北师大版八年级数学下册第二章检测题及答案解析

合集下载

(北师大版)初中数学八年级下册第二章综合测试02含答案解析

(北师大版)初中数学八年级下册第二章综合测试02含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第二章综合测试一、单选题(每小题3分,共30分) 1.下列式子中,是不等式的有( )①27x =;②34x y +;③32−<;④230a −≥;⑤1x >;⑥1a b −>. A .5个B .4个C .3个D .1个2.已知a b <,下列式子不成立的是( ) A .55a b −−<B .33a b <C .1122a b −−>D .11a b −+−+<3.下列说法中,错误的是( ) A .不等式5x <的整数解有无数多个 B .不等式5x −>的负整数解集有有限个 C .不等式28x −<的解集是4x −<D .40−是不等式28x −<的一个解4.不等式组31220x x −⎧⎨−⎩>≥的解集在数轴上表示为( )A .B .C .D .5.不等式111246x x +−−>的解是( ) A .5x −<B .10x −>C .10x −<D .8x −<6.如下图,直线y k x b =+交坐标轴于A B 、两点,则不等式0k x b +<的解集是( )A .2x −<B .2x <C .3x −>D .3x −<7.已知函数()1y a x =−的图象过一、三象限,那么a 的取值范围是( ) A .1a >B .1a <C .0a >D .0a <8.若不等式13x a x −⎧⎨⎩><恰有3个整数解,那么a 取值范围是( )A .1a ≤B .01a <≤C .01a ≤<D .0a >9.不等式组211420x x −⎧⎨−⎩≥≤的解集在数轴上表示为( )A .AB .BC .CD .D10.若x y >,且()()33a x a y −−<,则a 的值可能是( ) A .0B .3C .4D .5二、填空题(每小题4分,共28分)11.用不等号“>、<、≥、≤”填空:21a +________0. 12.若26m n−−<,则3m ________n .(填“<、>或=”号) 13.不等式组8x x m ⎧⎨⎩<>有解,m 的取值范围是________.14.不等式:2603x −−>的解集________.15.如下图,一次函数2y x =−−与2y x m =+的图象相交于点()4P n −,,则关于x 的不等式220x m x +−−<<的解集为________.16.不等式组1274xx ⎧−⎪⎨⎪−+⎩≤≥的解集是________.17.不等式组()3225123x x x x ⎧++⎪⎨−⎪⎩>≤的最小整数解是________.三、解答题一(每小题6分,共18分)18.解不等式()21132x x +−+≥,并把它的解集在数轴上表示出来.19.解不等式组:()152437x x x +⎧⎨++⎩<>.20.解不等式组:()23423x xxx⎧−−⎪⎨−⎪⎩≤<,并求非负整数解.四、解答题二(每小题8分,共24分)21.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?22.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?23.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.五、解答题三(每小题10分,共20分)24.某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?25.某茶叶销售商计划将m罐茶叶按甲、乙两种礼品盒包装出售,其中甲种礼品盒每盒装4罐,每盒售价240元;乙种礼品盒每盒装6罐,每盒售价300元,恰好全部装完.已知每罐茶叶的成本价为30元,设甲种礼品盒的数量为x盒,乙种礼品盒的数量为y盒.(1)当120m=时.①求y关于x的函数关系式.②若120罐茶叶全部售出后的总利润不低于3 000元,则甲种礼品盒的数量至少要多少盒?(2)若m罐茶叶全部售出后平均每罐的利润恰好为24元,且甲、乙两种礼品盒的数量和不超过69盒,求m的最大值.第二章综合测试答案解析一、 1.【答案】B【解析】解:不等式有:③32−<;④230a −≥;⑤1x >;⑥1a b −>,共4个.故选B . 2.【答案】D【解析】利用不等式的性质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变.A .不等式两边同时减5,不等号方向不变,故本选项正确,不符合题意;B .不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意;C .不等式两边同时乘以12−,不等号方向改变,故本选项正确,不符合题意; D .不等式两边同时乘以1−加1,不等号方向改变,故本选项错误,符合题意。

北师大版八年级数学下册第二章测试题及答案

北师大版八年级数学下册第二章测试题及答案

北师大版八年级数学下册第二章测试题及答案一.选择题(每题3分,共30分)1.下列数学式子中:①﹣3<0,②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x+1>3中,不等式有( ) A.3个B.4个C.5个D.6个2.下列各式中正确的是( )A.若a>b,则a+2>b+2B.若a>b,则a2>b2C.若a>b,且c≠0,则2ac>2bcD.若a>b,则﹣3a>﹣3b3.下列不等式的变形不一定成立的是( )A.若x>y,则﹣x<﹣y B.若x>y,则x2>y2C.若x<y,则D.若x+m<y+m,则x<y4.关于x的一元一次不等式组的解集如图所示,则它的解集是( )A.﹣1<x≤2B.﹣1≤x<2C.x≥﹣1D.x<25.若不等式组的解是x≥a,则下列各式正确的是( )A.a>b B.a≥b C.a<b D.a≤b6.某商店为了促销一种定价为20元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小颖有200元钱,那么她最多可以购买该商品( )A.5件B.6件C.7件D.11件7.若关于x的不等式2﹣m﹣x>0的正整数解共有3个,则m的取值范围是( )A.﹣1≤m<0B.﹣1<m≤0C.﹣2≤m<﹣1D.﹣2<m≤﹣18.一次函数y1=ax+b与y2=mx+n在同一平面直角坐标系内的图象如图所示,则不等式组的解集为( )A.x<﹣2B.﹣2<x<3C.x>3D.以上答案都不对9.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为( )A.5B.8C.9D.1510.已知关于x.y的方程组,其中﹣3≤a≤1,给出下列说法:①当a=1时,方程组的解也是方程x+y=2﹣a的一个解;②当a=﹣2时,x.y的值互为相反数;③若x≤1,则1≤y≤4;④是方程组的解.其中说法错误的是( )A.①②③④B.①②③C.②④D.②③二.填空题(每题3分,共24分)11.若﹣a<﹣b,那么﹣2a+9 ﹣2b+9(填">""<"或"=").12.若关于x的不等式组的解集是x<4,则P(2﹣m,m+2)在第 象限.13.若不等式组无解,则a的取值范围是 .14.不等式(m﹣2)x<3的解集是,则m的取值范围是 .15.一次竞赛中,一共有10道题,5分,答错(或不答)一题扣1分,则小明至少答对 道题,成绩超过30分.16.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款:若一次性购买5件以上,超过部分打八折.现有32元钱,最多可以购买该商品 件.17.2019年春节期间,为提倡文明,环保祭祖,某烟花销售商拟今年不再销售烟花爆竹,改为销售鲜花,经过市场调查,发现有甲乙丙丁四种鲜花组合比较受顾客的喜爱,于是制定了进货方案,其中甲丙的进货量相同,乙丁的进货量相同,甲与丁单价相同,甲乙与丙丁的单价和均为88元/束,且甲乙的进货总价比丙丁的进货总价多800元,由于年末资金紧张,所以临时决定只进购甲乙两种组合,甲乙的进货量与原方案相同,且进货量总数不超过500束,则该经销商最多需要准备 元进货资金.18.某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有 ————人.三.解答题(共66分)19.解不等式组:(1)解不等式组,并将解集在数轴上表示出来.(2)求不等式组的整数解.20.阅读下列材料:问题:已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围解:∵x﹣y=2,∴x=y+2,又∵x>1,∴y+2>1,∴y>﹣1,又∵y<0,∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=5,且x>﹣2,y<0,①试确定y的取值范围;②试确定x+y的取值范围;(2)已知x﹣y=a+1,且x<﹣b,y>2b,若根据上述做法得到3x﹣5y的取值范围是﹣10<3x﹣5y<26,请直接写出a.b的值.21.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣5|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.22.已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围;(3)不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,试求出这个公共解.23.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.反之也成立.这种比较大小的方法称为"求差法比较大小".请运用这种方法尝试解决下面的问题:(1)比较4+3a2﹣2b+b2与3a2﹣2b+1的大小;(2)若2a+2b>3a+b,比较a.b的大小.24.阅读题.小明在数学课外小组活动时遇到这样一个问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集,小明同学的思路如下:先根据绝对值的定义,求|x|=3时x的值,并在数轴上表示为点A,B,如图所示:观察数轴发现:以点A,B为分界点把数轴分为三部分,点A左边的点表示的数的绝对值大于3,点A.B之间的点表示的数的绝对值小于3,点B右边表示的数的绝对值大于3,因此,小明得出结论绝对值不等式|x|>3的解集为:x<﹣3或x>3参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式|x|>1的解集是 ;(2)求绝对值不等式|x﹣3|>4的解集;(3)求绝对值不等式|x﹣1|<2的解集.25.一个汽车零件制造车间可以生产甲,乙两种零件,生产4个甲种零件和3个乙种零件共获利120元;生产2个甲种零件和5个乙种零件共获利130元.(1)求生产1个甲种零件,1个乙种零件分别获利多少元?(2)若该汽车零件制造车间共有工人30名,每名工人每天可生产甲种零件6个或乙种零件5个,每名工人每天只能生产同一种零件,要使该车间每天生产的两种零件所获总利润超过2800元,至少要派多少名工人去生产乙种零件?26.某商场用60个A型包装袋与90个B型包装袋对甲,乙两类农产品进行包装出售(两种型号包装袋都用完),每个A型包装袋装2千克甲类农产品或装3千克乙类农产品,每个B型包装袋装3千克甲类农产品或装5千克乙类农产品,设有x个A型包装袋包装甲类农产品,有y个B型包装袋包装甲类农产品.(1)请用含x或y的代数式填空完成表:包装袋型号A B甲类农产品质量(千克)2x 乙类农产品质量(千克) 5(90﹣y)(2)若甲.乙两类农产品的总质量分别是260千克与210千克,求x,y的值.(3)若用于包装甲类农产品的B型包装袋数量是用于包装甲类农产品的A型包装袋数量的两倍,且它们数量之和不少于90个,记甲.乙两类农产品的总质量之和为m千克,求m的最小值与最大值.27.新农村实行大面积机械化种植,为了更好地收割庄稼,农田承包大户张大叔决定购买8台收割机,现有久保田和春雨两种品牌的收割机,其中每台收割机的价格.每天的收割面积如下表.销售商又宣传说,购买一台久保田收割机比购买一台春雨收割机多8万元,购买2台久保田收割机比购买3台春雨收割机多4万元.久保田收割机春雨收割机价格(万元/台)x y收割面积(亩/天)2418(1)求两种收割机的价格;(2)如果张大叔购买收割机的资金不超过125万元,那么有哪几种购买方案?(3)在(2)的条件下,若每天要求收割面积不低于150亩,为了节约资金,那么有没有一种最佳购买方案呢? 28."中国人的饭碗必须牢牢掌握在咱们自己手中".为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲.乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲.乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲.乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?答案一.选择题1.A.2.A.3.B.4.B.5.A.6.D.7.C.8.C.9.B.10.A.二.填空题11.<.12.二.13.a≥4.14.m<2.15.7.16.12.17.22400.18.25.三.解答题(共10小题)19.解:(1),解不等式①得:x>﹣4,解不等式②得:x≤2,∴不等式组的解集为:﹣4<x≤2,数轴表示如下:(2),解不等式①得:x>﹣1,解不等式②得:x≤5,∴不等式组的解集为:﹣1<x≤5,∴整数解为0,1,2,3,4,5.20.解:(1)①∵x﹣y=5,∴x=y+5,∵x>﹣2,∴y+5>﹣2,∴y>﹣7,∵y<0,∴﹣7<y<0,②由①得﹣7<y<0,∴﹣2<y+5<5,即﹣2<x<5②,∴﹣7﹣2<y+x<0+5,∴x+y的取值范围是﹣9<x+y<5;(2)∵x﹣y=a+1,∴x=y+a+1,∵x<﹣b,∴y+a+1<﹣b,∴y<﹣a﹣b﹣1,∴﹣y>a+b+1,∵y>2b,∴﹣y<﹣2b,∴a+b+1<﹣y<﹣2b①,∴10b<5y<﹣5a﹣5b﹣5,∵2b+a+1<y+a+1<﹣b,∴2b+a+1<x<﹣b,∴6b+3a+3<3x<﹣3b②,∴11b+8a+8<3x﹣5y<﹣13b,∴①+②得:5b+5a+5+6b+3a+3<3x﹣y<﹣10b﹣3b,∵3x﹣y的取值范围是﹣10<3x﹣5y<2,∴,解得:.21解:(1),①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:,解得:3≤m≤5,∴m﹣3≥0,m﹣5≤0,则原式=m﹣3+5﹣m=2;(3)根据题意得:s=2x﹣3y+m=2(m﹣3)﹣3(﹣m+5)+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=18﹣21=﹣3;m=5时,s=30﹣21=9,则s的最小值为﹣3,最大值为9.22.解:(1)∵是ax+2y=a﹣1的一个解,∴2a﹣2=a﹣1,解得a=1;(2)x=2时,2a+2y=a﹣1,∴y=∵x=2时,y>0,∴>0,解得a<﹣1;(3)ax+2y=a﹣1变形为(x﹣1)a+2y=﹣1,∵不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,∴x﹣1=0,此时2y=﹣1,∴这个公共解为.23.解:(1)4+3a2﹣2b+b2﹣(3a2﹣2b+1)=4+3a2﹣2b+b2﹣3a2+2b﹣1=b2+3>0,∴4+3a2﹣2b+b2>3a2﹣2b+1;(2)∵2a+2b>3a+b,∴(2a+2b)﹣(3a+b)>0,∴2a+2b﹣3a﹣b>0,∴﹣a+b>0,∴a<b.24.解:(1)根据阅读材料可知:①|x|>1的解集是x<﹣1或x>1;故答案为:x<﹣1或x>1;(2)∵|x﹣3|>4∴x﹣3<﹣4或x﹣3>4解得:x<﹣1或x>7;(3)|x﹣1|<2,∵﹣2<x﹣1<2,解得:﹣1<x<3.25.解:(1)设生产1个甲种零件获利x元,生产1个乙种零件获利y元,根据题意得:,解得:.答:生产1个甲种零件获利15元,生产1个乙种零件获利20元.(2)设要派a名工人去生产乙种零件,则(30﹣a)名工人去生产甲种零件,根据题意得:15×6(30﹣a)+20×5a>2800,解得:a>10.∵a为正整数,∴a的最小值为11.答:至少要派11名工人去生产乙种零件.26.解:(1)由题意可以填表如下:包装袋型号A B 甲类农产品质量(千克)2x3y 乙类农产品质量(千克)3(60﹣x) 5(90﹣y)故答案为:3y;3(60﹣x).(2)由题意可得,,解得.∴即x的值为40;y的值为60.(3)设有x个A型包装袋包装甲类农产品,则有y=2x个B型包装袋包装甲类农产品.∵用于包装甲类的A,B型包装袋的数量之和不少于90个,∴x+2x≥90,∴x≥30.∵90﹣2x≥0,∴x≤45;∴30≤x≤45,∴m=2x+3(60﹣x)+6x+5( 90﹣2x)=﹣5x+630,∵﹣5<0,∴当30≤x≤45时,m随x增大而减小,∴当x=45时,m有小值405,当x=30时,m有最大值480,∴m的最大值为480,最小值为405.27.解:(1)设两种收割机的价格分别为x万元,y万元,依题意得,解得故久保田收割机的价格为每台20万元,春雨收割机的价格为每台12万元;(2)设购买久保田收割机m台,依题意得20m+12(8﹣m)≤125 解得m≤3,故有以下4种购买方案:①久保田收割机3台,春雨收割机5台;②久保田收割机2台,春雨收割机6台;③久保田收割机1台,春雨收割机7台;④久保田收割机0台,春雨收割机8台;(3)由题意可得24m+18(8﹣m)≥150,解得m≥1,由(1)得购买久保田收割机越少越省钱,所以最佳购买方案为久保田收割机1台,春雨收割机7台.28.解:(1)设购进1件甲种农机具x万元,1件乙种农机具y万元.根据题意得:,解得:,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10﹣m)件,根据题意得:,解得:4.8≤m≤7.∵m为整数.∴m可取5.6.7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w万元.w=1.5m+0.5(10﹣m)=m+5.∵k=1>0,∴w随着m的减少而减少,=1×5+5=10(万元).∴m=5时,w最小∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a件,乙种农机具b件,由题意得:(1.5﹣0.7)a+(0.5﹣0.2)b=0.7×5+0.2×5,其整数解:或,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。

