功率激光器的发展,激光焊接技术的焊接速度和焊缝深度将进一步提高。

高功率激光焊接技术可以实现对厚板和三维结构的快速焊接,提高生产效率。

2.多轴联动激光焊接技术多轴联动激光焊接技术可以实现对三维曲面的焊接,提高焊接质量。

该技术将多个激光源进行联动控制,实现对复杂结构的焊接,广泛应用于汽车制造、船舶制造等行业。

3.光纤激光焊接技术光纤激光器具有体积小、灵活性高、可移动性强等优点。

光纤激光焊接技术可以实现对微小焊接部位的精确加热,广泛应用于电子设备、微电子器件等领域。

4.智能化激光焊接技术随着人工智能技术的发展,激光焊接技术也逐渐实现智能化。

激光焊的特点及其应用

激光焊的特点及其应用

激光焊的特点及其应用一、激光焊的特点1、优点激光焊是以高能量密度激光束作为热源的熔焊方法。

采用激光焊,不仅生产率高于彳专统的焊接方法,而且焊接质量也得到显著提高。

与一般焊接方法相比,激光焊具有以下特点。

1)聚焦激光束具有很高的功率密度(105~107W∕cm2或更高),加热速度快,具有高深宽比(在穿孔焊接的情况下,焊缝深度与宽度之比可以达到10:1),焊接速度快特点,可实现深熔焊和高速焊。

激光焊接可以实现电脑或者数位控制,焊接速度相比传统焊接要快3-5倍,可明显提高焊接效率,提升整体制造效率。

2)焊缝平整美观,焊后无需处理或只需简单处理工序,同时焊缝质量高,无气孔,焊后组织可细化,焊缝强度、韧性相当于甚至超过母材金属。

4)激光加热范围小(<1mm),在同等功率和焊件厚度条件下,可将热量输入减少到最小所需量,热影响区变化范围小,热传导引起的变形也最低。

5)激光能发射、透射,能在空间传播相当距离而衰减很小,通过光导纤维、棱镜等光学方法弯曲传输、偏转、聚焦,并精确控制,聚焦光点小,可高精度定位,易实现自动化,特别适合于微型零件、难以接近的部位或远距离的焊接。

6)激光在大气中损耗不大,可以穿过玻璃等透明物体,适合于在玻璃制成的密封容器里焊接被合金等剧毒材料,同时激光不受电磁场影响,不存在射线防护,也不需要真空保护。

7)可焊接某些异种材料和一般焊接方法难以焊接的材料,如高熔点金属、非金属材料(如陶瓷、有机玻璃等)、对热输入敏感的材料都可激光焊,且焊后无需热处理。

8)激光焊接技术属于非接触式焊接,焊接方式不同于传统焊接,无需使用电极,对机具的损耗和形变影响非常少,能够将热入量很大限度的降低,降低因热传导产生的不利影响发生率。

2.局限性1)由于光束质量和激光功率的限制,激光束的穿透深度有限,高功率、高光束质量的激光器加工成本高,激光器特别是高功率连续激光器,价格昂贵,目前工业用激光器的最大功率为20kW,可焊接的最大厚度约20mm,比电子束焊小得多。

