【解析版】2013年普通高等学校招生统一考试江苏省数学卷
2013年高考理数真题试卷(江苏卷)及解析
第1页,总14页…………装…………○…___________姓名:___________班级…………装…………○…2013年高考理数真题试卷(江苏卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明第II 卷(非选择题)请点击修改第II 卷的文字说明一、填空题(题型注释)1.函数y=3sin (2x+ π4 )的最小正周期为 .2.设z=(2﹣i )2(i 为虚数单位),则复数z 的模为 .3.双曲线 x 216−y 29=1 的两条渐近线方程为 .则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .5.现在某类病毒记作X m Y n , 其中正整数m ,n (m≤7,n≤9)可以任意选取,则m ,n 都取到奇数的概率为 .6.如图,在三棱柱A 1B 1C 1﹣ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F ﹣ADE 的体积为V 1 , 三棱柱A 1B 1C 1﹣ABC 的体积为V 2 , 则V 1:V 2= .7.抛物线y=x 2在x=1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x+2y 的取值范围是 .8.设D ,E 分别是△ABC 的边AB ,BC上的点,AD= 12 AB ,BE= 23BC ,若 DE → =λ1 AB → +λ2AC →(λ1 , λ2为实数),则λ1+λ2的值为 .9.在平面直角坐标系xOy 中,椭圆C 的标准方程为 x 2a 2+y 2b 2=1 (a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为d 1 , F 到l 的距离为d 2 , 若d 2= √6d 1 ,则椭圆C 的离心率为 .答案第2页,总14页装…………○………※要※※在※※装※※订※※线※装…………○………10.在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y= 1x (x >0)图象上一动点,若点P ,A 之间的最短距离为2 √2 ,则满足条件的实数a 的所有值为 . 11.在正项等比数列{a n }中, a 5=12 ,a 6+a 7=3,则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为 .二、解答题(题型注释)12.设{a n }是首项为a ,公差为d 的等差数列(d≠0),S n 是其前n 项和.记b n = nSnn 2+c ,n∈N * ,其中c 为实数.(1)若c=0,且b 1 , b 2 , b 4成等比数列,证明:S nk =n 2S k (k ,n∈N *); (2)若{b n }是等差数列,证明:c=0.13.设函数f (x )=lnx ﹣ax ,g (x )=e x ﹣ax ,其中a 为实数.(1)若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围;(2)若g (x )在(﹣1,+∞)上是单调增函数,试求f (x )的零点个数,并证明你的结论.14.如图,AB 和BC 分别与圆O 相切于点D 、C ,AC 经过圆心O ,且BC=2OC . 求证:AC=2AD .15.已知矩阵A= [−1002] ,B= [126] ,求矩阵A ﹣1B . 16.在平面直角坐标系xOy 中,直线l 的参数方程为 {x =t +1y =2t( 为参数),曲线C 的参数方程为 {x =2t 2y =2t(t 为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.17.已知a≥b>0,求证:2a 3﹣b 3≥2ab 2﹣a 2b .第3页,总14页○…………线…………○…_○…………线…………○…18.如图,在直三棱柱A 1B 1C 1﹣ABC 中,AB⊥AC,AB=AC=2,AA 1=4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与ABA 1所成二面角的正弦值.19.设数列{a n }:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…, (−1)k−1k,⋯,(−1)k−1k ︷k 个 ,…,即当(k−1)k 2 <n≤ (k+1)k 2(k∈N *)时, a n =(−1)k−1k .记S n =a 1+a 2+…+a n (n∈N ∗).对于l∈N ∗ , 定义集合P l =﹛n|S n 为a n 的整数倍,n∈N ∗ , 且1≤n≤l}(1)求P 11中元素个数;(2)求集合P 2000中元素个数.答案第4页,总14页参数答案1.π【解析】1.解:∵函数表达式为y=3sin (2x+ π4 ), ∴ω=2,可得最小正周期T=| 2πω |=| 2π2 |=π 所以答案是:π 2.5【解析】2.解:z=(2﹣i )2=4﹣4i+i 2=3﹣4i . 所以,|z|= √32+(−4)2=5. 所以答案是5. 3.y =±34x【解析】3.解:∵双曲线 x 216−y 29=1 的a=4,b=3,焦点在x 轴上而双曲线 x 2a 2−y 2b2=1 的渐近线方程为y=± ba x ∴双曲线 x 216−y 29=1 的渐近线方程为 y =±34x所以答案是: y =±34x4.2【解析】4.解:由图表得到甲乙两位射击运动员的数据分别为: 甲:87,91,90,89,93; 乙:89,90,91,88,92;x 甲¯=87+91+90+89+935=90 , x 乙¯=89+90+91+88+925=90 .方差 S 甲2=(87−90)2+(91−90)2+(90−90)2+(89−90)2+(93−90)25=4 =4.S 乙2=(89−90)2+(90−90)2+(91−90)2+(88−90)2+(92−90)25=2 =2.所以乙运动员的成绩较稳定,方差为2. 所以答案是2.【考点精析】解答此题的关键在于理解极差、方差与标准差的相关知识,掌握标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差.第5页,总14页…○…………外…………○…………装…………○……学校:___________姓名:___________班级:__…○…………内…………○…………装…………○…… 5.2063【解析】5.解:m 取小于等于7的正整数,n 取小于等于9的正整数,共有7×9=63种取法. m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况, 则m ,n 都取到奇数的方法种数为4×5=20种. 所以m ,n 都取到奇数的概率为 4×57×9=2063 . 所以答案是 2063 .6.1:24【解析】6.解:因为D ,E ,分别是AB ,AC 的中点,所以S △ADE :S △ABC =1:4, 又F 是AA 1的中点,所以A 1到底面的距离H 为F 到底面距离h 的2倍. 即三棱柱A 1B 1C 1﹣ABC 的高是三棱锥F ﹣ADE 高的2倍. 所以V 1:V 2= 13S △ADE ⋅ℎS△ABC ⋅H=124 =1:24.所以答案是1:24. 7.[﹣2, 12 ]【解析】7.解:由y=x 2得,y′=2x,所以y′|x=1=2,则抛物线y=x 2在x=1处的切线方程为y=2x ﹣1.令z=x+2y ,则 y =−12x =z2.画出可行域如图,所以当直线 y =−12x =z2过点(0,﹣1)时,z min =﹣2.过点( 12,0 )时, z max =12 . 所以答案是[﹣2, 12 ].答案第6页,总14页……○…………订…………○…………线※※装※※订※※线※※内※※答※※题※※……○…………订…………○…………线【考点精析】根据题目的已知条件,利用基本求导法则的相关知识可以得到问题的答案,需要掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 8.12【解析】8.解:由题意结合向量的运算可得 DE →= DB →+BE →= 12AB →+23BC →=12AB →+23(BA→+AC →)= 12AB→−23AB→+23AC →=−16AB→+23AC →又由题意可知若 DE →=λ1 AB →+λ2 AC →, 故可得λ1= −16 ,λ2= 23 ,所以λ1+λ2= 12所以答案是: 12【考点精析】本题主要考查了平面向量的基本定理及其意义的相关知识点,需要掌握如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使才能正确解答此题.9.√33【解析】9.解:如图,准线l :x= a 2c ,d 2= a 2c−c =b 2c, 由面积法得:d 1= bca , 若d 2= √6d 1 ,则 b 2c=√6×bca ,整理得 √6a 2﹣ab ﹣ √6b 2 =0,两边同除以a 2, 得 √6 (b a )2 +( ba )﹣ √6=0,解得b a =√63.∴e= √1−(b a )2= √33 .第7页,总14页○…………外…………○………装…………○…………订…………………线…………○…学__________姓名:___________班级:___________考号:_________○…………内…………○………装…………○…………订…………………线…………○…所以答案是: √33.10.﹣1或 √10【解析】10.解:设点P (x,1x )(x >0) ,则|PA|===,令 t =x +1x ,∵x>0,∴t≥2,令g (t )=t 2﹣2at+2a 2﹣2=(t ﹣a )2+a 2﹣2,①当a≤2时,t=2时g (t )取得最小值g (2)=2﹣4a+2a 2= (2√2)2,解得a=﹣1; ②当a >2时,g (t )在区间[2,a )上单调递减,在(a ,+∞)单调递增,∴t=a,g (t )取得最小值g (a )=a 2﹣2,∴a 2﹣2= (2√2)2,解得a= √10 . 综上可知:a=﹣1或 √10 . 所以答案是﹣1或 √10 .11.12【解析】11.解:设正项等比数列{a n }首项为a 1 , 公比为q ,由题意可得,解之可得:a 1= 132 ,q=2,故其通项公式为a n = 132×2n−1=2n ﹣6 .记T n =a 1+a 2+…+a n =132(1−2n )1−2=2n −125,S n =a 1a 2…a n =2﹣5×2﹣4…×2n ﹣6=2﹣5﹣4+…+n﹣6= 2(n−11)n2 .答案第8页,总14页……订…………○…………线…………○线※※内※※答※※题※※……订…………○…………线…………○由题意可得T n >S n , 即 2n −125> 2(n−11)n2 ,化简得:2n﹣1> 212n 2−112n+5 ,即2n﹣ 212n 2−112n+5 >1,因此只须n > 12n 2−112n +5 ,即n 2﹣13n+10<0解得13−√1292 <n < 13+√1292, 由于n 为正整数,因此n 最大为 13+√1292的整数部分,也就是12.所以答案是:12【考点精析】关于本题考查的解一元二次不等式和等差数列的前n 项和公式,需要了解求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边;前n 项和公式:才能得出正确答案.12. (1)证明:若c=0,则a n =a 1+(n ﹣1)d , S n =n[(n−1)d+2a]2, b n=nS n n 2=(n−1)d+2a2. 当b 1,b 2,b 4成等比数列时,则 b 22=b 1b 4 ,即: (a+d 2)2=a(a +3d2) ,得:d 2=2ad ,又d≠0,故d=2a .因此: S n =n 2a , S nk =(nk)2a =n 2k 2a , n 2S k =n 2k 2a . 故: S nk =n 2S (k ,n∈N*).(2) 证明: b n =nS n n 2+c=n 2(n−1)d+2a2n 2+c=n 2(n−1)d+2a 2+c (n−1)d+2a 2−c (n−1)d+2a2n 2+c= (n−1)d+2a 2−c (n−1)d+2a2n 2+c. ①若{b n }是等差数列,则{b n }的通项公式是b n =A n +B 型. 观察①式后一项,分子幂低于分母幂, 故有:c(n−1)d+2a2n 2+c,即 c(n−1)d+2a2,而(n−1)d+2a2≠0 ,故c=0.经检验,当c=0时{b n }是等差数列.第9页,总14页…○…………线…………____…○…………线…………【解析】12.(1)写出等差数列的通项公式,前n 项和公式,由b 1 , b 2 , b 4成等比数列得到首项和公差的关系,代入前n 项和公式得到S n , 在前n 项和公式中取n=nk 可证结论; (2)把S n 代入 b n =nS nn 2+c中整理得到b n = (n−1)d+2a 2−c (n−1)d+2a2n 2+c,由等差数列的通项公式是a n =An+B 的形式,说明c(n−1)d+2a2n 2+c=0 ,由此可得到c=0.【考点精析】本题主要考查了等差数列的前n 项和公式和等比关系的确定的相关知识点,需要掌握前n 项和公式:;等比数列可以通过定义法、中项法、通项公式法、前n 项和法进行判断才能正确解答此题.13.(1)解:求导数可得f′(x )= 1x ﹣a∵f(x )在(1,+∞)上是单调减函数,∴ 1x ﹣a≤0在(1,+∞)上恒成立, ∴a≥ 1x ,x∈(1,+∞).∴a≥1.令g′(x )=e x ﹣a=0,得x=lna .当x <lna 时,g′(x )<0;当x >lna 时,g′(x )>0. 又g (x )在(1,+∞)上有最小值,所以lna >1,即a >e . 故a 的取值范围为:a >e .(2)解:当a≤0时,g (x )必为单调函数;当a >0时,令g′(x )=e x ﹣a >0,解得a <e x ,即x >lna ,因为g (x )在(﹣1,+∞)上是单调增函数,类似(1)有lna≤﹣1,即0< a ≤1e .结合上述两种情况,有 a ≤1e.①当a=0时,由f (1)=0以及f′(x )= 1x >0,得f (x )存在唯一的零点;②当a <0时,由于f (e a )=a ﹣ae a =a (1﹣e a )<0,f (1)=﹣a >0,且函数f (x )在[e a ,1]上的图象不间断,所以f (x )在(e a ,1)上存在零点.另外,当x >0时,f′(x )= 1x ﹣a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点.③当0<a≤ 1e 时,令f′(x )= 1x ﹣a=0,解得x= 1a .当0<x < 1a 时,f′(x )>0,当x > 1a 时,f′(x )<0,所以,x= 1a 是f (x )的最大值点,且最大值为f ( 1a )=﹣lna ﹣1. (i )当﹣lna ﹣1=0,即a= 1e 时,f (x )有一个零点x=e ;答案第10页,总14页……外…………○……※※请※……内…………○……(ii )当﹣lna ﹣1>0,即0<a < 1e 时,f (x )有两个零点;实际上,对于0<a < 1e ,由于f ( 1e )=﹣1﹣ ae <0,f ( 1a )>0,且函数f (x )在[ 1e ,1a ]上的图象不间断,所以f (x )在( 1e ,1a )上存在零点.另外,当0<x < 1a 时,f′(x )= 1x ﹣a >0,故f (x )在(0, 1a )上时单调增函数,所以f (x )在(0, 1a )上只有一个零点. 下面考虑f (x )在( 1a ,+∞)上的情况,先证明f ( 1e a )=a ( 1a 2−e1a )<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x ﹣x 2,则h′(x )=e x ﹣2x ,再设l (x )=h′(x )=e x ﹣2x ,则l′(x )=e x ﹣2.当x >1时,l′(x )=e x ﹣2>e ﹣2>0,所以l (x )=h′(x )在(1,+∞)上时单调增函数;故当x >2时,h′(x )=e x ﹣2x >h′(2)=e 2﹣4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时,h (x )=e x ﹣x 2>h (e )=e e ﹣e 2>0,即当x >e 时,e x >x 2 当0<a < 1e ,即 1a >e时,f ( 1e a )= 1a −ae 1a =a ( 1a 2−e1a )<0,又f ( 1a )>0,且函数f (x )在[ 1a , 1e a ]上的图象不间断,所以f (x )在( 1a , 1e a )上存在零点. 又当x > 1a 时,f′(x )= 1x ﹣a <0,故f (x )在( 1a ,+∞)上是单调减函数,所以f (x )在( 1a ,+∞)上只有一个零点.综合(i )(ii )(iii ),当a≤0或a= 1e 时,f (x )的零点个数为1,当0<a < 1e 时,f (x )的零点个数为2.【解析】13.(1)求导数,利用f (x )在(1,+∞)上是单调减函数,转化为 1x ﹣a≤0在(1,+∞)上恒成立,利用g (x )在(1,+∞)上有最小值,结合导数知识,即可求得结论;(2)先确定a 的范围,再分类讨论,确定f (x )的单调性,从而可得f (x )的零点个数.【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).14.证明:连接OD .因为AB 和BC 分别与圆O 相切于点D ,C ,所以ADO=∠ACB=90° 又因为∠A=∠A,所以Rt△ADO∽Rt△ACB,………外……………………装…………○…………订………○…………线…………○…校:___________姓名:___________班级:___________考号:_______………内……………………装…………○…………订………○…………线…………○…所以 ,因为BC=2OC=2OD . 所以AC=2AD .【解析】14.证明Rt△ADO∽Rt△ACB,可得 BCOD =ACAD ,结合BC=2OC=2OD ,即可证明结论.15.解:设矩阵A 的逆矩阵为 ,则 = ,即 = ,故a=﹣1,b=0,c=0,d= ,从而A ﹣1= ,∴A ﹣1B= = .【解析】15.设矩阵A ﹣1= [abc d] ,通过AA ﹣1为单位矩阵可得A ﹣1 , 进而可得结论. 16.解:直线l 的参数方程为( 为参数),由x=t+1可得t=x ﹣1,代入y=2t , 可得直线l 的普通方程:2x ﹣y ﹣2=0.曲线C 的参数方程为 (t 为参数),化为y 2=2x ,答案第12页,总14页………外…………○…………线…………○※※请※………内…………○…………线…………○联立 ,解得 , ,于是交点为(2,2), .【解析】16.运用代入法,可将直线l 和曲线C 的参数方程化为普通方程,联立直线方程和抛物线方程,解方程可得它们的交点坐标.17.证明:2a 3﹣b 3﹣2ab 2+a 2b=2a (a 2﹣b 2)+b (a 2﹣b 2)=(a ﹣b )(a+b )(2a+b ), ∵a≥b>0,∴a﹣b≥0,a+b >0,2a+b >0, 从而:(a ﹣b )(a+b )(2a+b )≥0, ∴2a 3﹣b 3≥2ab 2﹣a 2b .【解析】17.直接利用作差法,然后分析证明即可.【考点精析】本题主要考查了不等式的证明的相关知识点,需要掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等才能正确解答此题. 18.(1)解:以{ AB →,AC,→AA 1→}为单位正交基底建立空间直角坐标系A ﹣xyz , 则由题意知A (0,0,0),B (2,0,0),C (0,2,0), A 1(0,0,4),D (1,1,0),C 1(0,2,4), ∴ A 1B →=(2,0,−4) , C 1D →=(1,﹣1,﹣4), ∴cos< A 1B →,C 1D →>=A 1B →⋅C 1D→|A 1B →|⋅|C 1D →|= √20⋅√18 = 3√1010 ,∴异面直线A 1B 与C 1D 所成角的余弦值为3√1010.(2)解: AC →=(0,2,0) 是平面ABA 1的一个法向量,设平面ADC 1的法向量为 m →=(x,y,z) , ∵ AD →=(1,1,0),AC 1→=(0,2,4) , ∴ {m →⋅AD →=x +y =0m →⋅AC 1→=2y +4z =0,取z=1,得y=﹣2,x=2,∴平面ADC 1的法向量为 m →=(2,−2,1) , 设平面ADC 1与ABA 1所成二面角为θ, ∴cosθ=|cos< AC →,m →>|=| 2×√9 |= 23 ,∴sinθ= √1−(23)2= √53 .∴平面ADC 1与ABA 1所成二面角的正弦值为 √53 .【解析】18.(1)以{ AB →,AC,→AA 1→}为单位正交基底建立空间直角坐标系A ﹣xyz ,利用向量法能求出异面直线A 1B 与C 1D 所成角的余弦值.(2)分别求出平面ABA 1的法向量和平面ADC 1的法向量,利用向量法能求出平面ADC 1与ABA 1所成二面角的余弦值,再由三角函数知识能求出平面ADC 1与ABA 1所成二面角的正弦值.【考点精析】掌握异面直线及其所成的角是解答本题的根本,需要知道异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系. 19. (1)解:由数列{a n }的定义得a 1=1,a 2=﹣2,a 3=﹣2,a 4=3, a 5=3,a 6=3,a 7=﹣4,a 8=﹣4,a 9=﹣4,a 10=﹣4,a 11=5, 所以S 1=1,S 2=﹣1,S 3=﹣3,S 4=0,S 5=3,S 6=6,S 7=2, S 8=﹣2,S 9=﹣6,S 10=﹣10,S 11=﹣5,从而S 1=a 1,S 4=0•a 4,S 5=a 5,S 6=2a 6,S 11=﹣a 11, 所以集合P 11中元素的个数为5;(2)解:先证:S i (2i+1)=﹣i (2i+1)(i∈N*).事实上,①当i=1时,S i (2i+1)=S 3=﹣3,﹣i (2i+1)=﹣3,故原等式成立; ②假设i=m 时成立,即S m (2m+1)=﹣m (2m+1),则i=m+1时, S (m+1)(2m+3)=S m (2m+1)+(2m+1)2﹣(2m+2)2=﹣m (2m+1)﹣4m ﹣3 =﹣(2m 2+5m+3)=﹣(m+1)(2m+3).综合①②可得S i (2i+1)=﹣i (2i+1).于是S (i+1)(2i+1)=S i (2i+1)+(2i+1)2 =﹣i (2i+1)+(2i+1)2=(2i+1)(i+1).由上可知S i (2i+1)是2i+1的倍数,而a i (2i+1)+j=2i+1(j=1,2,…,2i+1),答案第14页,总14页又S (i+1)(2i+1)=(i+1)•(2i+1)不是2i+2的倍数, 而a (i+1)(2i+1)+j=﹣(2i+2)(j=1,2,…,2i+2),所以S (i+1)(2i+1)+j=S (i+1)(2i+1)+j (2i+2)=(2i+1)(i+1)﹣j (2i+2) 不是a (i+1)(2i+1)+j (j=1,2,…,2i+2)的倍数,故当l=i (2i+1)时,集合P l 中元素的个数为1+3+…+(2i ﹣1)=i 2,于是,当l=i (2i+1)+j (1≤j≤2i+1)时,集合P l 中元素的个数为i 2+j . 又2000=31×(2×31+1)+47,故集合P 2 000中元素的个数为312+47=1008.【解析】19.(1)由数列{a n }的定义,可得前11项,进而得到前11项和,再由定义集合P l , 即可得到元素个数;(2)运用数学归纳法证明S i (2i+1)=﹣i (2i+1)(i∈N*).再结合定义,运用等差数列的求和公式,即可得到所求.【考点精析】通过灵活运用数学归纳法的定义,掌握 数学归纳法是证明关于正整数n 的命题的一种方法即可以解答此题.。
