2015年广东省汕尾市中考数学试题及解析
2015年广东省中考数学试题(word版带答案)
2015年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2-= A.2B.2-C.12D.12-2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.64. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形6. 2(4)x -=A.28x -B.28xC.216x -D.216x7. 在0,2,0(3)-,5-这四个数中,最大的数是( )A.0B.2C.0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( )A.2a ≥B.2a ≤C.2a >D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11. 正五边形的外角和等于(度).12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.13. 分式方程321x x=+的解是 .14. 若两个相似三角形的周长比为2:3,则它们的面积比是.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.三、解答题(一)(本大题3小题,每小题6分,共18分). 17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2)求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D. (1) 求k 的值; (2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.24. ⊙O 是△ABC 的外接圆,AB 是直径,过 BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3) 如题24﹣3图;取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt △ABC 与Rt △ADC 拼在一起,使斜边AC 完全重合,且顶点B ,D 分别在AC 的两旁,∠ABC =∠ADC =90°,∠CAD =30°,AB =BC =4cm . (1) 填空:AD =(cm ),DC =(cm );(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值. (参考数据:sin 75°=624+,sin 15°=624-)参考答案一、选择题1、A2、B3、B4、C5、A6、D7、B8、C9、D 10、D二、填空题11、360° 12、6 13、x=2 14、4:9 15、211016、4 三、解答题(一)17.解:(x-1)(x-2)=0 x 1=1,x 2=2 18.解:原式=111)1)(1(112+=-⋅-+=-÷-x x x x x x x x x x 把12-=x 代入得:原式=2219.(1)(2)解:∵43tan ==∠AD BD BAD 且 AD=4,∴BD=3 ∴CD=5-3=2 四、解答题(二) 20.(1)(2)9421.(1)证明:∵AB=AD=AF,AG=AG ,∠ABG=∠AFG=90° ∴△ABG 和△AFG 全等(HL ) (2)设BG=x,GC=6-x ,GF=x ,GE=3+x,EC=3 在Rt △GCE 中,(x+3)2=32+(6-x)2 解得:x=2 22. (1)设A 型号每台的价格为x ,B 型号的为y,由题意得: ⎩⎨⎧=-+-=-+-120)40(3)30(67640)30(5y x y x 解得:⎩⎨⎧==5642y x(2)设A 型号的购进x 台,则B 型号的为(70-x )台,由题意得: 2500)70(4030≤-+x x 解得:x ≥30 ∴A 型号的最少要30台 五、解答题(三)23.(1)∵AB=3BD,AB=3 ∴BD=1 ∴D 点坐标为(1,1) 代入xk y =得:k=1(2)联立y=3x 与xy 1=解得:C 点坐标为(3,33) (3)作D 点关于y 轴的对称点E (-1,1),连接CE ,则CE 与y 轴的交点就是所求的点M设CE 的直线解析式为y=kx+b ,代入E,C 两点坐标解得: k=332- , b=232- ∴M 点坐标为(0,232-)24.(1).∵P 点为弧BC 的中点,且OP 为半径 ∴OP ⊥BC又∵AB 为直径,∴∠ACB=90° ∴AC//OP∴∠BAC=∠BOD 又∵21cos ===∠OP OD OB OD BOD ,∴∠BOD=60° ∴∠BAC=60°(2) 由(1)得:AC//GK, DC=DB又∵DK=DP ∴用SAS 易证明:△CDK 与△BDP 全等 ∴∠CKD=∠BPD 又∵∠G=2-180AOG ∠︒ ∠BPD=2-180BOD∠︒ ∴∠G=∠BPD=∠CKD∴AG//CK 又AC//GK (已证) ∴四边形AGKC 为平行四边形 (3) 连接OC∵点E 为CP 的中点,点D 为BC 的中点 ∴DE//BP∴△OHD 与△OBP 相似 ∵OP=OB ∴OH=OD 又OC=OP ∠COD=∠POH ∴△COD 与△POH 全等 ∴∠PHO=∠CDO=90°25.(1)AD=62 CD=22(2)过N 点作NE ⊥AD 于E ,过C 点作CF ⊥NE 于F ∴NF=x x NCF NC 42-615sin sin =︒⋅=∠⋅ 又EF=CD=22 ∴x NE 42622-+= )40(≤≤x (3)设NE 与PM 相交于点H 则MD NH S PMN ⋅⋅=21△ ∵DE=CF=x NC 42675sin +=︒⋅ ∴x x x DE AM AD ME 42646242662++-=+--=--= 由△MEH 与△MDP 相似得:MD ME PD HE =,∴MDMEHE ⋅=2 ∴NH=MD ME NE HE NE ⋅-=-2 ∴MD NH S PMN ⋅⋅=21△=ME NE MD MD ME NE MD 2(21)2(21-⋅=⋅-⋅) =)]42662(2)42622)(62[(21x x x x +----+- =32422378262+--+--x x 当2622372---=-=a b x 时,面积有最大值, S 最大值=16162962338442-++=-a b ac PS :答案仅供参考,最后一题最后一问的答案,没有绝对把握算对了,毕竟只算了一遍,也真心不想算第二遍!。
2015年广东省中考数学试题(Word版,含答案解析),推荐文档
2015年广东省初中毕业生学业考试数学一、选择题 1.21 1 A.2B. 2C.D.-22【答案】A.【解析】由绝对值的意义可得,答案为 A 。
2.据国家统计局网站 2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573000用科学记数法表示为A. 1.3573 106B.1.3573 107C. 1.3573 108D.1.3573 109【答案】B.【解析】科学记数法的表示形式为 aX10n 的形式,其中1W |齐10, n 为整数•确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.13 573 000=1.3573 107 ; 3.一组数据2, 6, 5, 2, 4,则这组数据的中位数是 A.2B.4C.5D.6【答案】B.【解析】由小到大排列,得:2, 2, 4, 5, 6,所以,中位数为 4,选B 。
4.如图,直线 a // b ,/仁75 °,/ 2=35°,则/ 3的度数是 A.75 ° B.55 ° C.40 °D.35 ° 【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻 的两个内角之和,所以,75°=/ 2+Z 3,所以,/ 3 = 40°,选 G 5.下列所述图形中,既是中心对称图形,又是轴对称图形的是 A.矩形 B.平行四边形 C.正五边形【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.( 4x)2【答案】D.【解析】原式=(-4)2x 2 = 16x 2 7.在0, 2, ( 3)0 , 5这四个数中,最大的数是D.正三角形A. 8x 22 2 2B.8xC. 16xD.16xA.0B.2C. ( 3)0D. 5【答案】B.【解析】(—3) 0= 1,所以,最大的数为2,选B。
广东省2015年中考数学试卷(含参考答案)
2015年广东省初中毕业生学业考试数学满分120分,考试时间100分钟一、选择题(本大题10小题,每小题3分,共30分)1.2-= ( )A.2 B.-2 C.12D.12-【答案】A2.据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×109【答案】B3.一组数据2,6,5,2,4,则这组数据的中位数是( )A.2 B.4 C.5 D.6【答案】B【解答过程】解:先将所给的一组数据按从小到大的顺序排列,得:2,2,4,5,6,∵处在最中间的数是4,∴这5个数据的中位数是4,因此,本题选B.4.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°【答案】C【解答过程】解:∵直线a∥b,∴∠1=∠4.∵∠4=∠2+∠3,∴∠1=∠2+∠3.∵∠1=75°,∠2=35°,∴∠3=40°,故选择C.5.下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形【答案】A【解答过程】解:对各个支项逐一加以分析、讨论.显然,平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合,故选择A.6.(-4x)2= ( )A.-8x2B.8x2C.-16x2D.16x2【答案】D【解答过程】解:原式=(-4x)2=(-4)2x2=16x2,故选择D.7.在0,2,(-3)0,-5这四个数中,最大的数是( )A.0 B.2 C.(-3)0D.-5 【答案】B【解答过程】解:∵(-3)0=1,∴在0,2,(-3)0,-5这四个数中,最大的数为2,故选择B.8.若关于x的方程290 4x x a+-+=有两个不相等的实数根,则实数a的取值范围是( )A.a≥2 B.a≤2 C.a>2 D.a<2【答案】C【解答过程】解:由题意得:b2-4ac=12-4×1×(94a-+)>0,即1+4a-9>0,解得a>2,故选择C.9.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为( )A.6 B.7 C.8 D.9【解答过程】解:由条件可知:扇形的弧DCB的长就是正方形的BC与CD长的和为6,半径为3,则16392S=⨯⨯=扇形,故选择D.10.如图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是( )【答案】D【解答过程】解:由题意知:AE=BF=CG,且正三角形ABC的边长为2,则BE=CF=AG=2-x,所以可得△AEG、△BEF、△CFG这三个三角形都是全等的.在△AEG中,AE=x,AG=2-x,则S△AEG =12AE×AG×sin A3(2-x),所以y=S△ABC-3S△AEG=34×22-3⨯3x(2-x3(3x2-6x+4),故可得其图象为二次函数,且开口向上,故选择D .二、填空题(本大题6小题,每小题4分,共24分) 11.正五边形的外角和等于 度 . 【答案】36012.如图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.【答案】6【解答过程】解:由菱形的性质可知AB =BC ,并根据“∠ABC =60°”可得△ABC 为等边三角形,从而知道AC =BC =6,故答案为6.13.分式方程321x x =+的解是. 【答案】x =2【解答过程】解:去分母,得:3x =2x +2,解得:x =2.经检验:当x =2时,x (x +1)≠0,所以原分式方程的解为x =2,故答案为x =2.14.若两个相似三角形的周长比为2:3,则它们的面积比是 . 【答案】4:9【解答过程】解:因为两个相似三角形的周长比为2:3,所以这两个相似三角形的相似比为2:3,它们的面积比是4:9,故答案为4:9.15.观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是. 【答案】1021【解答过程】解:分母为奇数,分子为自然数,所以,它的规律用含n 的代数式表示为21nn +,则n =10时可得结果为1021,故答案为1021.16.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若S △ABC =12,则图中阴影部分面积是.