激光焊接技术的应用及发展

激光焊接技术的应用及发展

激光焊接技术的应用及发展激光焊接技术是一种利用激光束加热材料来完成焊接过程的高精度焊接技术。

它具有高效、快速、无损、精确等优点,已经广泛应用于汽车制造、航空航天、电子电器、金属加工等领域。

随着科技的不断进步和人们对产品质量要求的提升,激光焊接技术也在不断发展。

激光焊接技术的应用范围非常广泛。

在汽车制造领域,激光焊接可以用于车身焊接、发动机焊接、轮毂焊接等,提高了汽车的结构强度和整体质量。

在航空航天领域,激光焊接可以用于航空发动机部件、燃烧室、涡轮叶片等的焊接,提高了零部件的耐高温性能和结构强度。

在电子电器领域,激光焊接可以用于电子元器件的焊接,确保焊接点的稳定性和可靠性。

在金属加工领域,激光焊接可以用于金属板材的拼接焊接,提高了工件的精确度和焊接强度。

激光焊接技术的发展也呈现出三个主要趋势。

首先,激光焊接设备的性能不断提升,如激光功率的增加、脉冲宽度的减小、光斑质量的改善等,使得激光焊接技术能够应用于更多领域。

其次,激光焊接技术正向微小化、集成化发展,如激光焊接头的微型化、激光焊接机器人的智能化等,提高了焊接的精确度和效率。

最后,激光焊接技术正与其他相关技术结合,如激光-电弧复合焊接技术、激光-电阻焊接技术等,进一步扩大了激光焊接技术的应用范围。

然而,激光焊接技术仍然存在一些挑战和限制。

首先,激光设备的成本较高,导致激光焊接技术在一些领域的应用受到限制。

其次,激光焊接过程对操作人员的要求较高,需要专业的技术人员进行操作和维护,增加了工作的复杂性和难度。

此外,一些特殊材料的焊接,如高反射性材料和高导热性材料的焊接,仍然存在着一定的难度和技术挑战。

总之,激光焊接技术的应用广泛且前景广阔,它具有高效、快速、无损、精确等优点,已经成为现代工业生产中不可或缺的焊接技术之一、虽然激光焊接技术在应用中仍面临一些挑战和限制,但随着科技的不断进步,相信这些问题都可以得到解决,激光焊接技术将会发展得更加成熟和完善。