2013年江苏高考数学试题及答案解析版1_(word版)
2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
.6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 【答案】2 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .63208.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .1:249.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .[—2,12 ]10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .1211.已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .(﹣5,0) ∪(5,﹢∞)12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .3313.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点,若点A P ,之间的最短距离为22,则满足条件的实数a 的所值为 .1或1014.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 .12二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;(2)设)1,0(=c ,若c b a =+,求βα,的值. 解:(1)a -b =(cosα-cosβ,sin α-sin β),|a -b |2=(cosα-cosβ)2+(sin α-sin β)2=2-2(cosα·cosβ+sin α·sin β)=2, 所以,cosα·cosβ+sin α·sin β=0,所以,b a ⊥. (2)⎩⎨⎧=+=+②1sin sin ①0cos cos βαβα,①2+②2得:cos(α-β)=-12 .所以,α-β=π32,α=π32+β,带入②得:sin(π32+β)+sin β=23cosβ+12 sin β=sin(3π+β)=1, 所以,3π+β=2π. 所以,α=65π,β=6π.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证: (1)平面//EFG 平面ABC ;(2)SA BC ⊥. 证:(1)因为SA =AB 且AF ⊥SB , 所以F 为SB 的中点. 又E ,G 分别为SA ,SC 的中点, 所以,EF ∥AB ,EG ∥AC .又AB ∩AC =A ,AB ⊂面SBC ,AC ⊂面ABC , 所以,平面//EFG 平面ABC . (2)因为平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =BC ,AF ⊂平面ASB ,AF ⊥SB .所以,AF ⊥平面SBC .又BC ⊂平面SBC , 所以,AF ⊥BC .又AB ⊥BC ,AF ∩AB =A , 所以,BC ⊥平面SAB .又SA ⊂平面SAB , 所以,SA BC ⊥.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;A BSG F E(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围.解:(1)联立:⎩⎨⎧-=-=421x y x y ,得圆心为:C (3,2).设切线为:3+=kx y ,d =11|233|2==+-+r k k ,得:430-==k or k .故所求切线为:343+-==x y or y .(2)设点M (x ,y ),由MO MA 2=,知:22222)3(y x y x +=-+,化简得:4)1(22=++y x ,即:点M 的轨迹为以(0,1)为圆心,2为半径的圆,可记为圆D . 又因为点M 在圆C 上,故圆C 圆D 的关系为相交或相切. 故:1≤|CD |≤3,其中22)32(-+=a a CD .解之得:0≤a ≤125 .18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
【恒心】2013年普通高等学校招生全国统一考试(江苏卷)数学试题名师剖析【纯word版】【含理科附加试题】
【含附加题】绝密★启用前2013年普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ整理校对:李炳璋注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分。
考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。
棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。
棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。
一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡的相应......位置上...。
1.函数y=3sin (2x+)的最小正周期为 π .【考点定位】三角函数的周期性及其求法。
【专题模块】三角函数的图像与性质。
【难易层级】易【思维轨迹】将题中的函数表达式与函数y=Asin(ωx+φ)进行对照,可得ω=2,由此结合三角函数的周期公式加以计算,即可得到函数的最小正周期。
【参考答案】解:∵函数表达式为y=3sin(2x+),∴ω=2,可得最小正周期T=||=||=π故答案为:π【名师点评】本题给出三角函数表达式,求函数的最小正周期,着重考查了函数y=Asin (ωx+φ)的周期公式的知识,只要考生认真仔细一些就可以做对。
2.设z=(2﹣i)2(i为虚数单位),则复数z的模为5.【考点定位】复数代数形式的混合运算。
2013年江苏省高考数学试卷及答案(Word解析版)
2013年普通高等学校统一考试试题【江苏卷】一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1、函数)42sin(3π+=x y 的最小正周期为 、【答案】π【解析】T =|2πω |=|2π2 |=π、2、设2)2(i z -=【i 为虚数单位】,则复数z 的模为 、 【答案】5【解析】z =3-4i ,i 2=-1,| z |==5、3、双曲线191622=-y x 的两条渐近线的方程为 、 【答案】x y 43±= 【解析】令:091622=-y x ,得x x y 431692±=±=、 4、集合}1,0,1{-共有 个子集、【答案】8【解析】23=8、5、右图是一个算法的流程图,则输出的n 的值是 、 【答案】3【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4、 6则成绩较为稳定【方差较小】的那位运动员成绩的方差为 、 【答案】2【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x 、方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S 、 7、现在某类病毒记作n m Y X ,其中正整数m ,n 【7≤m ,9≤n 】可以任意选取,则n m , 都取到奇数的概率为 、【答案】6320 【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯、 8、如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V 、【答案】1:24【解析】三棱锥ADE F -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8、又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3、所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24、9、抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) 、若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 、 【答案】[—2,12 ]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z 2 、 画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12 、10、设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若21λλ+=【21λλ,为实数】,则21λλ+的值为 、 【答案】12【解析】)(32213221AC BA AB BC AB BE DB DE ++=+=+=xAB C1A DE F1B 1CAC AB AC AB 213261λλ+=+-= 所以,611-=λ,322=λ,=+21λλ12 、 11、已知)(x f 是定义在R 上的奇函数。
2013年江苏高考数学试题及参考答案
2013年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ(必做题)注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符. 4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数)42sin(3π+=x y 的最小正周期为 .2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .3.双曲线191622=-y x 的两条渐近线的方程为 .4.集合}1,0,1{-共有 个子集.5.下图是一个算法的流程图,则输出的n 的值是 .6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为 .8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V . 9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界)。
若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若21λλ+= (21λλ,为实数),则21λλ+的值为 .11.已知)(x f 是定义在R 上的奇函数。
2013年江苏高考数学试题和答案(含理科附加)
2013年普通高等学校招生全国统一考试(江苏卷)参考公式:样本数据12,,,n x x x L 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。
棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。
棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应......位置上...。
1、函数3sin(2)4y x π=+的最小正周期为 ▲ 。
2、设2(2)z i =- (i 为虚数单位),则复数z 的模为 ▲ 。
3、双曲线221169x y -=的两条渐近线的方程为 ▲ 。
4、集合{-1,0,1}共有 ▲ 个子集。
5、右图是一个算法的流程图,则输出的n 的值是 ▲ 。
6、抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ 。
7、现有某类病毒记作为m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为 ▲ 。
8、如图,在三棱柱A 1B 1C 1 -ABC 中,D 、E 、F 分别为AB 、AC 、A A 1的中点,设三棱锥F -ADE 的体积为1V ,三棱柱A 1B 1C 1 -ABC 的体积为2V ,则1V :2V = ▲ 。
运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤. 15、(本小题满分14分)已知向量(cos ,sin ),(cos ,sin ),0a b ααβββαπ==<<<r r。
(1)若||a b -=r ra b ⊥r r ;(2)设(0,1)c =r,若a b c +=r r r ,求βα,的值。
2013年江苏省高考真题数学试卷及答案(理科)
A BC1A DEF 1B 1C ABCSGFE2013年普通高等学校统一考试数学试题卷Ⅰ 必做题部分一.填空题1.函数)42sin(3p+=x y 的最小正周期为的最小正周期为 。
2.设2)2(i z -=(i 为虚数单位),则复数z 的模为的模为 。
3.双曲线191622=-y x 的两条渐近线的方程为的两条渐近线的方程为 。
4.集合}1,0,1{-共有共有 个子集。
个子集。
个子集。
5.下图是一个算法的流程图,则输出的n 的值是的值是 。
6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:,结果如下:运动员运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙 89 90 91 88 92则成绩较为稳定(方差较小)的那位运动员成绩的方差为则成绩较为稳定(方差较小)的那位运动员成绩的方差为 。
7.现在某类病毒记作n m Y X ,其中正整数m ,n (7£m ,9£n )可以任意选取,则n m ,都取到奇数的概率为的概率为 。
8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABCC B A -111的体积为2V , 则=21:V V 。
9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三(包含三角形内部与边界)。
若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范的取值范 围是围是 。
1010..设E D ,分别是ABC D 的边BC AB ,上的点,AB AD 21=,BCBE 32=,若ACAB DE 21l l +=(21l l ,为实数),则21l l +的值为的值为 。
1111.已知.已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为表示为 。
2013年江苏省高考数学试卷答案与解析
2013年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为π.2x+T=||=||=2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为5.=53.(5分)(2013•江苏)双曲线的两条渐近线方程为.的而双曲线的渐近线方程为±x∴双曲线的渐近线方程为故答案为:4.(5分)(2013•江苏)集合{﹣1,0,1}共有8个子集.5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值是3.6.(5分)(2013•江苏)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结则成绩较为稳定(方差较小)的那位运动员成绩的方差为2.7.(5分)(2013•江苏)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为.都取到奇数的概率为故答案为8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2= 1:24.9.(5分)(2013•江苏)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是[﹣2,].所以当直线)时,故答案为10.(5分)(2013•江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.=,=12,===1+2,,,所以故答案为:11.(5分)(2013•江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).12.(5分)(2013•江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d 2,若d2=,则椭圆C的离心率为.=的关系,可求得x==,则,整理得a,得()﹣,解得=.故答案为:13.(5分)(2013•江苏)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为﹣1或.,利用两点间的距离公式可得=,∴,解得.14.(5分)(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为12.由题意可得,解之可得:===,=>,,即,即最大为二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.)由给出的向量的坐标,求出的坐标,由模等于由向量坐标的加法运算求出+,+列式整理得到)由==.即)由得:,得:.所以16.(14分)(2013•江苏)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)(2013•江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x ﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.)联立得:,=1﹣x+3=2,≤.18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?cosA=cosC=,所以sinA=,,=sinAcosC+cosAsinC=由正弦定理=×=200),即t=min)由正弦定理BC=≤解得[19.(16分)(2013•江苏)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项和.记b n=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.代入中整理得到的形式,说明,成等比数列时,则,得:,,即,而20.(16分)(2013•江苏)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.)上是单调减函数,转化为﹣﹣,.结合上述两种情况,有=﹣≤﹣.当时,时,x=(时,<<(<([)在(<=)上时单调增函数,所)上只有一个零点.)在(((<,即)([,)在(,>﹣)在(,,时,时,评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)(2013•江苏)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.,可得B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)(2013•江苏)已知矩阵A=,B=,求矩阵A﹣1B.1=,即,C.[选修4-4:坐标系与参数方程](本小题满分0分)23.(2013•江苏)在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.的参数方程为,解得,,D.[选修4-5:不等式选讲](本小题满分0分)24.(2013•江苏)已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b.第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)(2013•江苏)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.}}=>=所成角的余弦值为的法向量为的法向量为|=|,=.所成二面角的正弦值为26.(10分)(2013•江苏)设数列{a n}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k∈N*)时,.记S n=a1+a2+…+a n(n∈N∗).对于l∈N∗,定义集合P l=﹛n|S n为a n的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数.21。
2013年江苏高考数学试题及答案解析
高考频道全体预祝所有考生梦想成真,考试顺利!