【答案】4【解答过程】解:由三角形的重心性质,可得AG =2GD ,则S △BGF =11212111222232326ABG ABD ABC S S S =⨯=⨯⨯=⨯=△△△,同理,S △CGE 11212111222232326ACG ACD ABC S S S =⨯=⨯⨯=⨯=△△△,∴阴影部分的面积为4,故答案为4.三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解方程:2320x x -+=.【解答过程】方法1:原方程可化为(x -1)(x -2)=0,∴x -1=0或x -2=0,因此x 1=1,x 2=2;方法2:将a =1,b =-3,c =2代入24b b ac x -±-=得:x 1=1,x 2=2;方法3:由方程x 2-3x +2=0,得:x 2-3x =-2, 则x 2-3x +49=-2+49, (x -23)2=41,开方得,x -23=±21, ∴ x 1=1,x 2=2,【易错点津】此类问题容易出错的地方是方法不当、公式记忆不清.18.先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【解答过程】原式=1(1)(1)x x x x x -⋅+-=11x +当21x =+时,原式=2211=-+. 【易错点津】此类问题容易出错的地方是分式运算顺序出错或结果未化简或二次根式化简错误.19.如图,已知锐角△ABC .(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【解答过程】(1)如图所示,MN 为所作;(2)在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =BC -BD =5-3=2.【易错点津】此类问题容易出错的地方是不会应用基本的尺规作图进行画图.四、解答题(二)(本大题3小题,每小题7分,共21分)20.老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.【解答过程】(1) 如图,补全树状图;(2) 从树状图可知,共有9种等可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P(积为奇数)=49.【易错点津】此类问题容易出错的地方是误认为是不放回式试验.21.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2) 求BG的长.【解答过程】(1) ∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,由折叠的性质可知AD=AF,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF,∴∠AFG=∠B,又AG=AG,∴△ABG≌△AFG(HL);(2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6-x , ∵E 为CD 的中点, ∴CF =EF =DE =3, ∴EG =x +3,∴32+(6-x )2=(x +3)2, 解得x =2, ∴BG =2.【易错点津】此类问题容易出错的地方是不能从图形折叠前后寻找相等的边或角.22.某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【解答过程】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,,解得4256x y =⎧⎨=⎩,, 答:A ,B 两种型号计算器的销售价格分别为42元、56元; (2) 设需要购进A 型号的计算a 台,得:30a +40(70-a )≤2500,解得a ≥30.答:最少需要购进A 型号的计算器30台.【易错点津】此类问题容易出错的地方是审题不清,找错不等关系.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,反比例函数ky x=(0k ≠,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3BD . (1) 求k 的值;(2) 求点C 的坐标;(3) 在y 轴上确定一点M ,使点M 到C ,D 两点距离之和d =MC +MD 最小,求点M 的坐标.【解答过程】(1) ∵A (1,3),∴OB =1,AB =3, 又AB =3BD ,∴BD =1, ∴D (1,1), ∴k =1×1=1;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y x y x =⎧⎪⎨=⎪⎩,,得33x y ⎧=⎪⎨⎪=⎩,或33x y ⎧=-⎪⎨⎪=-⎩,(舍去), ∴点C 的坐标为(3,3); (3) 如图,作点D 关于y 轴对称点E ,则E (-1,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则331k b k b ⎧+=⎪⎪-+=⎩,,解得233k =-,232b =-, ∴直线CE 的解析式为(233)232y x =-+-, 当x =0时,y =232-, ∴点M 的坐标为(0,232-).【易错点津】此类问题容易出错的地方是不能探求某条直线上一个点到直线同旁的两点距离和最小24.⊙O 是△ABC 的外接圆,AB 是直径,过BC 的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG ,CP ,PB .(1)如图①,若D 是线段OP 的中点,求∠BAC 的度数;(2)如图②,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形; (3)如图③,取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥AB .① ② ③【解答过程】(1) 连接OC .∵AB 为⊙O 直径, ⌒BP =⌒PC , ∴∠COP =∠BOP .∵在⊙O 中,OC =OB ,∴PG ⊥BC ,即∠ODB =90°, ∵D 为OP 的中点,∴OD =1122OP OB =,∴cos ∠BOD =12OD OB =,∴∠BOD=60°,∵AB为⊙O直径,∴∠ACB=90°,∴∠ACB=∠ODB,∴AC∥PG,∴∠BAC=∠BOD=60°;(2) 由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK,∴CK=BP,∠OPB=∠CKD,∵∠AOG=∠BOP,∴AG=BP,∴AG=CK∵OP=OB,∴∠OPB=∠OBP,又∠G=∠OBP,∴AG∥CK,∴四边形AGCK是平行四边形;(3) ∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB∵∠G=∠OPB,∴PB∥AG,∴DH∥AG,∴∠OAG=∠OHD,∵OA=OG,∴∠OAG=∠G,∴∠ODH=∠OHD,∴OD=OH,又∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP,∴∠OHP=∠ODB=90°,∴PH⊥AB.【易错点津】此类问题容易出错的地方是不能综合应用图形中所涉基本图形的相关性质25.如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC 完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3) 在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°62+sin15°62-【解答过程】(1) 在Rt △ABC 中, AB =BC =4cm , AC =22AB BC +=2244+=42,在Rt △ADC中,cos ∠CAD =AD AC ,AD =AC ·cos ∠CAD =42×32=26;在Rt △ADC 中,sin ∠CAD =CD AC,CD =AC ·sin ∠CAD =42×12=22,故答案为26,22;(2)如图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°, ∴∠NCF =75°,∠FNC =15°,∴sin15°=FCNC,又NC =x ,∴62FC -=, ∴NE =DF 6222-+. ∴点N 到AD 6222-+cm ; (3) ∵sin75°=FNNC,∴62FN +=, ∵PD =CP 2, ∴PF 622- ∴162621162(26)(22)(26)2(2)222y x x +--=++-·62()+ 即226732223y ---=+∵2-68<0,当73224262x --=-⨯=732262---时,y 有最大值为6673102304246+---=83+236+92-1616.【易错点津】此类问题容易出错的地方是不能灵活应用三角函数和二次函数的数学模型进行解答.。
2015 广东中考数学试题及答案
2015年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2-= A.2B.2-C.12D.12-2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.64. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形6. 2(4)x -=A.28x -B.28xC.216x -D.216x7. 在0,2,0(3)-,5-这四个数中,最大的数是( )A.0B.2C.0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( )A.2a ≥B.2a ≤C.2a >D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11. 正五边形的外角和等于(度).12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.13. 分式方程321x x=+的解是 .14. 若两个相似三角形的周长比为2:3,则它们的面积比是.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.三、解答题(一)(本大题3小题,每小题6分,共18分). 17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2)求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D. (1) 求k 的值; (2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.24. ⊙O 是△ABC 的外接圆,AB 是直径,过 BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG ,CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形; (3) 如题24﹣3图;取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt △ABC 与Rt △ADC 拼在一起,使斜边AC 完全重合,且顶点B ,D 分别在AC 的两旁,∠ABC =∠ADC =90°,∠CAD =30°,AB =BC =4cm . (1) 填空:AD =(cm ),DC =(cm );(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值. (参考数据:sin 75°=624+,sin 15°=624-)参考答案一、选择题1、A2、B3、B4、C5、A6、D7、B8、C9、D 10、D二、填空题11、360° 12、6 13、x=2 14、4:9 15、211016、4 三、解答题(一)17.解:(x-1)(x-2)=0 x 1=1,x 2=2 18.解:原式=111)1)(1(112+=-⋅-+=-÷-x x x x x x x x x x 把12-=x 代入得:原式=2219.(1)(2)解:∵43tan ==∠AD BD BAD 且 AD=4,∴BD=3 ∴CD=5-3=2 四、解答题(二) 20.(1)(2)9421.(1)证明:∵AB=AD=AF,AG=AG ,∠ABG=∠AFG=90° ∴△ABG 和△AFG 全等(HL ) (2)设BG=x,GC=6-x ,GF=x ,GE=3+x,EC=3 在Rt △GCE 中,(x+3)2=32+(6-x)2 解得:x=2 22. (1)设A 型号每台的价格为x ,B 型号的为y,由题意得: ⎩⎨⎧=-+-=-+-120)40(3)30(67640)30(5y x y x 解得:⎩⎨⎧==5642y x(2)设A 型号的购进x 台,则B 型号的为(70-x )台,由题意得: 2500)70(4030≤-+x x 解得:x ≥30 ∴A 型号的最少要30台 五、解答题(三)23.