北师大版八年级数学下册第二章检测题【含答案】

北师大版八年级数学下册第二章检测题【含答案】

第二章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.下列各项中,结论正确的是( B )A .若a >0,b <0,则b a>0 B .若a >b ,则a -b >0 C .若a <0,b <0,则ab <0 D .若a >b ,a <0,则b a<02.(2017·丽水)若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( C )A .m ≥2B .m >2C .m <2D .m ≤23.(2017·遵义)不等式6-4x ≥3x -8的非负整数解为( B ) A .2个 B .3个 C .4个 D .5个4.不等式(1-a) x >2变形后得到x <21-a成立,则a 的取值范围是( C )A .a >0B .a <0C .a >1D .a <15.在等腰三角形ABC 中,AB =AC ,其周长为20 cm ,则AB 边的取值范围是( B ) A .1 cm<AB <4 cm B .5 cm<AB <10 cm C .4 cm<AB <8 cm D .4 cm<AB <10 cm6.(2017·临沂)不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1②中,不等式①和②的解集在数轴上表示正确的是( B )7.一次函数y =-3x +b 和y =kx +1的图象如图所示,其交点为P(3,4),则不等式kx +1≥-3x +b 的解集在数轴上表示正确的是( B )8.(2017·百色)关于x 的不等式组⎩⎨⎧x -a ≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( B )A .3B .2C .1 D.239.某校团委与社区联合举办“保护地球,人人有责”活动,拟选派20名学生分三组到120个店铺发宣传单,若第一组、第二组、第三组每人分别负责8个,6个,5个店铺,且每组至少有两人,则学生分组方案有( B )A .6种B .5种C .4种D .3种10.设[x)表示大于x 的最小整数,如[2)=3,[-1.4)=-1,则下列结论:①[0)=0;②[x)-x 的最小值是0;③[x)-x 的最大值是0;④存在实数x ,使[x)-x =0.5成立; ⑤若x 满足不等式组⎩⎪⎨⎪⎧2-3x ≤5,x +22<1,则[x)的值为-1.其中正确结论的个数是( A )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.若代数式t +15-t -12的值不小于-3,则t 的取值范围是__t ≤373__.12.若(m -2)x |m -1|-3>6是关于x 的一元一次不等式,则m =__0__. 13.已知2x -y =0,且x -5>y ,则x 的取值范围是__x <-5__.14.不等式组⎩⎪⎨⎪⎧2x -13-5x +12≤1,5x -2<3(x +2)的所有正整数解的和为__6__.15.已知点P 1关于x 轴的对称点P 2(3-2a ,2a -5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则点P 1的坐标是__(-1,1)__.16.已知关于x 的不等式组⎩⎨⎧x -a ≥b ,2x -a -1<2b的解集为3≤x <5,则a =__-3__,b=__6__.17.如图,某面粉加工企业急需汽车,但因资金问题无力购买,经理想租一辆汽车.A 公司的条件是每百千米租费110元;B 公司的条件是每月付司机工资1 000元,油钱600元,另外每百千米付10元.如果该公司每月有30百千米左右的业务,你建议经理租__B __公司的车.18.定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于2而小于6,则x 的取值范围为__2<x <4__.三、解答题(共66分)19.(10分)(1)解不等式组⎩⎪⎨⎪⎧4x >2x -6,x -13≤x +19,并把解集在数轴上表示出来;解:-3<x ≤2,数轴表示略.(2)解不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1<34x -18,并写出它的非负整数解.解:-125<x <72,非负整数解为0,1,2,3.20.(8分)已知不等式13(x -m)>2-m.(1)若其解集为x>3,求m 的值;(2)若满足x>3的每一个数都能使已知不等式成立,求m 的取值范围.解:解不等式可得x>6-2m.(1)由题意,得6-2m =3,解得m =32.(2)由题意,得6-2m ≤3,解得m ≥32.21.(8分)已知关于x ,y 的方程组⎩⎨⎧x -2y =m ,①2x +3y =2m +4 ②的解满足不等式组⎩⎨⎧3x +y ≤0,x +5y >0.求m 的取值范围. 解:①+②,得3x +y =3m +4,②-①,得x +5y =m +4,∵⎩⎨⎧3x +y ≤0,x +5y >0,∴⎩⎨⎧3m +4≤0,m +4>0,解得-4<m ≤-43.22.(9分)如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A(2,-1). (1)求k ,b 的值;(2)利用图象求出:当x 取何值时,y 1≥y 2?(3)利用图象求出:当x 取何值时,y 1>0且y 2<0?解:(1)k =12,b =5.(2)当x ≥2时,y 1≥y 2.(3)当x >4时,y 1>0且y 2<0.23.(9分)对x ,y 定义一种新运算T ,规定:T(x ,y)=ax +byx +y(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a ×0+b ×10+1=b ,已知T(1,1)=2.5,T(4,-2)=4.(1)求a ,b 的值;(2)若关于m 的不等式组⎩⎨⎧T (4m ,5-4m )≤3,T (2m ,3-2m )>p恰好有2个整数解,求实数p 的取值范围.解:(1)根据题意,得T (1,1)=a +b 1+1=2.5,T (4,-2)=4a -2b4+(-2)=4,即⎩⎨⎧a +b =5,①2a -b =4,②①+②,得3a =9,解得a =3,把a =3代入①,得b =2,故a ,b 的值分别为3和2.(2)根据题意,得T (4m ,5-4m )=4m ×3+2(5-4m )4m +5-4m≤3,T (2m ,3-2m )=2m ×3+2(3-2m )2m +3-2m >p ,即⎩⎪⎨⎪⎧12m +10-8m5≤3,①6m +6-4m3>p ,②由①得m ≤54,由②得m >32p -3,∴不等式组的解集为32p -3<m ≤54,∵不等式组恰好有2个整数解,即m =0,1,∴-1≤32p -3<0,解得43≤p <2,即实数p 的取值范围是43≤p <2.24.(10分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为了满足同学们的读书需求,学校图书馆准备到新华店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1 520元.20本文学名著比20本动漫书多440元.(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样)(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2 000元,请求出所有符合条件的购书方案.解:(1)设每本文学名著x 元,动漫书y 元,可得⎩⎨⎧20x +40y =1 520,20x -20y =440,解得⎩⎨⎧x =40,y =18,则每本文学名著和动漫书各为40元和18元.(2)设学校要求购买文学名著x 本,则动漫书为(x +20)本,根据题意,得⎩⎨⎧x +x +20≥72,40x +18(x +20)≤2 000,解得26≤x ≤82029,因为取整数,所以x 取26,27,28,故有如下方案:①文学名著26本,动漫书46本;②文学名著27本,动漫书47本;③文学名著28本,动漫书48本.25.(12分)(2017·咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是________件,日销售利润是________元; (2)求y 与x 之间的函数关系式,并写出x 的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?解:(1)340-(24-22)×5=330(件), 330×(8-6)=660(元).故答案为:330 660.(2)设线段OD 所表示的y 与x 之间的函数关系式为y =kx, 将(17,340)代入y =kx 中,得340=17k ,解得k =20,∴线段OD 所表示的y 与x 之间的函数关系式为y =20x.根据题意,得线段DE 所表示的y 与x 之间的函数关系式为y =340-5(x -22)=-5x +450.联立两线段所表示的函数关系式成方程组, 得⎩⎨⎧y =20x ,y =-5x +450,解得⎩⎨⎧x =18,y =360,∴交点D 的坐标为(18,360), ∴y 与x 之间的函数关系式为y =⎩⎨⎧20x (0≤x ≤18),-5x +450(18<x ≤30).(3)当0≤x ≤18时,根据题意,得(8-6)×20x ≥640,解得x ≥16;当18<x ≤30时,根据题意,得(8-6)×(-5x +450)≥640, 解得x ≤26. ∴16≤x ≤26.26-16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D 的坐标为(18,360), ∴日最大销售量为360件, 360×2=720(元),∴试销售期间,日销售最大利润是720元.。

2019北师大版八年级数学下册第二章【一元一次不等式与一元一次不等式组】单元测试题附答案解析

2019北师大版八年级数学下册第二章【一元一次不等式与一元一次不等式组】单元测试题附答案解析

2019北师大版八下数学第2章【一元一次不等式与一元一次不等式组】单元测试卷一.选择题(共10小题)1.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2bC.1﹣a>1﹣b D.(1+c2)a>(1+c2)b3.一元一次不等式组的解集是x>a,则a与b的关系为()A.a≥b B.a≤b C.a≥b>0D.a≤b<04.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣35.下列各式中,一元一次不等式是()A.x≥B.2x>1﹣x2C.x+2y<1D.2x+1≤3x6.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<37.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b >ax﹣3的解集是()A.x>﹣5B.x>﹣2C.x>﹣3D.x<﹣28.若函数y=kx+b的图象如图所示,那么当y>0时,x的取值范围是()A.x>1B.x>2C.x<1D.x<29.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1)B.(﹣1,0)C.(0,﹣1)D.(1,0)10.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<4时,y1<y2;④b<0.其中正确结论的个数是()A.4个B.3个C.2个D.1个二.填空题(共5小题)11.用不等号“>、<、≥、≤”填空:a2+10.12.若a<b<0,则1、1﹣a、1﹣b三个数之间的大小关系为:(用“<”连接).13.不等式组无解,则a的取值范围是.14.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为.15.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为.三.解答题(共6小题)16.现有不等式的性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变;②在不等式的两边都乘同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变.请解决以下两个问题:(1)利用性质①比较2a与a的大小(a≠0);(2)利用性质②比较2a与a的大小(a≠0).17.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.18.解不等式,并把解集在数轴上表示出来:≤1.19.函数y=kx+b和函数y=ax+m的图象如图所示,求下列不等式(组)的解集(1)kx+b<ax+m的解集是;(2)的解集是;(3)的解集是;(4)的解集是.20.如图,直线l1:y1=﹣x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(﹣2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)求两直线交点D的坐标;(2)求△ABD的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.21.画出函数y=﹣x+3的图象,根据图象回答下列问题:(1)求方程﹣x+3=0的解;(2)求不等式﹣x+3<0的解集;(3)当x取何值时,y≥0.2019年北师大版八下数学《第2章一元一次不等式与一元一次不等式组》单元测试卷参考答案与试题解析一.选择题(共10小题)1.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个【分析】找到用不等号连接的式子的个数即可.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选C.【点评】用到的知识点为:用“<,>,≤,≥,≠”连接的式子叫做不等式.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2bC.1﹣a>1﹣b D.(1+c2)a>(1+c2)b【分析】根据不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行计算,即可选出正确答案.【解答】解:A、当m<0时,ma<mb,故此选项错误;B、当c=0时,c2a=c2b,故此选项错误;C、a>b,则1﹣a<1﹣b,故此选项错误;D、a>b,1+c2>0,则(1+c2)a>(1+c2)b,故此选项正确;故选:D.【点评】此题主要考查了不等式的基本性质,关键是熟练掌握不等式的性质.3.一元一次不等式组的解集是x>a,则a与b的关系为()A.a≥b B.a≤b C.a≥b>0D.a≤b<0【分析】观察发现,不等式组两解集都为大于号,满足“同大取大”法则,从而得到a与b的大小关系.【解答】解:由一元一次不等式组的解集是x>a,根据不等式组的两解集都为大于号,根据“同大取大”的法则得:a≥b,故选:A.【点评】此题考查了不等式的解集,一元一次不等式取解集的方法是:“同大取大”;“同小取小”;“大大小小无解”;“大小小大取中间”.掌握不等式取解集的方法是解本题的关键.同时注意a 与b可能相等,不要忽视此种情况.4.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣3【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,即﹣1及其右边的部分.【解答】解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.【点评】本题考查了不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.下列各式中,一元一次不等式是()A.x≥B.2x>1﹣x2C.x+2y<1D.2x+1≤3x【分析】找到只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式即可.【解答】解:A、不是整式,不符合题意;B、未知数的最高次数是2,不符合题意;C、含有2个未知数,不符合题意;D、是只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式,符合题意;故选:D.【点评】考查一元一次不等式的定义:只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式叫做一元一次不等式.6.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<3【分析】根据函数图象知:一次函数过点(3,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣4)﹣2b>0中进行求解.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,∴b=﹣3k.将b=﹣3k代入k(x﹣4)﹣2b>0,得k(x﹣4)﹣2×(﹣3k)>0,去括号得:kx﹣4k+6k>0,移项、合并同类项得:kx>﹣2k;∵函数值y随x的增大而减小,∴k<0;将不等式两边同时除以k,得x<﹣2.故选:B.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.7.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b >ax﹣3的解集是()A.x>﹣5B.x>﹣2C.x>﹣3D.x<﹣2【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2,故选:B.【点评】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.8.若函数y=kx+b的图象如图所示,那么当y>0时,x的取值范围是()A.x>1B.x>2C.x<1D.x<2【分析】根据函数图象与x轴的交点坐标,当y>0即图象在x轴上方,求出即可.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知x<2时,图象在x轴上方,即y>0,所以当y>0时,x<2.故选:D.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1)B.(﹣1,0)C.(0,﹣1)D.(1,0)【分析】由于关于x的不等式ax+1>0(a≠0)的解集是x<1,得到a小于0,表示出不等式的解集,列出关于a的方程,求出方程的解得到a的值,将a的值代入确定出直线y=ax+1解析式,即可求出与x轴的交点坐标.【解答】解:∵关于x的不等式ax+1>0(a≠0)的解集是:x<1,∴a<0,解得:x<﹣,∴﹣=1,即a=﹣1,即直线解析式为y=﹣x+1,令y=0,解得:x=1,则直线y=﹣x+1与x轴的交点是(1,0).故选:D.【点评】认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.10.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<4时,y1<y2;④b<0.其中正确结论的个数是()A.4个B.3个C.2个D.1个【分析】根据一次函数的性质对①②④进行判断;当x<4时,根据两函数图象的位置对③进行判断.【解答】解:根据图象y1=kx+b经过第一、二、四象限,∴k<0,b>0,故①正确,④错误;∵y2=x+a与y轴负半轴相交,∴a<0,故②错误;当x<4时图象y1在y2的上方,所以y1>y2,故③错误.所以正确的有①共1个.故选:D.【点评】此题主要考查了一次函数,以及一次函数与不等式,根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.二.填空题(共5小题)11.用不等号“>、<、≥、≤”填空:a2+1>0.【分析】根据非负数的性质可得a2≥0,进而得到a2+1>0.【解答】解:根据a2≥0,∴a2+1>0,故答案为:>.【点评】此题主要考查了非负数的性质,关键是掌握偶次方具有非负性.12.若a<b<0,则1、1﹣a、1﹣b三个数之间的大小关系为:1<1﹣b<1﹣a(用“<”连接).【分析】运用取值法来判定,【解答】解:设a=﹣2,b=﹣1,∴1﹣a=1+2=3,1﹣b=1+1=2,∴1﹣b<1﹣a,故答案为:1<1﹣b<1﹣a.【点评】本题主要考查了不等式的基本性质,选择题可运用取值的方法求解,注意取值一定在范围内.13.不等式组无解,则a的取值范围是a≤2.【分析】根据不等式组无解,可得出a≤2,即可得出答案.【解答】解:∵不等式组无解,∴a的取值范围是a≤2;故答案为a≤2.【点评】本题考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为x>﹣2.【分析】根据两函数的交点坐标,结合图象即可确定出所求不等式的解集.【解答】解:由题意及图象得:不等式3x+b>ax﹣3的解集为x>﹣2,故答案为:x>﹣2【点评】此题考查了一次函数与一元一次不等式,利用了数形结合的思想,灵活运用数形结合思想是解本题的关键.15.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为.【分析】根据定义先列不等式:2x﹣1≥﹣x+3和2x﹣1≤﹣x+3,确定其y=min{2x﹣1,﹣x+3}对应的函数,画图象可知其最大值.【解答】解:由题意得:,解得:,当2x﹣1≥﹣x+3时,x≥,∴当x≥时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为;当2x﹣1≤﹣x+3时,x≤,∴当x≤时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x=所对应的y的值,如图所示,当x=时,y=,故答案为:.【点评】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.三.解答题(共6小题)16.现有不等式的性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变;②在不等式的两边都乘同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变.请解决以下两个问题:(1)利用性质①比较2a与a的大小(a≠0);(2)利用性质②比较2a与a的大小(a≠0).【分析】(1)根据不等式的性质①,可得答案;(2)根据不等式的性质②,可得答案.【解答】解:(1)a>0时,a+a>a+0,即2a>a,a<0时,a+a<a+0,即2a<a;(2)a>0时,2>1,得2•a>1•a,即2a>a;a<0时,2>1,得2•a<1•a,即2a<a.【点评】本题考查了不等式的性质,不等式两边都乘或除以同一个负数,不等号的方向改变.17.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.【分析】首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围,然后再化简(2),最后求得m的值.【解答】解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得,(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.解不等式,并把解集在数轴上表示出来:≤1.【分析】先把不等式中分母去掉,再来解不等式,然后根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:由原不等式两边同乘以6,得2×(2x﹣1)﹣3×(5x+1)≤6,即﹣11x﹣5≤6,不等式两边同时加5,得﹣11x≤11,不等式两边同时除以﹣11,得x≥﹣1.【点评】不等式的基本性质:性质1:如果a>b,b>c,那么a>c(不等式的传递性);性质2:如果a>b,那么a+c>b+c(不等式的可加性);性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d;性质5:如果a>b>0,c>d>0,那么ac>bd;性质6:如果a>b>0,n∈N,n>1,那么an>bn.19.函数y=kx+b和函数y=ax+m的图象如图所示,求下列不等式(组)的解集(1)kx+b<ax+m的解集是x<1;(2)的解集是x<﹣2;(3)的解集是x>3;(4)的解集是﹣2<x<3.【分析】(1)观察函数图象,结合交点的坐标以及函数图象的上下关系即可得出结论;(2)观察函数图象,找出函数图象与x轴交点的坐标,结合图象在x轴上下的位置关系即可得出结论;(3)观察函数图象,找出函数图象与x轴交点的坐标,结合图象在x轴上下的位置关系即可得出结论;(4)观察函数图象,找出函数图象与x轴交点的坐标,结合图象在x轴上下的位置关系即可得出结论.【解答】解:(1)观察函数图象,发现:当x<1时,函数y=ax+m的图象在函数y=kx+b的图象的下方,∴kx+b<ax+m的解集是:x<1.故答案为:x<1.(2)观察函数图象,发现:当x<3时,函数y=kx+b的图象在x轴的下方;当x<﹣2时,函数y=ax+b的图象在x轴的上方.∴的解集为:x<﹣2.故答案为:x<﹣2.(3)观察函数图象,发现:当x>3时,函数y=kx+b的图象在x轴的上方;当x>﹣2时,函数y=ax+b的图象在x轴的下方.∴的解集为:x>3.故答案为:x>3.(4)观察函数图象,发现:当x<3时,函数y=kx+b的图象在x轴的下方;当x>﹣2时,函数y=ax+b的图象在x轴的下方.∴的解集为:﹣2<x<3.故答案为:﹣2<x<3.【点评】本题考查了一次函数与一元一次不等式,解题的关键是结合函数图象解决不等式.本题属于基础题,难度不大,解决该题型题目时,数形结合解决不等式(不等式组)是关键.20.如图,直线l1:y1=﹣x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(﹣2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)求两直线交点D的坐标;(2)求△ABD的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.【分析】(1)将A (0,6)代入y 1=﹣x +m ,即可求出m 的值,将B (﹣2,0)代入y 2=kx +1即可求出k 的值,得到两函数的解析式,组成方程组解求出D 的坐标;(2)由y 2=x +1可知,C 点坐标为(0,1),分别求出△ABC 和△ACD 的面积,相加即可. (3)由图可直接得出y 1>y 2时自变量x 的取值范围.【解答】(1)将A (0,6)代入y 1=﹣x +m 得,m =6;将B (﹣2,0)代入y 2=kx +1得,k =组成方程组得,解得,故D 点坐标为(4,3);(2)由y 2=x +1可知,C 点坐标为(0,1),S △ABD =S △ABC +S △ACD =×5×2+×5×4=15; (3)由图可知,在D 点左侧时,y 1>y 2,即x <4时,y 1>y 2.【点评】本题考查了两条直线相交或平行的问题,主要是理解一次函数图象上点的坐标特征. 21.画出函数y =﹣x +3的图象,根据图象回答下列问题:(1)求方程﹣x +3=0的解;(2)求不等式﹣x +3<0的解集;(3)当x 取何值时,y ≥0.【分析】利用两点法画出函数的图象.2019北师大版八年级数学下册第二章【一元一次不等式与一元一次不等式组】单元测试题附答案解析(1)直线y=﹣x+3与x轴交点的横坐标即为方程﹣x+3=0的解;(2)直线y=﹣x+3下方的部分对应的x的取值即为不等式﹣x+3<0的解集;(3)直线y=﹣x+3在x轴及其上方的部分对应的x的取值即为所求.【解答】解:如图:(1)观察图象可知,方程﹣x+3=0的解为x=2;(2)观察图象可知,不等式﹣x+3<0的解集为x>2;(3)当x≤2时,y≥0.【点评】本题考查的是一次函数的图象与一元一次方程、一元一次不等式的关系,正确画出函数的图象是解答此题的关键.21。