为了给您在高考填报志愿有所帮助我们精心收集到江苏高考真题供您参考出国留学网高考频道在考后快速为您揭晓2013江苏高考数学真题答案
2013年江苏高考数学试题及答案解析
为了给您在高考填报Байду номын сангаас愿有所帮助,我们精心收集到江苏高考真题供您参考,高考频道在考后快速为您揭晓2013江苏高考数学真题答案。一旦高考真题及答案发布,将在此表页的头条显示,记得按crtl+F5刷新哦。预祝您考个好的成绩。
2013年江苏高考数学试题和答案(含理科附加)
2013年普通高等学校招生全国统一测试(江苏卷)参考公式:样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。
棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。
棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应......位置上...。
1、函数3sin(2)4y x π=+的最小正周期为 ▲ 。
2、设2(2)z i =- (i 为虚数单位),则复数z 的模为 ▲ 。
3、双曲线221169x y -=的两条渐近线的方程为 ▲ 。
4、集合{-1,0,1}共有 ▲ 个子集。
5、右图是一个算法的流程图,则输出的n 的值是 ▲ 。
6、抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ 。
7、现有某类病毒记作为m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为 ▲ 。
8、如图,在三棱柱A 1B 1C 1 -ABC 中,D 、E 、F 分别为AB 、AC 、A A 1的中点,设三棱锥F -ADE 的体积为1V ,三棱柱A 1B 1C 1 -ABC 的体积为2V ,则1V :2V =运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892▲ 。
9、抛物线2y x =在1x =处的切线和坐标轴围成三角形区域为D(包含三角形内部和边界)。
若点P(x ,y)是区域D 内的任意一点,则2x y +的取值范围是 ▲ 。
10、设D 、E 分别是△ABC 的边AB 、BC 上的点,且12,23AD AB BE BC ==。
若12DE AB AC λλ=+(1λ、2λ均为实数),则1λ+2λ的值为 ▲ 。
2013年全国普通高等学校招生统一考试数学(江苏卷带解析)答案解析
2013年全国普通高等学校招生统一考试(江苏卷)数学答案解析1、【答案】【解析】∵函数的周期为,∴函数的最小正周期.2、【答案】5【解析】∵,∴.3、【答案】【解析】依题意,,,∴双曲线的两条渐近线的方程为.4、【答案】8【解析】因为集合中有3个元素,其子集有个.5、【答案】3【解析】输入,,执行,后;输入,,执行,后;输出.6、【答案】2【解析】由表中数据知,乙运动员成绩稳定,平均成绩,方差.7、【答案】【解析】∵,,且、,基本事件的总数是种,、都取到奇数的事件有种,由古典概型公式,、都取到奇数的概率为. 【考点定位】考查奇数、偶数的定义,古典概型.注意古典概型与几何概型的区别.容易题.8、【答案】【解析】依题意,,三棱锥的高为三棱柱的高的. ∴.【考点定位】三棱柱与三棱锥的体积,三角形中位线定理,相似三角形的面积比等于相似比的平方.空间想象能力.中等题.9、【答案】【解析】∵,∴,,而当时,即切点为,切线方程为,即,切线与两坐标轴围成的三角形区域为如图,令,由图知,当斜率为的直线经过,取得最大值,即;当斜率为的直线经过,取得最大值,即. 故的取值范围是.【考点定位】.导数的集合意义,不等式表示的平面区域,线性规划求目标函数的取值范围. 中等题.10、【答案】【解析】依题意,,∴,∴,,故.【考点定位】平面向量的加法、减法法则.分析、计算能力.中等题.11、【答案】【解析】∵当时,,令,,∴,又是定义在上的奇函数,∴,∴,即时,. 要,则或或,解得或,∴不等式的解集用区间为.【考点定位】分段函数,函数的奇偶性,一元二次不等式的解法. 考查计算能力.中等题.12、【答案】【解析】依题意,作于,则,又,解得,而椭圆准线的方程为,,设直线与轴交于,则点到直线的距离,∵,∴,整理的,两边平方,,∴,又,解得.【考点定位】椭圆的性质、点到直线的距离公式,考查分析转化能力、计算能力.中等题.13、【答案】【解析】依题意,定点在直线上,直线与曲线的交点,,由两点间的距离公式得这两点间的距离为,∴满足条件.设,则设,∵,∴,,即,解得,而,∴.故满足条件的实数的所有值为,【考点定位】考查函数与的图象性质,两点间的距离公式,考查不等式的性质、二次函数的最值. 较难题.14、【答案】12【解析】∵正项等比数列中,,.∴,,∴,解得或(舍去),∴,∴,∴,.∴当,即,取,不成立;取,成立;…取,成立;取,成立;取,不成立;故满足的最大正整数的值为12.【考点定位】等比数列的性质,考查分析转化能力、计算能力.较难题.15、【答案】(1)见解析(2),.【解析】由题意,,即,又因为,∴,即,∴.(2),∴,由此得,由,得,又,故,代入得,而,∴,.【考点定位】本小题主要考查平面向量的加法、减法、数量积、三角函数的基本关系、有道公式等基础只晒,考查运算求解能力和推理论证能力.16、【答案】见解析【解析】[证明](1)∵,,垂足为,∴是的中点,又因为是的中点,∴∥,∵平面,平面,∴∥平面;同理∥平面. 又,∴平面∥平面.(2)∵平面平面,且交线为,又平面,,∴平面,∵平面,∴,又因为,,、平面,∴平面,∵平面,∴.【考点定位】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.17、【答案】(1)或(2)【解析】(1)由题意,圆心是直线和的交点,解得点,于是切线的斜率必存在,设过的圆的切线方程为,由题意,,解得或,故所求切线方程为或.(2)∵圆心在直线上,∴圆的方程为,设,∵,∴,化简整理得,∴点在以为圆心,2为半径的圆上,由题意,在圆上,∴圆与圆有公共点,则,即,由得,由,得,所以点的横坐标的取值范围是.【考点定位】本小题主要考查直线与圆的方程,考查直线与直线、直线与圆、圆与圆的位置关系,等基础知识,考查运用数形结合、待定系数法等数学思想方法分析解决问题的能力.18、【答案】(1)m (2)(3)(单位:m/min)【解析】(1)在中,∵,,∴,,从而.由正弦定理,得,所以索道的长为1040(m).(2)假设乙出发分钟后,甲、乙两游客距离为,此时,甲行走了m,乙距离处m,由余弦定理得,∵,即,故当(min)时,甲、乙两游客距离最短.(3)由正弦定理,,得(m),乙从出发时,甲走了(m),还需要走(m)才能到达,设乙步行的速度为m/min,由题意,,解得,∴为使两游客在处互相等待的时间不超过3分钟,乙步行的速度应控制在(单位:m/min)范围内.【考点定位】本小题主要考查正弦定理、余弦定理、二次函数的最值以及三角函数的基本关系、两角和的正弦等基础知识,考查数学阅读能力和分析解决实际问题的能力.19、【答案】见解析【解析】[证明](1)由题设,,由,得,又,,成等比数列,∴,即,化简得,∵,∴.因此对于所有的,从而对于所有的,.(2)设数列的公差为,则,即,,代入的表达式,整理得,对于所有的有,令,,,则对于所有的有,在上式中取,∴,从而有,由②③得,代入①得,从而,即,,,若,则由得,与题设矛盾,∴,又,∴. 【考点定位】本小题主要考查等差、等比数列的定义、通项、求和等基础知识,考查分析转化以及推理论证能力.20、【答案】(1)(2)当或时,的零点个数为1;当时,的零点个数为2.【解析】(1)∵,考虑到函数的定义域为,故,进而解得,即在上是单调减函数. 同理,在上是单调增函数.由于在是单调减函数,故,从而,即. 令,得,当时,;当时,,又在上有最小值,所以,即,综上所述,.(2)当时,必是单调增函数;当时,令,解得,即,∵在上是单调函数,类似(1)有,即,综合上述两种情况,有.①当时,由以及,得存在唯一的零点;②当时,由于,,且函数在上的图象不间断,∴在是单调增函数,∴在上存在零点. 另外,当时,,则在上是单调增函数,只有一个零点.③当时,令,解得.当时,;当时,. ∴是的最大值点,且最大值为.1)当,即时,有一个零点.2)当,即时,有两个零点. 实际上,对于,由于,,且函数在上的图象不间断,∴在上存在零点.另外,当时,,故在上是单调增函数,∴在上有一个零点.下面需要考虑在上的情况,先证,为此,我们要证明:当时,,设,则,再设,则.当时,,∴在上是单调增函数,故当时,,从而在上是单调增函数,进而当时,,即当时,.当,即时,,又,且函数在的图象不间断,∴在上存在零点.又当时,,故在是单调减函数,所以,在上只有一个零点.综上所述,当或时,的零点个数为1;当时,的零点个数为2.【考点定位】本小题主要考查导数的运算及用导数研究函数的性质,考查函数、方程及不等式的相互转化,考查综合运用数学思想方法分析与解决问题及推理论证能力.21、【答案】见解析【解析】[证明]连结,∵和分别与圆相切于、,∴,又,∴,∴,而,∴.【考点定位】本小题主要考查圆的切线性质、相似三角形判定与性质,考查推理论证能力.22、【答案】【解析】设矩阵的逆矩阵为,则,即,∴,,,,从而,的逆矩阵为,∴.【考点定位】本小题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.23、【答案】.【解析】因为直线的参数方程为,(为参数),由,得代入得到直线的普通方程为.同理得曲线的普通方程为.联立方程组,解得公共点的坐标为,.【考点定位】本小题主要考查参数方程与普通方程的互化以及直线与抛物线的位置关系等基础知识,考查转化问题的能力.24、【答案】见解析【解析】[证明]∵,∴,,,从而,即.【考点定位】本小题主要考查利用比较法证明不等式,考查推理论证能力.25、【答案】(1)(2)【解析】(1)以为坐标原点,建立如图所示的空间直角坐标系,则,,,,,,∴,,∵,∴异面直线与所成角的余弦值为.(2)设平面的法向量为,因为,,∴,即,取,得,,∴,取平面的一个法向量为,设平面与平面所成的二面角的大小为,由,得,故平面与平面所成二面角的正弦值.【考点定位】本小题主要考查异面直线、二面角、空间向量等基础知识以及基本运算,考查运用空间向量解决问题的能力.26、【答案】(1)2 (2)1008【解析】(1)由数列的定义,得,,,,,,,,,,,∴,,,,,,,,,,∴,,,,,∴集合中元素的个数为5.(2)先证:,事实上,①当时,,,原等式成立;②当时成立,即,则时,,综合①②可得,于是,,由上式可知是的倍数,而,∴是的倍数,又不是的倍数,而,∴不是的倍数,故当时,集合中元素的个数为,于是,当时,集合中元素的个数为,又,故集合中元素的个数为.【考点定位】本小题主要考查集合、数列的概念和运算、计数原理等基础知识,考查探究能力及运用数学归纳法的推理论证能力.。
2013年高考理科数学江苏卷(含答案解析)
数学试卷 第1页(共21页) 数学试卷 第2页(共21页) 数学试卷 第3页(共21页)绝密★启用前2013年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据1x ,2x ,⋅⋅⋅,n x 的方差2211()n i i s x x n ==-∑,其中11ni i x x n ==∑棱锥的体积公式13V Sh =,其中S 是锥体的底面积,h 为高棱柱的体积公式V Sh =,其中S 是棱柱的底面积,h 为高一、填空题:本大题共14小题,每小题5分,共70分.把答案填在答题卡相应.....位置上.... 1.函数π3sin(2)4y x =+的最小正周期为 .2.设2(2i)z =-(i 为虚数单位),则复数z 的模为 .3.双曲线221169x y -=的两条渐近线的方程为 .4.集合{1,0,1}-共有 个子集.5.如图是一个算法的流程图,则输出的n 的值是 .6.则成绩较为稳定(方差较小)的那位运动员成绩的方差为 . 7.现有某类病毒记作m n X Y ,其中正整数m ,n (m 7,n 9)≤≤可以任意选取,则m ,n 都取到奇数的概率为 .8.如图,在三棱柱111A B C ABC -中,D ,E ,F 分别是AB ,AC ,1AA 的中点.设三棱锥F ADE -的体积为1V ,三棱柱111A B C ABC -的体积为2V ,则12:V V = .9.抛物线2y x =在1x =处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界).若点(,)P x y 是区域D 内的任意一点,则2x y +的取值范围是 .10.设D ,E 分别是ABC △的边AB ,BC 上的点,12AD AB =,23BE BC =,若DE =12AB AC λλ+(1λ,2λ为实数),则12λλ+的值为 .11.已知()f x 是定义在R 上的奇函数.当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为 .12.在平面直角坐标系xOy 中,椭圆C 的标准方程为22221(0)x y a b a b+=>>,右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若21d =,则椭圆C 的离心率为 .13.在平面直角坐标系xOy 中,设定点(,)A a a ,P 是函数1(0)y x x=>图象上一动点.若点P ,A 之间的最短距离为则满足条件的实数a 的所有值为.14.在正项等比数列{}n a 中,512a =,673a a +=,则满足1212n n a a a a a a ++⋅⋅⋅+>⋅⋅⋅的最大正整数n 的值为 .二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分14分)已知向量a (cos ,sin )αα=,b (cos ,sin )ββ=,0πβα<<<. (Ⅰ)若|a -b |=求证:a ⊥b ;(Ⅱ)设c (0,1)=,若a +b =c ,求α,β的值.16.(本小题满分14分)如图,在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =.过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(Ⅰ)平面EFG 平面ABC ;(Ⅱ)BC SA ⊥.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共21页) 数学试卷 第6页(共21页) 17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点(0,3)A ,直线l :24y x =-.设圆C 的半径为1,圆心在l 上.(Ⅰ)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切 线的方程;(Ⅱ)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min .在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量,12cos 13A =,3cos 5C =.(Ⅰ)求索道AB 的长;(Ⅱ)问乙出发多少分钟后,乙在缆车上与甲的距离最短? (Ⅲ)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(本小题满分16分)设{}n a 是首项为a ,公差为d 的等差数列(0)d ≠,n S 是其前n 项的和.记2nn nS b n c=+,*n ∈N ,其中c 为实数.(Ⅰ)若0c =,且1b ,2b ,4b 成等比数列,证明:2*(,)nk k S n S k n =∈N ;(Ⅱ)若{}n b 是等差数列,证明:0c =.20.(本小题满分16分)设函数()ln f x x ax =-,()e xg x ax =-,其中a 为实数.(Ⅰ)若()f x 在(1,)+∞上是单调减函数,且()g x 在(1,)+∞上有最小值,求a 的取值范围; (Ⅱ)若()g x 在(1,)-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论.数学Ⅱ(附加题)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤. A .(本小题满分10分)选修4—1:几何证明选讲如图,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且2BC OC =. 求证:2AC AD =.B .(本小题满分10分)选修4—2:矩阵与变换已知矩阵A 1002-⎡⎤=⎢⎥⎣⎦,B 1206⎡⎤=⎢⎥⎣⎦,求矩阵A -1B .C .(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为1,2,x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan ,2tan ,x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.D .(本小题满分10分)选修4—5:不等式选讲 已知0a b ≥>,求证:332222a b ab a b --≥.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14A A =,点D 是BC 的中点.(Ⅰ)求异面直线1A B 与1C D 所成角的余弦值;(Ⅱ)求平面1ADC 与平面1ABA 所成二面角的正弦值.23.(本小题满分10分)设数列{}n a :1,2-,2-,3,3,3,4-,4-,4-,4-,⋅⋅⋅,11(1),,(1)k k k k k ---⋅⋅⋅-个,⋅⋅⋅,即当*(1)(1)()22k k k k n k -+∈N <≤时,1(1)k n a k -=-.记12n n S a a a =++⋅⋅⋅+*()n ∈N .对于*l ∈N ,定义集合{|l n P n S =是n a 的整数倍,*n ∈N ,且1}n l ≤≤. (Ⅰ)求集合11P 中元素的个数; (Ⅱ)求集合2000P 中元素的个数.数学试卷 第7页(共21页) 数学试卷 第8页(共21页) 数学试卷 第9页(共21页)2013年普通高等学校招生全国统一考试(江苏卷)理科数学答案解析数学Ⅰ一、填空题 1.【答案】π【解析】函数π3sin 24y x ⎛⎫=- ⎪⎝⎭的最小正周期2ππ2T ==. 【提示】将题中的函数表达式与函数sin(+)y A x ωϕ=进行对照,可得2ω=,由此结合三角函数的周期公式加以计算,即可得到函数的最小正周期. 【考点】三角函数的周期性. 2.【答案】5【解析】2(2i)34i z =-=-,所以|||34i |5z =-=.【提示】把给出的复数展开化为+i()a b a b ∈R ,的形式,然后直接利用莫得公式计算. 【考点】复数的概念和代数形式的四则运算.3,【答案】34y x =±【解析】由双曲线方程可知4a =,3b =所以两条渐近线方程为34y x =±.【提示】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程. 【考点】双曲线的简单几何性质. 4.【答案】8【解析】由于集合中有3个元素,故该集合有328=(个)子集.【提示】集合1,{}2,3P =的子集是指属于集合的部分或所有元素组成的集合,包括空集. 【考点】集合的含义 5.【答案】3【解析】算法流程图执行过程如下:1220n a a ==<,,;8220a n a ==<,,;26320a n a ==>,,,输出3n =.【提示】由已知的程序框图可知,该程序的功能是利用循环计算a 值,并输出满足20a ≥的最小n 值,模拟程序的运行过程可得答案. 【考点】选择结构和循环结构的程序框图. 6.【答案】2【解析】由表中数据计算得90x =甲,90x =乙,且2222221[(8790)+(9190)+(9090)+(8990)+(9390)]45s =-----=甲,2222221[(8990)+(9090)+(9190)+(8890)+(9290)]25s =-----=乙.(步骤1)由于22ss≥乙甲,故乙的成绩较为稳定,其方差为2.(步骤2)【提示】直接由图表得出两组数据,求出它们的平均数,求出方差,则答案可求. 【考点】数据平均数和方差的计算. 7.【答案】2063【解析】因为正整数m ,n 满足7m ≤,9n ≤,所以(,)m n 所有可能的取值一共有7963⨯=(种),(步骤1)其中m ,n 都取到奇数的情况有4520⨯=(种),因此所求概率为2063p =.(步骤2)【提示】求出m 取小于等于7的正整数,n 取小于等于9的正整数,m 取到奇数,n 取到奇数的方法种数,直接由古典概型的概率计算公式求解. 【考点】古典概型. 8.【答案】1:24【解析】设三棱柱的底面ABC 的面积为S ,高为h ,则其体积为2V Sh =.(步骤1) 又因为F 为1AA 的中点,所以三棱锥F ADE -的体积为12111113422424V Sh Sh V =⨯==,故12:1:24V V =.(步骤2)【提示】由三角形的相似比等于面积比的平方得到棱锥和棱柱的底面积的比值,由题意棱柱的高是棱锥的高的2倍,然后直接由体积公式可得比值. 【考点】三棱柱、三棱锥体积的计算.9.【答案】12,2⎡-⎤⎢⎥⎣⎦【解析】由于2y x '=,所以抛物线在1x =处的切线方程为12(1)y x -=-,即21y x =-.画出可行域(如图).(步骤1) 设2x y z +=,则1122y x z =-+经过点1,02A ⎛⎫⎪⎝⎭,(0,1)B -时,z 分别取最大值和最小值,此时最大值max12z =,最小值min 2z =-,故取值范围是12,2⎡-⎤⎢⎥⎣⎦.(步骤2)第9题图【提示】利用导数求出抛物线在1x =处的切线方程,画出可行域,找出最优解,则2x y+的取值范围可求.【考点】导数的几何意义,直线方程,线性规划问题. 10.【答案】12【解析】由题意212112()++323263DE BE BD BC BA AC AB AB AB AC =-=-=-=-,(步骤1)于是116λ=-,223λ=,故121+2λλ=.(步骤2)【提示】由题意和向量的运算可得12+63DE AB AC =-,结合12+DE AB AC λλ=,可得1λ,2λ的值,求和即可.【考点】平面向量的几何表示和加法、减法及数乘等线性运算. 11.【答案】(5,0)(5,+)-∞【解析】先求出函数()f x 在R 上的解析式,然后分段求解不等式()f x x >,即得不等式的解集.设0,x <则0,x ->于是22()()4()4f x x x x x -=---=+,(步骤1) 由于()f x 是R 上的奇函数,则2()+4f x x x -=,即2()4f x x x =--,(步骤2)数学试卷 第10页(共21页) 数学试卷 第11页(共21页) 数学试卷 第12页(共21页)且(0)0,f =于是224,0()0,04,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩(步骤3) 当0x >时,由24x x x ->得5x >;当0x <时,由24x x x -->得50x -<<, 故不等式的解集为(5,0)(5,+)-∞(步骤4)【提示】作出x 大于0时,()f x 的图象,根据()f x 为定义在R 上的奇函数,利用奇函数的图象关于原点对称作出x 小于0的图象,所求不等式即为函数()f x 图象在y x =上方,利用图形即可求出解集.【考点】函数奇偶型的应用,一元二次不等式的求解. 12.【解析】依题意,222a b d c c c=-=.又BF a =,所以1bc d a =.(步骤1) 由已知可得26b bc c a.