(1)∵AB=3BD,AB=3 ∴BD=1 ∴D 点坐标为(1,1) 代入xk y =得:k=1(2)联立y=3x 与xy 1=解得:C 点坐标为(3,33) (3)作D 点关于y 轴的对称点E (-1,1),连接CE ,则CE 与y 轴的交点就是所求的点M设CE 的直线解析式为y=kx+b ,代入E,C 两点坐标解得: k=332- , b=232- ∴M 点坐标为(0,232-)24.(1).∵P 点为弧BC 的中点,且OP 为半径 ∴OP ⊥BC又∵AB 为直径,∴∠ACB=90° ∴AC//OP∴∠BAC=∠BOD 又∵21cos ===∠OP OD OB OD BOD ,∴∠BOD=60° ∴∠BAC=60°(2) 由(1)得:AC//GK, DC=DB又∵DK=DP ∴用SAS 易证明:△CDK 与△BDP 全等 ∴∠CKD=∠BPD 又∵∠G=2-180AOG ∠︒ ∠BPD=2-180BOD∠︒ ∴∠G=∠BPD=∠CKD∴AG//CK 又AC//GK (已证) ∴四边形AGKC 为平行四边形 (3) 连接OC∵点E 为CP 的中点,点D 为BC 的中点 ∴DE//BP∴△OHD 与△OBP 相似 ∵OP=OB ∴OH=OD 又OC=OP ∠COD=∠POH ∴△COD 与△POH 全等 ∴∠PHO=∠CDO=90°25.(1)AD=62 CD=22(2)过N 点作NE ⊥AD 于E ,过C 点作CF ⊥NE 于F ∴NF=x x NCF NC 42-615sin sin =︒⋅=∠⋅ 又EF=CD=22 ∴x NE 42622-+= )40(≤≤x (3)设NE 与PM 相交于点H 则MD NH S PMN ⋅⋅=21△ ∵DE=CF=x NC 42675sin +=︒⋅ ∴x x x DE AM AD ME 42646242662++-=+--=--= 由△MEH 与△MDP 相似得:MD ME PD HE =,∴MDMEHE ⋅=2 ∴NH=MD ME NE HE NE ⋅-=-2 ∴MD NH S PMN ⋅⋅=21△=ME NE MD MD ME NE MD 2(21)2(21-⋅=⋅-⋅) =)]42662(2)42622)(62[(21x x x x +----+- =32422378262+--+--x x 当2622372---=-=a b x 时,面积有最大值, S 最大值=16162962338442-++=-a b ac PS :答案仅供参考,最后一题最后一问的答案,没有绝对把握算对了,毕竟只算了一遍,也真心不想算第二遍!。
广东省汕尾市2015年中考数学试题(无答案)
2015年汕尾市初中毕业生学业考试数 学说明:本试卷共4页,25小题,满分150分,考试用时100分钟一、选择题:每小题4分,共40分。
每小题给出四个答案,其中只有一个是正确的。
1.12的相反数是( ) A .2 B.-2 C. 12 D.- 122.下图所示几何体的左视图为( )D C B A 第2题图3.下列计算正确的是( )A.x+x 2=x 3B.x 2·x 3=x 6C.(x 3)2=x 6D.x 9÷x 3=x 34.下列说法正确的是( )A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差是s 2甲 = 0.4 ,s 2乙 = 0.6,则甲的射击成绩较稳定C.“明天降雨的概率为12 ”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式5.今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A.1.21×106B.12.1×105C.0.121×107D.1.21×1056.下列命题正确的是( )A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形7.使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A.3,4B.4,5C.3,4,5D.不存在8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心。
若∠B=20°,则∠C的大小等于()A.20°B.25°C.40°D.50°9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2 5B. 5C. 455 D.25510.对于二次函数y = - x2 + 2x.有下列四个结论:①它的对称轴是直线x = 1;②设y1 = - x12 + 2x1,y2 = - x22 + 2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0 <x <2时,y>0.其中正确结论的个数为()A.1B.2C.3D.4二、填空题:每小题5分,共30分。
2015广东省中考数学解析
2015年广东省初中毕业生学业考试数学满分120分,考试时间100分钟一、选择题(本大题10小题,每小题3分,共30分)1. (2015广东省,1,3分)2-=A.2B.-2C.12D.12-【答案】A【解析】本题考查了同学们对有理数绝对值、相反数等概念的掌握。
由绝对值的意义可得本题答案为A。
2.(2015广东省,2,3分)据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为A.1.3573×106B. 1.3573×107C. 1.3573×108D. 1.3573×109【答案】B【解析】本题考查了科学记数法的表示方法。
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.即13 573 000用科学记数法表示为1.3573×107。
因此,本题选B。
3. (2015广东省,3,3分)一组数据2,6,5,2,4,则这组数据的中位数是A.2B.4C.5D.6【答案】B【解析】本题考查了数据的平均数、众数和中位数概念的掌握。
解答时,先将所给的一组数据按从小到大的顺序排列,得:2,2,4,5,6,所以,其中位数为4,因此,本题选B。
4. (2015广东省,4,3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35°【答案】C【解析】本题考查了平行线的性质和三角形内角和定理的掌握。
解答时,关键是应用“两直线平行,同位角相等”与“三角形的一个外角等于与它不相邻的两个内角之和”将问题进行转化,可得75°=∠2+∠3,所以,∠3=40°,因此,本题选C。
5. (2015广东省,5,3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形【答案】A【解析】本题既考查了中心对称图形、轴对称图形概念的掌握,也考查了矩形、平行四边形、正五边形和正三角形相关性质的理解。
2015年广东省中考数学试卷(解析版)
2015年广东省中考数学试卷解析(本试卷满分120分,考试时间100分钟)一、选择题(本大题10小题,每小题3分,共30分)1. (2015年广东3分)2-=【 】A.2B.2-C.12D.12- 【答案】A. 【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣错误!未找到引用源。
到原点的距离是2错误!未找到引用源。
,所以,22-=.故选A.2. (2015年广东3分)据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为【 】A. 61.357310⨯B. 71.357310⨯C. 81.357310⨯D. 91.357310⨯ 【答案】B.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵13 573 000一共8位,∴713573000 1.357310=⨯. 故选B.3. (2015年广东3分)一组数据2,6,5,2,4,则这组数据的中位数是【 】A.2B. 4C. 5D. 6 【答案】B. 【考点】中位数.【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).因此,∵将这组数据重新排序为2,2,4,5,6,∴中位数是按从小到大排列后第3个数为:4.故选B.4(2015年广东3分)如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是【 】A. 75°B. 55°C. 40°D. 35° 【答案】C.【考点】平行线的性质;三角形外角性质.【分析】如答图,∵a ∥b ,∴∠1=∠4.∵∠1=75°,∴∠4=75°.根据“三角形的一个外角等于与它不相邻的两个内角之和”得∠4=∠2+∠3,∵∠2=35°,∴∠3=40°. 故选C.5. (2015年广东3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是【 】A. 矩形B. 平行四边形C. 正五边形D. 正三角形 【答案】A.【考点】轴对称图形和中心对称图形.【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合. 因此,既是轴对称图形,又是中心对称图形的是矩形. 故选A.6. (2015年广东3分)2(4)x -=【 】A. 28x -B. 28xC. 216x -D. 216x 【答案】D.【考点】幂的乘方和积的乘方.【分析】根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则和“积的乘方等于每一个因数乘方的积” 的积的乘方法则得()()22224416-=-=x x x .故选D.7. (2015年广东3分)在0,2,0(3)-,5-这四个数中,最大的数是【 】A. 0B. 2C. 0(3)-D. 5- 【答案】B.【考点】零指数幂;有理数的大小比较. 【分析】∵()031-=,∴根据有理数“正数大于0,0大于负数,两个负数相比,绝对值大的反而小”的大小比较法则,得()053-<0<-<2.∴最大的数是2. 故选B.8. (2015年广东3分)若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】A. 2a ≥B. 2a ≤C. 2a >D. 2a < 【答案】C.【考点】一元二次方程根的判别式;解一元一次不等式. 【分析】∵关于x 的方程2904+-+=x x a 有两个不相等的实数根, ∴291404⎛⎫∆=-+> ⎪⎝⎭-a ,即1+4a -9>0,解得2>a .故选C.9. (2015年广东3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为【 】A.6B.7C. 8D. 9 【答案】D.【考点】正方形的性质;扇形的计算.【分析】∵扇形DAB 的弧长»DB等于正方形两边长的和6+=BC CD ,扇形DAB 的半径为正方形的边长3,∴16392=⋅⋅=扇形DAB S . 或由变形前后面积不变得:339==⨯=正方形扇形ABCD DAB S S . 故选D.10. (2015年广东3分)如图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【 】A. B. C. D.【答案】D.【考点】由实际问题列函数关系式(几何问题);二次函数的性质和图象. 【分析】根据题意,有AE =BF =CG ,且正三角形ABC 的边长为2,∴2===-BE CF AG x . ∴△AEG 、△BEF 、△CFG 三个三角形全等. 在△AEG 中,2==-,AE x AG x ,∴()13224=⋅⋅⋅=-V AEG S AE AG sinA x x . ∴()2333333323442=-=-⋅-=-+V V ABC AEG y S S x x x x . ∴其图象为开口向上的二次函数. 故选D.二、填空题(本大题6小题,每小题4分,共24分)11. (2015年广东4分)正五边形的外角和等于 ▲ (度).【答案】360.【考点】多边形外角性质.【分析】根据“n边形的外角和都等于360度”的性质,正五边形的外角和等于360度.12.(2015年广东4分)如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是▲ .【答案】6.【考点】菱形的性质;等边三角形的判定和性质.【分析】∵四边形ABCD是菱形,∴AB=B C=6.∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=B C=6.13.(2015年广东4分)分式方程321=+x x的解是▲ .【答案】2=x.