最新北师大版八年级数学下册第二章同步测试题及答案全套

最新北师大版八年级数学下册第二章同步测试题及答案全套

最新北师大版八年级数学下册第二章同步测试题及答案全套第二章 一元一次不等式与一元一次不等式组1 不等关系知能演练提升能力提升1.下面给出了6个式子:①3>0;②4x+3>0;③x=3;④x -1;⑤x+2≤3;⑥2x ≠0. 其中不等式共有( ) A .2个 B .3个 C .4个 D .5个2.根据下列数量关系列出相应的不等式,其中错误的是( ) A.a 与3的和大于1:a+3>1 B.a 与2的差不小于3:a -2≥3C.b 与1的和的3倍是一个非负数:3(b+1)>0D.b 的2倍与3的差是负数:2b -3<03.如图,对a ,b ,c 三种物体的质量判断正确的是( )A.a<cB.a<bC.a>cD.b<c4.在开山工程爆破时,已知导火索燃烧的速度为0.5 cm/s,人跑开的速度是4 m/s,为了使放炮的人在爆破时能安全跑到100 m 以外(不包括100 m)的安全区,导火索的长度x (cm)应满足的不等式是( ) A.4×x0.5≥100 B.4×x0.5≤100 C.4×x 0.5<100D.4×x0.5>1005.如图,左托盘物体x 的质量与右托盘两个砝码的质量之间的大小关系是:x 80.6.某饮料瓶上有这样的字样:保质期18个月.如果用x (月)表示保质期,那么该饮料的保质期可以用不等式表示为 .7.某班同学外出春游,要拍照合影留念,若一张彩色底片需0.57元,冲印一张需0.35元.每人预定一张,出钱不超过0.45元.设合影的同学有x 人,则可列不等式为 .8.在“庆祝世界反法西斯战争胜利70周年”知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:答题情况 答对 答错或不答 题 数 x每题分值 10 -5得 分 10x(2)小明同学的竞赛成绩超过100分,写出满足关系的不等式.创新应用9.如图,用锤子以相同的力将铁钉钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的13.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm .若铁钉总长度是 6 cm,试求a 的取值范围.答案: 能力提升1.C2.C3.C4.D5.>6.x ≤187.0.57+0.35x ≤0.45x8.解 (1)25-x -5(25-x )(2)根据题意,得10x -5(25-x )>100. 创新应用9.解 若敲击2次后铁钉恰好全部进入木块,则有a+13a=6,解得a=92,而实际这个铁钉被敲击3次后全部进入木块,所以a<92.若敲击 3次后恰好全部进入木块,则有 a+13a+19a=6,解得a=5413.综上可知,a 的取值范围是5413≤a<92.2 不等式的基本性质知能演练提升能力提升1.已知a ,b ,c 均为实数,若a>b ,c ≠0,则下列结论不一定正确的是( )A.a+c>b+cB.c -a<c -bC.a c2>b c2D.a 2>ab>b 22.已知实数a ,b 在数轴上的位置如图,则a -ba+b 0.(填“>”“<”或“=”)3.下列四个判断:①若ac 2>bc 2,则a>b ;②若a>b ,则a|c|>b|c|;③若a>b ,则b a<1;④若a>0,则b -a<b.其中正确的是 .(填序号)4.已知-m+5>-n+5,试比较10m+8与10n+8的大小.5.如图,有四个小朋友在公园玩跷跷板,他们的体重分别为P ,Q ,R ,S.请你根据图中的情境确定他们的体重大小关系.(用“>”连接起来)6.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,请问在哪家超市购买这种商品更合算?创新应用7.阅读下列材料:试判断a 2-3a+7与-3a+2的大小.分析:要判断两个数的大小,我们往往使用作差法,即若a -b>0,则a>b ;若a -b<0,则a<b ;若a -b=0,则a=b. 解:∵(a 2-3a+7)-(-3a+2)=a 2-3a+7+3a -2=a 2+5,且a 2≥0, ∴a 2+5>0.∴a 2-3a+7>-3a+2.阅读后,应用这种方法比较a 2-b 2+22与a 2-2b 2+13的大小.答案:能力提升 1.D2.< 由数轴知0<a<1,b<-1,故a -b>0,a+b<0.由不等式的基本性质3,a -b>0两边除以a+b ,得a -b a+b<0.3.①④4.解 根据不等式的基本性质1,不等式-m+5>-n+5的两边都减去5,得-m>-n ,根据不等式的基本性质3,不等式的两边都乘-1,得m<n ;根据不等式的基本性质2,不等式的两边都乘10,得 10m<10n ,根据不等式的基本性质1,不等式的两边都加上8,得10m+8<10n+8.5.解 由题中第一个图知S>P ;由题中第二个图知P>R ,故S>P>R.又由题中第三个图知P+R>S+Q ,而由S>P ,得S+Q>P+Q ,所以P+R>P+Q ,故R>Q.因此,S>P>R>Q.6.解 设这种商品的价格为a (a>0)元,在甲超市购买需付款a (1-10%)·(1-10%)元,即0.81a 元.在乙超市购买需付款a (1-20%)元,即0.8a 元.∵0.81>0.8,且a>0,∴0.81a>0.8a ,∴在乙超市购买更合算. 创新应用 7.解a 2-b 2+22−a 2-2b 2+13=3a 2-3b 2+66−2a 2-4b 2+26=3a 2-3b 2+6-2a 2+4b 2-26=a 2+b 2+46,由a 2≥0,b 2≥0,得a 2+b 2≥0, 故a 2+b 2+4≥4.故a 2+b 2+46≥46.∵46>0,∴a 2-b 2+22>a 2-2b 2+13.3 不等式的解集知能演练提升能力提升1.下列数值不是不等式5x ≥2x+9的解的是( )A.5B.4C.3D.22.如果式子√2x +6 有意义,那么x 的取值范围在数轴上表示出来正确的是( )3.若关于x 的不等式x -b>0恰有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b ≤-2C.-3≤b≤-2D.-3≤b<-24.已知关于x的不等式的解集如图,则这个不等式的非负整数解是.5.如果a与12的差小于a的9倍与8的和,那么请写出一个符合题意的a的值.6.已知x=3是方程x=x-a-1的解,求关于x的不等式ax+5<0的解集.27.是否存在整数m,使关于x的不等式mx-m>3x+2的解集为x<-4?若存在,求出整数m的值;若不存在,请说明理由.创新应用8.现有A,B两种型号的钢管,每根A型钢管的长度比每根B型钢管的长度的2倍少5 cm.现取这两种型号的钢管分别做长方形的钢框的长与宽,焊成周长大于2.9 m的长方形钢框.(1)B型钢管至少有多长才合适?列出不等式.(2)如果每根B型钢管的长度有以下四种选择:45 cm,55 cm,48 cm,50 cm,那么哪些合适?哪些不合适?答案:能力提升1.D2.C3.D4.0,1,2题中数轴表示的解集是x<3,满足x<3的非负整数有0,1,2,故这个不等式的非负整数解是0,1,2.5.答案不唯一,如0,1,2.只要满足a>-5即可.26.分析本题是方程与不等式的综合运用,通过解方程求出a的值,把a的值代入不等式,然后求不等式的解集.解由x=x-a-1,得2x=x-a-2,2∵x=3是原方程的解,∴a=-x-2=-3-2=-5.∴不等式ax+5<0可化为-5x+5<0,利用不等式的性质,得x>1.7.解∵mx-m>3x+2,∴(m-3)x>m+2.=-4,要使x<-4,必须m-3<0,且m+2m-3解得m<3,m=2,∴存在整数m=2,使关于x 的不等式mx -m>3x+2的解集为x<-4.创新应用8.解 (1)设B 型钢管的长为x cm,则A 型钢管的长为(2x -5) cm .根据题意,得2(x+2x -5)>290.(2)把45 cm,55 cm,48 cm,50 cm 分别代入(1)中的不等式,得x=55是该不等式的解,所以 55 cm 合适,45 cm,48 cm ,50 cm 不合适.4 一元一次不等式第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式2(x+1)<3x 的解集在数轴上表示为 ( )2.不等式x -72+1<3x -22的负整数解有( )A.1个B.2个C.3个D.4个3.若不等式ax>b 的解集是x<ba,则a 的取值范围是( )A.a ≤0B.a<0C.a ≥0D.a>04.定义新运算:对于任意实数a ,b 都有:a b=a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2 5=2×(2-5)+1=2×(-3)+1=-5.则不等式3 x<13的解集为 .5.若(m -2)x 2m+1-1>5是关于x 的一元一次不等式,则该不等式的解集是 .6.解不等式x -1≤1+x3,并把解集在数轴上表示出来.7.已知不等式x+8>4x+m (m 是常数)的解集是x<3,求m 的值.8.当1≤x ≤2时,ax+2>0,试求a 的取值范围.创新应用9.已知关于x ,y 的方程组{x -y =3,2x +y =6a的解满足不等式x+y<3,求实数a 的取值范围.答案: 能力提升1.D2.A3.B4.x>-15.x<-3 根据一元一次不等式的定义,可知2m+1=1,且m -2≠0,即m=0.把m=0 代入不等式,得-2x -1>5.解这个不等式,得x<-3.6.解 去分母,得3(x -1)≤1+x.去括号,得3x -3≤1+x.移项、合并同类项,得2x ≤4. 两边同除以2,得x ≤2.该不等式的解集用数轴表示如图所示:7.解 移项,得4x -x<8-m.合并同类项,得 3x<8-m.两边同除以3,得x<8-m 3.∵不等式的解集为x<3,∴8-m 3=3,解得m=-1.8.解 由题可知,当1≤x ≤2时,ax+2>0恒成立.①当a>0时,得x>-2a ,故-2a <1,故a>-2,又∵a>0,∴a>0;②当a=0时,原不等式为2>0,故当1≤x ≤2时,不等式恒成立;③当a<0时,得x<-2a ,故-2a >2,故a>-1,又∵a<0,∴-1<a<0.综上所述,a 的取值范围是a>-1. 创新应用9.解 把方程组中的两个方程相加,得3x=3+6a ,得x=1+2a,代入x-y=3,得y=x-3=2a-2.故x+y=4a-1,于是有4a-1<3,解得a<1.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,最多可打()A.6折B.7折C.8折D.9折2.老王家上个月付电话费31元以上,其中月租费21元.已知市内通话如果每次不超过3分钟,则话费为0.18元.如果老王家上个月打的全部是市内电话,且每次都不超过3分钟,那么老王家上个月通话次数最少为()A.55次B.56次C.57次D.58次3.小宏准备用50元买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买甲饮料.4.一只纸箱的质量为1 kg,放入一些苹果(每个苹果的质量约为0.25 kg)后,箱子和苹果的总质量不超过10 kg.这只箱子内最多能装个苹果.5.为绿化校园,某校计划购进A,B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B 种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.6.某超市有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1 600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1 640元,且总利润(利润=售价-进价)不少于600元,请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.7.某城市平均每天产生垃圾700 t,由甲、乙两个处理厂处理.已知甲厂每小时可处理垃圾55 t,需费用550元;乙厂每小时可处理垃圾45 t,需费用495元.问:(1)甲、乙两厂同时处理该城市的垃圾,每天需多长时间完成?(2)如果规定该城市每天用于处理垃圾的费用不得超过7 370元,那么甲厂每天处理垃圾至少需要多长时间?创新应用8.为了提倡低碳经济,某公司为了更好地节约能源,决定购买节省能源的10台新机器.现有甲、乙两种型号的设备供选择,其中每台的价格、工作量如下表:(1)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(2)在(1)的条件下,若每月要求产量不低于2 040吨,为了节约资金,请你设计一种最省钱的购买方案.答案:能力提升1.B2.B3.3瓶 设小宏买x 瓶甲饮料.列不等式为7x+4(10-x )≤50,解得x ≤313,即最多能买3瓶甲饮料.4.36 设这只纸箱内装x 个苹果.根据题意得0.25x+1≤10,解得x ≤36, 所以x 的最大值是36.5.解 (1)y=-20x+1 890 y=90(21-x )+70x=-20x+1 890.(2)由题意,得x<21-x ,解得x<10.5.又∵x ≥1,∴1≤x<10.5,且x 为整数.由(1)中一次函数知,y 随x 的增大而减小,故当x=10时,y 取最小值-20×10+1 890=1 690,因此,费用最省的方案是购买B 种树苗10棵,A 种树苗11棵,所需费用为1 690元.6.解 (1)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得10x+30(80-x )=1 600.解得x=40,80-x=40.因此,购进甲、乙两种商品各40件.(2)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得{10x +30(80-x )≤1 640,(15-10)x +(40-30)(80-x )≥600.解得38≤x ≤40.∵x 为整数,∴x=38,39,40,相应的y=42,41,40.从而利润分别为5×38+10×42=610,5×39+10×41=605,5×40+10×40=600. 因此,使该超市利润最大的方案是购进甲商品38件,乙商品42件.7.解 (1)设甲、乙两厂同时处理垃圾,每天需x h .依题意,得(55+45)x=700.解这个方程,得x=7.所以,甲、乙两厂同时处理垃圾,每天需7 h 完成. (2)设甲厂每天处理垃圾需要y h . 依题意,得55y×55055+(700-55y )×49545≤7 370,解得y ≥6.所以,甲厂每天处理垃圾至少需要6 h . 创新应用8.解 (1)设购买节省能源的甲型新设备x 台,乙型新设备(10-x )台.根据题意得12x+10(10-x )≤110, 解得x ≤5,∵x 取非负整数, ∴x=0,1,2,3,4,5, ∴有6种购买方案.(2)由题意得240x+180(10-x )≥2 040, 解得x ≥4, 则x 为4或5.当x=4时,购买资金为12×4+10×6=108(万元), 当x=5时,购买资金为12×5+10×5=110(万元),则最省钱的购买方案为选购甲型设备4台,乙型设备6台.5 一元一次不等式与一次函数第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.如图,已知直线y=kx+b 交坐标轴于A (-3,0),B (0,5)两点,则不等式-kx -b<0 的解集为( ) A.x>-3 B.x<-3 C.x>3 D.x<3 2.如图,函数y 1=|x|和y 2=13x+43的图象相交于(-1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是( ) A.x<-1 B.-1<x<2 C.x>2 D.x<-1或x>23.如图,已知直线y 1=x+b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x+b>kx -1的解集在数轴上表示正确的是( )4.在一次800 m 的长跑比赛中,甲、乙两人所跑的路程s (m)与各自所用时间t (s)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后180 s 时,两人相遇D.在起跑后50 s 时,乙在甲的前面5.如图,已知一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有.(把你认为说法正确的序号都填上)6.若直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式2x<kx+b的解集为.7.当x为何值时,一次函数y=-2x+3的值小于一次函数y=3x-5的值?(1)一变:当x为何值时,一次函数y=-2x+3的值等于一次函数y=3x-5的值?(2)二变:当x为何值时,一次函数y=-2x+3的图象在一次函数y=3x-5的图象的上方?(3)三变:已知一次函数y1=-2x+a,y2=3x-5a,当x=3时,y1>y2,求a的取值范围.8.x+3的图象,观察图象回答下列问题:如图,直线l是函数y=12(1)当x取何值时,1x+3>0?2x+3<5?(2)当x取何值时,12x+3,则点P的坐标可能是(-2,1)吗?(3)若点P(x,y)满足x<5,且y>129.我边防局接到情报,在离海岸5海里处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶.如图,l A,l B分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪个速度更快?(2)B能否追上A?创新应用10.甲有存款600元,乙有存款2 000元,从本月开始,他们进行零存整取储蓄,甲每月存款500元,乙每月存款200元.(1)列出甲、乙的存款额y1,y2(元)与存款月数x(月)之间的函数关系式,并画出函数图象;(2)请问到第几个月,甲的存款额超过乙的存款额?答案:能力提升1.A2.D3.A4.D5.①②③6.x<-1易知y=-x-3,所以2x<-x-3,解得x<-1.7.解由题意,可知-2x+3<3x-5,.即-5x<-8,得x>85(1)由题意,可知-2x+3=3x-5,.即-5x=-8,得x=85(2)由题意,可知-2x+3>3x-5,.即-5x>-8,得x<85(3)当x=3时,y1=-6+a,y2=9-5a,∵y1>y2,∴-6+a>9-5a,.即6a>15,得a>528.解由题图可以看出函数与x轴的交点为(-6,0).x+3>0.(1)当x>-6时,12(2)由题图可以看出,当y=5时,x=4,x+3<5.所以当x<4时,12(3)由题意,得点P 满足横坐标x<5的同时,对应的点P 的位置要在直线的上方,而点(-2,1)在直线的下方, 故点P 的坐标不可能是(-2,1).9.分析 根据题图提供的信息,分别求出l A ,l B 的关系式,根据k 值的大小来判断谁的速度快,B 能否追上A.实际上,根据图象就可以直接作出判断.解 (1)∵直线l A 过(0,5),(10,7)两点,设直线l A 的函数表达式为s=k 1t+b ,则{5=b ,7=10k 1+b ,∴{k 1=15,b =5.∴s=15t+5. ∵直线l B 过(0,0),(10,5)两点,设直线l B 的函数表达式为s=k 2t ,则5=10k 2,∴k 2=12.∴s=12t.∵k 1<k 2,∴B 的速度快. (2)∵k 1<k 2,∴B 能追上A.创新应用10.解 (1)y 1=600+500x ;y 2=2 000+200x.函数图象如图.(2)令600+500x>2 000+200x ,解得x>423, 所以到第5个月甲的存款额超过乙的存款额.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某市打市话的收费标准是:每次3 min 以内(含3 min)收费0.2元,以后每 min 收费0.1元(不足1 min 按1 min 计).某天小芳给同学打了一个6 min 的市话,所用电话费为0.5元;小刚现准备给同学打市话6 min,他经过思考以后,决定先打3 min,挂断后再打3 min,这样只需电话费0.4元.若你想给某同学打市话,准备通话10 min,则你所需要的电话费至少为( ) A.0.6元 B.0.7元 C.0.8元 D.0.9元2.声音在空气中的传播速度y (m/s)(简称音速)与气温x (℃)满足关系式:y=35x+331.当音速超过340 m/s 时,气温 .3.某医药公司要把药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每千米再加收2元.当运输路程时,选择邮车运输较好.4.某单位需刻录一批光盘,若在电脑公司刻录每张需8元(包括空白光盘费);若单位自制,除租用刻录机需120元外,每张还需成本4元(包括空白光盘费).问刻录这批光盘是到电脑公司刻录费用省,还是自制费用省?请说明理由.5.某商场计划投入一笔资金采购一批商品,经市场调研发现,如果本月初出售,那么可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售,那么可获利25%,但要支付仓储费8 000元.请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.6.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,农机租赁公司这50台联合收割机一天获得的租金为y(元),求y与x 之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.7.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍每副定价60元,乒乓球每盒定价10元.世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商品在甲商店购买需用y1元,在乙商店购买需用y2元.(1)请分别写出y1,y2与x之间的函数关系式(不必注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.创新应用8.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元.已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,则开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.答案:能力提升1.B2.超过15 ℃3.小于210千米4.解设需刻录x张光盘,单位自制的总费用为y1元,电脑公司刻录的总费用为y2元.由题意,得y1=4x+120,y2=8x.(1)当y1>y2,即4x+120>8x时,解得x<30;(2)当y1=y2,即4x+120=8x时,解得x=30;(3)当y1<y2,即4x+120<8x时,解得x>30.所以,当刻录光盘少于30张时,到电脑公司刻录费用省;当刻录光盘等于30张时,两个地方都行;当刻录光盘多于30张时,单位自制费用省.5.解设商场投入资金x元,如果本月初出售,到下月初可获利y1元,则y1=10%x+(1+10%)x·10%=0.1x+0.11x=0.21x;如果下月初出售,可获利y2元,则y2=25%x-8 000=0.25x-8 000.当y1=y2,即0.21x=0.25x-8 000时,x=200 000;当y1>y2,即0.21x>0.25x-8 000时,x<200 000;当y1<y2,即0.21x<0.25x-8 000时,x>200 000.所以,若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若商场投入资金多于20万元,下月初出售获利较多.6.解(1)派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30-x)台,派往B地区的乙型收割机为(30-x)台,派往B地区的甲型收割机为(x-10)台.则y=1 600x+1 800(30-x)+1 200(30-x)+1 600(x-10)=200x+74 000(10≤x≤30,x是正整数).(2)由题意,得200x+74 000≥79 600,解得x≥28.由于10≤x≤30,所以,x取28,29,30三个值.因此有三种分配方案.(3)由于一次函数y=200x+74 000的值是随着x的增大而增大的,故当x=30时,y取最大值.建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,可使公司获得的租金最高.7.解(1)y1=10(x-4)+120=10x+80,y2=(10x+120)×90%=9x+108,x≥4,且x是整数.(2)若y1>y2,即10x+80>9x+108,解得x>28;若y1=y2,即10x+80=9x+108,解得x=28;若y1<y2,即10x+80<9x+108,解得x<28.故当x>28时,在乙商店购买所需的商品比较便宜;当4≤x<28时,在甲商店购买所需的商品比较便宜;当x=28时,在两家商店购买所需商品价钱一样.(3)若所需商品全部在一家商店购买,由(2)知,购买2副球拍和20盒乒乓球时,在甲商店购买比乙商店购买便宜,需10×20+80=280(元).若所需商品在两家商店购买,可以到甲商店购买2副乒乓球拍,需要2×60=120(元),同时获得4盒乒乓球;到乙商店购买16盒乒乓球,需16×10×90%=144(元),共需120+144=264(元).∵264元<280元,∴最佳的购买方案是:到甲商店购买2副乒乓球拍,获赠4盒乒乓球,到乙商店购买16盒乒乓球. 创新应用8.解 (1)当1≤x ≤8时,每平方米的售价应为y=4 000-(8-x )×30=30x+3 760(元/m 2),当9≤x ≤23时,每平方米的售价应为y=4 000+(x -8)×50=50x+3 600(元/m 2).故y={30x +3 760(1≤x ≤8),50x +3 600(9≤x ≤23).(2)第十六层楼房的每平方米的价格为50×16+3 600=4 400(元/m 2), 按照方案一所交房款为W 1=4 400×120×(1-8%)-a=485 760-a (元), 按照方案二所交房款为W 2=4 400×120×(1-10%)=475 200(元), 当W 1>W 2时,即485 760-a>475 200,解得0<a<10 560, 当W 1<W 2时,即485 760-a<475 200,解得a>10 560,故当0<a<10 560时,方案二合算;当a>10 560时,方案一合算;当a=10 560时,两种方案一样合算.6 一元一次不等式组第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.若一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( )A.-2<x<1B.-2<x ≤1C.-2≤x<1D.-2≤x ≤12.如图,天平右盘中的每个砝码的质量都是1 g,则物体A 的质量m (g)的取值范围在数轴上可表示为 ( )3.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为( )A.1B.2C.3D.44.已知不等式组{x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A.7<a ≤8B.6<a ≤7C.7≤a<8D.7≤a ≤85.如果不等式组{3-2x ≥0,x ≥m ①②有解,那么m 的取值范围是 .6.不等式组{3x +4≥0,12x -24≤1的所有整数解的积为 .7.将一箱苹果分给若干名小朋友,若每名小朋友分5个苹果,则还剩12个苹果,若每名小朋友分8个苹果,则有一名小朋友分到了苹果但不足5个,则有小朋友 名,苹果 个.8.已知三个一元一次不等式:2x>6,2x ≥x+1,x -4<0,请从中选择你喜欢的两个不等式,组成一个不等式组,求出这个不等式组的解集,并把解集在数轴上表示出来.9.解不等式组{4(x +1)≤7x +10,x -5<x -83,并写出它的所有非负整数解.创新应用10.一个长方形足球场的长为x m,宽为70 m.如果它的周长大于350 m,面积小于7 560 m 2,求x 的取值范围,并判断这个足球场是否可以用作国际足球比赛.(注:用于国际足球比赛的足球场地的长在100 m 到110 m 之间,宽在64 m 到75 m 之间)答案: 能力提升1.C2.A3.C4.A5.m ≤32 首先将不等式组化简,由不等式①解得x ≤32,∵不等式组有解,∴m 的取值范围为m ≤32.6.07.6 428.解 答案不唯一,如(1)2x>6与x -4<0结合,组成不等式组{2x >6,x -4<0.①②解不等式①,得x>3;解不等式②,得x<4. 故不等式组的解集为3<x<4.不等式组的解集在数轴上表示如图.(2)2x ≥x+1与x -4<0结合,组成不等式组{2x ≥x +1,x -4<0.①②解不等式①,得x ≥1;解不等式②,得x<4.故不等式组的解集为1≤x<4.不等式组的解集在数轴上表示如图.9.解 {4(x +1)≤7x +10,x -5<x -83.①②由①得4x+4≤7x+10,-3x ≤6,x ≥-2. 由②得3x -15<x -8,2x<7,x<72.把不等式①②的解集在数轴上表示如图.所以不等式组的解集为-2≤x<72,其非负整数解为0,1,2,3. 创新应用10.解 由题意,得{2(x +70)>350,70x <7 560,解得105<x<108.所以可以用作国际足球比赛.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式组{2x +12<12x -4,3x -1≤2x的解集在数轴上表示正确的是( )2.关于x 的不等式组{3x -1>4(x -1),x <m的解集为x<3,则m 的取值范围为( )A.m=3B.m>3C.m<3D.m ≥33.生物兴趣小组要在温箱里培养A,B 两种菌苗.已知A 种菌苗的生长温度x (℃)的范围是35≤x ≤38,B 种菌苗的生长温度y (℃)的范围是34≤y ≤36.则温箱里的温度T (℃)的范围是( ) A.34≤T ≤38 B.35≤T ≤38C.35≤T ≤36D.36≤T ≤384.若不等式组{x <m +1,x >2m -1无解,则m 的取值范围是 . 5.若ab>0,根据学过的知识可将其转化为{a >0,b >0或{a <0,b <0.若x -2与x -3的乘积为正数,则x 的取值范围是 .6.关于x 的不等式组{x+152>x -3,2x+23<x +a 只有4个整数解,求a 的取值范围.7.一种药品的说明书上写着:“每日用量60~120 mg,分3~4次服用.”一次服用这种药品的剂量在什么范围?创新应用8.南海地质勘探队在一次勘探中发现了很有价值的A,B 两种矿石,A 矿石大约565 t,B 矿石大约500 t .要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1 000元,乙货船每艘运费1 200元.(1)设运送这些矿石的总运费为y 元,若使用甲货船x 艘,请写出y 和x 之间的函数关系式.(2)如果甲货船最多可装A 矿石20 t 和B 矿石15 t,乙货船最多可装A 矿石15 t 和B 矿石25 t,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.答案:能力提升1.C2.D3.C4.m ≥2 不等式组{x <m +1,x >2m -1无解, 因此,2m -1≥m+1,解这个不等式得m ≥2.5.x>3或x<2 由(x -2)(x -3)>0得{x -2>0,x -3>0或{x -2<0,x -3<0.解第一个不等式组得x>3,解第二个不等式组得x<2.故x 的取值范围是x>3或x<2.6.解 解不等式组{x+152>x -3,2x+23<x +a ,得{x <21,x >2-3a . 由不等式组有4个整数解,可知这4个解应是20,19,18,17,则 16≤2-3a<17,解得a 的取值范围为-5<a ≤-143.7.解 设一次服用的剂量为x mg .若分3次服用,则{3x ≥60,3x ≤120,解得20≤x ≤40; 若分4次服用,则{4x ≥60,4x ≤120,解得15≤x ≤30. 创新应用8.解 (1)y=1 000x+1 200(30-x ).(2){20x +15(30-x )≥565,15x +25(30-x )≥500,解得23≤x ≤25.因为x 为整数,所以x 可取23,24,25.因此共有3种方案. 方案一:甲货船23艘、乙货船7艘,运费y=1 000×23+1 200×7=31 400元; 方案二:甲货船24艘、乙货船6艘,运费y=1 000×24+1 200×6=31 200元; 方案三:甲货船25艘、乙货船5艘,运费y=1 000×25+1 200×5=31 000元. 所以,方案三运费最低,最低运费为31 000元.。