所以2ab =,即42226()c a a c =-,整理得223a c =,所以离心率c e a ==.(步骤2)【提示】根据“21d =”结合椭圆的半焦距,短半轴,长半轴构成直角三角形,再由等面积法可得1bc d a =,从而得到a 与b 的关系,可求得ba,从而求出离心率.【考点】椭圆的定义. 13.【答案】1-【解析】依题意可设1,(0)P x x x ⎛⎫=> ⎪⎝⎭,则222222111||()++2++2P A x a a x a x a x xx ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭.(步骤1)令1+x t x=,则2t ≥且22222||22+2()+2PA t at a t a a =--=--.(步骤2)若2a ≥,则当t a =时,2||PA 取最小值22a -,令222a-=,解得a =a =舍去);若2a <,则当2t =时,2||PA 取最小值2242a a-+,令22242a a -+=,解得1a =-(3a =舍去)(步骤4)综上,满足条件的所有a的值为1-(步骤5) 【提示】设点1,(0)P x x x ⎛⎫=> ⎪⎝⎭,利用两点间的距离公式可得||PA ,利用基本不等式和二次函数的单调性即可得出a 的值.【考点】两点间距离公式,均值不等式,二次函数的最值,换元法. 14.【答案】12【解析】设{}n a 的公比,则由已知可得4121,21(+)3,2a q q q ⎧=⎪⎪⎨⎪=⎪⎩解得11,322.a q ⎧=⎪⎨⎪=⎩(步骤1) 于是13212(12)1+++(21)1232n n n a a a -==--,(1)(1)221211232n n n n n n n a a a a q --⎛⎫== ⎪⎝⎭.(步骤2) 由1212+++n n a a a a a a >可得(1)211(21)23232nn n n -⎛⎫-> ⎪⎝⎭,整理得2111+522212n n n -->. (步骤3)由2111+52222n n n ->,可得2111+522n n >-,即213+100n n -<,n <(步骤4)取12n =,可以验证当12n =时满足1212+++n n a a a a a a >,故n 的最大值为12.(步骤5)【提示】设正项等比数列{}n a 首项为a 1,公比为q ,由题意可得关于这两个量的方程组,解之可得数列的通项公式和12+++n a a a 及12n a a a 的表达式,化简可得关于n 的不等式,解之可得n 的范围,取上限的整数部分即可得答案.【考点】等比数列的通项公式,求和公式以及不等式的性质. 二、解答题15.【答案】(1)见解析 (2)5π6α=π6β=【解析】(1)证明:由题意的2||2a b -=,即222()2+2a b a a b b -=-=.(步骤1)又因为2222||||1a b a b ====,所以222a b -=,即0a b =,故a b ⊥.(步骤2)(2)因为+(cos +cos ,sin +sin )(0,1)a b αβαβ==,所以cos +cos 0,sin +sin 1,αβαβ=⎧⎨=⎩(步骤3) 由此得,cos cos(π)αβ=-,由0πβ<<,得0ππβ<-<,又0πα<<,故παβ=-(步骤4)代入sin +sin 1αβ=,得1sin sin 2αβ==,而αβ>,所以5π6α=,π6β=.(步骤5) 【提示】(1)由给出的向量a ,b 的坐标,求出a b -的坐标,由模等于列式得到cos cos +sin sin 0αβαβ=,由此得到结论;(2)由向量坐标的加法运算求出+a b ,由+(0,1)a b =列式整理得到2π3αβ-=,结合给出的角的范围即可求得α,β的值. 【考点】平面向量的坐标运算,诱导公式. 16.【答案】(1)见解析 (2)见解析【解析】(1)因为AS AB =,AF SB ⊥,AF SB ⊥,垂足为F ,所以F 是SB 的中点.(步骤1)又因为E 是SA 的中点,所以EF AB ∥.(步骤2)因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ABC ∥平面(步骤3) 同理EG ABC ∥平面.又EFEG E =,所以A C EFG B ∥平面平面.(步骤4)(2)因为1ADC SBC ⊥平面平面,且交线为SB ,又AF SAB ⊂平面,AF SB ⊥, 所以AF SBC ⊥平面.(步骤5)因为BC SBC ⊂平面,所以AF BC ⊥.(步骤6) 又因为AB BC ⊥,AFAB A =,AF SAB ⊂平面,BC SAB ⊥平面(步骤7)因为SA SAB ⊂平面,所以BC SA ⊥.(步骤8)第16题图【提示】(1)根据等腰三角形的“三线合一”,证出F 为SB 的中点.从而得到SAB △和SAC△中,EF AB ∥且EG AC ∥,利用线面平行的判定定理,证出EFABC ∥平面且EG ABC ∥平面.因为EF 、EG 是平面EFG 内的相交直线,所以平面数学试卷 第13页(共21页) 数学试卷 第14页(共21页) 数学试卷 第15页(共21页)A C EFGB ∥平面平面;(2)由面面垂直的性质定理证出AF SBC ⊥平面,从而得到AF BC ⊥.结合AF 、AB 是平面SAB 内的相交直线且AB BC ⊥,可得BC SAB ⊥平面,从而证出BC SA ⊥. 【考点】面面平行的判定定理和线面垂直的证明. 17.【答案】(1)3y =或3+4120x y -=(2)120,5⎡⎤⎢⎥⎣⎦【解析】(1)由题设,圆心C 是直线24y x =-和1y x =-的交点,解得点(3,2)C ,于是切线的斜率必存在.(步骤1)设过11P 的圆C 的切线方程为+3y kx =由题意得,1=,解得0k =或34k =-,(步骤2)故所求切线方程为3y =或3+4120x y -=.(步骤3)(2)因为圆心在直线24y x =-上,所以圆C 的方程为22()+[2(2)]1x a y a ---=.(步骤4)设点(,)M x y ,因为2MA MO =,=化简得22+230x y y +-=,即22+(+1)4x y =,所以点M 在以(0,1)D -为圆心,2为半径的圆上.(步骤5) 由题意,点(,)M x y 在圆C 上,所以圆C 和圆D 有公共点,则|21|2+1CD -≤≤,即13.整理,得285120a a -≤-≤.(步骤6) 由251280a a -+≥,得a ∈R ;由25120a a -≤,得1205a ≤≤.所以a 的取值范围为120,5⎡⎤⎢⎥⎣⎦(步骤7)【提示】(1)联立直线l 与直线1y x =-解析式,求出方程组的解得到圆心C 坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k 的方程,求出方程的解得到k 的值,确定出切线方程即可;(2)设(,)M x y ,由2MA MO =,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,1)-为圆心,2为半径的圆,可记为圆D ,由M 在圆C 上,得到圆C 与圆D 相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a 的范围.【考点】圆的方程、圆的切线方程以及两圆间的位置关系. 18.【答案】(1)1040m(2)35(min)37(3)1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min ) 【解析】(1)在△ABC 中,因为12cos 13A =,3cos 5C =,所以5sin 13A =,4sin 5C =.(步骤1)从而5312463sin sin[π(+)]=sin(+)sin cos +cos sin +13513565B AC A C A C A C =-==⨯⨯=.(步骤2)由正弦定理sin sin AB AC C B =,得636512604sin 1040(m)sin 5AC AB C B ==⨯= 所以索道AB 的长为1040m .(步骤3)(2)假设乙出发min t 后,甲、乙两游客距离为d ,此时,甲行走了(100+50)m t ,乙距离A 处130t m ,所以由余弦定理得222212(100+50)+(130)2130(100+50)200(3770+50)13d t t t t t t =-⨯⨯⨯=-.(步骤4)由于10400130t ≤≤,即08t ≤≤,故当35(min)37t =时,甲、乙两游客距离最短.(步骤5)(3)由正弦定理sin sin BC AC A B =,得636512605sin 500(m)sin 13AC BC A B ==⨯=(步骤6) 乙从B 出发时,甲已走了50(2+8+1)550(m)⨯=,还需走710m 才能到达C .(步骤7) 设乙步行的速度为v m/min ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤,(步骤8) 所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min )范围内.(步骤9) 【提示】(1)作出相应的图形,根据cos C 的值,求出tan C 的值,设出BD 表示出DC ,由cos A 的值,求出tan A 的值,由BD 表示出AD ,进而表示出AB ,由+CD AD AC =,列出关于k 的方程,求出方程的解得到k 的值,即可确定出AB 的长;(2)设乙出发x min 后到达点M ,此时甲到达N 点,如图所示,表示出AM 与AN ,在三角形AMN 中,由余弦定理列出关系式,将表示出的AM ,AN 及cos A 的值代入表示出2MN ,利用二次函数的性质即可求出MN 取最小值时x 的值;(3)由(1)得到BC 的长,由AC 的长及甲的速度求出甲到达C 的时间,分两种情况考虑:若甲等乙3分钟,此时乙速度最小,求出此时的速度;若乙等甲3分钟,此时乙速度最大,求出此时的速度,即可确定出乙步行速度的范围. 【考点】正弦定理的实际应用和函数的最值问题. 19.【答案】(1)见解析 (2)见解析【解析】(1)由0c =,得1+2N n S n b a d n -==又因为124b b b ,,成等比数列,所以2214b b b =, 即23++22d a a a d ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,化简得220d ad -=.(步骤1)因为0d ≠,所以2d a =.因此,对于所有的*m ∈N ,有2m S m a =. 从而对于所有的k ,*n ∈N ,有2222()nk k S nk a n k a n S ===.(步骤2)(2)(1)+2(1)2(1)2(1)2(1)222222222222(1)+2+++2+n d a n d a n d a n d a n d a nn n n c c c nS n d a b n c n c n c n c--+-+-+-++--====-(*)(步骤3)若{}n b 是等差数列,则+n n n b A B =型.观察(*)式后一项,分子幂低于分母幂,故有:(1)2220+n d ac n c -+=,(步骤4) 即(1)+202nd a c-=,而(1)+22n d a-≠0,故0c =. 经检验,当0c =时,{}n b 是等差数列.(步骤5)【提示】(1)写出等差数列的通项公式,前n 项和公式,由124b b b ,,成等比数列得到首项和公差的关系,代入前n 项和公式得到n S ,在前n 项和公式中取n nk =可证结论;(2)把n S 代入2+n n nS b n c =中整理得到(1)222(1)+22+n d a n c n d ab n c-+-=-,由等差数列的通项公式是+n a An B =的形式,说明(1)2220+n d ac n c-+=,由此可得到0c =. 【考点】等差数列的通项公式与前n 项和,等比数列的定义及性质. 20.【答案】(1)(e,+)a ∈∞(2)当0a ≤或1e a -=时,()f x 的零点个数为1;数学试卷 第16页(共21页) 数学试卷 第17页(共21页) 数学试卷 第18页(共21页)当10e a -<<时,()f x 的零点个数为2 【解析】(1)令11()0ax f x a x x-'=-=<,(步骤1) 考虑到()f x 的定义域为(0,)+∞,故0a >,进而解得1x a ->,即()f x 在1(,)a -+∞上是单调减函数.同理,()f x 在1(0,)a -上是单调增函数.(步骤2)由于()f x 在(1,)+∞上是单调减函数,故(1,)+∞1(,)a -⊆+∞,从而11a -≤,即1a ≥.(步骤3)令()e 0xg x a '=-=,得ln x a =.当ln x a <时,()0g x '<;当ln x a >时,()0g x '>.又()g x 在(1,)+∞上有最小值,所以ln 1a >,即e a >. 综上所述两种情况,得(e,+)a ∈∞.(步骤4) (2)当0a ≤时,()g x 必为单调增函数;当0a >时,令()e 0xg x a '=->,解得e x a <,即ln x a >.(步骤5)因为()g x 在(1,)-+∞上是单调增函数,类似(1)有ln 1a ≤-,即0e x a <≤. 结合上述两种情况,得1e a -≤.(步骤6) 当0a =时,由(1)0f =以及1()0f x x'=>,得()f x 存在唯一的零点;(步骤7) 当0a <时,由于(e )e (1e )0aaaf a a a =-=-<,(1)0f a =->,且函数()f x 在[e ,1]a上的图象连续,所以()f x 在(e ,1)a上存在零点.(步骤8) 另外,当0x >时,1()0f x a x'=->,故()f x 在(0,)+∞上是单调增函数,所以()f x 只有一个零点.(步骤9) ①当10e a -<≤时,令1()0f x a x'=-=,解得1x a -=;当10x a -<<时,()0f x '>;当1x a ->时,()0f x '<,所以1x a -=是()f x 的最大值点,且最大值为1()ln 1f a a -=--.(步骤10)②当ln 10a --=,即1e a -=时,()f x 有一个零点e x =.(步骤11)③当ln 10a -->,即10e a -<<时,()f x 有两个零点.实际上,对于10e a -<<,由于11(e )1e 0f a --=--<,1()0f a ->,且函数()f x 在11[e ,]a --上的图象连续,所以()f x 在11(e ,)a --上存在零点另外,当1(0,)x a -∈时,1()0f x a x'=->,故()f x 在1(0,)a -上只有一个零点.(步骤12)下面考虑()f x 在1(,)a -+∞上的情况.先证112(e )(e )0a a f a a ---=-<.为此,我们要证明:当e x >时,2e x x >.设2()e x h x x =-,则()e 2x h x x '=-,再设()()e 2x l x h x x '==-,则()e 2xl x '=-.(步骤13)当1x >时,()e 2e 20x l x '=->->,所以()()l x h x '=在(1,)+∞上是单调增函数.(步骤14)故当2x >时,2()e 2(2)e 40x h x x h ''=->=->,从而()h x 在(2,)+∞上是单调增函数,(步骤15)进而当e x >时,2e 2()e (e)=e e 0x h x x h =->->,即当e x >时,2e x x >.(步骤16) 当10e a -<<,即1e a ->时,11112(e )e (e )0a a a f a a a a -----=-=-<.又1()0f a ->,且函数()f x 在11[,e ]a a --上的图象连续,所以()f x 在11(,e )a a --上存在零点.(步骤17)又当1x a ->时,1()0f x a x'=-<,故()f x 在1(,)a -+∞上是单调减函数,所以()f x 在1(,)a -+∞上只有一个零点.(步骤18)综合上述可知,当0a ≤或1e a -=时,()f x 的零点个数为1; 当10e a -<<时,()f x 的零点个数为2.(步骤19)【提示】(1)求导数,利用()f x 在(1,)+∞上是单调减函数,转化为10a x-≤在(1,)+∞上恒成立,利用()g x 在(1,)+∞上有最小值,结合导数知识,即可求得结论; (2)先确定a 的范围,再分类讨论,确定()f x 的单调性,从而可得()f x 的零点个数. 【考点】函数的单调性、极值、最值、零点等性质以及函数与导数的联系.数学Ⅱ21A.【答案】证明:连结OD ,因为AB 和BC 分别与圆O 相切于点D ,C , 所以90ADO ACB ∠=∠=︒.(步骤1)又因为A A ∠=∠,所以Rt ADO △∽Rt ACB △所以BC ACOD AD=. 又22BC OC OD ==,故2AC AD =.(步骤2)第21题图【提示】结合三角形和圆相交的一些条件,运用三角形相似的性质从而得出线段间的比例关系.【考点】几何证明.21B.【答案】101212=1060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 【解析】设矩阵A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则10100201a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,(步骤1)即 102201a b c d --⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,故1a =-,0b =,0c =,12d =,(步骤2) 从而A 的逆矩阵为10A =102--⎡⎤⎢⎥⎢⎥⎣⎦,所以101212=1060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.(步骤3) 【提示】给出两矩阵,利用矩阵与逆矩阵相乘为单位矩阵的性质求出对应参数. 【考点】矩阵与行列式初步. 21C.【答案】220x y --=22y x =(2,2) 1,12⎛-⎫⎪⎝⎭【解析】因为直线l 的参数方程为+12x t y t =⎧⎨=⎩(t 为参数),由+1x t =得1t x =-,代入2y t =,得到直线l 的方程为220x y --=.(步骤1)同理得到曲线C 的普通方程为22y x =.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)联立方程组22(1)2y x y x=-⎧⎨=⎩,解得公共点的坐标为(2,2),1,12⎛-⎫⎪⎝⎭.(步骤2)【提示】给定直线和曲线的参数方程,用代入法消去参数t 化为普通方程,联立方程求出公共点的坐标. 【考点】坐标系与参数方程.21D.【答案】证明:∵3322322322+(22)+()a b ab a b a ab a b b --=--=2222222()()()(2+)(+)()(2+)a a b b a b a b a b a b a b a b -+-=-=-,(步骤1)又∵0a b ≥>,∴0a b +>,0a b -≥,2+0a b >,∴()()(2+)0a b a b a b +-≥(步骤2) ∴3322220a b ab a b --+≥∴332222a b ab a b -≥-.(步骤3) 【提示】用作差比较法证明不等式. 【考点】不等式选讲. 22.【答案】(1(2【解析】(1)以{}1,,AB AC AA 为单位正交基底建立空间直角坐标系A xyz -,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,1(0,0,4)A ,(1,1,0)D ,1(0,2,4)C .∴1(2,0,4)A B =-,1(1,1,4)C D =--(步骤1)∴111111cos ,20A B C DA B C D A B C D<>==,∴异面直线1A B 与1C D .(步骤2) (2)(0,2,0)AC =是平面1ABA 的的一个法向量,设平面1ADC 的法向量为(,,)m x y z =, ∵(1,1,0)AD =,1(0,2,4)AC =,(步骤3)由m AD ⊥,1m AC ⊥,∴0240x y y z +=⎧⎨+=⎩取1z =,得2y =-2x =,∴平面1ADC 的法向量为(2,2,1)m =-(步骤4) 设平面1ADC 与平面1ABA 所成二面角为θ,∴42|cos |cos ,233||||AC m AC m AC m θ-=<>===⨯,得sin 3θ=. ∴平面1ADC 与平面1ABA .(步骤5)第22题图【提示】建立空间直角坐标系求异面直线的余弦值和两平面间二面角的正弦值. 【考点】异面直线,二面角,空间向量及其运算,空间直角坐标系,空间向量的应用. 23.【答案】(1)由数列{}n a 的定义得:11a =,22a =-,32a =-,43a =,53a =,63a =,74a =-,84a =-,94a =-,104a =-,115a =,∴11S =,21S =-,33S =-,40S =,53S =,66S =,72S =,82S =-,96S =-,1010S =-,115S =-(步骤1)∴111S a =,440S a =,551S a =,662S a =,11111S a =-,(步骤2) ∴集合11P 中元素的个数为5.(步骤3)(2)证明:用数学归纳法先证(21)(21)i i S i i +=-+,事实上,①当1i =时,(21)31(2+1)3i i S S +==-⨯=-故原式成立;②假设当i m =时,等式成立,即(2+1)(2+1)m m S m m =-故原式成立.(步骤4)则:+1i m =,时,22(+1)[2(+1)+1](+1)(2+3(2+1)(2+1)(2+2)m m m m m m S S S m m ==+-)222(2+1)(2+1)(2+2)(2+5+3)(+1)(2+3)m m m m m m m m =-+-=-=-,(步骤5)综合①②得:(2+1)(2+1)i i S i i =-于是22(+1)[2+1](2+1+(2+1)(2+1)+(2+1)(2+1)(+1)i i i i S S i i i i i i ==-=),(步骤6)由上可知:(2+1i i S 是(2+1)i 的倍数,而(+1)(2+1)2+1(122+1)ii j a i j i +==,,,,所以(2+1)+(2+1)(2+1)i i j i i S S j i =+,(步骤7)是(+1)(2+1)+i i j a (122+1)j i =,,,的倍数,又(+1)(2+1)(+1)(2+1)i i S i i =不是2+2i 的倍数,而(+1)(2+1)+(2+2)i i j a i =-(122+2)j i =,,,,所以(+1)(2+1)+(2+1)(+1)(2+2)i i j S i i j i =-,(+1)(2+1)+(+1)(2+1)(2+2)i i j i i S S j i =-不是(+1)(2+1)(122+2)i i j a j i +=,,,的倍数,(步骤8)故当(2+1)l i i =时,集合l P 中元素的个数为21+3++21i i -=(),(步骤9) 于是当(2+1)+12+1l i i j j i =≤≤()时,集合l P 中元素的个数为2+i j ,又200031231=⨯⨯(),故集合2000P 中元素的个数为231+471008=.(步骤10) 【提示】给出数列的规律,由此求出数列相应的项及各项之和,采用列举法写出所满足的元素;由特殊形式推广到一般形式,采用计数原理和数学归纳法来证明得之. 【考点】集合,数列的概念和运算,计数原理,数学归纳法.。
(完整版)2013年高考江苏数学试题及答案(word解析版)