激光焊接工艺技术应用

激光焊接工艺技术应用

激光焊接工艺技术应用激光焊接是一种利用激光束对焊接材料进行熔融并连接的高精度焊接技术。

该技术具有焊接速度快、热影响区小、焊缝形貌良好等优点,广泛应用于航空航天、机械制造、电子电器等领域。

激光焊接工艺技术主要包括预处理、焊接参数选择、设备调试和焊接过程控制等环节。

首先,对被焊材料进行准备工作,包括清洁、去除氧化层和表面处理。

其次,根据材料的性能和工件的尺寸、厚度等因素,选择合适的焊接参数,包括激光功率、聚焦焦距、焊缝形状等。

然后,进行设备的调试和焊接过程的控制,包括激光器的准直、对焦、冷却系统的温度控制等。

激光焊接技术的应用非常广泛。

在航空航天领域,激光焊接被用于航空发动机、飞机机身等关键结构件的焊接。

由于激光焊接能够实现高能量密度焊接和小热影响区,使得焊接接头更加牢固,减少了焊接变形,提高了零件的可靠性和耐久性。

在机械制造领域,激光焊接被广泛应用于汽车、摩托车等零部件的制造。

与传统的焊接方法相比,激光焊接可以实现更小的焊缝宽度和更高的焊接速度,提高了焊接质量和生产效率。

在电子电器领域,激光焊接常用于精密器件的连接。

由于激光焊接对物体的加热范围小,几乎没有热变形,可以实现高精度的焊接,并且不会产生气味和杂质,保持了器件的原始性能。

然而,激光焊接技术也存在一些挑战和限制。

首先,激光焊接设备价格较高,需要技术工人的熟练操作和维护。

其次,焊接材料和工件的选择对焊接质量有很大影响,不同材料的焊接特性不同,需要针对性的工艺参数选择和优化。

再次,激光焊接对环境要求较高,需要在干燥、无尘的条件下进行,以避免对焊接质量的影响。

总之,激光焊接工艺技术是一种高精度、高效率的焊接方法,广泛应用于航空航天、机械制造、电子电器等领域。

随着激光源和焊接设备的不断改进和发展,激光焊接技术将在更多领域发挥重要作用。

同时,我们也需要不断完善激光焊接工艺技术,解决其存在的问题和挑战,提高焊接质量和生产效率。

激光焊接的特点

激光焊接的特点

一、激光焊接的主要特性激光焊接是激光材料加工技术应用的重要方面之一。

20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。

由于其独特的优点,已成功应用于微、小型零件的精密焊接中。

高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。

获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。

与其它焊接技术相比,激光焊接的主要优点是:1、速度快、深度大、变形小。

2、能在室温或特殊条件下进行焊接,焊接设备装置简单。

例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。

3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。

4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。

5、可进行微型焊接。

激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。

6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。

尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。

7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。

但是,激光焊接也存在着一定的局限性:1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。

这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。

若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。

2、激光器及其相关系统的成本较高,一次性投资较大。

二、激光焊接热传导激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。

在激光与金属的相互作用过程中,金属熔化仅为其中一种物理现象。

激光焊接 原理

激光焊接 原理

激光焊接原理激光焊接原理激光焊接是一种高精度、高效率的焊接方法,广泛应用于工业制造领域。

其原理是利用激光束的高能量密度和聚焦性,将材料加热至熔化点,使其发生熔合。

下面将详细介绍激光焊接的原理及其应用。

一、激光焊接的原理1. 激光的特性激光是一种具有高度聚焦性和单色性的光束,其能量密度高,可在短时间内提供足够的热量使材料熔化。

激光的单色性使其具有较小的光斑直径,从而实现高精度的焊接。

2. 热传导与熔池形成激光束照射到工件表面后,被吸收的能量迅速转化为热能,使工件表面局部区域升温。

热能通过热传导向周围区域传递,使材料迅速达到熔点。

同时,激光束的高能量密度使熔化的材料形成一个熔池,通过熔池的流动和混合,实现焊接。

3. 激光焊接的方式激光焊接可分为传导式焊接和深熔焊接两种方式。

传导式焊接是指激光束透过工件表面,照射到焊缝上方,热量通过热传导实现焊接。

深熔焊接是指激光束直接照射到焊缝上,使其瞬间加热至熔化点,形成深熔池,然后通过熔池的流动实现焊接。

二、激光焊接的应用1. 金属焊接激光焊接广泛应用于金属焊接领域,如汽车制造、航空航天、电子设备制造等。

激光焊接具有热影响区小、焊缝质量高、焊接速度快等优点,能够满足高精度、高强度的金属焊接需求。

2. 塑料焊接激光焊接也可用于塑料焊接。

塑料焊接通常采用透明塑料,激光束透过塑料表面照射到焊接区域,使其迅速加热至熔化点,然后通过熔池的混合实现焊接。

激光焊接可实现高强度的塑料焊接,广泛应用于光学器件、医疗器械等领域。

3. 精密焊接激光焊接由于其高度聚焦性和高能量密度,可实现微小尺寸的焊接。

这使得激光焊接成为精密器件的理想焊接方法,如电子器件、微电子封装等领域。

4. 自动化焊接激光焊接可与机器人技术相结合,实现自动化生产。

激光焊接的高精度和高效率使其成为自动化焊接的重要技术,可广泛应用于汽车制造、电子设备制造等领域,提高生产效率和产品质量。

总结:激光焊接是一种高精度、高效率的焊接方法,其原理基于激光束的高能量密度和聚焦性。

激光焊接技术发展概述

激光焊接技术发展概述

激光焊接技术发展概述激光焊接技术是一种高能量密度的焊接方法,利用激光束对工件进行加热,从而实现焊接的目的。

随着科学技术的不断进步,激光焊接技术在工业生产中得到了广泛应用。

本文将对激光焊接技术的发展历程和应用领域进行概述。

一、激光焊接技术的起源激光焊接技术源于20世纪60年代初期,最早由西德的Hans-Joachim Herwig在研究激光加工过程中提出。

最初的激光焊接设备体积庞大、价格昂贵,并且只能处理一些小规模生产的应用。

然而,随着激光技术的进步和成本的降低,激光焊接技术逐渐成熟并得到广泛应用。

二、激光焊接技术的分类及特点根据激光的不同类型和加热方式,激光焊接技术可分为多种类型。

常见的激光焊接技术包括CO2激光焊接、光纤激光焊接和固体激光焊接等。

每种激光焊接技术都有其特点和适用范围。

CO2激光焊接技术具有能量高、热影响区小、焊缝质量好的特点,适用于各种金属材料的焊接。

光纤激光焊接技术则具有设备紧凑、操作便捷的特点,适用于精细焊接和高速自动化生产。

固体激光焊接技术结合了CO2激光焊接和光纤激光焊接的优点,具有高质量、高效率和高稳定性的特点,广泛应用于汽车、航空航天、电子和医疗等领域。

三、激光焊接技术的应用领域激光焊接技术在各个领域都得到了广泛的应用。

在制造业中,激光焊接技术可以用于金属构件的连接、零件的修复以及微细零件的组装。

在汽车行业,激光焊接可以提高车身的强度和刚度,提高整车的质量和安全性。

在航空航天领域,激光焊接技术可以用于飞机零部件的制造和维修。

在电子行业,激光焊接可以用于电子器件的封装和印刷线路板的制造。

在医疗领域,激光焊接技术可以用于人工关节的制造、牙科修复以及激光治疗。

四、激光焊接技术的发展趋势随着科学技术的不断进步,激光焊接技术也不断得到改进和完善。

未来,激光焊接技术的发展主要体现在以下几个方面。

首先是设备技术的创新和改进。

随着激光器的性能提高和成本的降低,激光焊接设备将变得更加紧凑、高效和智能化。

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势激光焊接技术是一种高效、精密的焊接方法,随着科学技术的不断发展,激光焊接技术在各个行业中得到了广泛的应用,并且在未来的发展中有着巨大的潜力。