北师大版八年级数学下册第二章综合素质评价附答案 (1)

北师大版八年级数学下册第二章综合素质评价附答案 (1)

北师大版八年级数学下册第二章综合素质评价一、选择题(每题3分,共30分)1.2022年3月5日,李克强总理在政府工作报告中提出,今年发展主要预期目标之一是粮食产量保持在1.3万亿斤以上.若用x (万亿斤)表示我国今年粮食产量,则x 满足的关系为( )A .x ≥1.3B .x >1.3C .x ≤1.3D .x <1.32.下列式子:①7>4;②3x ≥2π+1;③3x +y >1;④x 2+3>2x ;⑤1x >4.其中是一元一次不等式的有( )A .4个B .3个C .2个D .1个3.【教材P 42习题T 1变式】【2022·宿迁】如果x <y ,那么下列不等式正确的是( )A .2x <2yB .-2x <-2yC .x -1>y -1D .x +1>y +14.不等式1-x ≥2的解集在数轴上的表示正确的是( )5.【教材P63复习题T14改编】关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92 D .m >06.方程组⎩⎨⎧x -4y =3,2x +y =6a 的解满足不等式x -y <5,则a 的取值范围是( )A .a <1B .a >1C .a <2D .a >27.【教材P 62复习题T 10改编】若不等式组⎩⎨⎧-x +4m <x +10,x +1>m的解集是x >4,则( )A .m ≤92 B .m ≤5 C .m =92 D .m =58.【2021·娄底】如图,直线y =x +b 和y =kx +4与x 轴分别相交于点A (-4,0),点B (2,0),则⎩⎨⎧x +b >0,kx +4>0的解集为( )A .-4<x <2B .x <-4C .x >2D .x <-4或x >29.【2022·上城区一模】斑马线前“车让人”,反映了城市的文明程度,但行人一般都会在红灯亮起前通过马路,某人行横道全长24 m ,小明以1.2 m /s 的速度过该人行横道,行至13处时,9 s 倒计时灯亮了,小明要在红灯亮起前通过马路,他的速度至少要提高到原来的( )A .1.1倍B .1.4倍C .1.5倍D .1.6倍10.【2022·贵阳】在同一平面直角坐标系中,一次函数y =ax +b 与y =mx +n (a <m <0)的图象如图所示,小墨根据图象得到如下结论:①在一次函数y =mx +n 的图象中,y 的值随着x 值的增大而增大; ②方程组⎩⎨⎧y -ax =b ,y -mx =n 的解为⎩⎨⎧x =-3,y =2;③方程mx +n =0的解为x =2;④当x =0时,ax +b =-1. 其中结论正确的个数是( ) A .1 B .2 C .3 D .4 二、填空题(每题3分,共24分)11.如图,天平向左倾斜,则据此列出的关于x 的不等关系为______________.12.【教材P 61复习题T 1变式】若关于x 的不等式(a -3)x >1的解集为x <1a -3,则a 的取值范围是__________.13.如图是一次函数y 1=ax +b ,y 2=kx +c 的图象,观察图象,写出同时满足y 1>0,y 2>0时x 的取值范围:__________.14.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围是__________.15.不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,5-12x >2x 的整数解是__________.16.【2022春·山西期中】为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打________折.17.【新定义题】定义一种新运算:a ※b =2a +b .已知关于x 的不等式x ※k ≥1的解集在数轴上的表示如图所示,则k =________.18.按图中程序计算,规定:从“输入一个值x ”到“结果是否≥14”为一次程序操作.若程序操作进行了两次才停止,则x 的取值范围为__________. 三、解答题(19~21题每题10分,其余每题12分,共66分) 19.解下列不等式或不等式组,并把它们的解集在数轴上表示出来: (1)15-9y <10-4y ; (2)⎩⎪⎨⎪⎧x -x -22≤1+4x3,①1+3x >2(2x -1).②20.已知关于x ,y 的二元一次方程组⎩⎨⎧2x -3y =5,x -2y =k的解满足x >y ,求k 的取值范围.21.【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h ,乙骑行的路程s (km)与骑行的时间t (h)之间的关系如图所示.(1)直接写出当0≤t ≤0.2和t >0.2时,s 与t 之间的函数表达式. (2)何时乙骑行在甲的前面?22.(1)解不等式5x +2≥3(x -1),并把它的解集在数轴上表示出来;(2)写出一个实数k ,使得不等式x <k 和(1)中的不等式组成的不等式组恰有3个整数解.23.【新考法题】我们可以利用学习“一次函数”时的相关经验和方法来研究函数y =|x|的图象和性质.(1)请完成下列步骤,并画出函数y=|x|的图象.①列表:x…-3 -2 -1 0 1 2 3 …y… 3 1 1 2 3 …②描点;③连线.(2)观察图象,当x________0时(填“>”“<”或“=”),y随x的增大而增大.(3)根据图象,不等式|x|<12x+32的解集为__________.24.【2022·三门峡一模】国家为了鼓励新能源汽车的发展,实行新能源积分制度,积分越高获得的国家补贴越多.某品牌的“4S”店主销纯电动汽车A(续航600千米)和插电混动汽车B,两种主销车型的有关信息如下表:车型纯电动汽车A(续航600千米) 插电混动汽车B 进价(万元/辆) 25 12售价(万元/辆) 28 16新能源积分(分/辆) 0.012R+0.8(其中R表示续航里程)2购进数量(辆) 10 25(1)3月份该“4S”店共花费550万元购进A,B两种车型,且全部售出共获得新能源积分130分,设购进A,B型号的车分别为x,y辆,则x,y分别为多少?(2)因汽车供不应求,该“4S”店4月份决定购进A,B两种车型共50辆,应环保的要求,所进车辆全部售出后获得新能源积分不得少于300分,已知每个新能源积分可获得3 000元的补贴,那么4月份如何进货才能使4S店获利最大?(获利包括售车利润和积分补贴)答案一、1.B 2.D 3.A 4.A 5.A 6.C 7.C 8.A 9.C 10.B二、11.x +2<6 12.a <3 13.-2<x <1 14.-1<m <3 15.-1,0,1 16.八四 17.318.2≤x <5 提示:由题意得⎩⎨⎧3x -1<14,3(3x -1)-1≥14,解得2≤x <5.三、19.解:(1)移项,得-9y +4y <10-15.合并同类项,得-5y <-5. 系数化为1,得y >1.不等式的解集在数轴上表示如图所示.(2)解不等式①,得x ≥45; 解不等式②,得x <3.所以原不等式组的解集为45≤x <3.不等式组的解集在数轴上表示如图所示.20.解:⎩⎨⎧2x -3y =5,①x -2y =k .②①-②,得x -y =5-k . ∵x >y ,∴x -y >0. ∴5-k >0,解得k <5.21.解:(1)s 与t 之间的函数表达式为s =⎩⎨⎧15t (0≤t ≤0.2),20t -1(t >0.2).(2)设a h 后乙骑行在甲的前面. 根据题意,得20a -1>18a , 解得a >0.5.答:0.5 h 后乙骑行在甲的前面. 22.解:(1)去括号,得5x +2≥3x -3.移项,得5x -3x ≥-3-2. 合并同类项,得2x ≥-5. 系数化为1,得x ≥-2.5. 用数轴表示解集如图所示.(2)∵实数k 使得不等式x <k 和(1)中的不等式组成的不等式组恰有3个整数解, ∴不等式组⎩⎨⎧x ≥-2.5,x <k 的解集为-2.5≤x <k .∵该不等式组恰有3个整数解,∴0<k ≤1. ∴k 可以为1.(答案不唯一) 23.解:(1)①2;0②③画函数图象如图所示.(2)>(3)-1<x <3 提示:如图,在同一平面直角坐标系中画出直线y =12x +32与y =|x |的图象,其交点的横坐标分别为-1,3.由图象可得,不等式|x |<12x +32的解集为-1<x <3. 24.解:(1)依题意得⎩⎨⎧25x +12y =550,(0.012×600+0.8)x +2y =130,解得⎩⎨⎧x =10,y =25.答:x 的值为10,y 的值为25.(2)设4月购进A 型车m 辆,则购进B 型车(50-m )辆, 依题意得⎩⎨⎧(0.012×600+0.8)m +2(50-m )≥300,50-m >0,解得1003≤m <50.设所进车辆全部售出后获得的总利润为w 万元,则w =(28-25)m +(16-12)(50-m )+0.3×[(0.012×600+0.8)m +2(50-m )]=0.8m +230,∵0.8>0,∴w 随m 的增大而增大,∴当m =49,即购进A 型车49辆,B 型车1辆时获利最大.。

八年级数学北师大版下册 第二章 一元一次不等式与一元一次不等式组 同步单元训练卷(含答案)

八年级数学北师大版下册  第二章 一元一次不等式与一元一次不等式组  同步单元训练卷(含答案)

北师大版八年级数学下册第二章 一元一次不等式与一元一次不等式组同步单元训练卷一、选择题(共10小题,3*10=30)1.若2a +6的值是正数,则a 的取值范围是( ) A .a >0 B .a >3 C .a >-3 D .a <-32.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m≥2 B .m >2 C .m <2 D .m≤23.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A.⎩⎪⎨⎪⎧x >-1,x≤2B.⎩⎪⎨⎪⎧x≥-1,x <2 C.⎩⎪⎨⎪⎧x≥-1,x≤2 D.⎩⎪⎨⎪⎧x <-1,x≥2 4.在数轴上到原点的距离大于2的点对应的x 满足( ) A .x>2 B .x<2C .x>2或x<-2D .-2<x<25.若函数y =kx +b 的图象如图所示,则关于x 的不等式kx +2b <0的解集为( )A .x <3B .x >3C .x <6D .x >66. 不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1②中,不等式①和②的解集在数轴上表示正确的是( )7. 三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .348.关于x 的不等式2x +a ≤1只有2个正整数解,则a 的取值范围为( ) A.-5<a <-3 B.-5≤a <-3 C.-5<a ≤-3 D.-5≤a ≤-39.若不等式2x<4的解都能使关于x 的不等式(a -1)x<a +5成立,则a 的取值范围是( ) A .1<a≤7 B .a≤710.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( ) A .买甲站的 B .买乙站的 C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二.填空题(共8小题,3*8=24) 11. 不等式 2x -1>3的解集是________.12. 已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是__________. 13. 不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,5-12x >2x 的整数解是________.14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________.15.若|5-10x|=10x -5, 则x 的取值范围是________.16.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x(元),当x___________时,办理金卡购物省钱. 17.某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.18. 已知实数x ,y 满足2x -3y =4,并且x≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三.解答题(7小题,共66分)19.(8分) 解不等式,并把它们的解集在数轴上表示出来:15-9y <10-4y ;20.(8分) 已知不等式3x -a≤0的正整数解是1,2,3.求a 的取值范围.21.(8分) 根据题意列出不等式:(1)某市化工厂现有甲原料290千克,计划用这种原料与另一种足够多的原料配合生产A,B两种产品共50件.已知生产一件A型产品需甲种原料15千克,生产一件B型产品需甲种原料2.5千克,若该化工厂现有的原料能保证生产,试写出满足生产A型产品x(件)的关系式;(2)某厂生产一种机械零件,固定成本为2万元,每件零件成本为3元,零售价为5元,应纳税款为总销售额的10%.若要使该厂盈利,则该零件至少要生产销售x个,试写出x应满足的不等式.22.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值;(2)利用图象求出:当x取何值时,y1≥y2?(3)利用图象求出:当x取何值时,y1>0且y2<0?23.(10分) 某校九年级有三个班,其中九(一)班和九(二)班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九(一)班的满分率为70%,九(二)班的满分率为80%.(1)求九(一)班和九(二)班各有多少名学生;(2)该校九(三)班有45名学生,若九年级体育成绩的总满分率超过75%,求九(三)班至少有多少名学生体育成绩是满分.24.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值.(2)利用图象求出:当x取何值时,y1≥y2.(3)利用图象求出:当x取何值时,y1>0且y2<0.25.(12分) 某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.(1)当n=500时.①根据信息填表(用含x的代数式表示):②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?参考答案1-5CCACD 6-10BBCAB11. x>2 12.53<x≤6 13.-1,0,1 14.a <1 15. x≥1216.>500 17. 12 18.1≤k <319.解:移项,得-9y +4y <10-15.合并同类项,得-5y <-5.系数化为1,得y >1.不等式的解集在数轴上表示如图所示.20. 解:3x -a≤0,解得x≤a 3,因为它的正整数解为1,2,3,当a 3=3时,a =9;当a3=4时,a =12.当a =12时,x≤4,有4个正整数,舍去,∴9≤a<1221. 解:(1)生产A 型产品x 件,则生产B 型产品(50-x)件,根据题意, 得15x +2.5(50-x)≤290. (2)5x -3x -5x×10%-20 000>0.22. 解:(1)k =12,b =5.(2)当x≥2时,y 1≥y 2.(3)当x >4时,y 1>0且y 2<0.⎩⎪⎨⎪⎧x =50,y =55.答:九(一)班有50名学生,九(二)班有55名学生 (2)设九(三)班有m 名学生体育成绩满分,根据题意得79+m >(105+45)×75%,解得m >33.5,∵m 为整数,∴m 的最小值为34.答:九(三)班至少有34名学生体育成绩是满分24. 解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12. 将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5.(2)从图象可以看出:当x≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝⎛⎭⎫53,0.从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.25. 解:(1)①500-x 50x 80(500-x)②由题意得50x +80(500-x)=25600,解得x =480,500-x =20.答:甲种树苗买了480棵,乙种树苗买了20棵(2)由题意得90%x +95%(n -x)≥92%×n ,解得x≤35n ,50x +80(n -x)=26000,解得x =8n -26003.∵8n -26003≤35n ,∴n≤4191131.∵n 为正整数,x 为正整数,当n 为419时,x =7523≈250.7不是整数;当n 为418时,x =248,∴n 的最大值为418。

北师大版八年级数学下册第二章检测试卷

北师大版八年级数学下册第二章检测试卷

北师大版八年级数学下册第二章检测试卷第二章检测卷时间:120分钟。

满分:120分一、选择题(每小题3分,共30分)1.“x的3倍与y的和不小于2”用不等式可表示为(。

)A。

3x+y>2.B。

3(x+y)>2.C。

3x+y≥2.D。

3(x+y)≥22.已知a>b>0,下列结论错误的是(。

)A。

a+m>b+m。

B。

ac^2>bc^2(c≠0)。

C。

-2a>-2b。

D。

a^2>b^23.一元一次不等式2(x+1)≥4的解集在数轴上表示为(。

)A。

B。

C。

D。

4.不等式组3x<2x+4。

x-1≥2的解集是(。

)A。

x>4.B。

x≤3.C。

3≤x<4.D。

无解5.与不等式x-3)/3<-1有相同解集的是(。

)A。

3x-3<4x-5.B。

2(x-3)<3(4x+1)-1.C。

3(x-3)<2(x-6)+3.D。

3x-9<4x-46.在平面直角坐标系内,点P(2x-6,x-5)在第四象限,则x 的取值范围是(。

)A。

3<x<5.B。

-3<x<5.C。

-5<x<3.D。

-5<x<-37.若关于x的方程3m(x+1)+1=m(3-x)-5x的解是负数,则m的取值范围是(。

)A。

m>-5/4.B。

m5/4.D。

m<-5/48.若不等式组1+x<a。

x+9)/2+1≥x+1有解,则实数a的取值范围是(。

)A。

a-36.D。

a≥-369.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<的解集为(。

)A。

x<-2.B。

-2<x<-1.C。

-2<x<。

D。

-1<x<210.有一家人参加登山活动,他们要将矿泉水分装在旅行包内带上山。

若每人带3瓶,则剩余3瓶;若每人带4瓶,则有一人带了矿泉水,但不足3瓶,则这家参加登山的人数为(。

北师大版八年级数学下册第二章综合素质评价附答案 (2)