2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】函数3sin(2)4y x π=-的最小正周期为_______.【答案】π【解析】函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==.(2)【2014年江苏,2,5分】设2(2i)z =-(i 为虚数单位),则复数z 的模为_______. 【答案】5【解析】()222i 44i i 3i 54z =--+-====.(3)【2014年江苏,3,5分】双曲线221169x y -=的两条渐近线的方程为_______.【答案】34y x =±【解析】由题意可知所求双曲线的渐近线方程为34y x =±.(4)【2014年江苏,4,5分】集合{}1,0,1-共有 _______个子集. 【答案】8【解析】由于集合{}1,0,1-有3个元素,故其子集个数为328=.(5)【2014年江苏,5,5分】右图是一个算法的流程图,则输出的n 的值是_______. 【答案】3【解析】第一次循环后:82a n ←←,;第二次循环后:263a n ←←,;由于2620>,跳出循环,输出3n =.(6)【的那位运动员成绩的方差为 .【答案】2【解析】由题中数据可得=90x 甲,=90x 乙.()()()()()22222287909190909089909015394s -+-+-⎡⎤=⎣+-+-⎦=甲,()()()()()22222289909090919088909015292s -+-+-⎡⎤=⎣+-+-⎦=乙,由22>s s 甲乙,可知乙运动员成绩稳定.故应填2.(7)【2014年江苏,7,5分】现有某类病毒记作m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为________.【答案】2063【解析】由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3,…,9.由于是任取m ,n :若1m =时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7963⨯=种.若m ,n 都取奇数,则m 的取值为1,3,5,7,n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063.(8)【2014年江苏,8,5分】如图,在三棱柱111A B C ABC -中,,,D E F 分别是1,,AB AC AA 的中点,设三棱锥F ADE -的体积为1V ,三棱柱111A B C ABC -的体积为2V ,则12:V V =_______. 【答案】1:24【解析】由题意可知点F 到面ABC 的距离与点1A 到面ABC 的距离之比为1:2,1:4ADE ABC S S =V V :.因此12131:242AED ABCAF S AF S V V ∆∆=⋅=⋅:. (9)【2014年江苏,9,5分】抛物线2y x =在1x =处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点(,)P x y 是区域D 内的任意一点,则2x y +的取值范围是________.【答案】12,2⎡⎤-⎢⎥⎣⎦【解析】由题意可知抛物线2y x =在1x =处的切线方程为21y x =-.该切线与两坐标轴围成的区域如图中阴影部分所示:当直线20x y +=平移到过点1,02A ⎛⎫⎪⎝⎭时,2x y +取得最大值12.当直线20x y +=平移到过点1(0)B -,时,2x y +取得最小值2-. 因此所求的2x y +的取值范围为12,2⎡⎤-⎢⎥⎣⎦.(10)【2014年江苏,10,5分】设,D E 分别是ABC ∆的边,AB BC 上的点,12AD AB =,23BE BC =,若12DE AB AC λλ=+u u u r u u u r(12,λλ为实数),则12λλ+的值为________. 【答案】12【解析】由题意作图如图.∵在ABC ∆中,1223DE DB BE AB BC =+=+u u u r u u u r u u u r u u u r u u u r 12()23AB AC AB =+-u u u r u u u r u u u r121263AB AC AB AC λλ=-+=+u u u r u u u r u u u r u u u r ,∴116λ=-,223λ=.故1212λλ+=.(11)【2014年江苏,11,5分】已知()f x 是定义在R 上的奇函数.当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为________. 【答案】5,0)5()(∞U -,+【解析】∵函数()f x 为奇函数,且0x >时,()24f x x x =-,则()22400040f x x x x x x x x =⎧->⎪=⎨⎪--<⎩∴原不等式等价于204x x x x >⎧⎨->⎩或204x x x x <⎧⎨-->⎩,由此可解得5x >或50x -<<. (12)【2014年江苏,12,5分】在平面直角坐标系xOy 中,椭圆C 的标准方程为22221(0,0)x y a b a b+=>>,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若21d =,则椭圆的离心率为________.【解析】设椭圆C 的半焦距为c ,由题意可设直线BF 的方程为=1x yc b+,即0bx cy bc +-=.于是可知1bc d a ==,22222a a c b d c c c c -=-==.∵21d =,∴2b c =,即2ab =.∴()22246a a c c -=.∴42610e e +-=.∴213e =.∴e(13)【2014年江苏,13,5分】平面直角坐标系xOy 中,设定点(,)A a a ,P 是函数1(0)y x x=>图像上一动点,若点,P A 之间最短距离为a 的所有值为________.【答案】1-【解析】设P 点的坐标为1,x x ⎛⎫⎪⎝⎭,则222222111()=2=2x a a x a x a x x A x P ⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=.令12t x x =+≥,则()()2222222222PA t at a t a a t =-+-=-+-≥.结合题意可知(1)当2a ≤,2t =时,2PA 取得最小 值.此时()22228a a -+-=,解得1a =-,3a =(舍去).(2)当2a >,t a =时,2PA 取得最小值.此时228a -=,解得a =a =(舍去).故满足条件的实数a 1-.(14)【2014年江苏,14,5分】在正项等比数列{}n a 中,512a =,673a a +=.则满足123123......n n a a a a a a a a ++++>的最大正整数n 的值为_______. 【答案】12【解析】设正项等比数列{}n a 的公比为q ,则由()26753a a a q q +=+=可得2q =,于是62n n a -=,则1251(12)13221232n n n a a a --=-+=-++⋯.∵512a =,2q =,∴61a =, 111210261a a a a a ==⋯==.∴12111a a a ⋯=.当n 取12时,7612121211121213222a a a a a a a a ++⋯+=->⋯==成立;当n 取13时,86713121312111213121322132·22a a a a a a a a a a ++⋯+=-⋯===<.当13n >时,随着n 增大12n a a a ++⋯+将恒小于12n a a a ⋯.因此所求n 的最大值为12.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()cos sin a αα=,r ,()cos sin b ββ=,r,0βαπ<<<.(1)若a b -=r r a b ⊥r r;(2)设()01c ,=r ,若a b c +=r r r ,求α,β的值.解:(1)解法一:由||a b -=r r 22||()2a b a b -=-=r r r r ,即2222a a b b -⋅+=r r r r .又2222||||1a b a b ====r r r u u r ,所以222a b -⋅=,0a b ⋅=r r ,故a b ⊥r r . 解法二:(cos cos ,sin sin )a b αβαβ-=--r r ,由||a b -=r r22||()2a b a b -=-=r r r r , 即:22(cos cos )(sin sin )2αβαβ-+-=,化简,得:2(cos cos sin sin )0αβαβ+-=, cos cos sin sin 0a b αβαβ⋅=+-=r r ,所以a b ⊥r r . (2)(cos cos ,sin sin )a b αβαβ+=++r r ,可得:cos cos 0(1)sin sin 1(2)αβαβ+=⎧⎨+=⎩L L L L解法一:AS AB =.过A 作AF SB ⊥,垂足为F ,点E ,G 分别是侧棱SA ,SC 的中点.求证:(1)平面EFG //平面ABC ; (2)BC SA ⊥. 解:(1)因为AS AB =,AF SB ⊥于F ,所以F 是SB 的中点.又E 是SA 的中点,所以//EF AB .因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC .同理可证//EG 平面ABC .又EF EG E =I ,所以平面//EFG 平面ABC .(2)因为平面SAB ⊥平面SBC 于SB ,又AF ⊂平面SAB ,AF SB ⊥,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF BC ⊥.又因为AB BC⊥,AF AB A =I ,AF AB ⊂、平面SAB ,所以BC ⊥平面SAB .又因为SA ⊂平面SAB ,所以BC SA ⊥.(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆的半径为1,圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围. 解:(1)由题设,圆心C 是直线24y x =-和1y x =-的交点,解得点2(3)C ,,于是切线的斜率必存在.设过3(0)A ,的圆C 的切线方程为3y kx =+1=,解得0k =或34-, 故所求切线方程为3y =或34120x y +-=.(2)因为圆心在直线24y x =-上,所以圆C 的方程为()()22221x a y a -+--⎤⎣⎦=⎡.设点()M x y ,, 因为2MA MO =22230x y y ++-=,即()2214x y ++=, 所以点M 在以1(0)D -,为圆心,2为半径的圆上.由题意,点()M x y ,在圆C 上,所以圆C 与圆D 有 公共点,则2121CD -≤≤+,即13≤.由251280a a -+≥,得R a ∈;由25120a a -≤,得0125a ≤≤.所以点C 的横坐标a 的取值范围为120,5⎡⎤⎢⎥⎣⎦. (18)【2014年江苏,18,16分】如图,游客从某旅游景区的景点处下山至C 处有两种路径. 一种是从沿A 直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到 C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5C =.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处相互等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?.解:(1)在ABC ∆中,因为3os 1c 12A =,cos 35C =,所以sin 513A =,sin 45C =.从而()()sin sin sin sin cos cos sin 531246313513565B AC A C A C A C π=-+=+=+⨯⨯⨯==⎡⎤⎣⎦. 由正弦定理sin sin AB ACC B=,得12604sin 104063sin 565AC AB C B =⨯=⨯=.所以索道AB 的长为1040 m . (2)假设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了()10050 m t +,乙距离A 处130m t ,所以由余弦定理得()()()()2222121005013021301005020037705013d t t t t t t =++-⨯⨯+⨯=-+, 因10430001t ≤≤,即08t ≤≤,故当3537t =(min)时,甲、乙两游客距离最短. (3)由正弦定理sin sin BC ACA B=,得12605sin 500m 63sin 1365AC BC A B =⨯=⨯=. 乙从B 出发时,甲已走了()50281550⨯++=(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min)范围内. (19)【2014年江苏,19,16分】设{}n a 是首项为a ,公差为d 的等差数列()0d ≠,n S 是其前n 项和.记2n n nSb n c=+,N n *∈,其中c 为实数.(1)若0c =,且1b ,2b ,4b 成等比数列,证明:()2N nk k S n S k,n *=∈;(2)若{}n b 是等差数列,证明:0c =. 解:由题设,(1)2n n n S na d -=+. (1)由0c =,得12n n S n b a d n -==+.又因为124b b b ,,成等比数列,所以1224b b b =,即23=22d a a a d ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 化简得220d ad -=.因为0d ≠,所以2d a =.因此,对于所有的*N m ∈,有2m S m a =.从而对于所有的k ,*N n ∈,有()2222nk k S nk a n k a n S ===. (2)设数列{}n b 的公差是1d ,则()111n b b n d =+-,即()1121nb n nS n cd =+-+,*N n ∈,代入n S 的表达式,整理 得,对于所有的*N n ∈,有()111321111122d d n b d a d n cd n c d b ⎛⎫⎛⎫-+--++ ⎪ =⎪⎭⎭-⎝⎝.令112A d d =-,1112B d d b a =--+,()11D c d b =-,则对于所有的*N n ∈,有321An Bn cd n D ++=.(*)在(*)式中分别取1234n =,,,,得1111842279364164A B cd A B cd A B cd A B cd ++=++=++=++, 从而有11173019502150A B cd A B cd A B cd ++=⎧⎪++=⎨⎪++=⎩①②③,由②,③得0A =,15cd B =-,代入方程①,得0B =,从而10cd =.即1102d d -=,11102b d a d -+=-=0,10cd =.若d 1=0,则由1102d d -=,得0d =,与题设矛盾,所以10d ≠.又因为10cd =,所以0c =.(20)【2014年江苏,20,16分】设函数()ln f x x ax =-,()x g x e ax =-,其中a 为实数. (1)若()f x 在()1,+∞上是单调减函数,且()g x 在()1,+∞上有最小值,求a 的范围; (2)若()g x 在()1,-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论. 解:(1)令f ′(x )=()110axf x a x x-'=-=<,考虑到()f x 的定义域为(0)+∞,,故0a >,进而解得1x a ->,即()f x 在1()a -+∞,上是单调减函数.同理,()f x 在1(0)a -,上是单调增函数.由于()f x 在(1)+∞,上是单调减函数,故1()(1)a -∞∞⊆++,,,从而11a -≤,即1a ≥.令()0x g x e a '=-=,得ln x a =.当ln x a <时,()0g x '<;当ln x a >时,()0g x '>.又()g x 在(1)+∞,上有最小值,所以ln 1a >,即a e >.综上,有()a e ∈+∞,.(2)当0a ≤时,()g x 必为单调增函数;当0a >时,令()0x g x e a '=->,解得x a e <,即ln x a >.因为()g x 在()1-+∞,上是单调增函数,类似(1)有ln 1a ≤-,即10a e -<≤.结合上述两种情况,有1a e -≤. ①当0a =时,由()10f =以及()10f x x'=>,得()f x 存在唯一的零点; ②当0a <时,由于()()10a a a f e a ae a e =-=-<,()10f a =->,且函数()f x 在[1]a e ,上的图象不间断, 所以()f x 在(1)a e ,上存在零点.另外,当0x >时,()10f x a x'=->,故()f x 在(0)+∞,上是单调增 函数,所以f (x )只有一个零点.③当10a e -<≤时,令()10f x a x'=-=,解得1x a -=.当10x a -<<时,()0f x '>,当1x a ->时,()0f x '<,所以,1x a -=是()f x 的最大值点,且最大值为()1ln 1f a a -=--.当ln 10a --=,即1a e -=时,()f x 有一个零点x e =.当ln 10a -->,即10a e -<<时,()f x 有两个零点.实际上,对于10a e -<<,由于()1110f e ae --=--<,()10f a ->,且函数()f x 在11[]e a --,上的图象不间断,所以()f x 在11()e a --,上存在零点.另外,当1()0x a -∈,时, ()10a xf x =->',故()f x 在1(0)a -,上是单调增函数,所以()f x 在1(0)a -,上只有一个零点.下面考虑()f x 在1()a -+∞,上的情况.先证()()1210a a f e a a e ---=-<.为此,我们要证明:当x e >时,2x e x >.设()2x h x e x =-,则()2x h x e x '=-,再设()()2x l x h x e x ='=-,则()2x l x e '=-.当1x >时,()220x l x e e '=->->,所以()()l x h x ='在(1)+∞,上是单调增函数.故当2x >时,()()22240x h x e x h e '=->'=->,从而()h x 在(2)+∞,上是单调增函数,进而当x e >时,()()220x e h x e x h e e e =->=->.即当x e >时,2x e x >.当10a e -<<,即1a e ->时,()()111210a a a f e a ae a a e -----=-=-<,又()10f a ->,且函数()f x 在11[]a a e --,上的图象不间断,所以()f x 在11()a a e --,上存在零点.又当1x a ->时,()0f x a '=-<,故()f x 在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当0a ≤或1a e -=时,()f x 的零点个数为1,当10a e -<<时,()f x 的零点个数为2.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 和BC 分别与圆O 相切于点D C AC 、,经过圆心O ,且2BC OC =.求证:2AC AD =.解:连结OD .因为AB 和BC 分别与圆O 相切于点D ,C ,所以90ADO ACB ∠=∠=︒.又因为A A ∠=∠,所以Rt Rt ADO ACB ∆∆∽.所以BC ACOD AD=. 又22BC OC OD ==,故2AC AD =. (21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵1012,0206-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A B ,求矩阵1-A B . 解:设矩阵A 的逆矩阵为 a b c d ⎡⎤⎢⎥⎣⎦,则 1 00 2-⎡⎤⎢⎥⎣⎦ a b c d ⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,即 2 2a b c d --⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,故100a b c =-==,,,12d =,从而A 的逆矩阵为1 1 010 2--⎡⎤⎢⎥⎢⎥⎣⎦=A ,所以1 1 010 2--⎡⎤⎢⎥⎢⎥⎣=⎦A B 1 20 6⎡⎤⎢⎥⎣⎦= 1 20 3--⎡⎤⎢⎥⎣⎦. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xoy 中,直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),由1x t =+得1t x =-,代入2y t =,得到直线l 的普通方程为220x y --=.同理得到曲线C 的普通方程为22y x =.联立2212y x y x =(-)⎧⎨=⎩,解得公共点的坐标为(2)2,,1,12⎛⎫- ⎪⎝⎭. (21-D )【2014年江苏,21-D ,10分】(选修4-4:不等式选讲)已知0a b ≥>,求证:332222a b ab a b -≥-. 解:()()()()()()()()332222222222222a b ab a b a a b b a b a b a b a b a b a b ---=-+-=-+=-++.因为0a b ≥>,所以0a b -≥,0a b +>,20a b +>,从而()()()20a b a b a b -++≥,即332222a b ab a b -≥-. 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1ABA 所成二面角的正弦值. 解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,则()000A ,,,()200B ,,,()020C ,,()110D ,,,14(0)0A ,,,14(0)2C ,,,所以1(20)4A B =-u u u r ,,,1(11)4C D =--u u u u r,,.因为111111cos ,A B C D A B C D A B C D⋅===u u u r u u u u ru u u r u u u u r u u u r u u u u r ,所以异面直线1A B 与1C D. (2)设平面1ADC 的法向量为1()n x y z =r ,,,因为(1)10AD =u u u r ,,,10()24AC =u u u u r ,,,所以10n AD ⋅=u u r u u u r,110n AC ⋅=u u r u u u u r ,即0x y +=且20y z +=,取1z =,得2x =,2y =-,所以,12()21n =-u u r,,是平面1ADC 的一个法向量.取平面1AA B 的一个法向量为2(010)n =u u r,,,设平面1ADC 与平面 1ABA 所成二面角的大小为θ.由12122||||s 3co θ⋅===n n n n,得sin θ=.因此,平面1ADC 与平面1ABA.(1)求11中元素个数; (2)求集合2000P 中元素个数.解:(1)由数列{}n a 的定义得123456789101223334444a a a a a a a a a a ==-=-====-=-=-=-,,,,,,,,,,,115a =,1234567891011113036226105S S S S S S S S S S S ∴==-=-=====-=-=-=-,,,,,,,,,,,从而11445566111102S a S a S a S a S a ==⨯===-,,,,,所以集合11P 中元素的个数为5. (2)先证:()()*2121()i i S i i i +=-+∈N .①当1i =时,()3213i i S S +==-,()213i i -+=-,故原等式成立; ②假设i m =时成立,即()()2121m m S m m +=-+,则1i m =+时,()()()()()()()()22222(113)21222143253123m m m m S S m m m m m m m m m +++=++-+=-+--=-++=-++.综合①②可得()()2121i i S i i +=-+.于是()()()()()()()2(221121)212121211i i i i S S i i i i i i +++=++=-+++=++. 由上可知()21i i S +是21i +的倍数,而()21(211221)i i j a i j i ++=+=⋯+,,,,所以()()(212)121i i i i j S S j i +++=++是 ()211)2(21i i j a j i ++=⋯+,,,的倍数.又()()()()121121i i S i i ++=++不是22i +的倍数,而()()()12122i i j a i +++=-+()1222j i =⋯+,,,,所以()()()()()()()()1211212221122i i j i i S S j i i i j i +++++=-+=++-+不是()()121i i j a +++ 122()2j i =⋯+,,,的倍数,故当()21l i i =+时,集合l P 中元素的个数为()21321i i ++⋯+-=,于是,当()()21121l i i j j i =++≤≤+时,集合l P 中元素的个数为2i j +. 又()200031231147=⨯⨯++,故集合2000P 中元素的个数为231471008+=.。