【考点】解分式方程【分析】去分母,得:()321=+x x,解得:2=x,经检验,2=x是原方程的解,∴原方程的解是2=x.14.(2015年广东4分)若两个相似三角形的周长比为2:3,则它们的面积比是▲ .【答案】4:9.【考点】相似三角形的性质.【分析】∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比2:3.又∵相似三角形的面积比等于相似比的平方,∴这两个相似三角形的它们的面积比是4:9.15.(2015年广东4分)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是▲ .【答案】12 21.【考点】探索规律题(数字的变化类).【分析】观察得该组数的排列规律为:分母为奇数,分子为自然数,第n 个数为21+nn ,所以,第10个数是1012210121=⨯+.16. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ▲ .【答案】4.【考点】等底同高三角形面积的性质;转换思想和数形结合思想的应用.【分析】如答图,各三角形面积分别记为①②③④⑤⑥,∵△ABC 三边的中线AD ,BE ,CF 的公共点G ,∴AG =2GD . ∴①=②,③=⑥,④=⑤,①+②=2③,④+⑤=2⑥. ∵12=△ABC S ,∴12=①+②+③+④+⑤+⑥. ∴1222=①+②④+⑤①+②++④+⑤+, ∴()12312422=⇒+=⇒+=2②2⑤2②++2⑤+②⑤②⑤,即图中阴影部分面积是4. 三、解答题(一)(本大题3小题,每小题6分,共18分)17. (2015年广东6分)解方程:2320x x -+=. 【答案】解:(1)(2)0--=x x ,∴10-=x 或20-=x . ∴11=x ,22=x .【考点】因式分解法解一元二次方程.【分析】因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学化归思想). 18. (2015年广东6分)先化简,再求值:21(1)11x x x ÷+--,其中21x =-.【答案】解:原式=11(1)(1)1-⋅=+-+x x x x x x .当21=+x 时,原式=1112122112===+-+x . 【考点】分式的化简;二次根式化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简,然后代x 的值,进行二次根式化简. 19. (2015年广东6分)如图,已知锐角△AB C.(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【答案】解:(1)作图如答图所示,AD 为所作.(2)在Rt △ABD 中,AD =4,tan ∠BAD =34=BD AD , ∴344=BD ,解得BD =3. ∵BC =5,∴DC =AD ﹣BD =5﹣3=2.【考点】尺规作图(基本作图);解直角三角形的应用;锐角三角函数定义. 【分析】(1)①以点A 为圆心画弧交BC 于点E 、F ;②分别以点E 、F 为圆心,大于12EF 长为半径画弧,两交于点G ; ③连接AG ,即为BC 边的垂线MN ,交BC 于点D .(2)在Rt△ABD中,根据正切函数定义求出BD的长,从而由BC的长,根据等量减等量差相等求出DC的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(2015年广东7分)老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.【答案】解:(1)补全树状图如答图:(2)∵由(1)树状图可知,小明同学两次抽到卡片上的数字之积的情况有9种:1,2,3,2,4,6,3,6,9,数字之积是奇数的情况有4种:1,3,3,9,∵小明同学两次抽到卡片上的数字之积是奇数的概率是4 9 .【考点】画树状图法;概率.【分析】(1)根据题意补全树状图.(2)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.21.(2015年广东7分)如题图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG ≌△AFG ; (2)求BG 的长.【答案】解:(1)∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB .由折叠的性质可知,AD =AF ,∠AFE =∠D =90°,∴∠AFG =90°,AB =AF . ∴∠AFG =∠B .又∵AG =AG ,∴△ABG ≌△AFG (HL ). (2)∵△ABG ≌△AFG ,∴BG =FG .设BG =FG =x ,则GC =6-x ,∵E 为CD 的中点,∴CF =EF =DE =3,∴EG =3+x ,在∆Rt CEG 中,由勾股定理,得2223(6)(3)+-=+x x ,解得2=x , ∴BG =2.【考点】折叠问题;正方形的性质;折叠对称的性质;全等三角形的判定和性质;勾股定理;方程思想的应用.【分析】(1)根据正方形和折叠对称的性质,应用HL 即可证明△ABG ≌△AFG (HL ).(2)根据全等三角形的性质,得到BG =FG ,设BG =FG =x ,将GC 和EG 用x 的代数式表示,从而在∆Rt CEG 中应用勾股定理列方程求解即可.22. (2015年广东7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y . 答:A ,B 两种型号计算器的销售价格分别为42元,56元. (2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.五、解答题(三)(本大题3小题,每小题9分,共27分)23. (2015年广东9分)如图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D. (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标.【答案】解:(1)∵A (1,3),∴OB =1,AB =3.又∵AB =3BD ,∴BD =1. ∴D (1,1). ∵反比例函数=ky x(0≠k ,0>x )的图象经过点D ,∴111=⨯=k . (2)由(1)知反比例函数的解析式为1=y x,解方程组31=⎧⎪⎨=⎪⎩y x y x ,得333⎧=⎪⎨⎪=⎩x y 或333⎧=-⎪⎨⎪=-⎩x y (舍去), ∴点C 的坐标为(33,3). (3)如答图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为=+y kx b ,则3331⎧+=⎪⎨⎪-+=⎩k b k b ,解得233232⎧=-⎪⎨=-⎪⎩k b , ∴直线CE 的解析式为(233)232=-+-y x .当x =0时,y =232-,∴点M 的坐标为(0,232-).【考点】反比例函数和一次函数综合问题;曲线上点的坐标与方程的关系;待定系数法的应用;轴对称的应用(最短距离问题);方程思想的应用.【分析】(1)求出点D 的坐标,即可根据点在曲线上点的坐标满足方程的关系,求出k 的值.(2)由于点C 是反比例函数1=y x的图象和直线3=y x 的交点,二者联立即可求得点C 的坐标. (3)根据轴对称的应用,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.24. (2015年广东9分)⊙O 是△ABC 的外接圆,AB 是直径,过»BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1)如题图1;若D 是线段OP 的中点,求∠BAC 的度数;(2)如题图2,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3)如题图3,取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥AB.【答案】解:(1)∵AB为⊙O直径,点P是»BC的中点,∴PG⊥BC,即∠ODB=90°.∵D为OP的中点,∴OD=1122=OP OB.∴cos∠BOD=12=ODOB. ∴∠BOD=60°.∵AB为⊙O直径,∴∠ACB=90°. ∴∠ACB=∠ODB.∴AC∥PG. ∴∠BAC=∠BOD=60°.(2)证明:由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK(SAS).∴CK=BP,∠OPB=∠CKD.∵∠AOG=∠BOP,∴AG=BP. ∴AG=CK.∵OP=OB,∴∠OPB=∠OBP.又∵∠G=∠OBP,∴AG∥CK.∴四边形AGCK是平行四边形.(3)证明:∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB.∵∠G=∠OPB,∴PB∥AG. ∴DH∥AG. ∴∠OAG=∠OHD.∵OA=OG,∴∠OAG=∠G. ∴∠ODH=∠OHD. ∴OD=OH.又∵∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP(SAS).∴∠OHP=∠ODB=90°. ∴PH⊥A B.【考点】圆的综合题;圆周角定理;垂径定理;锐角三角函数定义;特殊角的三角函数值;平行的判定和性质;全等三角形的判定和性质;等腰三角形的性质;平行四边形的判定.【分析】(1)一方面,由锐角三角函数定义和特殊角的三角函数值求出∠BOD=60°;另一方面,由证明∠ACB=∠ODB=90°得到AC∥PG,根据平行线的同位角相等的性质得到∠BAC=∠BOD=60°.(2)一方面,证明通过证明全等并等腰三角形的性质得到AG=CK;另一方面,证明AG∥CK,从而根据一组对边平行且相等的四边形是平行四边形的判定而得证.(3)通过应用SAS证明△OBD≌△HOP而得到∠OHP=∠ODB=90°,即PH⊥A B.25.(2015年广东9分)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm. (1)填空:AD= ▲ (cm),DC= ▲ (cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B 的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)【答案】解:(1)26;22.(2)如答图,过点N作NE⊥AD于E,作NF⊥DC延长线于F,则NE=DF.∵∠ACD=60°,∠ACB=45°,∴∠NCF=75°,∠FNC=15°.∴sin15°=FC NC.又∵NC=x,sin15°=624-,∴624-=FC x.∴NE=DF=6222 4-+x.∴点N到AD的距离为62224-+x cm.(3)∵NC =x ,sin 75°=FN NC,且sin 75°=624+∴624+=FN x , ∵PD =CP =2,∴PF =6224-+x . ∴16262116262(26)(22)(26)2(2)()2442244+--+=+-+--⨯-+y x x x x x x · 即22673222384---=++y x x . ∴当732273224266228----=-=--⨯x 时,y 有最大值为6673102304246+---. 【考点】双动点问题;锐角三角函数定义;特殊角的三角函数值;由实际问题列函数关系式;二次函数的最值;转换思想的应用.【分析】(1)∵∠ABC =90°,AB =BC =4,∴42=AC .∵∠ADC =90°,∠CAD =30°, ∴31cos 4226,sin 422222=⋅∠=⋅==⋅∠=⋅= AD AC CAD DC AC CAD . (2)作辅助线“过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ”构造直角三角形CNF ,求出FC 的长,即可由NE =DF =FC +CD 求解.(3)由∆∆=--梯形PNF NDP MDFN y S S S 列式,根据二次函数的最值原理求解.。
2015中考数学卷答案(清晰版)