北师大版八年级数学下册第二章综合素质评价附答案 (2)

北师大版八年级数学下册第二章综合素质评价一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列式子:①3>0;②4x +6>0;③x <2;④x 2+x ;⑤x ≠-5;⑥x +2>x +1,其中不等式有( )A .3个B .4个C .5个D .6个2.若x <y ,且(a -3)x >(a -3)y ,则a 的取值范围是( )A .a <3B .a >3C .a ≥3D .a ≤33.下列说法中,错误的是( )A .不等式x <2的正整数解只有一个B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个4.已知点P (x -2,6-2x )是平面直角坐标系第二象限上一点,则x 的取值范围在数轴上表示正确的是( )5.【2021·娄底】如图,直线y =x +b 和y =kx +4与x 轴分别相交于点A (-4,0),点B (2,0),则⎩⎨⎧x +b >0,kx +4>0的解集为( )A .-4<x <2B .x <-4C .x >2D .x <-4或x >2 6.【2022·佛山南海区校级月考】某种商品的进价为400元,出售时标价为500元,由于换季,商店准备打折销售该种商品,但要保证利润率不低于10%,那么至多打( )A .8折B .8.5折C .8.8折D .9折7.已知不等式组⎩⎨⎧x +a >1,2x +b <2的解集为-2<x <3,则(a +b )2 023的值为( ) A .1 B .2 023 C .-1 D .-2 0238.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x ,则可以列不等式组为( )A.⎩⎨⎧(4x +19)-6(x -1)≥1(4x +19)-6(x -1)≤6B.⎩⎨⎧(4x +19)-6(x -1)≤1(4x +19)-6(x -1)≥6 C.⎩⎨⎧(4x +19)-6(x -1)≤1(4x +19)-6(x -1)≥5 D.⎩⎨⎧(4x +19)-6(x -1)≥1(4x +19)-6(x -1)≤59.若关于x ,y 的方程组⎩⎨⎧2x +y =4,x +2y =-3m +2的解满足x -y >-32,则m 的最小整数解为( )A .-3B .-2C .-1D .010.对于任意实数m 、n ,定义一种新运算:m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <4※x <7,且解集中有两个整数解,则a 的取值范围是( )A .-1<a ≤4B .-1≤a <2C .-4≤a <-1D .-4<a ≤-1二、填空题:本大题共5小题,每小题3分,共15分.11.语句“x 的18与x 的和不超过5”可以表示为____________.12.若不等式(m -3)x |m -2|+2>0是关于x 的一元一次不等式,则m 的值为____________.13.不等式组⎩⎨⎧x -2<3a ,-2x >-2a +8的解集是x <a -4,则a 的取值范围是_____________. 14.对一个实数x ,按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190”为一次操作,如果操作恰好进行两次停止,那么x 的取值范围是____________.15.定义:对于实数a ,b ,符号max{a ,b }表示:当a ≥b 时,max{a ,b }=a ,当a <b 时,max{a ,b }=b .例如max{-3,5}=5,max{2,1}=2.若关于x 的函数y =max{x -2,-2x +1},则该函数的最小值为______________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.【2022·宜昌】解不等式x -13≥x -32+1,并在如图所示的数轴上表示解集.17.【2022·毕节】解不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,12x -1<3-32x ,并把解集在数轴上表示出来.18.(1)解不等式5x +2≥3(x -1),并把它的解集在如下数轴上表示出来;(2)写出一个实数k ,使得不等式x <k 和(1)中的不等式组成的不等式组恰有3个整数解.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知关于x ,y 的方程组⎩⎨⎧2x +2y =4m ,x -y =3m -4,且x >0,y >0. (1)试用含m 的式子表示方程组的解;(2)求实数m 的取值范围.20.每年11月份脐橙和蜜桔进入销售旺季.某商家购进脐橙和蜜桔共1 000箱.设购进蜜桔x 箱,这两种水果的售价与进价如下表所示:(1)请用含x 的代数式表示该商家售完这1 000箱水果所获得的利润;(2)为了迎接“双11”活动,商家决定进行组合促销活动:两种水果各一箱打包成一组,售价为55元/组,其组数为购进蜜桔箱数的15,未打包的按原价出售.若这两种水果全部卖出,利润不少于6 500元,则该商家至少要购进蜜桔多少箱?21.对x ,y 定义一种新运算T ,规定:T (x ,y )=(mx +ny )(x +2y )(其中m ,n 均为非零常数).例如:T (1,1)=3m +3n .已知T (1,-1)=0,T (0,2)=8.(1)求m ,n 的值;(2)若关于p 的不等式组⎩⎨⎧T (2p ,2-p )>4,T (4p ,3-2p )≤a恰好有3个整数解,求a 的取值范围.五、解答题(三):本大题共2小题,每小题12分,共24分.22.某学校需要采购一批演出服装,A ,B 两家制衣公司都愿意成为这批服装的供应商.经了解,两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商,A 公司给出的优惠条件是全部服装按单价打七折,但校方需承担2 200元的运费;B 公司给出的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应比男生人数的2倍少100人,设参加演出的男生有x 人.(1)设学校购买A ,B 两家公司服装所付的总费用分别是y 1元,y 2元,用含x 的代数式分别表示y 1和y 2;(2)该学校购买哪家制衣公司的服装比较合算?23.先阅读下面的例题,再按要求解决问题.例题:解一元二次不等式x 2-9>0.解:∵x 2-9=(x +3)(x -3),∴(x +3)(x -3)>0.由有理数的乘法法则“两数相乘,同号得正”,有①⎩⎨⎧x +3>0,x -3>0,解不等式组①,得x >3, ②⎩⎨⎧x +3<0,x -3<0,解不等式组②,得x <-3, 故原不等式的解集为x >3或x <-3.问题:(1)求关于x 的不等式(x +1)(x -2)>0的解集;(2)求关于x 的两个多项式的商组成的不等式3x -72x -9<0的解集;(3)若a是(2)中不等式的整数解,b=4,a,b,c为△ABC的三条边长,c是△ABC中的最长的边长(△ABC非等边三角形).①求c的取值范围;②若c为整数,求这个等腰三角形ABC的周长.答案一、1.C 2.A 3.C 4.C 5.A 6.C 7.C 8.D9.C 提示:⎩⎨⎧2x +y =4,①x +2y =-3m +2,②①-②得x -y =3m +2,∵关于x ,y 的方程组⎩⎨⎧2x +y =4,x +2y =-3m +2的解满足x -y >-32,∴3m +2>-32,解得m >-76, ∴m 的最小整数解为-1.10.B 提示:根据题意,得4※x =4x -4-x +3=3x -1.∴a <3x -1<7,解得a +13<x <83.∵解集中有两个整数解,∴0≤a +13<1,解得-1≤a <2.二、11.18x +x ≤5 12.113.a ≥-3 14.22<x ≤6415.-1 提示:当x -2≥-2x +1时,解得x ≥1,此时y =x -2,且y 随x 的增大而增大,∴当x ≥1时,y ≥-1;当x -2<-2x +1时,解得x <1,此时y =-2x +1,且y 随x 的减少而增大,∴x <1时,y >-1.综上可知,函数的最小值为-1.三、16.解:x -13≥x -32+1,去分母,得2(x -1)≥3(x -3)+6,去括号,得2x -2≥3x -9+6,移项,得2x -3x ≥-9+6+2,合并同类项,得-x ≥-1,系数化为1,得x ≤1.这个不等式的解集在数轴上表示如下:17.解:⎩⎪⎨⎪⎧x -3(x -2)≤8,①12x -1<3-32x ,② 解不等式①得x ≥-1,解不等式②得x <2,∴原不等式组的解集为-1≤x <2.该不等式组的解集在数轴上表示如下:18.解:(1)5x +2≥3(x -1),去括号,得5x +2≥3x -3,移项,得5x -3x ≥-3-2,合并同类项,得2x ≥-5,两边都除以2,得x ≥-2.5,这个不等式的解集在数轴上表示为:(2)∵存在一个实数k ,使得不等式x <k 和(1)中的不等式组成的不等式组恰有3个整数解,∴0<k ≤1,∴k =1满足条件(答案不唯一).四、19.解:(1)方程组整理,得⎩⎨⎧x +y =2m , ①x -y =3m -4,② ①+②,得2x =5m -4,∴x =5m -42,①-②,得2y =-m +4,∴y =-m +42,∴原方程组的解为⎩⎪⎨⎪⎧x =5m -42,y =4-m 2;(2)∵x >0,y >0,∴⎩⎪⎨⎪⎧5m -42>0,③4-m 2>0,④解不等式③,得m >45,解不等式④,得m <4,∴不等式组的解集为45<m <4,即实数m 的取值范围为45<m <4.20.解:(1)由题意可得,售完1 000箱水果所获得的利润为(28-20)x +(31-25)×(1 000-x )=2x +6 000,即该商家售完这1 000箱水果所获得的利润为(2x +6 000)元;(2)由题意可知,购进蜜桔x 箱,则购进脐橙(1 000-x )箱,(28-20)×45x +(31-25)×(1 000-x -15x )+(55-20-25)×15x ≥6 500,解得x ≥41623,∵x 为整数,且为5的倍数,∴该商家至少要购进蜜桔420箱.21.解:(1)由题意,得⎩⎨⎧-(m -n )=0,8n =8,∴⎩⎨⎧m =1,n =1; (2)由题意,得⎩⎨⎧(2p +2-p )(2p +4-2p )>4,①(4p +3-2p )(4p +6-4p )≤a ,②解不等式①,得p >-1.解不等式②,得p ≤a -1812.∴-1<p ≤a -1812.∵恰好有3个整数解,∴2≤a -1812<3.∴42≤a <54.五、22.解:(1)由题意得y 1=0.7[120x +100(2x -100)]+2 200=224x -4 800(x ≥50),即y 1=224x -4 800(x ≥50),y 2=0.8[100(3x -100)]=240x -8 000(x ≥50),即y 2=240x -8 000(x ≥50);(2)当y 1>y 2时,即224x -4 800>240x -8 000,解得x <200,由(1)得x ≥50,∴50≤x <200;当y 1=y 2时,即224x -4 800=240x -8 000,解得x =200;当y 1<y 2时,即224x -4 800<240x -8 000,解得x >200;综上,当参加演出的男生少于200人且大于等于50人时,购买B 公司的服装比较合算;当参加演出的男生等于200人时,购买两家公司的服装总费用相同,可任选一家公司购买;当参加演出的男生多于200人时,购买A 公司的服装比较合算.23.解:(1)由有理数的乘法法则“两数相乘,同号得正”,有①⎩⎨⎧x +1>0,x -2>0,解不等式组①,得x >2, ②⎩⎨⎧x +1<0,x -2<0,解不等式组②,得x <-1, 故原不等式的解集为x >2或 x <-1;(2)∵3x -72x -9<0, ∴由“两数相除,异号得负”,有①⎩⎨⎧3x -7>0,2x -9<0,解不等式组①,得73<x <92, ②⎩⎨⎧3x -7<0,2x -9>0,解不等式组②,无解, ∴原不等式的解集为73<x <92;(3)①∵a 是(2)中不等式的整数解,∴a =3或a =4,∵c是△ABC的最大边,且△ABC非等边三角形,∴当a=3,b=4时,4≤c<7;当a=4,b=4时,4<c<8;②∵△ABC为等腰三角形,c为整数,∴当a=3,b=4时,4≤c<7,∴c=4,∴C△ABC=11;∴当a=4,b=4时,4<c<8,∴c=5或6或7,∴C△ABC=13或14或15.综上所述,这个等腰三角形ABC的周长为11或13或14或15.。

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式组3xx a>⎧⎨>⎩的解是x>a,则a的取值范围是()A.a<3 B.a=3 C.a>3 D.a≥32、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A.24人B.23人C.22人D.不能确定3、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A.B.C.D.4、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9 B.8 C.7 D.65、已知关于x的不等式3226x a xx a-≥⎧⎨+≤⎩无解,则a的取值范围为()A.a<2 B.a>2 C.a≤2D.a≥26、如果a>b,下列各式中正确的是()A.﹣2021a>﹣2021b B.2021a<2021bC.a﹣2021>b﹣2021 D.2021﹣a>2021﹣b7、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量()A.小于12件B.等于12件C.大于12件D.不低于12件8、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣29、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A .关于x 的不等式ax +b >0的解集是x >2B .关于x 的不等式ax +b <0的解集是x <2C .关于x 的方程ax +b =0的解是x =4D .关于x 的方程ax +b =0的解是x =210、若点()2,1A a a -+在第一象限,则a 的取值范围是() A .2a > B .1a 2-<< C .1a <D .无解 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、不等式组53x x m <⎧⎨>+⎩有解,m 的取值范围是 ______.2、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2a c _______2bc(3)c -a _______c -b(4)-a |c |_______-b |c |3、不等式3141x +>-的解集是______.4、用不等式表示下列各语句所描述的不等关系:(1)a的绝对值与它本身的差是非负数________;(2)x与-5的差不大于2________;(3)a与3的差大于a与a的积________;(4)x与2的平方差是—个负数________.5、如图直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则40x bkx+>⎧⎨+>⎩解集为_____________.三、解答题(5小题,每小题10分,共计50分)1、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?2、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,小健如何选择方案更划算?3、已知方程组31313x y mx y m+=-+⎧⎨-=+⎩的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.4、如图,函数y=2x和y=-23x+4的图象相交于点A.(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥-23x+4的解集.5、某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.-参考答案-一、单选题1、D【分析】根据不等式组的解集为x >a ,结合每个不等式的解集,即可得出a 的取值范围.【详解】解:∵不等式组3x x a>⎧⎨>⎩的解是x >a , ∴3a ≥,故选:D .【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.2、C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x 为整数.【详解】解:设每组预定的学生数为x 人,由题意得,9(1)2009(1)190x x +>⎧⎨-<⎩ 解得21212299x << x 是正整数22x ∴=【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.3、D【分析】由图像可知当x≤-1时,1+≤-,然后在数轴上表示出即可.x b kx【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1+≤-,x b kx∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.4、C【分析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.【详解】根据题意得:1100×10x ﹣700≥700×10%, 解得:x ≥7,∴至多可以打7折故选:C .【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.5、B【分析】先整理不等式组,根据无解的条件列出不等式,求出a 的取值范围即可.【详解】 解:整理不等式组得:{x ≥x x ≤6−x 2,∵不等式组无解, ∴62a <a ,解得:a >2. 故选:B .【点睛】本题主要考查了不等式组无解的条件,根据整理出的不等式组和无解的条件列出关于a 的不等式是解答本题的关键.6、C【分析】根据不等式的性质即可求出答案.解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B 、∵a >b ,∴2021a >2021b ,故B 错误;C 、∵a >b ,∴a ﹣2021>b ﹣2021,故C 正确;D 、∵a >b ,∴2021﹣a <2021﹣b ,故D 错误;故选:D .【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.7、C【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.8、B观察数轴上x的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是2x>-,故选B.【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.9、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.10、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组2010a a ->⎧⎨+>⎩,再解不等式组即可得到答案. 【详解】 解: 点()2,1A a a -+在第一象限,2010a a ①②由①得:2,a <由②得:1,a12,a 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.二、填空题1、m <2【分析】根据不等式组得到m +3<x <5,【详解】解:解不等式组53x x m <⎧⎨>+⎩,可得,m +3<x <5, ∵原不等式组有解∴m +3<5,解得:m <2,故答案为:m <2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.2、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >,∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.3、x >-5【分析】根据不等式的性质求解即可.【详解】解:3141x +>-,3x>-15,解得x >-5,故答案为:x >-5.【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.4、|a |-a ≥0 x -(-5)≤2 23a a -> 2220x -<【分析】(1)a 的绝对值表示为:a ,根据与它本身的差是非负数,即可列出不等式;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,综合即可列出不等式;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,综合即可列出不等式;(4)x 与2的平方差表示为:222x -,负数表示为:0<,综合即可列出不等式.【详解】解:(1)a 的绝对值表示为:a ,与它本身的差是非负数, 可得:0a a -≥;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,可得:()52x --≤;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,可得:23a a ->;(4)x 与2的平方差表示为:222x -,负数表示为:0<,可得:2220x -<; 故答案为:①0a a -≥;②()52x --≤;③23a a ->;④2220x -<.【点睛】题目主要考查不等式的应用,依据题意,理清不等关系,列出相应不等式是解题关键.5、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.三、解答题1、(1)每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①y =﹣80x +24000;②商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元【分析】(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,然后根据“销售10台A 型和20台B 型电脑的利润为6400元,销售20台A 型和10台B 型电脑的利润为5600元”列出方程组,然后求解即可;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B 型电脑的进货量不超过A 型电脑的2倍列不等式求出x 的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,根据题意得,1020640020105600x y x y +=⎧⎨+=⎩, 解得160240x y =⎧⎨=⎩. ∴每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元,据题意得,y =160x +240(100﹣x ),即y =﹣80x +24000,②∵100﹣x ≤2x ,∴x ≥3313,∵y =﹣80x +24000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,此时y =-80×34+24000=21280(元),即商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.2、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=- 解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.3、(1)﹣2<m ≤3;(2)﹣1【分析】(1)先求出二元一次方程组的解为324x m y m =-⎧⎨=--⎩,然后根据x 为非正数,y 为负数,即x ≤0,y <0,列出不等式求解即可;(2)先把原不等式移项得到(2m +1)x <2m +1.根据不等式(2m +1)x ﹣2m <1的解为x >1,可得2m +1<0,由此结合(1)所求进行求解即可.【详解】解:(1)解方程组31313x y m x y m +=-+⎧⎨-=+⎩①②用①+②得:4412x m =-,解得3x m =-③,把③代入②中得:313m y m --=+,解得24y m =--,∴方程组的解为:324x m y m =-⎧⎨=--⎩. ∵x 为非正数,y 为负数,即x ≤0,y <0,∴30240m m -≤⎧⎨--⎩<. 解得﹣2<m ≤3;(2)(2m +1)x ﹣2m <1移项得:(2m +1)x <2m +1.∵不等式(2m +1)x ﹣2m <1的解为x >1,∴2m +1<0,解得m 12-<.又∵﹣2<m ≤3,∴m 的取值范围是﹣2<m 12-<.又∵m 是整数,∴m 的值为﹣1.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.4、 (1) (32,3);(2) x ≥32. 【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】(1)由题意得2,24,3y x y x =⎧⎪⎨=-+⎪⎩解得3,23.x y ⎧=⎪⎨⎪=⎩ ∴点A 的坐标为(32,3); (2)由图象得不等式2x ≥-23x +4的解集为x ≥32. 【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.5、(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;【分析】(1)设甲型号手机每部进价为x 元,乙为y 元,根据题意列出方程组,求解即可;(2)根据题意列出不等式组,求解即可得出方案.【详解】解:(1)解:设甲型号手机每部进价为x 元,乙为y 元,由题意得.200329600x y x y -=⎧⎨+=⎩,解得20001800x y =⎧⎨=⎩答:甲型号手机每部进价为2000元,乙为1800元.(2)设甲型号进货a 台,则乙进货()20a -台,由题意可知()8200018002038000a a a ≥⎧⎨+-≤⎩解得810a ≤≤ 故8a =或9或10,则共有3种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台.【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键.。