本文将从激光焊接技术的原理和特点、应用领域以及发展趋势等方面进行详细的介绍和分析。

一、激光焊接技术的原理和特点激光焊接是利用激光束对焊接材料进行加热、熔化和冷却,从而实现焊接的一种高技术焊接方法。

激光焊接技术有非常突出的优势,首先是在焊接过程中激光束经聚焦后能够提供高能量密度的热源,因此可以实现高速、高温的熔化焊接。

激光焊接不需要接触,可以实现对材料的非接触式加工,避免了传统焊接中容易产生的氧化、变形等问题。

激光焊接还具有热影响区小、焊接变形小、焊缝质量高等优点。

激光焊接技术得到了越来越广泛的应用,并在许多行业中取代传统的焊接方法。

二、激光焊接技术的应用领域1. 汽车制造业在汽车制造业中,激光焊接技术被广泛应用于汽车车身的生产中。

激光焊接可精确控制焊接的温度和深度,可以实现对汽车车身的高精度焊接,使得焊接接缝更加紧密,提高了车身的强度和密封性,同时还能够减轻车身重量,提高汽车的燃油经济性。

2. 航空航天制造业在航空航天领域,由于激光焊接技术的高精度和高质量优势,被广泛用于制造航天器结构、航空发动机、导弹、卫星等领域。

激光焊接技术可以提高航空器和航天器的耐热性能、降低结构重量、提高使用寿命,同时还能够提高制造效率和降低生产成本。

3. 电子电气制造业在电子电气制造业中,激光焊接技术被广泛应用于生产半导体器件、电子元器件、电机线圈等领域。

激光焊接技术可以实现对薄膜、微小零件的高精度焊接,同时还能够避免污染和热影响,提高器件的性能和质量。

1. 多波长激光焊接技术传统激光焊接技术只能使用单一波长的激光进行焊接,而多波长激光焊接技术可以利用多种波长的激光,通过组合和调控不同波长的激光来实现对不同材料的高效焊接。