2015年广东省初中毕业生学业考试数学一、选择题(本大题10小题,每小题3分,共30分) 1.=-2( A ) A.2 B.-2 C.21 D.21- 2.据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000,将13 573 000用科学记数法表示为( B ) A.6103573.1⨯ B.7103573.1⨯ C.8103573.1⨯ D.9103573.1⨯3.一组数据2,6,5,2,4,则这组数据的中位数是( B )A.2B.4C.5D.64.如题4图,直线a//b ,1∠=︒75,2∠=︒35,则3∠的度数是( C )A.︒75B.︒55C.︒40D.︒355.下列所述图形中,既是中心对称图形,又是轴对称图形的是( A )A.矩形B.平行四边形C.正五边形D.正三角形6.2)4(x -=( D )A.-82xB.82xC.-162xD.162x7.在0,2,(-3)0,-5,这四个数中,最大的数是( B )A.0B.2C.(-3)0D.-58.若关于x 的方程0942=+-+a x x 有两个不相等的实数根,则实数a 的取值范围是( C ) A.a 2≥ B.a 2≤ C.a >2 D.a 2<9.如题9图,某数学兴趣小组将边长为3的正方形铁丝形状ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则该扇形DAB 的面积为( D )A.6B.7C.8D.910.如题10图,已知正ABC ∆的边长为2,E,F,G 分别是AB,BC,CA 上的点,且AE=BF=CG,设EFG ∆的面积为y ,AE 的长为x ,则y 关于x 的函数图像大致是( D )二、填空题(本大题6小题,每小题4分,共24分)11.正五边形的外角和等于 360 (度)。
12.如题12图,菱形ABCD 的边长为6, 60=∠ABC ,则对角线AC 的长是 6 。
2015广东省汕尾市初中毕业生学业考试化学试题(高清扫描版附参考答案及试题解析)
试题答案1、【答案】D2、【答案】B3、【答案】A4、【答案】A5、【答案】D6、【答案】C7、【答案】B8、【答案】C9、【答案】D10、【答案】A11、【答案】C12、【答案】A13、【答案】B14、【答案】C15、【答案】N2 ,Al2O3 ,NH4+ , Ca2+16、【答案】⑴非金属元素,16 ⑵S2-⑶ S+O2 点燃 SO217、【答案】⑴两种⑵H2O+C 高温H2 + CO,置换18、【答案】⑴⑵MgH2+H2O=Mg(OH)2+H2↑,携带方便,使用安全19、【答案】⑴16g ,减少⑵20% ,甲>乙20、【答案】⑴HCl 、Ca(OH)2,光合作用的原料、灭火⑵Na2CO3+2HCl=2NaCl+H2O+CO2↑CO2+Ca(OH)2=CaCO3↓+H2O21、【答案】⑴混合物⑵H2O ,Fe+H2SO4==CFeSO4 +H2↑⑶I,II会产生污染物二氧化硫,污染空气,并且硫酸的利用率低,III不产生硫酸铜,还产生污染物:一氧化氮22、【答案】⑴B ⑶ b,a⑷H2CO∆H2O+CO2↑23、【答案】⑴①碳酸钠的溶解度比碳酸氢钠的大②红色⑵①澄清的石灰水变浑浊②加热⑶②CaCl2+Na2CO3 =CaCO3↓+2NaCl,向反应后所得溶液中加入碳酸钠,有沉淀生成③24、【答案】⑴有机物⑵四⑶氮25、【答案】⑴NaOH+HCl=NaCl+H2O⑵ 1.6g ⑶10%%试题解析1、【答案】D【解析】蔬菜、水果富含维生素2、【答案】B【解析】加油站附近的空气中含有较多的可燃性气体,遇明火可能引发爆炸3、【答案】A【解析】必须经化学变化才能表现的性质叫化学性质,不需要发生化学变化就能表现的性质叫物理性质。
氧气用于气焊,是利用了氧气能支持燃烧的性质,需要化学变化才能表现,是化学性质。
4、【答案】A【解析】水由水分子构成,铝、金刚石都是由原子构成;氯化钠是由钠离子、氯离子构成。
5、【答案】D【解析】蒸馏得到的蒸馏水是纯净物,故蒸馏的净化程度最高。
(完整word)2015年广东省中考数学试题(Word版,含答案解析),推荐文档
2015年广东省初中毕业生学业考试数学一、选择题 1.21 1 A.2B. 2C.D.-22【答案】A.【解析】由绝对值的意义可得,答案为 A 。
2.据国家统计局网站 2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573000用科学记数法表示为A. 1.3573 106B.1.3573 107C. 1.3573 108D.1.3573 109【答案】B.【解析】科学记数法的表示形式为 aX10n 的形式,其中1W |齐10, n 为整数•确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.13 573 000=1.3573 107 ; 3.一组数据2, 6, 5, 2, 4,则这组数据的中位数是 A.2B.4C.5D.6【答案】B.【解析】由小到大排列,得:2, 2, 4, 5, 6,所以,中位数为 4,选B 。
4.如图,直线 a // b ,/仁75 °,/ 2=35°,则/ 3的度数是 A.75 ° B.55 ° C.40 °D.35 ° 【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻 的两个内角之和,所以,75°=/ 2+Z 3,所以,/ 3 = 40°,选 G 5.下列所述图形中,既是中心对称图形,又是轴对称图形的是 A.矩形 B.平行四边形 C.正五边形【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.( 4x)2【答案】D.【解析】原式=(-4)2x 2 = 16x 27. 在0, 2, ( 3)0 , 5这四个数中,最大的数是D.正三角形A. 8x 2 2 2 2B.8xC. 16xD.16xA.0B.2C. ( 3)0D. 5【答案】B.【解析】(—3) 0= 1,所以,最大的数为2,选B。
2015年广东省中考数学试题(word版带答案)
2015年广东省初中毕业生学业考试数 学说明:1、全卷共4页,满分120分,考试用时为100分钟。
2、答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号、用2B 铅笔把对应号码的标号涂黑。
3、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
4、非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效。
5、考生务必保持答题卡的整洁,考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2-= A.2B.2-C.12D.12-2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.64. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形6. 2(4)x -=A.28x -B.28xC.216x -D.216x7. 在0,2,0(3)-,5-这四个数中,最大的数是( )A.0B.2C.0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( )A.2a ≥B.2a ≤C.2a >D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11. 正五边形的外角和等于(度).12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.13. 分式方程321x x=+的解是 .14. 若两个相似三角形的周长比为2:3,则它们的面积比是.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 .三、解答题(一)(本大题3小题,每小题6分,共18分). 17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图; (2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2)求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D. (1) 求k 的值; (2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.24. ⊙O 是△ABC 的外接圆,AB 是直径,过 BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3) 如题24﹣3图;取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt △ABC 与Rt △ADC 拼在一起,使斜边AC 完全重合,且顶点B ,D 分别在AC 的两旁,∠ABC =∠ADC =90°,∠CAD =30°,AB =BC =4cm . (1) 填空:AD =(cm ),DC =(cm );(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值.(参考数据:sin 75°=624+,sin 15°=624-)参考答案一、选择题1、A2、B3、B4、C5、A6、D7、B8、C9、D 10、D二、填空题11、360° 12、6 13、x=2 14、4:9 15、211016、4 三、解答题(一)17.解:(x-1)(x-2)=0 x 1=1,x 2=2 18.解:原式=111)1)(1(112+=-⋅-+=-÷-x x x x x x x x x x 把12-=x 代入得:原式=2219.(1)(2)解:∵43tan ==∠AD BD BAD 且 AD=4,∴BD=3 ∴CD=5-3=2四、解答题(二) 20.(1) (2)9421.(1)证明:∵AB=AD=AF,AG=AG ,∠ABG=∠AFG=90° ∴△ABG 和△AFG 全等(HL ) (2)设BG=x,GC=6-x ,GF=x ,GE=3+x,EC=3 在Rt △GCE 中,(x+3)2=32+(6-x)2 解得:x=2 22. (1)设A 型号每台的价格为x ,B 型号的为y,由题意得: ⎩⎨⎧=-+-=-+-120)40(3)30(67640)30(5y x y x 解得:⎩⎨⎧==5642y x(2)设A 型号的购进x 台,则B 型号的为(70-x )台,由题意得: 2500)70(4030≤-+x x 解得:x ≥30 ∴A 型号的最少要30台 五、解答题(三)∵AB=3BD,AB=3 ∴BD=1 ∴D 点坐23.(1)标为(1,1)代入xk y =得:k=1(2)联立y=3x 与xy 1=解得:C 点坐标为(3,33) (3)作D 点关于y 轴的对称点E (-1,1),连接CE ,则CE 与y 轴的交点就是所求的点M设CE 的直线解析式为y=kx+b ,代入E,C 两点坐标解得: k=332- , b=232- ∴M 点坐标为(0,232-)24.(1).∵P 点为弧BC 的中点,且OP 为半径 ∴OP ⊥BC又∵AB 为直径,∴∠ACB=90° ∴AC//OP∴∠BAC=∠BOD 又∵21cos ===∠OP OD OB OD BOD ,∴∠BOD=60° ∴∠BAC=60°(2) 由(1)得:AC//GK, DC=DB又∵DK=DP ∴用SAS 易证明:△CDK 与△BDP 全等 ∴∠CKD=∠BPD 又∵∠G=2-180AOG ∠︒ ∠BPD=2-180BOD∠︒ ∴∠G=∠BPD=∠CKD∴AG//CK 又AC//GK (已证) ∴四边形AGKC 为平行四边形 (3) 连接OC∵点E 为CP 的中点,点D 为BC 的中点 ∴DE//BP∴△OHD 与△OBP 相似 ∵OP=OB ∴OH=OD 又OC=OP ∠COD=∠POH ∴△COD 与△POH 全等 ∴∠PHO=∠CDO=90°25.(1)AD=62 CD=22(2)过N 点作NE ⊥AD 于E ,过C 点作CF ⊥NE 于F ∴NF=x x NCF NC 42-615sin sin =︒⋅=∠⋅ 又EF=CD=22 ∴x NE 42622-+= )40(≤≤x (3)设NE 与PM 相交于点H 则MD NH S PMN ⋅⋅=21△ ∵DE=CF=x NC 42675sin +=︒⋅ ∴x x x DE AM AD ME 42646242662++-=+--=--= 由△MEH 与△MDP 相似得:MD ME PD HE =,∴MDMEHE ⋅=2 ∴NH=MD ME NE HE NE ⋅-=-2 ∴MD NH S PMN ⋅⋅=21△=ME NE MD MD ME NE MD 2(21)2(21-⋅=⋅-⋅)第 11 页 =)]42662(2)42622)(62[(21x x x x +----+- =32422378262+--+--x x 当2622372---=-=a b x 时,面积有最大值, S 最大值=16162962338442-++=-a b ac PS :答案仅供参考,最后一题最后一问的答案,没有绝对把握算对了,毕竟只算了一遍,也真心不想算第二遍!。
2015年广东省中考数学试题及解析