北师大版八年级数学下册第2章【一元一次不等式和一元一次不等式组】单元测试卷(二)含答案与解析

北师大版八年级数学下册第2章【一元一次不等式和一元一次不等式组】单元测试卷(二)含答案与解析

北师大版八年级数学下册第2章单元测试卷(二)一元一次不等式和一元一次不等式组学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.若3a >,则下列各式正确的是( )A .14a +<B .30a -<C .41a ->-D .21a -<2.对于不等式组015x x ≥⎧⎨+<⎩,下列说法正确的是( ) A .此不等式组的解集是44x -≤<B .此不等式组有4个整数解C .此不等式组的正整数解为1,2,3,4D .此不等式组无解3.设有理数a 、b 、c 满足(0)a b c ac >><,且c b a <<,则222a b b c a c x x x ++++++﹣﹣的最小值是( ) A .2a c - B .22a b c ++ C .22a b c ++ D .22a b c +- 4.如果关于x 的一元一次方程3(x +4)=2a +5的解大于关于x 的方程()414a x+()343a x -=的解,那么a 的取值是( ). A .2a > B .2a < C .718a > D .718a < 5.不等式231x +≥的解集是( )A .1x ≤-B .1x ≥-C .2x -≤D .2x ≥-6.如图所示,两函数y 1=k 1x +b 和y 2=k 2x 的图象相交于点(m ,−2),则关于x 的不等式 k 1x +b >k 2x的解集为( )A .x >mB .x <-1C .x >-1D .x <m7.若a >b ,则下列不等式成立的是( )A .a 2>b 2B .1﹣a >1﹣bC .3a ﹣2>3b ﹣2D .a ﹣4>b ﹣3 8.下列变形属于移项的是( )A .由3x =-7+x ,得3x =x -7B .由x =y ,y =0,得x =0C .由7x =6x -4,得7x +6x =-4D .由5x +4y =0,得5x =-4y9.若不等式组的解集为0<x <1,则a 的值为( )A .1B .2C .3D .410.已知一次函数1y kx b =+与2y ax c =+的图象如图所示,则不等式kx b ax c +>+的解集为( )A .3x >B .3x <C .1x >D .1x < 11.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .12.如果关于x的分式方程1 311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3B.0C.3D.9二、填空题(本大题共6小题,每小题3分,共18分)13.若一次函数(1)2y k x k=-++的图像不经过第三象限,则k的取值范围是_____.14.若不等式组841x xx m+>-⎧⎨≤⎩的解集为x<3,则m的取值范围是____________.15.如图,在平面直角坐标系中,点A、B的坐标分别为()1,4、()3,4,若直线y kx=与线段AB有公共点,则k的取值范围为__________.16.若关于x,y的二元一次方程组2134x y ax y-=-⎧⎨+=⎩的解满足40x y-<,则a的取值范围是________.17.若关于x的一元一次不等式组21122x ax x->⎧⎨->-⎩的解集是21x-<<,则a的取值是__________.18.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x 时,y≤0.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.小明今年12岁,老师告诉他:“我今年的年龄是你的3倍小4岁”,接着老师又问小明:“再过几年我的年龄正好是你的2倍?”请你帮助小明解决这一问题.20.2020年疫情期间,某公司为了扩大经营,决定购进6台机器用于生产口罩.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产口罩的数量如下表所示.经过预算,本次购买机器所耗资金不能超过36万元,(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于42万个,那么为了节约资金应选择什么样的购买方案?21.解下列不等式:(1)2x-3≤12(x+2);(2)3x>1-36x-.22.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.23.解不等式组:1011122xx-≥⎧⎪⎨--<⎪⎩,并求出它的最小整数解.24.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。

北师大版八年级数学下册第二章测试题(附答案)

北师大版八年级数学下册第二章测试题(附答案)

北师大版八年级数学下册第二章测试题(附答案)一、单选题1.已知a<b,则下列四个不等式中,不正确的是()A. a+2<b+2B.C.D.2.已知关于x的不等式组的整数解共有4个,则a的取值范围是()A. 2≤a≤3B. 2<a≤3C. 2≤a<3D. 2<a<33.已知a>b,则下列不等式中正确的是()A. ﹣2a>﹣2bB.C. 2﹣a>2﹣bD. a+2>b+24.用不等式表示:“a的与b的和为正数”,正确的是()A. a+b>0B.C. a+b≥0D.5.已知实数、,下列命题结论正确的是()A. 若,则B. 若,则C. 若,则D. 若,则6.一次函数是(是常数,)的图像如图所示,则不等式的解集是()A. B. C. D.7.如图,函数y=2x和y=ax+4的图像相交于点A(m,3),则不等式2x<ax+4的解集为()A. x>B. x<3C. x<D. x>38.如果a>b,下列各式中不正确的是()A. a-4>b-4B. -2a<-2bC. -1+a<-1+bD.9.关于x的不等式组的解集为,那么a的取值范围为()A. B. C. D.10.不等式组的解集在数轴上表示为().A. B. C. D.11.已知,则下列不等式成立的是()A. B. C. D.12.已知a>b,则下列不等式中错误的是()A. a+2>b+2B. a-5<b-5C. -a<-bD. 4a>4b13.不等式的解集是()A. B. C. D.14.不等式组的解集在数轴上表示的为()A. B.C. D.15.一个不等式组的解集在数轴上的表示如下图,则这个不等式组的解集是( )A. x<3B. x≥-1C. -1<x≤3D. -1≤x<3二、填空题16.写出一个满足不等式3x + 13≥0的负整数解: ________ (写出一个即可).17.某电器商场促销,海尔某型号冰箱的售价是2500元,进价是1800元,商场为保证利润率不低于5%,则海尔该型号冰箱最多降价________元.18.若x>y,且(m-5)x <(m-5)y ,则m的取值范围是________.19.不等式的最大整数解是________.20.不等式的正整数解是________.21.请写出一个关于x的不等式,且-1,2都是它的解:________.22.关于x的不等式12﹣5x≥0的最大正整数解是________.23.一次函数和的图象如图所示,其交点为,则不等式的解集是________.三、计算题24.解下列不等式:(1)(2)解不等式组四、解答题25.解不等式组:,并把该不等式组中的两个不等式的解集在下图所示的数轴上表示出来.26.解不等式组:,并写出它的整数解.27.某公交公司有A,B型两种客车,它们的载客量分别为45人/辆和30人/辆和租金分比为400元/辆和280元/辆:杏坛中学根据实际情况,计划租用A,B型客车共5辆,同时送八年级师生到基地参加社会实践活动,若要保证租车费用不超过1900元,求A型客车的数量最大值.五、综合题28.阅读以下例题:解不等式:(x+4)(x-1)>0解:①当x+4>0,则x-1>0即可以写成:解不等式组得:②当若x+4<0,则x-1<0即可以写成:解不等式组得:综合以上两种情况:不等式解集:x>1或.(以上解法依据:若ab>0,则a,b同号)请你模仿例题的解法,解不等式:(1)(x+1)(x-2)>0;(2)(x+2)(x-3)<0.29.明代医药学家李时珍称三七为“金不换”,文山是“三七之乡”,今年州庆,某三七经销商店举行优惠促销活动,当天购买该商店的三七商品有两种优惠方案,方案一:用200元购买会员卡成为会员后,凭会员卡购买该商店的任何三七商品,一律按商品定价的8折优惠;方案二:若不购买会员卡,则购买商店内任何三七商品,一律按商品定价的9折优惠.已知小明此前不是该商店的会员.(1)若小明不购买会员卡,当所购买商品的定价为1200元时,实际应支付多少元?(2)小明准备在该商店购买定价为元的三七商品,请你用所学过的数学知识帮小明算算,采用哪种方案购买更合算?答案一、单选题1. B2. B3. D4. A5. B6. C7. C8. C9. C 10. B 11. C 12. B 13. A 14. A 15. D二、填空题16. -1 17. 610 18. m<5 19. 2 20. 21. x<3 22. x=2 23. x<-2三、计算题24. (1)解:括号得,2x-2+2<5-3x-3,移项得,2x+3x<2,合并同类项得,5x<2,系数化为1得,x<(2)解:解不等式①得,x≤1,解不等式②得,x>-7,∴原不等式组的解集为:-7<x≤1.四、解答题25. 解:解3x+2>x得,x>-1解2(x+1)≥4x-1得,x≤∴原不等式组的解集为-1<x≤ .在数轴上表示为:26. 解:由题意知:解①得:解②得:去分母得:移项得:合并同类项:系数化为1:故不等式组的解集为:它的整数解为:0,1.故答案为:,整数解为:0和1.27. 解:设租用A型客车x辆,则租用B型客车(5−x)辆,根据租车费用不超过1900元,得400x+280(5−x)≤1900解不等式,得x≤∵x为正整数,∴x最大值为4答:A型客车的数量最大值为4.五、综合题28. (1)当x+1>0时,x-2>0,可以写成,解得:x>2;当x+1<0时,x-2<0,可以写成,解得:x<-1,综上:不等式解集:x>2或x<-1;(2)当x+2>0时,x-3<0,可以写成,解得-2<x<3;当x+2<0时,x-3>0,可以写成,解得:无解,综上:不等式解集:-2<x<3.29. (1)解:由题意得(元)(2)解:方案一的费用为:(元),方案二的费用为:,①当时,,当购买的商品超过元时选择方案一更优惠;②当时,,当购买的费用是元时两种方案都一样;③当时,,当购买的商品低于2000元时选择方案二更优惠。

北师大版数学八年级下册第二单元测试卷附答案解析

北师大版数学八年级下册第二单元测试卷附答案解析

北师大版数学八年级下册第二单元测试卷姓名:得分:一、选择题1.不等式6x+5>3x+8的解集为()A.x>2 B.x>1 C.x<1 D.x<22.代数式5x﹣4的值小于0,则可列不等式()A.5x﹣4<0 B.5x﹣4>0 C.5x﹣4≤0 D.5x﹣4≥03.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.4.如果关于x的方程的解不是负值,那么a与b的关系是()A.a> b B.b≥ a C.5a≥3b D.5a=3b5.不等式组的所有整数解的和是()A.2 B.3 C.5 D.66.如果关于x的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数a,b的有序数对(a,b)共有()A.4对 B.6对 C.8对 D.9对7.不等式﹣2x<4的解集是()A.x>2 B.x<2 C.x<﹣2 D.x>﹣28.下列不等式一定成立的是()A.5a>4a B.x+2<x+3 C.﹣a>﹣2a D.9.不等式﹣3x+6>0的正整数解有()A.1个 B.2个 C.3个 D.无数多个10.在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.11.如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x<2 D.x>212.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤2二、填空题13.不等式4x﹣3<2x+1的解集为.14.不等式组的整数解为.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.16.若a>c,则当m时,am<cm;当m时,am=cm.17.小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有个.18.不等式组﹣1<x﹣5<11的解集是.19.若不等式组有解,则a的取值范围是.20.一次函数y=﹣3x+12中x时,y<0.21.不等式x﹣8>3x﹣5的最大整数解是.22.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.三、解答题23.解不等式,并把解集在数轴上表示出来:(1)5x﹣6≤2(x+3);(2)﹣<0.24.解不等式组:(1);(2).25.已知不等式组的解集为﹣1<x<1,则(m+n)2014的值等于多少?26.是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.27.小颖准备用21元钱买笔和笔记本.已知每枝笔3元,每个笔记本2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几枝笔?28.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?29.甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x月.甲存款额是y1元,乙存款额是y2元.(1)试写出y1与x及y2与x之间的函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?30.在全市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D 地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?答案与解析1.不等式6x+5>3x+8的解集为()A.x>2 B.x>1 C.x<1 D.x<2【考点】C6:解一元一次不等式.【专题】选择题【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:6x﹣3x>8﹣5,合并同类项,得3x>3,系数化为1,得:x>1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2.代数式5x﹣4的值小于0,则可列不等式()A.5x﹣4<0 B.5x﹣4>0 C.5x﹣4≤0 D.5x﹣4≥0【考点】C8:由实际问题抽象出一元一次不等式.【专题】选择题【分析】根据不等关系小于0列式即可.【解答】解:∵代数式5x﹣4的值小于0,∴5x﹣4<0,故选A.【点评】本题考查了实际问题与一元一次不等式,是基础题,读懂题目信息是解题的关键.3.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.【考点】CD:由实际问题抽象出一元一次不等式组.【专题】选择题【分析】易得学生总人数,不空也不满意思是一个宿舍人数在1人和5人之间,关系式为:总人数﹣(x﹣1)间宿舍的人数≥1;总人数﹣(x﹣1)间宿舍的人数≤5,把相关数值代入即可.【解答】解:∵若每间住4人,则还有19人无宿舍住,∴学生总人数为(4x+19)人,∵一间宿舍不空也不满,∴学生总人数﹣(x﹣1)间宿舍的人数在1和5之间,∴列的不等式组为:故选:D.【点评】考查列不等式组,理解“不空也不满”的意思是解决本题的突破点,得到相应的关系式是解决本题的关键.4.如果关于x的方程的解不是负值,那么a与b的关系是()A.a> b B.b≥ a C.5a≥3b D.5a=3b【考点】C6:解一元一次不等式;85:一元一次方程的解.【专题】选择题【分析】本题首先要解这个关于x的方程,求出方程的解,根据解是负数,可以得到一个关于a的不等式,就可以求出a的范围.【解答】解:解关于x的方程,得x=,∵解不是负值,∴≥0,解得5a≥3b;故答案为C.【点评】本题是一个方程与不等式的综合题目;解关于x的不等式是本题的一个难点.5.不等式组的所有整数解的和是()A.2 B.3 C.5 D.6【考点】CC:一元一次不等式组的整数解.【专题】选择题【分析】先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.【解答】解:∵解不等式①得;x>﹣,解不等式②得;x≤3,∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6,故选D.【点评】本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.6.如果关于x的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数a,b的有序数对(a,b)共有()A.4对 B.6对 C.8对 D.9对【考点】CC:一元一次不等式组的整数解.【专题】选择题【分析】先求出不等式组的解集,再得出关于a、b的不等式组,求出a、b的值,即可得出选项.【解答】解:∵解不等式①得:x>,解不等式②得:x≤,∴不等式组的解集为<x≤,∵x的不等式组的整数解仅有7,8,9,∴6≤<7,9≤<10,解得:15≤a<17.5,21≤b<23,∴a=15或16或17,b=21或22或23,即(15,21),(15,22),(15,23)(16,21),(16,22)(16,23),(17,21),(17,22),(17,23)共9对,故选D.【点评】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能求出a、b的值,难度适中.7.不等式﹣2x<4的解集是()A.x>2 B.x<2 C.x<﹣2 D.x>﹣2【考点】C6:解一元一次不等式.【专题】选择题【分析】两边同时除以﹣2,把x的系数化成1即可求解.【解答】解:两边同时除以﹣2,得:x>﹣2,故选D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.下列不等式一定成立的是()A.5a>4a B.x+2<x+3 C.﹣a>﹣2a D.【考点】C2:不等式的性质.【专题】选择题【分析】根据不等式的性质分析判断.【解答】解:A、因为5>4,不等式两边同乘以a,而a≤0时,不等号方向改变,即5a≤4a,故错误;B、因为2<3,不等式两边同时加上x,不等号方向不变,即x+2<x+3正确;C、因为﹣1>﹣2,不等式两边同乘以a,而a≤0时,不等号方向改变,即﹣a ≤﹣2a,故错误;D、因为4>2,不等式两边同除以a,而a≤0时,不等号方向改变,即,故错误.故选B.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.不等式﹣3x+6>0的正整数解有()A.1个 B.2个 C.3个 D.无数多个【考点】C7:一元一次不等式的整数解.【专题】选择题【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<2,故不等式﹣3x+6>0的正整数解为1,故选A.【点评】正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.10.在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【专题】选择题【分析】根据在数轴上表示不等式解集的方法利用排除法进行解答.【解答】解:∵不等式x≥﹣2中包含等于号,∴必须用实心圆点,∴可排除A、B,∵不等式x≥﹣2中是大于等于,∴折线应向右折,∴可排除D,故选:C.【点评】本题考查的是在数轴上表示不等式解集的方法,即“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.11.如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x<2 D.x>2【考点】F3:一次函数的图象.【专题】选择题【分析】通过观察函数图象,当y<0时,图象在x轴左方,写出对应的自图象在x轴左方变量的范围即可.【解答】解:由图象可得,一次函数的图象与x轴的交点为(﹣2,0),当y<0时,x<﹣2,故选A.【点评】熟悉一次函数的性质.学会看函数图象.12.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤2【考点】72:二次根式有意义的条件.【专题】选择题【分析】二次根式的被开方数x﹣2是非负数.【解答】解:根据题意,得x﹣2≥0,解得,x≥2;故选:A.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.不等式4x﹣3<2x+1的解集为.【考点】C6:解一元一次不等式.【专题】填空题【分析】利用不等式的基本性质,把﹣3移到不等号的右边,把2x移到等号的左边,合并同类项即可求得原不等式的解集.【解答】解:4x﹣3<2x+1,4x﹣2x<1+3,2x<4,x<2,故答案为:x<2.【点评】本题考查了解一元一次不等式,以及解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.不等式组的整数解为.【考点】CC:一元一次不等式组的整数解.【专题】填空题【分析】先求出不等式的解集,再据此求出不等式的整数解.【解答】解:由①得,2x>﹣1﹣1,x>﹣1;由②得,x≤3﹣2,x≤1;不等式组的解集为:﹣1<x≤1,其整数解为0,1.【点评】正确解不等式,求出解集是解答本题的关键.解不等式应根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.【考点】FD:一次函数与一元一次不等式.【专题】填空题【分析】把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.【解答】解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4,故答案为:x<4.【点评】本题主要考查一次函数和一元一次不等式,解题的关键是求出k,b的值求解集.16.若a>c,则当m时,am<cm;当m时,am=cm.【考点】C2:不等式的性质.【专题】填空题【分析】根据不等式的基本性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,可知m<0,【解答】解:∵a>c,又知:am<cm,∴根据不等式的基本性质3可得:m<0;又知:am=cm,∴m=0,故答案为:<0;=0.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.17.小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有个.【考点】C9:一元一次不等式的应用.【专题】填空题【分析】(1)根据“两位正整数其个位数字比十位数字大4”可得此两位数为(10×十位数)+个位数;(2)再根据此两位数小于88,列出不等式即可.【解答】解:设十位数字为x,则个位数字为x+4依题意得10x+x+4<88得x<又∵x应为正整数,且大于0;并且0≤个位数字≤9,因而5≤x+4≤9∴1≤x≤5故这样的两位数有5个.【点评】用不等式进行求解时,应注意未知数的限制条件.本题中正确用代数式表示出这个两位数是解决本题的关键.18.不等式组﹣1<x﹣5<11的解集是.【考点】CB:解一元一次不等式组.【专题】填空题【分析】可以直接用口诀解题,也可用不等式的性质直接解不等式组.【解答】解:不等式每个部分都加5得,4<x<16,故答案为:4<x<16.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.也可利用不等式的性质求解(不等式两边同时加上一个数,不等号的方向不变).求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.若不等式组有解,则a的取值范围是.【考点】C3:不等式的解集.【专题】填空题【分析】根据不等式组有解,可得a与2的关系,可得答案.【解答】解:∵不等式组有解,∴a≤2,故答案为:a≤2.【点评】本题考查了不等式的解集,不等式的解集是大于小的小于大的.20.一次函数y=﹣3x+12中x时,y<0.【考点】FD:一次函数与一元一次不等式.【专题】填空题【分析】y<0即3x+12<0,解不等式即可求解.【解答】解:根据题意得:﹣3x+12<0,解得:x>4,故答案为:>4【点评】本题考查了一次函数与不等式的关系,认真体会一次函数与一元一次不等式(组)之间的内在联系.把求函数自变量的取值的问题转化为不等式的求解问题是关键.21.不等式x﹣8>3x﹣5的最大整数解是.【考点】C6:解一元一次不等式.【专题】填空题【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x﹣8>3x﹣5的解集为x<﹣;所以其最大整数解是﹣2.【点评】解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.22.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.【考点】FD:一次函数与一元一次不等式.【专题】填空题【分析】首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出两函数图象的交点坐标,根据函数图象可得答案.23.解不等式,并把解集在数轴上表示出来:(1)5x﹣6≤2(x+3);(2)﹣<0.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【专题】解答题【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:5x﹣6≤2x+6,移项,得:5x﹣2x≤6+6,合并同类项,得:3x≤12,系数化为1,得:x≤4,将解集表示在数轴上如下:(2)去分母,得:2(2x﹣1)﹣(5x﹣1)<0,去括号,得:4x﹣2﹣5x+1<0,移项、合并,得:﹣x<1,系数化为1,得:x>﹣1,将解集表示在数轴上如下:.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.24.解不等式组:(1);(2).【考点】CB:解一元一次不等式组.【专题】解答题【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找即可确定不等式组的解集;(2)分别求出每一个不等式的解集,根据口诀:大小小大中间找即可确定不等式组的解集.【解答】解:(1)解不等式5x﹣6≤2(x+3),得:x≤4,解不等式,得:x>0,∴不等式组的解集为0<x≤4;(2)解不等式3+x≤2(x﹣2)+7,得:x≥0,解不等式5x﹣1<3(x+1),得:x<2,∴不等式组的解集为0≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.已知不等式组的解集为﹣1<x<1,则(m+n)2014的值等于多少?【考点】CB:解一元一次不等式组.【专题】解答题【分析】解不等式解不等式2x﹣m>n﹣1得x>,由不等式组的解集为﹣1<x<1可得=﹣1,从而知m+n的值,代入即可.【解答】解:解不等式2x﹣m>n﹣1,得:x>,∵不等式组的解集为﹣1<x<1,∴=﹣1,∴m+n=﹣1,则(m+n)2014=(﹣1)2014=1.【点评】本题主要考查解不等式的基本能力,根据不等式组的解集得出m+n的值是解题的关键.26.是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.【考点】CC:一元一次不等式组的整数解.【专题】解答题【分析】解此题时可以解出二元一次方程组中x,y关于k的式子,然后解出k 的范围,即可知道k的取值.【解答】解:解方程组得∵x大于1,y不大于1从而得不等式组解之得2<k≤5又∵k为整数∴k只能取3,4,5答:当k为3,4,5时,方程组的解中,x大于1,y不大于1.【点评】此题考查的是二元一次方程组和不等式的性质,要注意的是x>1,y≤1,则解出x,y关于k的式子,最终求出k的范围,即可知道整数k的值.27.小颖准备用21元钱买笔和笔记本.已知每枝笔3元,每个笔记本2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几枝笔?【考点】C9:一元一次不等式的应用.【专题】解答题【分析】设她还可能买x只笔,根据总钱数不超过21元,列不等式求解.【解答】解:设她还可能买x只笔,由题意得,3x+2×2.2≤21,解得:x≤.答:她还可能买5枝笔.【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列不等式求解.28.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?【考点】CE:一元一次不等式组的应用.【专题】解答题【分析】设该校一共有x人去植树,共有y棵树.则根据题意可得:,求解即得【解答】解:设个植树小组有x人去植树,共有y棵树.由“每人植4棵,则余20棵没人植”和“若每人植8棵,则有一人比其他人植的少(但有树植)”得:,将y=4x+20代入第二个式子得:0<4x+20﹣8(x﹣1)<8,5<x<7.答这个植树小组有6人去植树,共有4×6+20=44棵树.【点评】此题考查一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.29.甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x月.甲存款额是y1元,乙存款额是y2元.(1)试写出y1与x及y2与x之间的函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?【考点】FH:一次函数的应用.【专题】解答题【分析】(1)根据存款数=原有存款+又存入的钱数,列式即可;(2)列出一元一次不等式,然后求解即可.【解答】解:(1)根据题意,甲:y1=400x+800,乙:y2=200x+1800;(2)根据题意,400x+800>200x+1800,解得x>5,所以,从第6个月开始,甲存款额能超过乙存款额.【点评】本题考查了一次函数的应用,比较简单,读懂题目信息是解题的关键.30.在全市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D 地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?【考点】CE:一元一次不等式组的应用;8A:一元一次方程的应用.【专题】解答题【分析】(1)设运往E地x立方米,由题意可列出关于x的方程,求出x的值即可;(2)由题意列出关于a的一元一次不等式组,求出a的取值范围,再根据a是整数可得出a的值,进而可求出答案;(3)根据(1)中的两种方案求出其费用即可.【解答】解:(1)设运往E地x立方米,由题意得,x+2x﹣10=140,解得:x=50,∴2x﹣10=90.答:共运往D地90立方米,运往E地50立方米;(2)由题意可得,,解得:20<a≤22,∵a是整数,∴a=21或22,∴有如下两种方案:第一种:A地运往D地21立方米,运往E地29立方米;C地运往D地39立方米,运往E地11立方米;第二种:A地运往D地22立方米,运往E地28立方米;C地运往D地38立方米,运往E地12立方米;(3)第一种方案共需费用:22×21+20×29+39×20+11×21=2053(元),第二种方案共需费用:22×22+28×20+38×20+12×21=2056(元),所以,第一种方案的总费用最少.【点评】本题考查的是一元一次不等式组及一元一次方程的应用,根据题意列出一元一次不等式组及一元一次方程是解答此题的关键.。