多波长激光焊接技术可以提高焊接质量和效率,拓宽了激光焊接技术的应用范围。

激光焊接及其应用

激光焊接及其应用

激光焊接及其应用激光焊接及其应用一、激光焊接的主要特性。

激光焊接是激光材料加工技术应用的重要方面之一。

20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。

由于其独特的优点,已成功应用于微、小型零件的精密焊接中。

高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。

获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。

与其它焊接技术相比,激光焊接的主要优点是:1、速度快、深度大、变形小。

2、能在室温或特殊条件下进行焊接,焊接设备装置简单。

例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。

3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。

4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。

5、可进行微型焊接。

激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。

6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。

尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。

7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。

但是,激光焊接也存在着一定的局限性:1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。

这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。

若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。

2、激光器及其相关系统的成本较高,一次性投资较大。

二、激光焊接热传导。

激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。

简述激光焊接的原理及应用范围

简述激光焊接的原理及应用范围

简述激光焊接的原理及应用范围1. 激光焊接的原理激光焊接是一种利用激光束的能量将材料融合在一起的焊接技术。

其原理基于激光束的高能量浓度和方向性。

下面是激光焊接的主要原理:1.1 能量吸收激光束作为高能量光束,可以被工件表面吸收,这使得工件处于高温的能量环境中。

1.2 热传导当工件表面的能量被吸收后,热量会通过热传导方式向工件内部传递,导致工件达到融化温度。

1.3 熔融和混合当工件表面达到融化温度时,激光束继续提供能量,使得工件表面的材料熔化并混合在一起。

1.4 固化当激光束停止提供能量时,工件表面的熔融材料会迅速冷却并固化。

1.5 结合通过上述过程,激光焊接能够将材料牢固地结合在一起。

2. 激光焊接的应用范围激光焊接由于其高能量、高精度和高速度的特点,被广泛应用于多个行业。

下面是激光焊接的常见应用范围的列点:•电子电器行业:激光焊接可以用于电子元件的连接,如印刷电路板、连接线和芯片等。

•汽车行业:激光焊接可用于汽车零部件的连接,如发动机零部件、车身结构和空调系统等。

•航空航天行业:激光焊接可用于航空航天零部件的连接,如飞机机身、燃气轮机和导弹结构等。

•医疗行业:激光焊接可用于医疗器械的连接,如手术器械、假体和牙科器械等。

•光学行业:激光焊接可用于光学元件的连接,如镜片、光纤和激光器等。

•金属加工行业:激光焊接可用于金属制品的连接,如钢结构、管道和工艺品等。

3. 激光焊接的优势和限制激光焊接作为一种先进的焊接技术,具有许多优势,但也存在一些限制。

下面列出了激光焊接的优势和限制:3.1 优势•高精度:激光焊接可以实现微米级的焊接精度,适用于需求精细焊接的应用。

•高速度:激光焊接可实现快速焊接,提高生产效率。

•高能量密度:激光焊接能够提供高能量密度,使得焊接过程更加均匀和快速。

•无接触焊接:激光束无需与工件接触,减少了机械应力和热变形的风险。

•无需填充材料:激光焊接不需要额外的填充材料,节省了成本和材料浪费。

激光焊接技术特点及应用领域

激光焊接技术特点及应用领域

其集 中在聚 焦装置 中产生 巨大能量 的光束 , 当高强度 激光 束照射 在材料 表 面, 上 = 时, 部分光 能将被材 料吸收 而转变成 热能 , 使材料熔 化 , 从 而达 到 焊接 的 目的。一般要 根据 金属材料 的光学性质 ( 如反射和 吸收) 和热学性 质( 如熔 点、 热传 导率 、 热扩散率 、 熔化潜 热等) 来决定所使 用 的激 光的功 率 密 度 和脉 宽等 ,对 普 通 金属 来 说 ,光 强 吸收 系 数 大 约 在 1 0 5~ i O 9 C m 数量级 。如果激光 的功 率密度为 l 0 5~ 1 0 9瓦 /C m 2 则在 金属表面 的穿透深度 为微米数量级 。为避 免焊接时产 生金属飞溅或 陷坑 , 要控制激 光功率密度 , 使金属表面温 度维持在沸 点附近 。对一般金
的应用场合 。激光 束的紧密 聚集 、 热 量 向工件 的有效传 递 以及 狭小 的热 影 响区等 优 点, 也带 来 了接 头装 配 的难 题 , 很小 的组 装偏差 就会 导致 焊 接 条件 较大 的变化 , 甚至 很窄 的间 隙 0 . I m m ) 也能 引起激 光辐 射耦 合 的缺陷和热效 率的降低 。高反射 率材料 ( 如铝、 铜 等) 的激光焊 接 , 如 要减 少 反射 , 则需要仔 细优化激光辐 射的条件 , 必要时还 需采用 涂层材料 。同 时, 这些金 属的热 导率较大 , 在焊接 启动时应 使用较 高的激光 能量密度 , 这 有时会 导致激光 反射 回激 光器 , 从而引起光 学元件 的损坏 。构件在 焊 接 过程 中的装 配偏 差也可 能引起 激光柬具有 危险性 的反射 。
中得到 了高度 重视。 1激 光 焊 接 技 术 激 光焊接是 以高功率聚焦 的激 光束为热源 ,熔 化材料形 成焊接接头 的高精度高效 率焊接方法 。激光 技术采用偏光镜 反射激光产 生的光束使

激光焊接原理及工艺应用

激光焊接原理及工艺应用
激光特点
相干性好: 普通光源上不同点发出的光在不同方向上、不同时间里都是杂乱无章的,经过透镜后也不可能会聚在一点上。 激光与普通光相比则大不相同。因为它的频率很单纯,从激光器发出的光就可以步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来,这就叫相干性高。一台巨脉冲红宝石激光器的亮度可达1015w/cm2·sr,比太阳表面的亮度还高若干倍。方向性强 激光的方向性比现在所有的其他光源都好得多,它几乎是一束平行线。如果把激光发射到月球上去,历经38.4万公里的路程后,也只有一个直径为2km左右的光斑。单色性好: 受激辐射光(激光)是原子在发生受激辐射时释放出来的光,其频率组成范围非常狭窄,通俗一点讲,就是受激辐射光单色性非常好,激光的“颜色”非常的纯(不同颜色,实际就是不同频率)。激光的单色性是实现激光加工的重要因素。我们可以通过简单的物理实验来说明这个问题亮度高
激光器分类
YAG脉冲激光焊接机由于加工精度高,热输入量小,工件变形小,生产效率快,自动化程度高等优点,被广泛应用于IT消费类电子产品的加工制造中
2、激光焊接原理及特性
激光焊接原理
激光焊接原理
激光焊接是利用激光束优异的方向性和高功率密度等特性进行工作,通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。
激光焊接的特性
焊接方式
热影响区
热变形
焊缝质量
是否添加焊料
焊接环境
激光焊接
较小
较小
较好