2015年广东省中考数学试题及解析2015年广东省中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.(3分)|﹣2|=22.(3分)据XXX网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为1.3573×1073.(3分)一组数据2,6,5,2,4,则这组数据的中位数是44.(3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是55°5.(3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是正五边形6.(3分)(﹣4x)2=16x27.(3分)在,2,(﹣3),﹣5这四个数中,最大的数是28.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是a>29.(3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为9/210.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是抛物线二、填空题:本大题6小题,每小题4分,共24分。
请将下列各题的正确答案填写在答题卡相应的位置上。
11.(4分)正五边形的外角和等于360°.12.(4分)如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是6.13.(4分)分式方程(x-2)/(x-3)=1/2的解是x=7.14.(4分)若两个相似三角形的周长比为2:3,则它们的面积比是4:9.15.(4分)观察下列一组数:1,2,4,7,11,16,22,…,根据该组数的排列规律,可推出第10个数是49.16.(4分)如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中△BGF的面积是3.17.解方程:x²-3x+2=0.18.先化简,再求值:$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$,其中 $\sqrt{3}$ 和 $\sqrt{2}$ 都是正数。
2015年广东省中考数学试题(word版带答案)
2015年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2-=B.2-C.12D.12-2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )4. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )°°°°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )6. 2(4)x -=A.28x -B.28xC.216x -D.216x7. 在0,2,0(3)-,5-这四个数中,最大的数是( )C.0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( )A.2a ≥B.2a ≤C.2a >D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )10. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11. 正五边形的外角和等于(度).12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.13. 分式方程321x x=+的解是.14. 若两个相似三角形的周长比为2:3,则它们的面积比是.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.三、解答题(一)(本大题3小题,每小题6分,共18分). 17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2)求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D.(1) 求k 的值; (2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.24. ⊙O 是△ABC 的外接圆,AB 是直径,过BC 的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3) 如题24﹣3图;取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt △ABC 与Rt △ADC 拼在一起,使斜边AC 完全重合,且顶点B ,D 分别在AC 的两旁,∠ABC =∠ADC =90°,∠CAD =30°,AB =BC =4cm . (1) 填空:AD =(cm ),DC =(cm );(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值. (参考数据:sin 75°=624+,sin 15°=624-)参考答案一、选择题1、A2、B3、B4、C5、A6、D7、B8、C9、D 10、D二、填空题11、360° 12、6 13、x=2 14、4:9 15、211016、4 三、解答题(一)17.解:(x-1)(x-2)=0 x 1=1,x 2=2 18.解:原式=111)1)(1(112+=-⋅-+=-÷-x x x x x x x x x x 把12-=x 代入得:原式=2219.(1)(2)解:∵43tan ==∠AD BD BAD 且 AD=4,∴BD=3∴CD=5-3=2 四、解答题(二) 20.(1) (2)9421.(1)证明:∵AB=AD=AF,AG=AG ,∠ABG=∠AFG=90° ∴△ABG 和△AFG 全等(HL ) (2)设BG=x,GC=6-x ,GF=x ,GE=3+x,EC=3 在Rt △GCE 中,(x+3)2=32+(6-x)2 解得:x=2 22. (1)设A 型号每台的价格为x ,B 型号的为y,由题意得:⎩⎨⎧=-+-=-+-120)40(3)30(67640)30(5y x y x 解得:⎩⎨⎧==5642y x(2)设A 型号的购进x 台,则B 型号的为(70-x )台,由题意得: 2500)70(4030≤-+x x 解得:x ≥30 ∴A 型号的最少要30台 五、解答题(三)∵AB=3BD,AB=3 ∴BD=1 ∴D 点23.(1)坐标为(1,1)代入xk y =得:k=1(2)联立y=3x 与x y 1=解得:C 点坐标为(3,33) (3)作D 点关于y 轴的对称点E (-1,1),连接CE ,则CE 与y 轴的交点就是所求的点M设CE 的直线解析式为y=kx+b ,代入E,C 两点坐标解得: k=332- , b=232- ∴M 点坐标为(0,232-)24.(1).∵P 点为弧BC 的中点,且OP 为半径 ∴OP ⊥BC又∵AB 为直径,∴∠ACB=90° ∴AC//OP∴∠BAC=∠BOD 又∵21cos ===∠OP OD OB OD BOD ,∴∠BOD=60° ∴∠BAC=60°(2) 由(1)得:AC//GK, DC=DB又∵DK=DP ∴用SAS 易证明:△CDK 与△BDP 全等 ∴∠CKD=∠BPD 又∵∠G=2-180AOG ∠︒ ∠BPD=2-180BOD∠︒ ∴∠G=∠BPD=∠CKD∴AG//CK 又AC//GK (已证) ∴四边形AGKC 为平行四边形 (3) 连接OC∵点E 为CP 的中点,点D 为BC 的中点 ∴DE//BP∴△OHD 与△OBP 相似 ∵OP=OB ∴OH=OD 又OC=OP ∠COD=∠POH ∴△COD 与△POH 全等 ∴∠PHO=∠CDO=90°25.(1)AD=62 CD=22(2)过N 点作NE ⊥AD 于E ,过C 点作CF ⊥NE 于F ∴NF=x x NCF NC 42-615sin sin =︒⋅=∠⋅ 又EF=CD=22 ∴x NE 42622-+= )40(≤≤x (3)设NE 与PM 相交于点H 则MD NH S PMN ⋅⋅=21△ ∵DE=CF=x NC 42675sin +=︒⋅ ∴x x x DE AM AD ME 42646242662++-=+--=--=资料内容仅供您学习参考,如有不当之处,请联系改正或者删除----完整版学习资料分享---- 由△MEH 与△MDP 相似得:MD ME PD HE =,∴MD ME HE ⋅=2 ∴NH=MDME NE HE NE ⋅-=-2 ∴MD NH S PMN ⋅⋅=21△=ME NE MD MD ME NE MD 2(21)2(21-⋅=⋅-⋅) =)]42662(2)42622)(62[(21x x x x +----+- =32422378262+--+--x x 当2622372---=-=a b x 时,面积有最大值, S 最大值=16162962338442-++=-a b ac PS :答案仅供参考,最后一题最后一问的答案,没有绝对把握算对了,毕竟只算了一遍,也真心不想算第二遍!。
2015年广东省中考数学试卷及答案详解
2015年广东省中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.(3分)(2015•广东)|2|(-= )A .2B .2-C .12D .12- 2.(3分)(2015•广东)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A .61.357310⨯B .71.357310⨯C .81.357310⨯D .91.357310⨯3.(3分)(2015•广东)一组数据2,6,5,2,4,则这组数据的中位数是()A .2B .4C .5D .64.(3分)(2015•广东)如图,直线//a b ,175∠=︒,235∠=︒,则3∠的度数是( )A .75︒B .55︒C .40︒D .35︒5.(3分)(2015•广东)下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A .矩形B .平行四边形C .正五边形D .正三角形6.(3分)(2015•广东)2(4)(x -= )A .28x -B .28xC .216x -D .216x7.(3分)(2015•广东)在0,2,0(3)-,5-这四个数中,最大的数是( )A .0B .2C .0(3)-D .5-8.(3分)(2015•广东)若关于x 的方程2904x x a +-+=有两个不相等的实数根, 则实数a 的取值范围是( )A .2aB .2aC .2a >D .2a <9.(3分)(2015•广东)如图, 某数学兴趣小组将边长为 3 的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽 略铁丝的粗细) ,则所得扇形DAB 的面积为( )A . 6B . 7C . 8D . 910.(3分)(2015•广东)如图,已知正ABC ∆的边长为2,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE BF CG ==,设EFG ∆的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )A .B .C .D .二、填空题:本大题6小题,每小题4分,共24分。
2015年广东省汕尾市中考数学试卷及答案解析
2015年广东省汕尾市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分,每小题给出的四个答案,其中只有一个是正确的) 1.(4分)12的相反数是( )A .2B .﹣2C .12D .−12【解答】解:12的相反数是−12. 故选:D .2.(4分)如图所示几何体的左视图为( )A .B .C .D .【解答】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形, 故选:A .3.(4分)下列计算正确的是( ) A .x +x 2=x 3B .x 2•x 3=x 6C .(x 3)2=x 6D .x 9÷x 3=x 3【解答】解:A 、原式不能合并,错误; B 、原式=x 5,错误; C 、原式=x 6,正确; D 、原式=x 6,错误. 故选:C .4.(4分)下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定C .“明天降雨的概率为12”,表示明天有半天都在降雨D .了解一批电视机的使用寿命,适合用普查的方式【解答】解:A 、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B 、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,此选项正确;C 、“明天降雨的概率为12”,表示明天有可能降雨,此选项错误;D 、解一批电视机的使用寿命,适合用抽查的方式,此选项错误; 故选:B .5.(4分)今年五月份香港举办“保普选反暴力”大联盟大型签名活动,9天共收集121万个签名,将121万用科学记数法表示为( ) A .1.21×106B .12.1×105C .0.121×107D .1.21×105【解答】解:将121万用科学记数法表示为:1.21×106. 故选:A .6.