2013年全国普通高等学校招生统一考试数学(江苏卷带解析)试题
2013年全国普通高等学校招生统一考试(江苏卷)数学试题1、【题文】函数的最小正周期为2、【题文】设为虚数单位),则复数的模为3、【题文】双曲线的两条渐近线的方程为4、【题文】集合共有个子集.5、【题文】下图是一个算法的流程图,则输出的的值是6、【题文】抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较稳定(方差较小)的那位运动员成绩的方差为7、【题文】现有某病毒记作其中正整数、()可以任意选取,则、都取到奇数的概率为8、【题文】如图,在三棱柱中,,,分别为,,的中点,设三棱锥体积为,三棱柱的体积为,则9、【题文】抛物线在处的切线与两坐标轴围成的三角形区域为(包含三角形内部和边界).若点是区域内任意一点,则的取值范围是10、【题文】设、分别是的边,上的点,,. 若(为实数),则的值是11、【题文】已知是定义在上的奇函数. 当时,,则不等式的解集用区间表示为12、【题文】在平面直角坐标系中,椭圆的标准方程为,右焦点为,右准线为,短轴的一个端点. 设原点到直线的距离为,点到的距离为. 若,则椭圆的离心率为13、【题文】在平面直角坐标系中,设定点,是函数图象上一动点. 若点,之间的最短距离为,则满足条件的实数的所有值为14、【题文】在正项等比数列中,,. 则满足的最大正整数的值为15、【题文】已知,.(1)若,求证:;(2)设,若,求,的值.16、【题文】如图,在三棱锥中,平面平面,,. 过点作,垂足为,点,分别为棱,的中点.求证:(1)平面平面;(2).17、【题文】如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.18、【题文】如图,旅客从某旅游区的景点处下山至处有两种路径.一种是从沿直线步行到,另一种从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为 m/min,在甲出发2 min后,乙从乘缆车到,在处停留1 min后,再从匀速步行到. 假设缆车匀速直线运动的速度为130 m/min,山路长1260 m ,经测量,,.(1)求索道的长;(2)问乙出发后多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19、【题文】设是首项为,公差为的等差数列(),是前项和. 记,,其中为实数.(1)若,且,,成等比数列,证明:;(2)若是等差数列,证明.20、【题文】设函数,,其中为实数.(1)若在上是单调减函数,且在上有最小值,求的取值范围;(2)若在上是单调增函数,试求的零点个数,并证明你的结论.21、【题文】、分别与圆相切于、,经过圆心,且,求证:.22、【题文】已知矩阵,,求矩阵.23、【题文】在平面直角坐标系中,直线的参数方程为,(为参数),曲线的参数方程为,(为参数),试求直线和曲线的普通方程,并求它们的公共点的坐标.24、【题文】已知,求证:.25、【题文】如图,在直三棱柱中,,,,点是的中点.(1)求异面直线与所成角的余弦值;(2)求平面与平面所成二面角的正弦值.26、【题文】设数列:,即当时,记.记. 对于,定义集合是的整数倍,,且.(1)求集合中元素的个数;(2)求集合中元素的个数.。
2013年高考理科数学江苏卷试题与答案word解析版[1]
(直打版)2013年高考理科数学江苏卷试题与答案word解析版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2013年高考理科数学江苏卷试题与答案word解析版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2013年高考理科数学江苏卷试题与答案word解析版(word版可编辑修改)的全部内容。
2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上..........1.(2013江苏,1)函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期为__________.2.(2013江苏,2)设z =(2-i )2(i 为虚数单位),则复数z 的模为__________.3.(2013江苏,3)双曲线22=1169x y -的两条渐近线的方程为__________.4.(2013江苏,4)集合{-1,0,1}共有__________个子集. 5.(2013江苏,5)下图是一个算法的流程图,则输出的n 的值是__________.6.(2013江苏,6)抽样统计甲、乙两位射击运动员的5次训练成绩(7.(2013江苏,7)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为__________.8.(2013江苏,8)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=__________。
(完整版)2013年高考理科数学江苏卷试题与答案word解析版,推荐文档
2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.......... 1.(2013江苏,1)函数π3sin 24y x ⎛⎫=+⎪⎝⎭的最小正周期为__________. 2.(2013江苏,2)设z =(2-i)2(i 为虚数单位),则复数z 的模为__________.3.(2013江苏,3)双曲线22=1169x y -的两条渐近线的方程为__________. 4.(2013江苏,4)集合{-1,0,1}共有__________个子集.5.(2013江苏,5)下图是一个算法的流程图,则输出的n 的值是__________.6.(2013江苏,6)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:7.(2013江苏,7)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为__________.8.(2013江苏,8)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=__________.9.(2013江苏,9)抛物线y =x 2在x =1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是__________.10.(2013江苏,10)设D ,E 分别是△ABC 的边AB ,BC 上的点,1=2AD AB ,2=3BE BC .若12DE AB AC λλ=+u u u r u u u r u u u r(λ1,λ2为实数),则λ1+λ2的值为__________.11.(2013江苏,11)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________.12.(2013江苏,12)在平面直角坐标系xOy 中,椭圆C 的标准方程为2222=1x y a b+(a >0,b >0),右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若21d ,则椭圆C 的离心率为__________.13.(2013江苏,13)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数1y x=(x >0)图象上一动点.若点P,A之间的最短距离为a的所有值为__________.14.(2013江苏,14)在正项等比数列{a n}中,51 2a ,a6+a7=3.则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为__________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(2013江苏,15)(本小题满分14分)已知a=(cos α,sin α),b=(cos β,sin β),0<β<α<π.(1)若|a-b|a⊥b;(2)设c=(0,1),若a-b=c,求α,β的值.16.(2013江苏,16)(本小题满分14分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(2013江苏,17)(本小题满分14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(2013江苏,18)(本小题满分16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min,在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=1213,cos C=35.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(2013江苏,19)(本小题满分16分)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项和.记2n n nS b n c=+,n ∈N *,其中c 为实数. (1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0.20.(2013江苏,20)(本小题满分16分)设函数f (x )=ln x -ax ,g (x )=e x-ax ,其中a 为实数. (1)若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围; (2)若g (x )在(-1,+∞)上是单调增函数,试求f (x )的零点个数,并证明你的结论.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. 21.(2013江苏,21)A .[选修4-1:几何证明选讲](本小题满分10分) 如图,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且BC =2OC .B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A = 1 00 2-⎡⎤⎢⎥⎣⎦,B =1 20 6⎡⎤⎢⎥⎣⎦,求矩阵A -1B .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为1,2x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.D .[选修4-5:不等式选讲](本小题满分10分)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区......域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(2013江苏,22)(本小题满分10分)如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.23.(2013江苏,23)(本小题满分10分)设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,11(1),,(1)k k k k k ----644474448L 个,…,即当1122k k k k n (-)(+)<≤(k ∈N *)时,a n =(-1)k -1k .记S n =a 1+a 2+…+a n (n ∈N *).对于l ∈N *,定义集合P l ={n |S n 是a n 的整数倍,n ∈N *,且1≤n ≤l }.(1)求集合P 11中元素的个数; (2)求集合P 2 000中元素的个数.2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.......... 1.答案:π解析:函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==. 2.答案:5解析:|z |=|(2-i)2|=|4-4i +i 2|=|3-4i|5==5.3.答案:34y x =±解析:由题意可知所求双曲线的渐近线方程为34y x =±. 4.答案:8解析:由于集合{-1,0,1}有3个元素,故其子集个数为23=8. 5.答案:3解析:第一次循环后:a ←8,n ←2; 第二次循环后:a ←26,n ←3; 由于26>20,跳出循环, 输出n =3. 6.答案:2解析:由题中数据可得=90x 甲,=90x 乙. 于是2s 甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,2s 乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2,由22>s s 乙甲,可知乙运动员成绩稳定.故应填2.7.答案:2063解析:由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3,…,9.由于是任取m ,n :若m =1时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7×9=63种.若m ,n 都取奇数,则m 的取值为1,3,5,7,n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063. 8.答案:1∶24解析:由题意可知点F 到面ABC 的距离与点A 1到面ABC 的距离之比为1∶2,S △ADE ∶S △ABC =1∶4.因此V 1∶V 2=132AEDABCAF S AF S ∆∆⋅⋅=1∶24.9.答案:12,2⎡⎤-⎢⎥⎣⎦解析:由题意可知抛物线y =x 2在x =1处的切线方程为y =2x -1.该切线与两坐标轴围成的区域如图中阴影部分所示:当直线x +2y =0平移到过点A 1,02⎛⎫⎪⎝⎭时,x +2y 取得最大值12.当直线x +2y =0平移到过点B (0,-1)时,x +2y 取得最小值-2. 因此所求的x +2y 的取值范围为12,2⎡⎤-⎢⎥⎣⎦.10.答案:12解析:由题意作图如图.∵在△ABC 中,1223DE DB BE AB BC =+=+u u u r u u u r u u u r u u u r u u u r 12()23AB AC AB =+-u u u r u u u r u u u r121263AB AC AB AC λλ=-+=+u u u r u u u r u u u r u u u r ,∴λ1=16-,λ2=23.故λ1+λ2=12.11.答案:(-5,0)∪(5,+∞)解析:∵函数f (x )为奇函数,且x >0时,f (x )=x 2-4x ,则f (x )=224,0,0,0,4,0,x x x x x x x ⎧->⎪=⎨⎪--<⎩∴原不等式等价于20,4,x x x x >⎧⎨->⎩或20,4,x x x x <⎧⎨-->⎩由此可解得x >5或-5<x <0. 故应填(-5,0)∪(5,+∞). 12.答案:3解析:设椭圆C 的半焦距为c ,由题意可设直线BF 的方程为=1x yc b+,即bx +cy -bc =0.于是可知1bcd a ==,22222a a c b d c c c c -=-==.∵21d =,∴2b c =,即2ab =. ∴a 2(a 2-c 2)=6c 4.∴6e 4+e 2-1=0.∴e 2=13.∴3e =.13.答案:-1解析:设P 点的坐标为1,x x ⎛⎫⎪⎝⎭,则|PA |2=22222111()=2=2x a a x a x a x x x ⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令12t x x =+≥,则|PA |2=t 2-2at +2a 2-2=(t -a )2+a 2-2(t ≥2).结合题意可知(1)当a ≤2,t =2时,|PA |2取得最小值.此时(2-a )2+a 2-2=8,解得a =-1,a =3(舍去).(2)当a >2,t =a 时,|PA |2取得最小值.此时a 2-2=8,解得aa=舍去).故满足条件的实数a1. 14.答案:12解析:设正项等比数列{a n }的公比为q ,则由⊂,a 6+a 7=a 5(q +q 2)=3可得q =2,于是a n =2n -6,则a 1+a 2+…+a n =51(12)13221232n n --=--.∵512a =,q =2,∴a 6=1,a 1a 11=a 2a 10=…=26a =1.∴a 1a 2…a 11=1.当n 取12时,a 1+a 2+…+a 12=27-132>a 1a 2…a 11a 12=a 12=26成立;当n 取13时,a 1+a 2+…+a 13=28-132<a 1a 2…a 11a 12a 13=a 12a 13=26·27=213.当n >13时,随着n 增大a 1+a 2+…+a n 将恒小于a 1a 2…a n .因此所求n 的最大值为12.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. (1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a·b +b 2=2.又因为a 2=b 2=|a|2=|b|2=1, 所以2-2a·b =2,即a·b =0. 故a ⊥b .(2)解:因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以cos cos 0,sin sin 1,αβαβ+=⎧⎨+=⎩由此得cos α=cos(π-β).由0<β<π,得0<π-β<π,又0<α<π,故α=π-β.代入sinα+sin β=1,得sin α=sin β=12,而α>β,所以5π6α=,π6β=. 16.证明:(1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF ∥AB .因为EF 平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .同理EG ∥平面ABC .又EF ∩EG =E , 所以平面EFG ∥平面ABC .(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF ⊥BC .又因为AB ⊥BC ,AF ∩AB =A ,AF ,AB ⊂平面SAB ,所以BC ⊥平面SAB . 因为SA ⊂平面SAB ,所以BC ⊥SA .17.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在. 设过A (0,3)的圆C 的切线方程为y =kx +3, 21k +=1,解得k =0或34-, 故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO ,22223=2x y x y +(-)+化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1, 即221233a a ≤+(-)≤.由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为120,5⎡⎤⎢⎥⎣⎦. 18.解:(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =531246313513565⨯⨯⨯=.由正弦定理sin sin AB AC C B =,得12604sin 63sin 565AC AB C B=⨯=⨯=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t ) m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50), 因0≤t ≤1040130,即0≤t ≤8,故当3537t =(min)时,甲、乙两游客距离最短.(3)由正弦定理sin sin BC AC A B =,得BC =12605sin 63sin 1365AC A B⨯=⨯=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤,所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min)范围内. 19.证明:由题设,(1)2n n n S na d -=+.(1)由c =0,得12n n S n b a d n -==+.又因为b 1,b 2,b 4成等比数列,所以22b =b 1b 4,即23=22d a a a d ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,化简得d 2-2ad =0.因为d ≠0,所以d =2a .因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .(2)设数列{b n }的公差是d 1,则b n =b 1+(n -1)d 1,即2n nS n c+=b 1+(n -1)d 1,n ∈N *,代入S n 的表达式,整理得,对于所有的n ∈N *,有3211111122d d n b d a d n cd n ⎛⎫⎛⎫-+--++ ⎪ ⎪⎝⎭⎝⎭=c (d 1-b 1).