新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (6)

新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (6)

(共25题)一、选择题(共10题)1. 若不等式组 {x >1,x <a 无解,则 a 的取值范围是 ( )A . a >1B . a ≥1C . a <1D . a ≤12. 下列各数轴上表示的 x 的取值范围可以是不等式组 {x +2>a,(2a −1)x −6<0的解集的是 ( )A .B .C .D .3. 不等式 −x +2≤0 的解集为 ( )A . x ≤−2B . x ≥−2C . x ≤2D . x ≥24. 若关于 x 的不等式 (a +2019)x >a +2019 的解为 x <1,则 a 的取值范围是 ( ) A . a >−2019B . a <−2019C . a >2019D . a <20195. 若关于 x 的不等式组 {2x −1>4x +7,x >a 无解,则实数 a 的取值范围是 ( )A .a <−4B .a =−4C .a >−4D .a ≥−46. 不等式组 {2x +1>3,3x −5≤1的解集在数轴上表示正确的是 ( )A .B .C .D .7. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户 1 只;若每户发放母羊 5 只,则多出 17 只母羊,若每户发放母羊 7 只,则有一户可分得母羊但不足 3 只,这批种羊共 ( )A . 55 只B . 72 只C . 83 只D . 89 只8. 下面给出了 5 个式子:① 3>0;② 4x +3y >0;③ x =3;④ x −1;⑤ x +2≤3;其中不等式有 ( ) A . 2 个 B . 3 个 C . 4 个 D . 5 个9. 已知关于 x 的不等式组 {x −a ≥0,3−2x ≥−1 的整数解共有 3 个,则 a 的取值范围是 ( )A . −1≤a ≤0B . −1<a ≤0C . 0≤a ≤1D . 0<a ≤110. 若关于 x 的不等式组 {2−x2>2x−43,−3x >−2x −a的解集是 x <2,则 a 的取值范围是 ( )A . a ≥2B . a <−2C . a >2D . a ≤2二、填空题(共7题) 11. 叫做解不等式.12. 已知 x −y =3.①若 y <1,则 x 的取值范围是 ; ②若 x +y =m ,且 {x >2,y <1,则 m 的取值范围是 .13. 不等式 x >√2x +1 的解集是 .14. 不等式组 {x >4,x >m 的解集是 x >4,那么 m 的取值范围是 .15. 不等式组 {x−32+3>x +1,1−3(x −1)≤8−x所有整数解的和是 .16. “九月已经霜,蟹肥菊桂香”,古往今来,每至农历九月,蟹都是人们翘首以待的珍馐.某大闸蟹养殖户十月捕捞了第一批成熟的大闸蟹,并以每只相同的价格(价格为整数)批发给某经销商.十一月该养殖户捕捞了第二批成熟的大闸蟹,这次决定与某电商合作,将这批大闸蟹根据品质及重量分为 A (小蟹)、 B (中蟹)、 C (大蟹)三类,每类按照不同的单价(价格都为整数)网上销售,若 2 只 A 类蟹、 1 只 B 类蟹和 3 只 C 类蟹的价格之和正好是第一批蟹 8 只的价格,而 6 只 A 类蟹、 3 只 B 类蟹和 2 只 C 类蟹的价格之和正好是第一批蟹 12 只的价格,且 A 类蟹与 B 类蟹每只的单价之比为 3:4,根据市场有关部门的要求 A ,B ,C 三类蟹的单价之和不低于 40 元、不高于 60 元,则第一批大闸蟹每只价格为 元.17. 已知不等式 {2x −a <1,x −2b >3 的解集为 −1<x <1,求 (a +1)(b −1) 的值为 .三、解答题(共8题)18. 对于三个数 a ,b ,c ,用 M {a,b,c } 表示这三个数的平均数;用 min {a,b,c } 表示这三个数中最小的数.例如 M {1,2,3}=13×(1+2+3)=2,min {1,2,3}=1,min {2,2,2}=2⋯.解答下列问题:(1) 填空:M{√3,√12,√18}= ,min{2√2,π,√7}= . (2) 如果 M {−2,x −1,2x }=min {−2,x −1,2x },求 x 的值.(3) 在同一直角坐标系中作出函数 y =12x −3,y =−12x −1,y =−2x +4 的图象(不需列表描点),通过观察图象,填空:min {12x −3,−12x −1,−2x +4} 的最大值为 .19. 解不等式:1−x+26<2x−33,并把它的解集在数轴上表示出来.20. 解答下列各题:(1) 解方程组 {5x +6y =7,2x +3y =4.(2) 解不等式组 {x −4<3(x −2),1+2x 3+1>x.21. 解答下列问题.(1) 解方程组:{5x −2y =4,2x −y =1;(2) 解不等式组:{3x −2≥1,x +9>3(x +1).22. 某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车 4 辆,B 型汽车 7 辆,共需 310 万元;若购买A 型汽车 10 辆,B 型汽车 15 辆,共需 700 万元. (1) A 型和B 型汽车每辆的价格分别是多少万元?(2) 该公司计划购买A 型和B 型两种汽车共 10 辆,费用不超过 285 万元,且A 型汽车的数量少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.23. 解不等式组 {3x −5>2(x −3),x+43≥x,并写出该不等式组的所有非负整数解.24. 为迎接“军运会”,某商店准备采购 500 件纪念品,现有甲、乙两种纪念品可供选择.其中甲种纪念品的进价为 80 元/件,售价为 112 元/件;乙种纪念品的进价为 64 元/件,售价为 80 元/件.设购进甲种纪念品 x (x 为整数)件,所购纪念品全部售完时利润为 y 元. (1) 求 y 关于 x 的函数关系式.(2) 若乙种纪念品的数量不少于甲种纪念品数量的 3 倍,且利润 y 不低于 9600 元,请通过计算说明商店有几种采购方案.(3) 若甲种纪念品每件售价降低 3a 元,乙种纪念品毎件售价上涨 2a 元,在(2)的条件下,最大利润为 11500 元,求 a 的值.25. 如图,数轴上两点 A ,B 对应的数分别是 −1,1,点 P 是线段 AB 上一动点,给出如下定义:如果在数轴上存在动点 Q ,满足 ∣PQ∣∣=2,那么我们把这样的点 Q 表示的数称为连动数,特别地,当点 Q 表示的数是整数时我们称为连动整数.(1) −3,0,2.5 是连动数的是 ;(2) 关于 x 的方程 2x −m =x +1 的解满足是连动数,求 m 的取值范围 ;(3) 当不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时,求 a 的取值范围.答案一、选择题(共10题) 1. 【答案】D【解析】 ∵ 不等式组 {x >1,x <a 无解,∴a 的取值范围是 a ≤1, 故选:D .【知识点】含参一元一次不等式组2. 【答案】B【解析】由 x +2>a ,得 x >a −2, A 选项,由数轴知 x >−3,则 a −2=−3, ∴a =−1,∴−3x −6<0,解得 x >−2,与数轴不符合; B 选项,由数轴知 x >0,则 a −2=0, ∴a =2,∴3x −6<0,解得 x <2,与数轴相符合; C 选项,由数轴知 x >2,则 a −2=2, ∴a =4,∴7x −6<0,解得 x <67,与数轴不符合;D 选项,由数轴知 x >−2,则 a −2=−2, ∴a =0,∴−x −6<0,解得 x >−6,与数轴不符合. 【知识点】含参一元一次不等式组3. 【答案】D【知识点】常规一元一次不等式的解法4. 【答案】B【解析】 ∵ 不等式 (a +2019)x >a +2019 的解为 x <1, ∴a +2019<0, 则 a <−2019. 【知识点】不等式的性质5. 【答案】D【解析】提示:解 2x −1>4x +7 ,得 x <−4 . 【知识点】常规一元一次不等式组的解法6. 【答案】D【知识点】常规一元一次不等式组的解法7. 【答案】C【解析】设该村有 x 户,则这批种羊中母羊有 (5x +17) 只,根据题意可得 {5x +17−7(x −1)>0,5x +17−7(x −1)<3, 解得 10.5<x <12, 因为 x 为正整数, 所以 x =11,所以这批种羊共有 11+5×11+17=83(只). 【知识点】一元一次不等式组的应用8. 【答案】B【知识点】不等式的概念9. 【答案】B【知识点】含参一元一次不等式组、不等式组的整数解10. 【答案】A【知识点】含参一元一次不等式组二、填空题(共7题)11. 【答案】求不等式的解集的过程【知识点】不等式的解集12. 【答案】 x <4 ; 1<m <5【知识点】二元一次方程、常规一元一次不等式组的解法13. 【答案】 x <−√2−1【知识点】常规一元一次不等式的解法、分母有理化14. 【答案】 m ≤4【解析】不等式组 {x >4,x >m的解集是 x >4,得 m ≤4. 【知识点】含参一元一次不等式组15. 【答案】 −3【知识点】常规一元一次不等式组的解法16. 【答案】14【解析】A类蟹与B类蟹每只单价之比为3:4,设A类蟹价格为3x,B类蟹价格为4x.∵批发时每只价格相同,依题意可得,∴2A+B+3C8=6A+3B+2C12,24A+12B+36C=48A+24B+16C,∵A=3x,B=4x,∴C=6x,∵A,B,C三类单价之和不低于40元,不高于60元,∴40≤A+B+C≤60,即:40≤13x≤60,∵A(3x),B(4x),C(6x)单价均为整数,∴4013≤x≤6013,x取整为x=4.∴A=3x=12,B=4x=16,C=6x=24.第一批大闸蟹每只价格为:2A+B+3C8=2×12+16+24×38=14元.故第一批大闸蟹每只价格为14元.【知识点】一元一次不等式组的应用17. 【答案】−6【解析】{2x−a<1, ⋯⋯①x−2b>3. ⋯⋯②由①得2x<1+a,x<1+a2,由②得,x>3+2b,综上,不等式组的解为3+2b<x<1+a2,又∵已知解集:−1<x<1,∴{3+2b=−1,1+a2=1,解得{a=1,b=−2,∴(a+1)(b−1)=(1+1)(−2−1)=−6.【知识点】含参一元一次不等式组三、解答题(共8题)18. 【答案】(1) √3+√2;√7(2)∵M {−2,x −1,2x }=13×(−2+x −1+2x )=13×(3x −3)=x −1,∵M {−2,x −1,2x }=min {−2,x −1,2x }=x −1, ∴ 可知 {x −1≤−2,x −1≤2x, 解之得 {x ≤−1,x ≥−1,∴ 可知 x =−1.(3) 在同一直角坐标系中,作出 y =12x −3,y =−12x −1,y =−2x +4 的图象如图所示: −2 【解析】(1) ∵M {1,2,3}=13(1+2+3)=2∴M{√3,√12,√18}=13×(√3+√12+√18)=13×(√3+2√3+3√2)=√3+√2,又 ∵min {1,2,3}=1,min {2,2,2}=2⋯, ∴ 可知 min 表示其中最小数字, ∵π>3,故 π2>9, ∴ 可知 π>√9, ∵9>8>7,∴√9>√8>√7,即 √9>2√2>√7, ∴ 可知 π>2√7>√7, ∴min{2√2,π,√7}=√7. 故答案为:√3+√2;√7.(3) 联立 {y =−12x −1,y =12x −3,解得 {x =2,y =−2, ∴y =−12x −1 与 y =12x −3 交点坐标为 (2,−2),联立 {y =−12x −1,y =−2x +4, 解得 {x =103,y =−83,∴y =−12x −1 与 y =−2x +4 交点坐标为 (103,−83), 由函数图象可知:当 x ≤2 时,min {12x −3,−12x −1,−2x +4}=12x −3≤−2, ∴min {12x −3,−12x −1,−2x +4} 最大值为 −2,当 2<x <103时,min {12x −3,−12x −1,−2x +4}=−12x −1,则 −53<−12x <−1,−83<−12x −1<−2,∴min {−12x −3,−12x −1,−2x +4} 最大值小于 −2, 当 x ≥103时,min {12x −3,−12x −1,−2x +4}=−2x +4, ∴−2x ≤−203,−2x +4≤−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −83,∵−2>−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −2.故答案为:−2.【知识点】常规一元一次不等式组的解法、平方根的估算、一次函数与二元一次方程(组)的关系19. 【答案】 x >2.【知识点】常规一元一次不等式的解法20. 【答案】(1) {5x +6y =7, ⋯⋯①2x +3y =4. ⋯⋯②① − ② ×2 得:x =−1.把 x =−1 代入①得:y =2.则方程组的解为{x =−1,y =2.(2) {x −4<3(x −2), ⋯⋯①1+2x 3+1>x. ⋯⋯②解不等式①得x >1.解不等式②得x <4.∴ 不等式组的解集为1<x <4.【知识点】加减消元、常规一元一次不等式组的解法21. 【答案】(1) {5x −2y =4, ⋯⋯①2x −y =1. ⋯⋯②① − ② ×2,得:x =2.将 x =2 代入②,得:4−y =1.解得y =3.∴ 方程组的解为{x =2,y =3.(2) 解不等式 3x −2≥1,得:x ≥1.解不等式 x +9>3(x +1),得:x <3.则不等式组的解集为1≤x <3.【知识点】加减消元、常规一元一次不等式组的解法22. 【答案】(1) 设A 型汽车每辆价格为 x 万元,B 型汽车每辆的价格为 y 万元,由题意,得{4x +7y =310,10x +15y =700,解得{x =25,y =30.故A 型汽车每辆的价格为 25 万元,B 型汽车每辆的价格为 30 万元.(2) 设购买A 型汽车 m 辆,则购买B 型汽车 (10−m ) 辆,由题意,得{m <10−m,25m +30(10−m )≤285.解得3≤m <5.因为 m 是整数,所以 m =3或4.当 m =3 时,该方案所需费用为 25×3+30×7=285(万元); 当 m =4 时,该方案所需费用为 25×4+30×6=280(万元).故费用最省的方案是购买 4 辆A 型汽车,6 辆B 型汽车,该方案所需费用为 280 万元. 【知识点】一元一次不等式组的应用、综合应用23. 【答案】原不等式组为{3x −5>2(x −3), ⋯⋯①x+43≥x. ⋯⋯②解不等式 ①,得x >−1.解不等式 ②,得x ≤2.∴ 原不等式组的解集为 −1<x ≤2. ∴ 原不等式组的所有非负整数解为 0,1,2.【知识点】常规一元一次不等式组的解法24. 【答案】(1) 由题意得:y =(112−80)x +(80−64)(500−x ), 化简得:y =16x +8000.(2) 由题意得:{16x +8000≥9600,500−x ≥3x.解得:100≤x ≤125.因为 x 为整数,所以x =100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125.所以共有 26 种采购方案. (3) 设利润为 w , w=(112−3a −80)x +(80+2a −64)(500−x )=(16−5a )x +8000+1000a.当 16−5a >0,即 a <165时,w 随 x 增大而增大,所以 x =125 时,利润最大,w 最大=(16−5a )×125+8000+1000a =11500, 解得 a =195.11 综上可知,a =195.【知识点】一元一次不等式组的应用、利润问题、解析式法25. 【答案】(1) −3,2.5(2) −4≤m ≤−2 或 0≤m ≤2(3) {x+12>−1, ⋯⋯①1+2(x −a )≤3, ⋯⋯② 由 ① 得,x >−3;由 ② 得,x ≤a +1,∵ 不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时, ∴ 四个连动整数解为 −2,−1,1,2, ∴2≤a +1<3,∴1≤a <2∴a 的取值范围是 1≤a <2.【解析】(2) 解关于 x 的方程 2x −m =x +1 得,x =m +1.∵ 关于 x 的方程 2x −m =x +1 的解满足是连动数,∴{−1−m −1≤2,1−m −1≥2或 {m +1−1≤2,m +1+1≥2, 解得 −4≤m ≤−2 或 0≤m ≤2.【知识点】常规一元一次不等式组的解法、含参一元一次方程的解法、数轴的概念、含参一元一次不等式组、不等式组的整数解。

北师大版八年级下册数学第二单元测试题与答案(一)

北师大版八年级下册数学第二单元测试题与答案(一)