(4分)下列命题正确的是( )A .一组对边相等,另一组对边平行的四边形是平行四边形B .对角线相互垂直的四边形是菱形C .对角线相等的四边形是矩形D .对角线相互垂直平分且相等的四边形是正方形【解答】解:A 、一组对边相等,另一组对边平行的四边形是平行四边形也可能是等腰梯形,此选项错误;B 、对角线相互垂直的四边形是菱形也可能是梯形,此选项错误;C 、对角线相等的四边形是矩形也可能是等腰梯形,此选项错误;D 、对角线相互垂直平分且相等的四边形是正方形,此选项正确; 故选:D .7.(4分)使不等式x ﹣1≥2与3x ﹣7<8同时成立的x 的整数值是( ) A .3,4B .4,5C .3,4,5D .不存在【解答】解:根据题意得:{x −1≥23x −7<8, 解得:3≤x <5, 则x 的整数值是3,4; 故选:A .8.(4分)如图,AB 是⊙O 的弦,AC 是⊙O 切线,A 为切点,BC 经过圆心.若∠B =20°,则∠C 的大小等于( )A .20°B .25°C .40°D .50°【解答】解:如图,连接OA ,∵AC 是⊙O 的切线, ∴∠OAC =90°, ∵OA =OB ,∴∠B =∠OAB =20°, ∴∠AOC =40°, ∴∠C =50°. 故选:D .9.(4分)如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕为EF ,若AB =4,BC =2,那么线段EF 的长为( )A .2√5B .√5C .4√55D .2√55【解答】解:∵将矩形纸片ABCD 折叠,使点C 与点A 重合,∴AC ⊥EF ,AO =CO , 在矩形ABCD ,∠D =90°,∴△ACD 是Rt △,由勾股定理得AC =√AD 2+CD 2=2√5, ∴CO =√5,∵∠EOC =∠D =90°,∠ECO =∠DCA , ∴△DAC ∽△OFC , ∴CO CD=FO AD,∴√54=FO 2, ∴FO =√52,∴EF =2×√52=√5.故选:B .10.(4分)对于二次函数y =﹣x 2+2x .有下列四个结论:①它的对称轴是直线x =1;②设y 1=﹣x 12+2x 1,y 2=﹣x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x <2时,y >0.其中正确的结论的个数为( ) A .1B .2C .3D .4【解答】解:y =﹣x 2+2x =﹣(x ﹣1)2+1,故①它的对称轴是直线x =1,正确; ②∵直线x =1两旁部分增减性不一样,∴设y 1=﹣x 12+2x 1,y 2=﹣x 22+2x 2,则当x 2>x 1时,有y 2>y 1或y 2<y 1或y 2=y 1,错误;③当y =0,则x (﹣x +2)=0,解得:x 1=0,x 2=2, 故它的图象与x 轴的两个交点是(0,0)和(2,0),正确; ④∵a =﹣1<0, ∴抛物线开口向下,∵它的图象与x 轴的两个交点是(0,0)和(2,0), ∴当0<x <2时,y >0,正确. 故选:C .二、填空题(每小题5分,共30分)11.(5分)函数y =√x −1中,自变量x 的取值范围是 x ≥0 . 【解答】解:根据题意,得x ≥0.故答案为:x ≥0.12.(5分)分解因式:m 3﹣m = m (m +1)(m ﹣1) . 【解答】解:m 3﹣m , =m (m 2﹣1), =m (m +1)(m ﹣1). 故答案为:m (m +1)(m ﹣1).13.(5分)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是25.【解答】解:女生当选组长的概率是: 4÷10=410=25. 故答案为:25.14.(5分)已知:△ABC 中,点E 是AB 边的中点,点F 在AC 边上,若以A ,E ,F 为顶点的三角形与△ABC 相似,则需要增加的一个条件是 AF =12AC 或∠AFE =∠ABC .(写出一个即可)【解答】解:分两种情况: ①∵△AEF ∽△ABC , ∴AE :AB =AF :AC , 即1:2=AF :AC , ∴AF =12AC ; ②∵△AFE ∽△ACB , ∴∠AFE =∠ABC .∴要使以A 、E 、F 为顶点的三角形与△ABC 相似,则AF =12AC 或∠AFE =∠ABC . 故答案为:AF =12AC 或∠AFE =∠ABC .15.(5分)如图,在▱ABCD 中,BE 平分∠ABC ,BC =6,DE =2,则▱ABCD 的周长等于 20 .【解答】解:∵四边形ABCD 为平行四边形, ∴AE ∥BC ,AD =BC ,AB =CD , ∴∠AEB =∠EBC , ∵BE 平分∠ABC , ∴∠ABE =∠EBC , ∴∠ABE =∠AEB , ∴AB =AE ,∴AE +DE =AD =BC =6, ∴AE +2=6, ∴AE =4, ∴AB =CD =4,∴▱ABCD 的周长=4+4+6+6=20, 故答案为:20. 16.(5分)若1(2n−1)(2n+1)=a 2n−1+b2n+1,对任意自然数n 都成立,则a =12,b= −12;计算:m =11×3+13×5+15×7+⋯+119×21= 1021. 【解答】解:1(2n−1)(2n+1)=a 2n−1+b 2n+1=a(2n+1)+b(2n−1)(2n−1)(2n+1),可得2n (a +b )+a ﹣b =1,即{a +b =0a −b =1,解得:a =12,b =−12;m =12(1−13+13−15+⋯+119−121)=12(1−121)=1021, 故答案为:12;−12;1021.三、解答题(一)(本大题共3小题,每小题7分,共21分)17.(7分)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是 30元 ; (2)这次调查获取的样本数据的中位数是 50元 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 250 人.【解答】解:(1)众数是:30元,故答案是:30元; (2)中位数是:50元,故答案是:50元; (3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有:1000×1040=250(人). 故答案是:250.18.(7分)计算:√8+|2√2−3|﹣(13)﹣1﹣(2015+√2)0.【解答】解:原式=2√2+3﹣2√2−3﹣1=﹣1.19.(7分)已知a +b =−√2,求代数式(a ﹣1)2+b (2a +b )+2a 的值. 【解答】解:原式=a 2﹣2a +1+2ab +b 2+2a =(a +b )2+1, 把a +b =−√2代入得:原式=2+1=3.四、解答题(二)(本大题共3小题,每小题9分,共27分) 20.(9分)已知关于x 的方程x 2+2x +a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.【解答】解:(1)∵b 2﹣4ac =(2)2﹣4×1×(a ﹣2)=12﹣4a >0, 解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得: {1+x 1=−21⋅x 1=a −2, 解得:{a =−1x 1=−3,则a 的值是﹣1,该方程的另一根为﹣3. 21.(9分)如图,已知△ABC ,按如下步骤作图: ①以A 为圆心,AB 长为半径画弧;②以C 为圆心,CB 长为半径画弧,两弧相交于点D ; ③连接BD ,与AC 交于点E ,连接AD ,CD . (1)求证:△ABC ≌△ADC ;(2)若∠BAC =30°,∠BCA =45°,AC =4,求BE 的长.【解答】(1)证明:在△ABC 与△ADC 中, {AB =AD BC =CD AC =AC, ∴△ABC ≌△ADC (SSS );(2)解:设BE =x , ∵∠BAC =30°, ∴∠ABE =60°, ∴AE =tan60°•x =√3x ,∵△ABC ≌△ADC ,∴CB =CD ,∠BCA =∠DCA , ∵∠BCA =45°, ∴∠BCA =∠DCA =45°, ∴∠CBD =∠CDB =45°, ∴CE =BE =x , ∴√3x +x =4, ∴x =2√3−2, ∴BE =2√3−2.22.(9分)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表: 售价(元/件) 100 110 120 130 … 月销量(件)200180160140…已知该运动服的进价为每件60元,设售价为x 元.(1)请用含x 的式子表示:①销售该运动服每件的利润是 ( x ﹣60 )元;②月销量是 ( 400﹣2x )件;(直接写出结果)(2)设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少?【解答】解:(1)①销售该运动服每件的利润是(x ﹣60)元; ②由表中信息可知,售价每增加10元,销售量减少20件, 设月销量W 与x 的关系式为w =kx +b , 由题意得,{100k +b =200110k +b =180,解得,{k =−2b =400,∴W =﹣2x +400;(2)由题意得,y =(x ﹣60)(﹣2x +400) =﹣2x 2+520x ﹣24000 =﹣2(x ﹣130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.五、解答题(本大题共3小题,第23、24小题各11分,第25小题10分,共32分)23.(11分)如图,已知直线y =−34x +3分别与x ,y 轴交于点A 和B . (1)求点A ,B 的坐标; (2)求原点O 到直线l 的距离;(3)若圆M 的半径为2,圆心M 在y 轴上,当圆M 与直线l 相切时,求点M 的坐标.【解答】解:(1)对于直线y =−34x +3, 令x =0,得到y =3;令y =0,得到x =4, ∴A (4,0),B (0,3);(2)法1:直线整理得:3x +4y ﹣12=0, ∴原点O 到直线l 的距离d =√3+4=125; 法2:∵A (4,0),B (0,3), ∴OA =4,OB =3,在Rt △AOB 中,根据勾股定理得:AB =√32+42=5, 设点O 到直线AB 的距离为h , ∵S △AOB =12OB •OA =12AB •h , ∴h =OA⋅OB AB=125; (3)设M 坐标为(0,m )(m >0),即OM =m , 若M 在B 点下边时,BM =3﹣m ,∵∠MBN ′=∠ABO ,∠MN ′B =∠BOA =90°, ∴△MBN ′∽△ABO , ∴MN′OA=BM AB ,即24=3−m 5,解得:m =12,此时M (0,12);若M 在B 点上边时,BM =m ﹣3,同理△BMN∽△BAO,则有MNOA=BMAB,即24=m−35,解得:m=112.此时M(0,112).24.(11分)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于2√5,线段CE1的长等于2√5;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)求点P到AB所在直线的距离的最大值.(直接写出结果)【解答】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=√42+22=2√5,E1C=√42+22=2√5;故答案为:2√5,2√5;(2)证明:当α=135°时,如图2,∵Rt△AD1E1是由Rt△ADE绕点A逆时针旋转135°得到,∴AD1=AE1,∠D1AB=∠E1AC=135°,在△D1AB和△E1AC中∵{AD1=AE1∠D1AB=∠E1AC AB=AC,∴△D1AB≌△E1AC(SAS),∴BD1=CE1,且∠D1BA=∠E1CA,记直线BD1与AC交于点F,∴∠BF A=∠CFP,∴∠CPF=∠F AB=90°,∴BD1⊥CE1;(3)解:如图3,作PG⊥AB,交AB所在直线于点G,∵D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,PD1=2,则BD1=√42−22=2√3,故∠ABP=30°,则PB=2+2√3,故点P到AB所在直线的距离的最大值为:PG=1+√3.25.(10分)如图,过原点的直线y=k1x和y=k2x与反比例函数y=1x的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是平行四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=1x图象上的任意两点,a=y1+y22,b=2x1+x2,试判断a,b的大小关系,并说明理由.