令A =112d d -,B =b 1-d 1-a +12d ,D =c (d 1-b 1),则对于所有的n ∈N *,有An 3+Bn 2+cd 1n =D .(*)在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1,从而有111730,1950,2150,A B cd A B cd A B cd ++=⎧⎪++=⎨⎪++=⎩①②③由②,③得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0.即112d d -=0,b 1-d 1-a +12d =0,cd 1=0. 若d 1=0,则由112d d -=0,得d =0,与题设矛盾,所以d 1≠0.又因为cd 1=0,所以c =0. 20.解:(1)令f ′(x )=11axa x x--=<0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x-a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1.结合上述两种情况,有a ≤e -1. ①当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点; ②当a <0时,由于f (e a)=a -a e a=a (1-e a)<0,f (1)=-a >0,且函数f (x )在[e a,1]上的图象不间断,所以f (x )在(e a,1)上存在零点.另外,当x>0时,f′(x)=1x-a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.③当0<a≤e-1时,令f′(x)=1x-a=0,解得x=a-1.当0<x<a-1时,f′(x)>0,当x>a-1时,f′(x)<0,所以,x=a-1是f(x)的最大值点,且最大值为f(a-1)=-ln a-1.当-ln a-1=0,即a=e-1时,f(x)有一个零点x=e.当-ln a-1>0,即0<a<e-1时,f(x)有两个零点.实际上,对于0<a<e-1,由于f(e-1)=-1-a e-1<0,f(a-1)>0,且函数f(x)在[e-1,a-1]上的图象不间断,所以f(x)在(e-1,a-1)上存在零点.另外,当x∈(0,a-1)时,f′(x)=1x-a>0,故f(x)在(0,a-1)上是单调增函数,所以f(x)在(0,a-1)上只有一个零点.下面考虑f(x)在(a-1,+∞)上的情况.先证f(e a-1)=a(a-2-e a-1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x-x2,则h′(x)=e x-2x,再设l(x)=h′(x)=e x-2x,则l′(x)=e x-2.当x>1时,l′(x)=e x-2>e-2>0,所以l(x)=h′(x)在(1,+∞)上是单调增函数.故当x>2时,h′(x)=e x-2x>h′(2)=e2-4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x-x2>h(e)=e e-e2>0.即当x>e时,e x>x2.当0<a<e-1,即a-1>e时,f(e a-1)=a-1-a e a-1=a(a-2-e a-1)<0,又f(a-1)>0,且函数f(x)在[a-1,e a-1]上的图象不间断,所以f(x)在(a-1,e a-1)上存在零点.又当x>a-1时,f′(x)=1x-a<0,故f(x)在(a-1,+∞)上是单调减函数,所以f(x)在(a-1,+∞)上只有一个零点.综合①,②,③,当a≤0或a=e-1时,f(x)的零点个数为1,当 0<a<e-1时,f(x)的零点个数为2.数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21.证明:连结OD.因为AB和BC分别与圆O相切于点D,C,所以∠ADO=∠ACB=90°.又因为∠A=∠A,所以Rt△ADO∽Rt△ACB.所以BC AC OD AD.又BC=2OC=2OD,故AC=2AD.B .[选修4-2:矩阵与变换]解:设矩阵A 的逆矩阵为 a b c d ⎡⎤⎢⎥⎣⎦,则 1 00 2-⎡⎤⎢⎥⎣⎦ a b c d ⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,即 2 2a b c d --⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦, 故a =-1,b =0,c =0,12d =,从而A 的逆矩阵为A -1= 1 010 2-⎡⎤⎢⎥⎢⎥⎣⎦, 所以A -1B = 1 010 2-⎡⎤⎢⎥⎢⎥⎣⎦1 20 6⎡⎤⎢⎥⎣⎦= 1 20 3--⎡⎤⎢⎥⎣⎦. C .解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组221,2,y x y x =(-)⎧⎨=⎩解得公共点的坐标为(2,2),1,12⎛⎫- ⎪⎝⎭.D .证明:2a 3-b 3-(2ab 2-a 2b )=2a (a 2-b 2)+b (a 2-b 2)=(a 2-b 2)(2a +b )=(a -b )(a +b )(2a +b ).因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a -b )(a +b )(2a +b )≥0,即2a 3-b 3≥2ab 2-a 2b .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区......域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B u u u r =(2,0,-4),1C D u u u u r=(1,-1,-4).因为cos 〈1A B u u u r ,1C D u u u u r 〉=1111A B C DA B C D⋅u u u r u u u u ru u u r u u u u r10=,所以异面直线A 1B 与C 1D所成角的余弦值为10. (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD u u u r =(1,1,0),1AC u u u u r =(0,2,4),所以n 1·AD u u u r=0,n 1·1AC u u u u r =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ. 由|cos θ|=12122||||3⋅==n n n n ,得sin θ=3. 因此,平面ADC 1与平面ABA 1所成二面角的正弦值为3. 23.解:(1)由数列{a n }的定义得a 1=1,a 2=-2,a 3=-2,a 4=3,a 5=3,a 6=3,a 7=-4,a 8=-4,a 9=-4,a 10=-4,a 11=5,所以S 1=1,S 2=-1,S 3=-3,S 4=0,S 5=3,S 6=6,S 7=2,S 8=-2,S 9=-6,S 10=-10,S 11=-5,从而S 1=a 1,S 4=0×a 4,S 5=a 5,S 6=2a 6,S 11=-a 11,所以集合P 11中元素的个数为5.(2)先证:S i (2i +1)=-i (2i +1)(i ∈N *).事实上,①当i =1时,S i (2i +1)=S 3=-3,-i (2i +1)=-3,故原等式成立;②假设i =m 时成立,即S m (2m +1)=-m (2m +1),则i =m +1时,S (m +1)(2m +3)=S m (2m +1)+(2m +1)2-(2m +2)2=-m (2m +1)-4m -3=-(2m 2+5m +3)=-(m +1)(2m +3).综合①②可得S i (2i +1)=-i (2i +1).于是S (i +1)(2i +1)=S i (2i +1)+(2i +1)2=-i (2i +1)+(2i +1)2=(2i +1)(i +1).由上可知S i (2i +1)是2i +1的倍数,而a i (2i +1)+j =2i +1(j =1,2,…,2i +1),所以S i (2i +1)+j =S i (2i +1)+j (2i +1)是a i (2i +1)+j (j =1,2,…,2i +1)的倍数.又S (i +1)(2i +1)=(i +1)(2i +1)不是2i +2的倍数,而a (i +1)(2i +1)+j =-(2i +2)(j =1,2,…,2i +2),所以S (i +1)(2i +1)+j =S (i +1)(2i +1)-j (2i +2)=(2i +1)(i +1)-j (2i +2)不是a (i +1)(2i +1)+j (j =1,2,…,2i +2)的倍数,故当l =i (2i +1)时,集合P l 中元素的个数为1+3+…+(2i -1)=i 2,于是,当l =i (2i +1)+j (1≤j ≤2i +1)时,集合P l 中元素的个数为i 2+j .又2 000=31×(2×31+1)+47,故集合P 2 000中元素的个数为312+47=1 008.。
2013年高考理科数学江苏卷试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.......... 1.(2013江苏,1)函数π3sin 24y x ⎛⎫=+⎪⎝⎭的最小正周期为__________. 2.(2013江苏,2)设z =(2-i)2(i 为虚数单位),则复数z 的模为__________.3.(2013江苏,3)双曲线22=1169x y -的两条渐近线的方程为__________. 4.(2013江苏,4)集合{-1,0,1}共有__________个子集.5.(2013江苏,5)下图是一个算法的流程图,则输出的n 的值是__________.6.(2013江苏,6)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:7.(2013江苏,7)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为__________.8.(2013江苏,8)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=__________.9.(2013江苏,9)抛物线y =x 2在x =1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是__________.10.(2013江苏,10)设D ,E 分别是△ABC 的边AB ,BC 上的点,1=2AD AB ,2=3BE BC .若12DE AB AC λλ=+(λ1,λ2为实数),则λ1+λ2的值为__________.11.(2013江苏,11)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________.12.(2013江苏,12)在平面直角坐标系xOy 中,椭圆C 的标准方程为2222=1x y a b+(a >0,b >0),右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若21d =,则椭圆C 的离心率为__________.13.(2013江苏,13)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数1y x=(x >0)图象上一动点.若点P ,A 之间的最短距离为a 的所有值为__________.14.(2013江苏,14)在正项等比数列{a n }中,512a =,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为__________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(2013江苏,15)(本小题满分14分)已知a=(cos α,sin α),b=(cos β,sin β),0<β<α<π.(1)若|a-b|a⊥b;(2)设c=(0,1),若a-b=c,求α,β的值.16.(2013江苏,16)(本小题满分14分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(2013江苏,17)(本小题满分14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(2013江苏,18)(本小题满分16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min,在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=1213,cos C=35.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(2013江苏,19)(本小题满分16分)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项和.记2n n nS b n c=+,n ∈N *,其中c 为实数. (1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0.20.(2013江苏,20)(本小题满分16分)设函数f (x )=ln x -ax ,g (x )=e x-ax ,其中a 为实数. (1)若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围; (2)若g (x )在(-1,+∞)上是单调增函数,试求f (x )的零点个数,并证明你的结论.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. 21.(2013江苏,21)A .[选修4-1:几何证明选讲](本小题满分10分) 如图,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且BC =2OC .B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A = 1 00 2-⎡⎤⎢⎥⎣⎦,B =1 20 6⎡⎤⎢⎥⎣⎦,求矩阵A -1B .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为1,2x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.D .[选修4-5:不等式选讲](本小题满分10分)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区......域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(2013江苏,22)(本小题满分10分)如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.23.(2013江苏,23)(本小题满分10分)设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,11(1),,(1)k k k k k ----个,…,即当1122k k k k n (-)(+)<≤(k ∈N *)时,a n =(-1)k -1k .记S n =a 1+a 2+…+a n (n ∈N *).对于l ∈N *,定义集合P l ={n |S n 是a n 的整数倍,n ∈N *,且1≤n ≤l }.(1)求集合P 11中元素的个数; (2)求集合P 2 000中元素的个数.2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.......... 1.答案:π解析:函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==. 2.答案:5解析:|z |=|(2-i)2|=|4-4i +i 2|=|3-4i|5==5.3.答案:34y x =±解析:由题意可知所求双曲线的渐近线方程为34y x =±. 4.答案:8解析:由于集合{-1,0,1}有3个元素,故其子集个数为23=8. 5.答案:3解析:第一次循环后:a ←8,n ←2; 第二次循环后:a ←26,n ←3; 由于26>20,跳出循环, 输出n =3. 6.答案:2解析:由题中数据可得=90x 甲,=90x 乙. 于是2s 甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,2s 乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2, 由22>s s 乙甲,可知乙运动员成绩稳定.故应填2. 7.答案:2063解析:由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3,…,9.由于是任取m ,n :若m =1时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7×9=63种.若m ,n 都取奇数,则m 的取值为1,3,5,7,n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063. 8.答案:1∶24解析:由题意可知点F 到面ABC 的距离与点A 1到面ABC 的距离之比为1∶2,S △ADE ∶S △ABC =1∶4.因此V 1∶V 2=132AEDABCAF S AF S ∆∆⋅⋅=1∶24.9.答案:12,2⎡⎤-⎢⎥⎣⎦解析:由题意可知抛物线y =x 2在x =1处的切线方程为y =2x -1.该切线与两坐标轴围成的区域如图中阴影部分所示:当直线x +2y =0平移到过点A 1,02⎛⎫⎪⎝⎭时,x +2y 取得最大值12.当直线x +2y =0平移到过点B (0,-1)时,x +2y 取得最小值-2. 因此所求的x +2y 的取值范围为12,2⎡⎤-⎢⎥⎣⎦.10.答案:12解析:由题意作图如图.∵在△ABC 中,1223DE DB BE AB BC =+=+12()23AB AC AB =+- 121263AB AC AB AC λλ=-+=+,∴λ1=16-,λ2=23.故λ1+λ2=12.11.答案:(-5,0)∪(5,+∞)解析:∵函数f (x )为奇函数,且x >0时,f (x )=x 2-4x ,则f (x )=224,0,0,0,4,0,x x x x x x x ⎧->⎪=⎨⎪--<⎩∴原不等式等价于20,4,x x x x >⎧⎨->⎩或20,4,x x x x <⎧⎨-->⎩由此可解得x >5或-5<x <0. 故应填(-5,0)∪(5,+∞). 12.答案:3解析:设椭圆C 的半焦距为c ,由题意可设直线BF 的方程为=1x yc b+,即bx +cy -bc =0.于是可知1bcd a ==,22222a a c b d c c c c -=-==.∵21d,∴2b c =,即2ab =. ∴a 2(a 2-c 2)=6c 4.∴6e 4+e 2-1=0.∴e 2=13.∴e =13.答案:-1解析:设P 点的坐标为1,x x ⎛⎫⎪⎝⎭,则 |PA |2=22222111()=2=2x a a x a x a x x x ⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令12t x x =+≥,则|PA |2=t 2-2at +2a 2-2=(t -a )2+a 2-2(t ≥2).结合题意可知(1)当a ≤2,t =2时,|PA |2取得最小值.此时(2-a )2+a 2-2=8,解得a =-1,a =3(舍去). (2)当a >2,t =a 时,|PA |2取得最小值.此时a 2-2=8,解得aa=(舍去).故满足条件的实数a1. 14.答案:12解析:设正项等比数列{a n }的公比为q ,则由⊂,a 6+a 7=a 5(q +q 2)=3可得q =2,于是a n =2n -6,则a 1+a 2+…+a n =51(12)13221232n n --=--.∵512a =,q =2,∴a 6=1,a 1a 11=a 2a 10=…=26a =1.∴a 1a 2…a 11=1.当n 取12时,a 1+a 2+…+a 12=27-132>a 1a 2…a 11a 12=a 12=26成立;当n 取13时,a 1+a 2+…+a 13=28-132<a 1a 2…a 11a 12a 13=a 12a 13=26·27=213.当n >13时,随着n 增大a 1+a 2+…+a n 将恒小于a 1a 2…a n .因此所求n 的最大值为12.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. (1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a·b +b 2=2.又因为a 2=b 2=|a|2=|b|2=1, 所以2-2a·b =2,即a·b =0. 故a ⊥b .(2)解:因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以cos cos 0,sin sin 1,αβαβ+=⎧⎨+=⎩由此得cos α=cos(π-β).由0<β<π,得0<π-β<π,又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以5π6α=,π6β=. 16.证明:(1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF ∥AB .因为EF 平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .同理EG ∥平面ABC .又EF ∩EG =E , 所以平面EFG ∥平面ABC .(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF ⊥BC .又因为AB ⊥BC ,AF ∩AB =A ,AF ,AB ⊂平面SAB ,所以BC ⊥平面SAB . 因为SA ⊂平面SAB ,所以BC ⊥SA .17.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,=1,解得k=0或34-,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为MA=2MO,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤CD≤2+1,即13≤≤.由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤125.所以点C的横坐标a的取值范围为120,5⎡⎤⎢⎥⎣⎦.18.解:(1)在△ABC中,因为cos A=1213,cos C=35,所以sin A=513,sin C=45.从而sin B=sin[π-(A+C)]=sin(A+C)=sin A cos C+cos A sin C=531246313513565⨯⨯⨯=.由正弦定理sin sinAB ACC B=,得12604sin63sin565ACAB CB=⨯=⨯=1 040(m).所以索道AB的长为1 040 m.(2)假设乙出发t min后,甲、乙两游客距离为d,此时,甲行走了(100+50t) m,乙距离A处130t m,所以由余弦定理得d2=(100+50t)2+(130t)2-2×130t×(100+50t)×1213=200(37t2-70t+50),因0≤t≤1040130,即0≤t≤8,故当3537t=(min)时,甲、乙两游客距离最短.