无要求
电子束焊
较小
较小
较好

真空
等离子弧焊
一般
一般
一般

激光焊实践操作心得体会

激光焊实践操作心得体会
随着我国科技的不断发展,激光焊接技术在我国得到了广泛的应用。作为一名焊接专业的学生,我有幸参加了激光焊实践操作课程。通过这段时间的学习和实践,我对激光焊接有了更深入的了解,以下是我对激光焊实践操作的一些心得体会。
一、激光焊接的基本原理
激光焊接是利用高能量密度的激光束对材料进行局部加热,使材料熔化并迅速凝固,从而实现连接的一种焊接方法。激光焊接具有以下几个特点:
(4)焊接接头的检测:焊接完成后,对焊接接头进行外观检查和性能检测,如拉伸试验、弯曲试验等。
3. 实践操作体会
(1)提高安全意识:激光焊接过程中,激光束具有极高的能量密度,操作人员需严格遵守安全操作规程,确保自身和他人的安全。
(2)注重细节:在焊接过程中,细节决定成败。例如,焊接材料表面的清洁、焊接参数的设置等,都会对焊接质量产生影响。
二、激光焊接实践操作心得
1. 实践前的准备工作
在进行激光焊接实践操作之前,我们需要做好以下准备工作:
(1)了解激光焊接的基本原理、设备性能和操作规程。
(2)熟悉激光焊接设备的操作方法,包括激光器的开启、关闭、调节等。
(3)了解焊接材料的特性和焊接参数的选择。
(4)掌握焊接过程中的安全操作规程。
2. 实践操作过程
(1)焊接材料的选择:根据焊接要求,选择合适的焊接材料。例如,焊接不锈钢时,可以选择304、316等不锈钢材料。
(2)焊接参数的设置:根据焊接材料和厚度,合理设置激光功率、扫描速度、焦点位置等焊接参数。
(3)焊接过程的观察:在焊接过程中,注意观察焊接效果,如焊缝的形状、熔深、熔宽等。如有异常情况,及时调整焊接参数。
(3)不断总结经验:在实践操作过程中,遇到问题要及时分析原因,总结经验,为以后的工作打下坚实基础。