【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y=1x的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD是平行四边形;故答案为:平行;(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y=1x的图象在第一象限相交于A,∴k1x=1x,解得x=√1k1(因为交于第一象限,所以负根舍去,只保留正根)将x=√1k1代入y=k1x得y=√k1,故A点的坐标为(√1k1,√k1)同理则B点坐标为(√1k2,√k2),又∵OA=OB,∴√1k1+k1=√1k2+k2,两边平方得:1k1+k1=1k2+k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)∵P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=1x图象上的任意两点,∴y1=1x1,y2=1x2,∴a=y1+y22=1x1+1x22=x1+x22x1x2,∴a﹣b=x1+x22x1x2−2x1+x2=(x1+x2)2−4x1x22x1x2(x1+x2)=(x1−x2)22x1x2(x1+x2),∵x2>x1>0,∴(x1−x2)2>0,x1x2>0,(x1+x2)>0,∴(x1−x2)22x1x2(x1+x2)>0,∴a﹣b>0,∴a>b.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专 计算题. 题: 分 A、原式不能合并,错误; 析: B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断; C、原式利用幂的乘方运算法则计算得到结果,即可做出判断; D、原式利用同底数幂的除法法则计算得到结果,即可做出判断. 解 解:A、原式不能合并,错误; 答: B、原式=x5,错误; C、原式=x6,正确; D、原式=x6,错误. 故选C. 点 此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以 评: 及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键. 4.(4分)(2015•梅州)下列说法正确的是( ) A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
5.(4分)(2015•汕尾)今年五月份香港举办“保普选反暴力”大联盟 大型签名活动,9天共收集121万个签名,将121万用科学记数法表示为 ( ) A. 1.21×106 B. 12.1×105 C. 0.121×107 D. 1.21×105 6.(4分)(2015•汕尾)下列命题正确的是( ) A.一组对边相等,另一组对边平行的四边形是平行四边形 B. 对角线相互垂直的四边形是菱形 C. 对角线相等的四边形是矩形 D.对角线相互垂直平分且相等的四边形是正方形 7.(4分)(2015•汕尾)使不等式x﹣1≥2与3x﹣7<8同时成立的x的整 数值是( ) A. 3,4 B. 4,5 C. 3,4,5 D.不存在 8.(4分)(2015•梅州)如图,AB是⊙O的弦,AC是⊙O切线,A为 切点,BC经过圆心.若∠B=20°,则∠C的大小等于( )
菁优网版权所有
点: 分 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整 析: 数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正 数;当原数的绝对值<1时,n是负数. 解 解:将121万用科学记数法表示为:1.21×106. 答: 故选:A. 点 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 评: 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以 及n的值. 6.(4分)(2015•汕尾)下列命题正确的是( ) A.一组对边相等,另一组对边平行的四边形是平行四边形 B. 对角线相互垂直的四边形是菱形 C. 对角线相等的四边形是矩形 D.对角线相互垂直平分且相等的四边形是正方形 考 命题与定理. 点:
2015年广东省汕尾市中考数学试卷
参考答案与试题解析
一、选择题(每小题4分,共40分,每小题给出的四个答案,其中只有 一个是正确的) 1.(4分)(2015•梅州) 的相反数是( ) A. 2 B.﹣2
C.
D.﹣
考 相反数. 点:
菁优网版权所有
分 根据只有符号不同的两个数叫做互为相反数解答. 析: 解 解: 答: 的相反数是﹣ . 故选D. 点 本题考查了相反数的定义,是基础题,熟记概念是解题的关键. 评: 2.(4分)(2015•梅州)如图所示几何体的左视图为( )
16.(5分)(2015•梅州)若 = +
,对任意自然数n都成立,则a= ,b ;计算: m= + + +…+ = . 三、解答题(一)(本大题共3小题,每小题7分,共21分) 17.(7分)(2015•梅州)在“全民读书月”活动中,小明调查了班级里 40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示 的统计图,请根据相关信息,解答下列问题:(直接填写结果) (1)本次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ; (3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课 外书花费50元的学生有 人.
2015年广东省汕尾市中考数学试卷
一、选择题(每小题4分,共40分,每小题给出的四个答案,其中只有 一个是正确的) 1.(4分)(2015•梅州) 的相反数是( ) A. 2 B.﹣2
C.
D.﹣
2.(4分)(2015•梅州)如图所示几何体的左视图为( )
A.
B.
C.
D.
3.(4分)(2015•梅州)下列计算正确的是( ) A. x+x2=x3 B. x2•x3=x6 C. (x3)2=x6 D. x9÷x3=x3 4.(4分)(2015•梅州)下列说法正确的是( ) A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件 B. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同, 方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定 C. “明天降雨的概率为 ”,表示明天有半天都在降雨 D.了解一批电视机的使用寿命,适合用普查的方式
25.(10分)(2015•梅州)如图,过原点的直线y=k1x和y=k2x与反比 例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA. (1)四边形ABCD一定是 四边形;(直接填写结果) (2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关 系式;若不能,说明理由; (3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a= ,b= ,试判断a,b的大小关系,并说明理由.
18.(7分)(2015•梅州)计算: +|2 ﹣3|﹣(
)﹣1﹣(2015+ )0. 19.(7分)(2015•梅州)已知a+b=﹣ ,求代数式(a﹣1)2+b(2a+b)+2a的值. 四、解答题(二)(本大题共3小题,每小题9分,共27分) 20.(9分)(2015•梅州)已知关于x的方程x2+2x+a﹣2=0. (1)若该方程有两个不相等的实数根,求实数a的取值范围; (2)当该方程的一个根为1时,求a的值及方程的另一根. 21.(9分)(2015•梅州)如图,已知△ABC,按如下步骤作图: ①以A为圆心,AB长为半径画弧; ②以C为圆心,CB长为半径画弧,两弧相交于点D; ③连接BD,与AC交于点E,连接AD,CD. (1)求证:△ABC≌△ADC; (2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.
菁优网版权所有
分 利用事件的分类、普查和抽样调查的特点、概率的意义以及方差 析: 的性质即可作出判断. 解 解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事 答: 件,此选项错误; B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相 同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定, 此选项正确; C、“明天降雨的概率为 ”,表示明天有可能降雨,此选项错误; D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误; 故选B. 点 本题主要考查了方差、全面调查与抽样调查、随机事件以及概率 评: 的意义等知识,解答本题的关键是熟练掌握方差性质、概率的意 义以及抽样调查与普查的特点,此题难度不大. 5.(4分)(2015•汕尾)今年五月份香港举办“保普选反暴力”大联盟 大型签名活动,9天共收集121万个签名,将121万用科学记数法表示为 ( ) A. 1.21×106 B. 12.1×105 C. 0.121×107 D. 1.21×105 考 科学记数法—表示较大的数.
22.(9分)(2015•梅州)九年级数学兴趣小组经过市场调查,得到某 种运动服每月的销量与售价的相关信息如下表: 售价(元/ 100 110 120 130 … 件) 月销量(件) 200 180 160 140 … 已知该运动服的进价为每件60元,设售价为x元. (1)请用含x的式子表示:①销售该运动服每件的利润是
菁优网版权所有
分 根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出 析: 答案. 解 解:A、一组对边相等,另一组对边平行的四边形是平行四边形也 答: 可能是等腰梯形,此选项错误; B、对角线相互垂直的四边形是菱形也可能是梯形,此选项错误; C、对角线相等的四边形是矩形也可能是等腰梯形,此选项错误; D、对角线相互垂直平分且相等的四边形是正方形,此选项正确; 故选D. 点 本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握 评: 平行四边形、菱形以及矩形的性质,此题难度不大.
B. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同, 方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定 C. “明天降雨的概率为 ”,表示明天有半天都在降雨 D.了解一批电视机的使用寿命,适合用普查的方式 考 方差;全面调查与抽样调查;随机事件;概率的意义. 点:
( )元;②月销量是 ( )件;(直接写出 结果) (2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润 最大,最大利润是多少? 五、解答题(本大题共3小题,第23、24小题各11分,第25小题10分, 共32分) 23.(11分)(2015•汕尾)如图,已知直线y=﹣ x+3分别与x,y轴交于点A和B. (1)求点A,B的坐标; (2)求原点O到直线l的距离; (3)若圆M的半径为2,圆心M在y轴上,当圆M与直线l相切时,求点 M的坐标.
24.(11分)(2015•汕尾)在Rt△ABC中,∠A=90°,AC=AB=4,D, E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等 腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点 为P. (1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1 的长等于 ;(直接填写结果) (2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1; (3)求点P到AB所在直线的距离的最大值.(直接写出结果)ຫໍສະໝຸດ A.B.C.
D.
考 简单组合体的三视图. 点:
菁优网版权所有
分 根据从左边看得到的图形是左视图,可得答案. 析: 解 解:从左边看第一层一个小正方形,第二层一个小正方形,第三 答: 层一个小正方形, 故选:A. 点 本题考查了简单组合体的三视图,从左边看看得到的图形是左视 评: 图. 3.(4分)(2015•梅州)下列计算正确的是( ) A. x+x2=x3 B. x2•x3=x6 C. (x3)2=x6 D. x9÷x3=x3 考 同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积 点: 的乘方.