(3)由正弦定理sin sinBC ACA B=,得BC=12605sin63sin1365ACAB⨯=⨯=500(m).乙从B出发时,甲已走了50×(2+8+1)=550(m),还需走710 m才能到达C.设乙步行的速度为v m/min,由题意得5007103350v-≤-≤,解得12506254314v≤≤,所以为使两位游客在C处互相等待的时间不超过3 min,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min)范围内.19.证明:由题设,(1)2nn nS na d-=+.(1)由c=0,得12nnS nb a dn-==+.又因为b1,b2,b4成等比数列,所以22b=b1b4,即23=22da a a d⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭,化简得d2-2ad=0.因为d≠0,所以d=2a.因此,对于所有的m∈N*,有S m=m2a.从而对于所有的k,n∈N*,有S nk=(nk)2a=n2k2a=n2S k.(2)设数列{b n}的公差是d1,则b n=b1+(n-1)d1,即2nnSn c+=b1+(n-1)d1,n∈N*,代入S n的表达式,整理得,对于所有的n ∈N *,有3211111122d d n b d a d n cd n ⎛⎫⎛⎫-+--++ ⎪ ⎪⎝⎭⎝⎭=c (d 1-b 1). 令A =112d d -,B =b 1-d 1-a +12d ,D =c (d 1-b 1),则对于所有的n ∈N *,有An 3+Bn 2+cd 1n =D .(*) 在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1,从而有111730,1950,2150,A B cd A B cd A B cd ++=⎧⎪++=⎨⎪++=⎩①②③由②,③得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0.即112d d -=0,b 1-d 1-a +12d =0,cd 1=0. 若d 1=0,则由112d d -=0,得d =0,与题设矛盾,所以d 1≠0.又因为cd 1=0,所以c =0. 20.解:(1)令f ′(x )=11ax a x x--=<0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x-a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1.结合上述两种情况,有a ≤e -1. ①当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点; ②当a <0时,由于f (e a)=a -a e a=a (1-e a)<0,f (1)=-a >0,且函数f (x )在[e a,1]上的图象不间断,所以f (x )在(e a,1)上存在零点.另外,当x >0时,f ′(x )=1x -a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点. ③当0<a ≤e -1时,令f ′(x )=1x-a =0,解得x =a -1.当0<x <a -1时,f ′(x )>0,当x >a -1时,f ′(x )<0,所以,x =a -1是f (x )的最大值点,且最大值为f (a -1)=-ln a -1.当-ln a -1=0,即a =e -1时,f (x )有一个零点x =e.当-ln a -1>0,即0<a <e -1时,f (x )有两个零点.实际上,对于0<a <e -1,由于f (e -1)=-1-a e -1<0,f (a -1)>0,且函数f (x )在[e -1,a -1]上的图象不间断,所以f (x )在(e -1,a -1)上存在零点. 另外,当x ∈(0,a -1)时,f ′(x )=1x-a >0,故f (x )在(0,a -1)上是单调增函数,所以f (x )在(0,a -1)上只有一个零点.下面考虑f (x )在(a -1,+∞)上的情况.先证f (e a -1)=a (a -2-e a -1)<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x -x 2,则h ′(x )=e x -2x ,再设l (x )=h ′(x )=e x-2x ,则l ′(x )=e x-2. 当x >1时,l ′(x )=e x -2>e -2>0,所以l (x )=h ′(x )在(1,+∞)上是单调增函数.故当x >2时,h ′(x )=e x -2x >h ′(2)=e 2-4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时, h (x )=e x -x 2>h (e)=e e -e 2>0.即当x >e 时,e x >x 2.当0<a <e -1,即a -1>e 时,f (e a -1)=a -1-a e a -1=a (a -2-e a -1)<0,又f (a -1)>0,且函数f (x )在[a -1,ea -1]上的图象不间断,所以f (x )在(a -1,ea -1)上存在零点.又当x >a -1时,f ′(x )=1x-a <0,故f (x )在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当a ≤0或a =e -1时,f (x )的零点个数为1,当 0<a <e -1时,f (x )的零点个数为2.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. 21.证明:连结OD .因为AB 和BC 分别与圆O 相切于点D ,C ,所以∠ADO =∠ACB =90°.又因为∠A =∠A ,所以Rt △ADO ∽Rt △ACB . 所以BC ACOD AD=. 又BC =2OC =2OD ,故AC =2AD .B .[选修4-2:矩阵与变换]解:设矩阵A 的逆矩阵为 a b c d ⎡⎤⎢⎥⎣⎦,则100 2-⎡⎤⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦,即 2 2a b c d --⎡⎤⎢⎥⎣⎦=1 00 1⎡⎤⎢⎥⎣⎦, 故a =-1,b =0,c =0,12d =,从而A 的逆矩阵为A -1= 1 010 2-⎡⎤⎢⎥⎢⎥⎣⎦, 所以A -1B = 1 010 2-⎡⎤⎢⎥⎢⎥⎣⎦1 20 6⎡⎤⎢⎥⎣⎦= 1 20 3--⎡⎤⎢⎥⎣⎦. C .解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组221,2,y x y x =(-)⎧⎨=⎩解得公共点的坐标为(2,2),1,12⎛⎫- ⎪⎝⎭.D .证明:2a 3-b 3-(2ab 2-a 2b )=2a (a 2-b 2)+b (a 2-b 2)=(a 2-b 2)(2a +b )=(a -b )(a +b )(2a +b ).因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a -b )(a +b )(2a +b )≥0,即2a 3-b 3≥2ab 2-a 2b .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区......域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4), 所以1A B =(2,0,-4),1C D =(1,-1,-4). 因为cos 〈1A B ,1C D 〉=1111A B C D A B C D⋅=, 所以异面直线A 1B 与C 1D . (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ. 由|cosθ|=12122||||3⋅==n n n n ,得sin θ=因此,平面ADC 1与平面ABA 123.解:(1)由数列{a n }的定义得a 1=1,a 2=-2,a 3=-2,a 4=3,a 5=3,a 6=3,a 7=-4,a 8=-4,a 9=-4,a 10=-4,a 11=5,所以S 1=1,S 2=-1,S 3=-3,S 4=0,S 5=3,S 6=6,S 7=2,S 8=-2,S 9=-6,S 10=-10,S 11=-5,从而S 1=a 1,S 4=0×a 4,S 5=a 5,S 6=2a 6,S 11=-a 11,所以集合P 11中元素的个数为5.(2)先证:S i (2i +1)=-i (2i +1)(i ∈N *).事实上,①当i =1时,S i (2i +1)=S 3=-3,-i (2i +1)=-3,故原等式成立;②假设i =m 时成立,即S m (2m +1)=-m (2m +1),则i =m +1时,S (m +1)(2m +3)=S m (2m +1)+(2m +1)2-(2m +2)2=-m (2m +1)-4m -3=-(2m 2+5m +3)=-(m +1)(2m +3).综合①②可得S i (2i +1)=-i (2i +1).于是S (i +1)(2i +1)=S i (2i +1)+(2i +1)2=-i (2i +1)+(2i +1)2=(2i +1)(i +1).由上可知S i (2i +1)是2i +1的倍数,而a i (2i +1)+j =2i +1(j =1,2,…,2i +1),所以S i (2i +1)+j =S i (2i +1)+j (2i +1)是a i (2i +1)+j (j =1,2,…,2i +1)的倍数.又S (i +1)(2i +1)=(i +1)(2i +1)不是2i +2的倍数,而a (i +1)(2i +1)+j =-(2i +2)(j =1,2,…,2i +2),所以S (i +1)(2i +1)+j =S (i +1)(2i +1)-j (2i +2)=(2i +1)(i +1)-j (2i +2)不是a (i +1)(2i +1)+j (j =1,2,…,2i +2)的倍数,故当l =i (2i +1)时,集合P l 中元素的个数为1+3+…+(2i -1)=i 2,于是,当l =i (2i +1)+j (1≤j ≤2i +1)时,集合P l 中元素的个数为i 2+j .又2 000=31×(2×31+1)+47,故集合P 2 000中元素的个数为312+47=1 008.。
2013江苏省高考数学真题(含答案)
2021年普通高等学校统一考试试题〔XX卷〕一、填空题:本大题共14小题,每题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数y3sin(2x)的最小正周期为.4 开场2.设 2z(2i)〔i为虚数单位〕,那么复数z的模为.n1,a22y2x 3.双曲线1169 的两条渐近线的方程为.nn1Ya20a3a24.集合{1,0,1}共有个子集.N输出n 5.右图是一个算法的流程图,那么输出的n的值是.完毕〔第5题〕6.抽样统计甲、乙两位设计运发动的5此训练成绩〔单位:环〕,结果如下:运发动第一次第二次第三次第四次第五次甲8791908993乙8990918892那么成绩较为稳定〔方差较小〕的那位运发动成绩的方差为.22222(8990)(9090)(9190)(8890)(9290) 2方差为:2S.57.现在某类病毒记作X m Y n,其中正整数m,n〔m7,n9〕可以任意选取,那么m,n 都取到奇数的概率为.8.如图,在三棱柱A1B1C1ABC中,D,E,F分别是C1B1AB,AC,AA的中点,设三棱锥FADE的体积为V1,三棱柱1 A 1A1B1C1ABC的体积为V2,那么V1:V2.F CEBAD9.抛物线 2yx在x1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).假设点P(x,y)是区域D内的任意一点,那么x2y的取值X围是.1 10.设D,E分别是ABC的边AB,BC上的点,ADAB22,BEBC3,假设DEABAC1〔1,2为实数〕,那么12的值为.2211.f(x)是定义在R上的奇函数。
当x0时,f(x)x4x,那么不等式f(x)x的解集用区间表示为.22xy12.在平面直角坐标系xOy中,椭圆C的标准方程为1(a0,b0)22ab,右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d,F到l的距离为d2,1假设d26d,那么椭圆C的离心率为.113.在平面直角坐标系xOy中,设定点A(a,a),P是函数y 1x〔x0〕图象上一动点,假设点P,A之间的最短距离为22,那么满足条件的实数a的所有值为.14.在正项等比数列{a n}中,1a,a6a73,那么满足a1a2a n a1a2a n的52最大正整数n的值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.〔本小题总分值14分〕a=(cos,sin),b(cos,sin),0.〔1〕假设|ab|2,求证:ab;〔2〕设c(0,1),假设abc,求,的值.16.〔本小题总分值14分〕如图,在三棱锥SABC中,平面SAB平面SBC,ABBC,ASAB,过A作AFSB,垂足为F,点E,G分别是棱SA,SC的中点.求证:〔1〕平面EFG//平面ABC;S〔2〕BCSA.E GFC AB17.〔本小题总分值14分〕y 如图,在平面直角坐标系xOy中,点A(0,3),直线l:y2x4.lA 设圆C的半径为1,圆心在l上.〔1〕假设圆心C也在直线yx1上,过点A作圆C的切线,Ox 求切线的方程;〔2〕假设圆C上存在点M,使MA2MO,求圆心C的横坐标a的取值X围.18.〔本小题总分值16分〕如图,游客从某旅游景区的景点A处下山至C处有两种路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7. 现在某类病毒记作 X mYn ,其中正整数 m ,n( m 7 ,n 9 )可以任意选取, 则 m,n 都取到奇数的概率为 【答案】 .
20 63
【解析】m 取到奇数的有 1,3,5,7 共 4 种情况;n 取到奇数的有 1,3,5,7,9 共 5 种
情况,则 m,n 都取到奇数的概率为
a 2 (2a 3) 2 .
12 3 , cos C . 13 5
M N
A
此时甲到达 N 点,如图所示. 则:AM=130x,AN=50(x+2), 由余弦定理得:MN2=AM2+AN2-2 AM·ANcosA=7400 x2-14000 x+10000, 35 其中 0≤x≤8,当 x= (min)时,MN 最小,此时乙在缆车上与甲的距离最短. 37 1260 126 (3)由(1)知:BC=500m,甲到 C 用时: = (min). 50 5 126 141 86 若甲等乙 3 分钟, 则乙到 C 用时: +3= (min), 在 BC 上用时: (min) . 5 5 5 86 1250 此时乙的速度最小,且为:500÷ = m/min. 5 43 126 111 56 若乙等甲 3 分钟, 则乙到 C 用时: -3= (min), 在 BC 上用时: (min) . 5 5 5 56 625 此时乙的速度最大,且为:500÷ = m/min. 5 14 1250 625 故乙步行的速度应控制在[ , ]范围内. 43 14 19. (本小题满分 16 分) 设 {an } 是首项为 a , 公差为 d 的等差数列 (d 0) ,S n 是其前 n 项和. 记 bn
4 5 20 . 7 9 63
8.如图,在三棱柱 A1 B1C1 ABC 中, D,E,F 分别是 AB,AC,AA1 的中点,设三棱 锥 F ADE 的体积为 V1 ,三棱柱 A1 B1C1 ABC 的体积为 V2 ,则 V1 : V2 【答案】1:24 【解析】 三棱锥 F ADE 与三棱锥 A1 ABC 的相似比为 1:2,故体积之比为 1:8. 又因三棱锥 A1 ABC 与三棱柱 A1 B1C1 ABC 的体积之 比 为 1 : 3 . 所 以 , 三 棱 锥 F A D E与 三 棱 柱 .
2 ,求证: a b ;
(2)设 c (0,1) ,若 a b c ,求 , 的值. 解: (1)a-b=(cosα-cosβ,sinα-sinβ), |a-b|2=(cosα-cosβ)2+(sinα-sinβ)2=2-2(cosα·cosβ+sinα·sinβ)=2, 所以,cosα·cosβ+sinα·sinβ=0, 所以, a b . (2)
cos cos 0 sin sin 1
2 3
①
2 3
1 ,①2+②2 得:cos(α-β)=- . 2 ②
所以,α-β= ,α= +β, 带入②得:sin( +β)+sinβ=
2 3
3 1 cosβ+ sinβ=sin( +β)=1, 2 2 3
+β= . 3 2 5 所以,α= ,β= . 6 6
.
1 ,a6 a7 3 ,则满足 a1 a2 an a1a2 an 的 2
.
【解析】 设正项等比数列 {an } 首项为 a1, 公比为 q, 则:
1 2 a1 q5 (1 q) 3 a1 q 4
1 , 得: a1= , 32
q=2, an=26 n. 记 Tn a1 a 2 a n
2013 年普通高等学校统一考试试题(江苏卷)
一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分。请把答案填写在答题卡相印位 置上。 1.函数 y 3 sin( 2 x 【答案】π 2π 2π 【解析】T=| |=| |=π. ω 2 2.设 z (2 i) 2 ( i 为虚数单位) ,则复数 z 的模为 【答案】5 【解析】z=3-4i,i2=-1,| z |= 32 + 42 =5. 3.双曲线 .
C1 B1
A1
F E A D
C
B
A1 B1C1 ABC 的体积之比为 1:24.
9.抛物线 y x 2 在 x 1 处的切线与两坐标轴围成三角形区域为 D (包含三角形内部和边 界) .若点 P( x, y) 是区域 D 内的任意一点,则 x 2 y 的取值范围是 1 【答案】[—2, ] 2 1 z 【解析】抛物线 y x 2 在 x 1处的切线易得为 y=2x—1,令 z= x 2 y ,y=— x+ . 2 2 1 1 画出可行域如下,易得过点(0,—1)时,zmin=—2,过点( ,0)时,zmax= . 2 2 y y=2x—1 O x 1 y=— x 2 10.设 D,E 分别是 ABC 的边 AB,BC 上的点, AD .
1 2 AB , BE BC , 2 3
.
若 DE 1 AB 2 AC ( 1,2 为实数) ,则 1 2 的值为 1 【答案】 2 【解析】 DE DB BE
1 2 1 2 AB BC AB ( BA AC ) 2 3 2 3 1 2 AB AC 1 AB 2 AC 6 3
.
3 3
a2 a2 b2 ,d 2 = -c= , c c c
y B b O a c F
l
【解析】 如图, l: x=
x
由等面积得: d1 = =
b2 bc 。若 d 2 6d1 ,则 c a
6a 2 ab 6b 2 0 , 两 边 同 除 以 : a 2 , 得 :
2
6
bc , 整 理 得 : a2 a n 2 25
1 n2 11 n 5 2
( n 1) n 2
. Tn n ,
则
2n 1 2 25
( n 1) n 2
, 化 简 得 : 2 1 2 2
n
, 当 n
1 2 11 n n5 时 , 2 2
n
13 121 12 .当 n=12 时, T12 12 ,当 n=13 时, T13 13 ,故 nmax=12. 2
y A l
x
y x 1 ,得圆心为:C(3,2). y 2x 4
3 r 1 ,得: k 0 or k . 4
设切线为: y kx 3 , d=
| 3k 3 2 | 1 k 2
故所求切线为: y 0
or
3 y x3. 4
2 2 2 2
4
) 的最小正周期为
.
x2 y2 1 的两条渐近线的方程为 16 9
3 x 4
.
【答案】 y
【解析】令:
9x 2 3 x2 y2 x. 0 ,得 y 16 4 16 9
个子集.
4.集合 {1,0,1} 共有
【答案】8 【解析】23=8. 5.右图是一个算法的流程图,则输出的 n 的值是 . 【答案】3 【解析】n=1,a=2,a=4,n=2;a=10,n=3;a=28,n=4. 6.抽样统计甲、乙两位设计运动员的 5 此训练成绩(单位:环) ,结果如下: 运动员 甲 乙 第一次 87 89 第二次 91 90 第三次 90 91 第四次 89 88 第五次 93 92 .
二、解答题:本大题共 6 小题,共计 90 分.请在答题卡指定区域内作答,解答时应写出文 字说明、证明过程或演算步骤. 15. (本小题满分 14 分) 已知 a= (cos , sin ),b (cos , sin ) , 0 . (1)若 | a b |
2
6 3 b b b b ,所以,离心率为:e 1 . 6 6 0 ,解之得: = 3 3 a a a a
13.在平面直角坐标系 xOy 中,设定点 A(a, a) ,P 是函数 y
1 ( x 0 )图象上一动点, x
若点 P,A 之间的最短距离为 2 2 ,则满足条件的实数 a 的所有值为 【答案】1 或 10 【解析】 14.在正项等比数列 {an } 中,a5 最大正整数 n 的值为 【答案】12
所以, 1
1 1 2 , 2 , 1 2 . 2 6 3
11.已知 f ( x) 是定义在 R 上的奇函数。当 x 0 时, f ( x) x 2 4 x ,则不等式 f ( x) x 的解集用区间表示为 【答案】(﹣5,0) ∪(5,﹢∞) .
【解析】做出 f ( x) x 2 4 x ( x 0 )的图像,如下图所示。由于 f ( x) 是定义在 R 上的奇 函数, 利用奇函数图像关于原点对称做出 x<0 的图像。 不等式 f ( x) x , 表示函数 y= f ( x) 的图像在 y=x 的上方,观察图像易得:解集为(﹣5,0) ∪(5,﹢∞)。 y P(5,5) y=x y=x2—4 x x Q(﹣5, ﹣5)
(2)设点 M(x,y),由 MA 2MO ,知: x ( y 3) 2 x y , 化简得: x ( y 1) 4 ,
2 2
即:点 M 的轨迹为以(0,1)为圆心,2 为半径的圆,可记为圆 D. 又因为点 M 在圆 C 上,故圆 C 圆 D 的关系为相交或相切. 故:1≤|CD|≤3,其中 CD 12 解之得:0≤a≤ . 5 18. (本小题满分 16 分) 如图,游客从某旅游景区的景点 A 处下山至 C 处有两种路径。一种是从 A 沿直线步行 到 C ,另一种是先从 A 沿索道乘缆车到 B ,然后从 B 沿直线步行到 C .现有甲、乙两 位游客从 A 处下山,甲沿 AC 匀速步行,速度为 50m / min .在甲出发 2 min 后,乙从 A 乘缆车到 B ,在 B 处停留 1min 后,再从匀速步行到 C .假设缆车匀速直线运动的 速度为 130m / min ,山路 AC 长为 1260m ,经测量, cos A (1)求索道 AB 的长; (2)问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3)为使两位游客在 C 处互相等待的时间不超过 3 分钟, 乙步行的速度应控制在什么范围内? 解: (1)如图作 BD⊥CA 于点 D, 设 BD=20k,则 DC=25k,AD=48k, B AB=52k,由 AC=63k=1260m, D 知:AB=52k=1040m. C (2)设乙出发 x 分钟后到达点 M,