激光焊接技术标准版资料

激光焊接技术标准版资料

(激b光)拼在焊造在船车业身业中中的的、应应造用用船业等, 或者一些投资较大的特殊领域, 如航空航天业、核能工业等。
激光拼焊在车身中的应用
制造的平板光滑、平整、热变形小,省略了整平修复工作,使后续的型材焊接更容易进行;
采用激光焊接焊接航空发动机主要构件(叶片、(燃烧a室)等在);汽车工业中的应用
激光-电弧复合焊示意图
激光焊接在汽车制造中的应
用始于变速器的齿轮焊接,由于
采用了激光焊接,焊接后的齿轮
功率密度大于105-107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特。
采用激光焊接焊接航空发动机主要构件(叶片、燃烧室等);
几乎没有焊接变形,不需要焊后
激光加工技术主要包括激光焊接、激光表面处理、激光打孔、激光切割、激光快速成型、激光烧结合成功能陶瓷材料技术、激光制膜
而实现加工的目的。
激光焊接用于航转空化发动率机较零部低件,的修不理足。 10%。
激光填丝焊示意图
(4)激光束可以聚焦到很小的区域,适合进行小型件的焊接。
高质量的激光单(面焊4)使的焊大接型平过板程工件中的焊可接能加工产无生需翻等身离; 子体,影
小孔随着激光束的移动而移动,液态金属向反方向流动填充小孔移开后留下的空隙,并冷却形成焊缝。
(2)激光焊接的特点
优点: (1)激光焊接属于非接触性焊接过程,机具的损耗与变形可降至最低。 (2)焊缝窄,熔深比大,焊接接头热影响区小,焊后工件变形小。 (3)不需要在真空条件下进行,焊接不受磁场影响。(比之于电子束焊) (4)激光束可以聚焦到很小的区域,适合进行小型件的焊接。 (5)可焊材质范围大,能够实现难焊金属的焊接,可用于异种金属焊接。 (6)柔性大,易于实现高速自动化焊接,等等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
KeywordsLaser welding, Beam quality, processing characteristics, application
0前言
激光是20世纪以来,人类的又一重大发明,它是由美国科学家C.H.Towens和T.H.Maiman等在1960发明出来的。激光是辐射的受激发射光放大的简称,是一种电磁波,是通过人工增幅产生的。随着激光技术的不断发展,激光作为一种新型能源在焊接方面也被广泛的应用[1]。激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率CO2和高功率的YAG激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其应用越来越广。
表2激光光束模式与M2值的关系
模式名
M2值
TEM00
1
TEM10
2.70
TEM20
4.48
2
激光焊接具有其独到的优势,在激光焊接过程中,当激光束触及到激光材料时,其能量通过热传导传输到工件表面以下更深处。在激光热源的作用下,材料熔化、蒸发,并穿透工件的厚度方向形成狭长空洞,随着激光焊接的进行,小孔在两工件之间的接缝区域移动,进而形成焊缝。激光焊接的显著特征是大熔深、窄焊道、ቤተ መጻሕፍቲ ባይዱ热影响区以及高功率密度。激光焊接代表着一种在微小区域内加热与冷却之间的精细平衡。激光焊接的目的是通过辐射吸收产生液态熔池,并使之长到理想尺寸,然后沿固体界面移动,消除被焊构件的初始缝隙,形成高质量的焊缝。
激光焊接的热源是激光束,产生激光柬的设备是激光器,各种激光器(输出功率4-5 kW)的特性数据如表1所示。包括激光电源、激光冷却系统及激光器本体在内的总占地面积结果显示,半导体激光设备和光纤激光设备的总占地面积是比较小的。从运行费用、电源设备费用、激光装置总有效功率等方面来看,半导体激光是最好的,其次是光纤激光。
1.2激光光束质量BPP
激光束的光束质量是激光器输出特性中的重要指标参数,所以对光束质量的评定具有重要意义。光束质量及传输特性的定义如图1所示[2]。
D-透镜的直径;f-透镜的焦距;ω-焦点半径;b-激光焦深;θ-激光束发散角
图1光束的传输特性
根据ISO-1l 146标准规定BPP的表达式为
(公式1)
(6)属于非接触焊接,接近焊区的距离比电弧焊的要求低,焊区材料的疲劳强度比电子束焊接高;
(7)当激光束进入熔融孔道时,光束反复反射并对孔壁金属表面相互作用(即壁聚焦效应)过程中,如遇到夹杂物(如氧化物、硅化物)时,便首先被吸收。不纯杂质有选择的被加热并被汽化而逸出焊缝。激光焊接接头的韧性与母材相当或高于母材[4]。
[3]刘必利,谢颂京,姚建华.激光焊接技术应用及其发展趋势[J].激光与光电子学进展,2005,42(9):43-46.
[4]Kristensen J K.Laser welding in the heavy steel industry[J].Welding review International,1996,(2):55.
Abstractlaser welding is one of important aspects of laser processing material processing technology application, while wavelength and application of laser have significant effects on welding ser welding heat-laser, and its characteristics of output-BPP (Beam Parameter Product) were firstly introduced in this paper to expound characteristics of BPP under different kinds of laser beams. Meanwhile, process parameters of laser welding technology and existed problems were discussed, and its applications in automobile, electronic, biomedicine and aerospace areas were analyzed briefly.
关键词激光焊接;光束质量;工艺特点;应用
Characteristics and applications of laser welding technology
Hao Kangda
(Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074)
激光焊接技术特性及应用
摘要激光焊接是激光加工材料加工技术应用的重要方面之一,而激光的波长和用途对焊接质量有着显著的影响。本文从光焊接热源(激光器),以及其输出特性(光束质量)入手,来阐述不同种类的激光光束质量的特性,同时对激光焊接技术的工艺特点及存在的问题进行了论述,对激光焊接在汽车工业、电子工业、生物医学及航空航天工业等方面的应用也进行了简要的分析。
光束质量BPP与激光束焦点直径d的关系
(公式2)
光束质量曰PP与激光焦深b的关系
(公式3)
对于光能密度简单,有一定规律的光束,一般采用光束模式来描述光束的空间分布。激光的模式用TEMmnq来表示,TEM(transverse electromagnetic wave)是横电磁波的缩写,其中,q为纵模系数,一个g只对应一个频率;m、n为横模序数。因为激光横截面的强度分布对激光加工影响极大,所以激光焊接加工时只考虑激光的横模,记为TEMmn。,当m、n=0时,称为基膜,其光强按照高斯函数分布,光束质量最好。激光束模式与M2的关系如表2所示。M2值越趋近1时,激光束的质量越好。
3.
美国在20世纪70年代初的航空、航天工业中即已利用15kW的CO2激光器针对飞机制造业中的各种材料、零部件,进行焊接试验及评估工艺的标准化。在欧盟国家中,意大利首先于20世纪70年代末从美国引进15kW的CO2激光器,随后由联盟对航空发动机、航天工业中的各种容器及轻量级结构立项,开展了长达8年的激光焊接应用研究。材料涉及钛合金、镍基、铁基高温合金等。近年来,新的应用成果是铝合金飞机机身的制造,用激光焊接技术取代传统的铆钉,从而减轻飞机机身的重量近20%,提高强度近20%,此项技术计划用于空中客车3l8、380以及一些无人驾驶飞机的制造[8]。
参考文献:
[1]刘其斌.激光加工技术及其应用[M].北京:冶金工业出版社,2007.
[2]Takeshi Araya.The Characteristics of Laser Beam Quality[J].Welding Technology (in Japanese),2005,53(6):122-129.
式中BPP为激光束质量(单位:mm·mrad);ω为焦点半径(单位:mm);λ为光波波长(单位:μm);2θ为激光束发散角(单位:mrad),2θ=2λ/π,ω=4λ/πd,π为圆周率(单位:rad)。
M2=θ ω/ ω0, ω0是TEM00模式(高斯模式或单模模式)时的光束质量,θ ω是TEMnm模式(多模模式)时的光束质量,M2值是多模模式的光束质量θ ω与单模模式的光束质量 ω0比值。
3.2
激光焊接在电子工业中,特别是微电子工业中得到了广泛的应用。在集成电路和半导体器件壳体的封装中,显示出独特的优越性。在真空器件研制中,激光焊接也得到了应用,如钼聚焦极与不锈钢支持环、快热阴极灯丝组件等。传感器或温控器中的弹性薄壁波纹片其厚度在0.05~0.1mm,采用传统焊接方法难以解决,TIG焊容易焊穿,等离子稳定性差,影响因素多,而采用激光焊接效果很好,得到广泛的应用[6]。
1
12-15
35
7
光学2000
闪光灯500-1000
25
0.6
CO2激光器
10.600
6
6-7
12
2
光学2000
送气20000
6
0.1
碟片激光(YAG)
1.030
15
7-8
35
7
光学2000
LD10000
8
0.2
光纤激光
1.070
20
1
35
7
LD50000
3
0.1
另外,从维修费用和元件使用寿命的角度出发,半导体激光和光纤激光的维修费用小且元件使用寿命较长。元件的使用寿命基本上是由半导体元件的寿命决定的。例如光纤激光的半导体元件的使用寿命大约是50 000 h。对于C02激光和YAG激光而言,除了激光器用泵浦源外,还得考虑光学系统的维修费用。例如,灯泵浦的YAG激光的光学系统的寿命大约是2000h,灯管的寿命大约是500-l 000h。实际上,各种元件的使用寿命根据厂家的不同而不同。作为严密的评价,这方面是必须考虑的。
与一般焊接方法相比,激光焊具有以下特点:
(1)聚焦后的激光具有很高的功率密度(105~107W/cm2或更高),焊接以深熔的方式进行;由于激光加热的范围小,在同种功率和焊接厚度条件下,焊接速度高,热输入小,热影响小,焊接应力和变形小[3];
(2)激光能发射、透射,能在空间传播相当距离而衰减很小,可以进行远距离或一些难以接近部件的焊接,激光可通过光导纤维、棱镜等光学的方法弯曲传输、偏转、聚焦,特别适合于微型零件的焊接;
2
3.1
德国奥迪、奔驰、大众、瑞典的沃尔沃等欧洲的汽车制造厂早在20世纪80年代就率先采用激光焊接车顶、车身、侧框等钣金焊接,20世纪90年代美国通用、福特和克莱斯勒公司竟相将激光焊接引入汽车制造,尽管起步较晚,但发展很快。意大利菲亚特在大多数钢板组件的焊接装配中采用了激光焊接,日本的日产、本田和丰田汽车公司在制造车身覆盖件中都使用了激光焊接和切割工艺,高强钢激光焊接装配件因其性能优良在汽车车身制造中使用得越来越多[5]。
相关文档
最新文档