北师大版八年级下册数学第二单元测试题与答案(一)北师大版八年级下册数学第二单元测试题及答案(一)一、选择题1.不等式-2x<4的解集是()A。

x>2B。

x<2C。

x<-2D。

x>-22.下列不等式一定成立的是()A。

5a>4aB。

x+2<x+3C。

-a>-2aD。

x<y3.不等式-3x+6>的正整数解有()A。

1个B。

2个C。

3个D。

无数多个4.在数轴上表示不等式x≥-2的解集,正确的是()A。

B。

C。

D。

5.如图,当y<时,自变量x的范围是()A。

x<-2B。

x>-2C。

x<2D。

x>26.要使代数式有意义,则x的取值范围是()A。

x≥2B。

x≥-2C。

x≤-2D。

x≤27.不等式组的解集是()A。

x<3B。

3<x<4C。

x<4D。

无解8.若a>b>0,则下列结论正确的是()A。

-a>-bB。

a+b>a-bC。

a3<b3D。

a2>b29.下列图形中,能表示不等式组的解集的是()A。

B。

C。

D。

10.观察函数y1和y2的图象,当x=1,两个函数值的大小为()A。

y1>y2B。

y1<y2C。

y1=y211.如果不等式组有解,那么m的取值范围是()A。

m>5B。

m≥5C。

m<5D。

m≤812.不等式组的最小整数解为()A。

-1B。

0C。

1D。

4二、填空题13.已知三角形的两边为3和4,则第三边a的取值范围是2<a<7.14.不等式组的解集是{x|-3<x<2}。

15.不等式组-1<x<4的整数解有5个。

16.若a>c,则当m<loga c时,am<cm;当m>loga c 时,am>cm。

17.小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有2个。

18.不等式组-1<x-5<11的解集是{ x|4<x<16 }。

19.若不等式组有解,则a的取值范围是{ a|a<1或a>3 }。

20.一次函数y=-3x+12中x=-2时,y<18.21.不等式x-8>3x-5的最大整数解是-4.22.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为{ x|x≥a }。

北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)

北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)

北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)考试范围:第二单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 给出下列数学表达式: ①−3<0; ②4x+3y>0; ③x=5; ④x2−xy+y2; ⑤x+2>y−7.其中不等式的个数是.( )A. 5B. 4C. 3D. 12. 下列不等关系表示正确的是.( )A. a是负数可表示为a>0B. x不大于3可表示为x>3C. m与4的差是负数可表示为m−4<0D. x与2的和为非负数可表示为x+2>03. 已知2m>4m,那么.( )A. m一定是正数B. m是0或负数C. m是非负数D. m一定是负数4. 设a,b,c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是.( )A. c<b<aB. b<c<aC. c<a<bD. b<a<c5. 等式√x−3√x+1=√x−3x+1成立的x的取值范围在数轴上可表示为( )A. B. C. D.6. 已知关于x的不等式(1−a)x>1的解集为x<11−a,则a的取值范围是( )A. a≥1B. 0≤a<1C. a>1D. 0<a≤17. 欲用甲、乙两种运输车将46t抗旱物资运往灾区,甲种运输车载质量为5t,乙种运输车载质量为4t,若安排车辆不超过10辆,则甲种运输车至少应安排.( )A. 4辆B. 5辆C. 6辆D. 7辆8. 某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若小李想买下标价为360元的这种商品,商店老板让价的最大限度为.( )A. 160元B. 120元C. 100元D. 82元9. 函数y =kx +b(k,b 为常数,且k ≠0)的图象如图所示,则关于x 的不等式kx +b >0的解集为.( )A. x >0B. x <0C. x <2D. x >210. 如图,一次函数y =kx +b(k,b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)的图象相交于点P ,则不等式kx +b >ax 的解集是.( )A. x >1B. x <1C. x >2D. x <211. 用若干辆载重量为6吨的货车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有x 辆货车,则x 应满足的不等式组是( )A. {6x −(4x +18)>06x −(4x +18)≤5B. {(4x +18)−6(x −1)>0(4x +18)−6(x −1)≤5C. {6(x −1)−(4x +18)⩾06(x −1)−(4x +18)<5D. {(4x +18)−6(x −1)⩾0(4x +18)−6(x −1)<5 12. 若关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解,则实数a 的取值范围是( ) A. 7<a <8 B. 7<a ≤8 C. 7≤a <8 D. 7≤a ≤8第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 当x________时,代数式x+32−5x−16的值是非负数.14. 如图,一次函数y=x+b与一次函数y=kx+4的图象相交于点P(1,3),则关于x的不等式x+b>kx+4的解集是.15. 不等式组╔╔ \ begin{cases}3x+1 .16. 我们定义|a bc d |=ad−bc,例如|2345|=2×5−3×4=−2,则不等式组1<|1x34|<3的解集是.三、解答题(本大题共9小题,共72.0分。

北师大版八年级数学下册第二章学情评估附答案 (1)

北师大版八年级数学下册第二章学情评估附答案 (1)

北师大版八年级数学下册第二章学情评估一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.现有以下数学表达式:①-3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x ≥5;⑥x+2>y+3.其中不等式有( )A.5个B.4个C.3个D.1个2.下列不等式的变形中正确的是( )A.由a>b,得a-2>b+2B.如果a<b,那么-12a<-12bC.如果a>b,那么3a+1>3b+1D.如果a>b,那么ac2>bc23.不等式5x≤-10的解集在数轴上表示为( )4.已知关于x的不等式(a-1)x>2的解集为x<2a-1,则a的取值范围是( )A.a<1 B.a>1 C.a<0 D.a>05.如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是( )A.x>-2B.x>3C.x<-2D .x <36.下列说法中,错误的是( )A .不等式x <2的正整数解只有一个B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个7.已知关于x 的不等式组⎩⎨⎧5-2x >-1,x -a >0无解,则a 的取值范围是( )A .a ≥2B .a >3C .a ≥3D .a ≤38.已知点P (2a -1,1-a )在第一象限,则a 的取值范围在数轴上表示正确的是( )9.不等式组⎩⎨⎧5x +2>3(x -1),12x -1≤7-32x的所有非负整数解的和是( )A .10B .7C .6D .010.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子的袋数为( ) A .4B .5C .6D .7二、填空题(本题共6小题,每小题3分,共18分)11.小明借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,设以后几天里每天读x 页,所列不等式为________________________.12.不等式组⎩⎨⎧x ≥2-3x ,x -12-x -36<1的解集为__________.13.函数y =mx +n 和函数y =kx 在同一坐标系中的图象如图所示,则关于x 的不等式mx +n >kx 的解集是____________.14.已知关于x 的不等式2x -a >-3的解集如图所示,则a 的值是________.15.若关于x 的方程3(x +k )=x +6的解是非负数,则k 的取值范围是____________.16.若关于x ,y 的二元一次方程组⎩⎨⎧3x +y =1+a ,x +3y =3的解满足x +y <2,则整数a的最大值是________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)解不等式2(x +2)3≤7(x -1)6-1,并把解集在数轴上表示出来.18.(8分)解不等式组⎩⎨⎧2x -4>3(x -2),4x >x -72.19.(8分)某超市的某种毛笔每支售价25元,书法练习本每本售价5元.该超市为促销,制定了两种优惠活动方案.活动方案1:买一支毛笔送一本书法练习本;活动方案2:按购买金额的九折付款.八年级(1)班的小明同学要为本班书法兴趣小组购买这种毛笔10支、书法练习本x (x ≥10)本.(1)写出两种优惠活动实际付款金额y 1(元)、y 2(元)与x (本)之间的函数关系式; (2)请问:小明选择哪种优惠活动更合算?20.(8分)对于任意实数m ,n 定义一种新运算m ※n =mn -m +3,等式的右边是通常的加减法和乘法运算,例如:3※5=3×5-3+3=15.请根据上述定义解决问题:若a <2※x <7,且解集中恰有两个整数解,求a 的取值范围.21.(10分)如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值;(2)利用图象求出:当x取何值时,y1≥y2;(3)利用图象求出:当x取何值时,y1>0且y2<0.22.(10分)某超市准备购进A、B两种台灯,其中A台灯每盏的进价比B台灯的进价贵30元,A台灯每盏的售价为120元,B台灯每盏的售价为80元.已知用5 200元购进A、B两种台灯各40盏.(1)求A、B两种台灯每盏的进价分别是多少元;(2)超市打算购进A、B两种台灯共100盏,要求A、B两种台灯的总利润不得少于3 400元,不得多于3 450元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(5<m<15)元,当超市获利最大为3 180元时,求m的值.答案一、1.B 2.C 3.C 4.A 5.A 6.C 7.C 8.C9.A点拨:⎩⎨⎧5x +2>3(x -1),①12x -1≤7-32x ,②解不等式①得x >-2.5,解不等式②得x ≤4, ∴不等式组的解集为-2.5<x ≤4,∴不等式组的所有非负整数解是0,1,2,3,4, ∴不等式组的所有非负整数解的和是0+1+2+3+4=10. 10.C二、11.2×5+(10-2)x ≥72 12.12≤x <3 13.x <-114.1 15.k ≤2 16.3三、17.解:去分母,得4(x +2)≤7(x -1)-6.去括号,得4x +8≤7x -7-6. 移项、合并同类项,得-3x ≤-21. 系数化为1,得x ≥7. 解集在数轴上表示如图所示.18.解:⎩⎨⎧2x -4>3(x -2),①4x >x -72.②解不等式①得x <2,解不等式②得x >-1, 则不等式组的解集为-1<x <2.19.解:(1)由题意可得,y 1=10×25+(x -10)×5=5x +200,y 2=(10×25+5x )×0.9=4.5x +225,即y 1=5x +200,y 2=4.5x +225.(2)当y 1>y 2时,即5x +200>4.5x +225,解得x >50; 当y 1=y 2时,即5x +200=4.5x +225,解得x =50; 当y 1<y 2时,即5x +200<4.5x +225,解得x <50;即当购买书法练习本超过50本时,选择方案2比较合算;当购买书法练习本50本时,选择方案1和2一样合算;当购买书法练习本不足50本时,选择方案1比较合算.20.解:由题意可知2※x =2x -2+3=2x +1.∵a <2※x <7,∴a <2x +1<7,∴a -12<x <3.由已知得解集中恰有两个整数解, ∴这两个整数解为1,2,∴0≤a -12<1,∴1≤a <3.21.解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12.将A 点的坐标代入y 2=-3x +b , 得-6+b =-1,即b =5.(2)从图象可以看出:当x ≥2时,y 1≥y 2. (3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝ ⎛⎭⎪⎫53,0.从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.22.解:(1)设A 台灯每盏的进价为x 元,B 台灯每盏的进价为y 元.根据题意,得⎩⎨⎧x -y =30,40x +40y =5 200,解得⎩⎨⎧x =80,y =50.答:A 台灯每盏的进价为80元,B 台灯每盏的进价为50元. (2)设购进A 台灯a 盏,则购进B 台灯(100-a )盏.根据题意, 得⎩⎨⎧(120-80)a +(80-50)(100-a )≥3 400,(120-80)a +(80-50)(100-a )≤3 450, 解得40≤a ≤45.由题意可知a 为正整数,∴a可取40,41,42,43,44,45,∴有6种进货方案.(3)设超市获利W元,根据题意,得W=(120-80-m)a+(80-50)(100-a)=(10-m)a+3 000.当5<m<10时,10-m>0,此时W随a的增大而增大,∴当a=45时,W最大,最大值为45(10-m)+3 000,∴45(10-m)+3 000=3 180,解得m=6.当m=10时,10-m=0,∴W=3 000;当10<m<15时,10-m<0,此时W随a的增大而减小,∴当a=40时,W最大,最大值为40(10-m)+3 000,∴40(10-m)+3 000=3 180,解得m=5.5(不合题意,舍去).综上所述,当超市获利最大为3 180元时,m的值为6.北师大版八年级数学下册期末学情评估一、选择题(共8小题,每小题3分,计24分)1.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是( )(第1题)A.1个B.2个C.3个D.4个2.若a>b,则下列不等式一定成立的是( )A.ac2>bc2B.a+c>b+cC.ab>b2 D.a 2 < b 23.下列等式中,从左到右的变形是因式分解的是( ) A.x2-4x+1=x(x-4)+1B.(y-1)(y-2)=y2-3y+2C.18x3y2=3x3y2·6D .xy 2+2xy =xy (y +2)4.如图,若一次函数y 1=mx +n 与y 2=-x +a 的交点坐标为(3,2a -8),则mx+n <-x +a 的解集为( ) A .x <3 B .x <1 C .x >3D .0<x <3(第4题) (第5题)5.如图,△ABC 是等边三角形,D 是AC 的中点,DE ⊥BC ,CE =3,则△ABC 的周长为( ) A .12 B .24 C .36 D .486.若分式方程x -1x +4=mx +4有增根,则m 为( ) A .1B .0C .-4D .-57.如图,▱ABCD 的周长为16,AC ,BD 相交于点O ,OE ⊥AC 交AD 于点E ,则△DCE的周长为( ) A .4B .6C .8D .10(第7题) (第8题) (第13题)8.如图,在Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 的中点,∠GDH =90°,∠GDH 绕点D 旋转,DG ,DH 分别与边AC ,BC 交于点E ,F .下列结论:①AE +BF =AC ;②AE 2+BF 2=EF 2;③S 四边形CEDF =12S △ABC ;④△DEF 始终为等腰直角三角形.其中正确的是( ) A .①②③④B .①②③C .①④D .②③二、填空题(共5小题,每小题3分,计15分)9.小明把自己的左手手印与右手手印按在同一张白纸上,左手手印________(填“能”或“不能”)通过平移与右手手印完全重合在一起.10.已知一个正多边形的内角和为1 440°,则它的一个外角的度数为______. 11.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x 个,可列方程为________________.12.关于x 的不等式组⎩⎨⎧x -b >2a ,x -a <2b 的解集为-3<x <3,则a ,b 的值分别为________.13.如图,在△ABC 中,AB =35,AC =45,点F 在AC 上,AE 平分∠BAC ,AE⊥BF 于点E .若D 为BC 的中点,则DE 的长为________. 三、解答题(共13小题,计81分) 14.(5分)将下列各式因式分解: (1)4x 2y -9y ; (2)(a 2+4)2-16a 2.15.(5分)如图,在边长为1的小正方形组成的网格中,给出了格点△ABC (顶点为网格线的交点).(1)将△ABC 先向下平移3个单位长度,再向右平移4个单位长度得到△A 1B 1C 1,画出平移后的图形;(2)将△ABC 绕点A 1顺时针旋转90°后得到△A 2B 2C 2,画出旋转后的图形;(3)借助网格,利用无刻度直尺画出△A 1B 1C 1的中线A 1D 1(画图中要体现找关键点的方法).(第15题)16.(5分)(1)解不等式:x 3-x -12≥1;(2)解不等式组:⎩⎨⎧1-2x ≤3,①x +43>3x -72-1,②并在数轴上表示其解集.17.(5分)解下列分式方程: (1)xx -2-1=6x 2-4; (2)2-x x -3=13-x -2.18.(5分)先化简:11-x ÷x 2+2x x 2-2x +1+1x +2,再选择一个你喜欢的x 值代入求值.19.(5分)若关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k 的解都是非负数.(1)求k 的取值范围;(2)若M =3x +4y ,求M 的取值范围.20.(5分)如图,在△ABC 中,∠C =90°, AD 平分∠BAC, DE ⊥AB 于点E ,点F在AC 上,且BD =DF . (1)求证: CF =EB ;(2)请你判断AE ,AF 与BE 之间的数量关系,并说明理由.(第20题)21.(6分)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆.22.(7分)某社区计划购进A,B两种健身器材若干件,已知购进B种健身器材的单价是A种健身器材的3倍,用3 850元购进A种健身器材比用4 950元购进B种健身器材多4件.(1)A,B两种健身器材的单价分别是多少元?(2)若购进A,B两种健身器材共20件,且购进A,B两种健身器材的总费用不超过20 000元,求至少购进A种健身器材多少件.23.(7分)如图所示,在△ABC中,AB=BC,D是BC上一点,DE⊥AB于点E,DF ⊥BC,交AC于点F.(1)若∠AFD=155°,求∠EDF的度数;(2)若F是AC的中点,求证:∠CFD=12∠B.(第23题)24.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE,四边形AFCE是平行四边形吗?请说明理由.(第24题)25.(8分)如图①,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图①中的△CEF绕点C旋转一定的角度,得到图②,(1)中的结论还成立吗?作出判断并说明理由.(第25题)26.(10分)如图,在平面直角坐标系中,直线y=-43x+4与x轴、y轴分别相交于点A、B.点C的坐标为(0,-2),过点A,C作直线.(1)求直线AC的表达式;(2)若P是直线AB上的动点,Q是直线AC上的动点,当以点O,A,P,Q为顶点的四边形是平行四边形时,求点P的坐标.(第26题)答案一、1.C 2.B 3.D 4.A 5.C 6.D 7.C 8.A二、9.不能10.36°11.400x=500x+1012.-3,3 13.52三、14.解:(1)原式=y(4x2-9)=y(2x+3)(2x-3).(2)原式=(a2+4-4a)(a2+4+4a)=(a-2)2(a+2)2.15.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)如图,线段A1D1即为所求.(第15题)16.解:(1)去分母,得2x-3(x-1)≥6,去括号,得2x-3x+3≥6,移项,得2x-3x≥6-3,合并同类项,得-x≥3,系数化为1,得x≤-3.(2)解不等式①,得x≥-1,解不等式②,得x<5,所以不等式组的解集为-1≤x<5.将解集表示在数轴上如图.(第16题)17.解:(1)xx-2-1=6x2-4,x x-2-1 =6(x-2)(x+2),x(x+2)-(x+2)(x-2) =6,x2+2x-x2+4 =6,2x=2,x=1.经检验:x=1是原方程的解,所以原方程的解是x=1.(2)2-xx-3=13-x-2,2-x x-3=-1x-3-2,2-x=-1-2(x-3),2-x=-1-2x+6,-x+2x=-1+6-2,x=3.经检验:x=3是原方程的增根,所以原方程无解.18.解:原式=11-x ·(x-1)2x(x+2)+1x+2=1-xx(x+2)+1x+2=1-x+x x(x+2)=1x2+2x.因为1-x≠0,x(x+2)≠0,所以x≠1,0,-2,当x=-1时,原式=1(-1)2+2×(-1)=-1.(x取值不唯一)19.解:(1)解方程组⎩⎨⎧x +y =30-k ,3x +y =50+k ,得⎩⎨⎧x =k +10,y =-2k +20,因为方程组的解都是非负数, 所以⎩⎨⎧k +10≥0,-2k +20≥0,解得-10≤k ≤10.(2)M =3x +4y =3(k +10)+4(-2k +20)=-5k +110, 因为-10≤k ≤10, 所以-50≤-5k ≤50, 所以60≤-5k +110≤160, 即60≤M ≤160.20.(1)证明: ∵AD 平分∠BAC, DE ⊥AB ,∠C =90°,∴DC =DE .在Rt △DCF 和Rt △DEB 中, ⎩⎨⎧ DC =DE ,DF =DB , ∴Rt △DCF ≌Rt △DEB (HL), ∴CF =EB .(2)解:AF +BE =AE .理由如下: ∵DC =DE ,DA =DA , ∴Rt △DCA ≌Rt △DEA , ∴AC =AE , ∴AF +FC =AE , 即AF +BE =AE .21.解:设该地4G 的下载速度是每秒x 兆,则该地5G 的下载速度是每秒15x 兆,由题意得600x-60015x=140, 解得x =4,经检验:x =4是原分式方程的解,且符合题意.15x=15×4=60.答:该地4G的下载速度是每秒4兆,5G的下载速度是每秒60兆.22.解:(1)设A种健身器材的单价为x元,则B种健身器材的单价为3x元,根据题意,得3 850x-4 9503x=4,解得x=550,经检验x=550是原方程的解,且符合题意,3×550=1 650(元).答:A,B两种健身器材的单价分别是550元,1 650元.(2)设购进A种健身器材m件,则购进B种健身器材(20-m)件.根据题意,得550m+1 650(20-m)≤20 000,解得m≥119 11 .答:至少购进A种健身器材12件.23.(1)解:∵∠AFD=155°,∴∠DFC=25°.∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°.∴∠C=180°-90°-25°=65°.∵AB=BC,∴∠C=∠A=65°,∴∠EDF=360°-65°-155°-90°=50°.(2)证明:连接BF.∵AB=BC,且F是AC的中点,∴BF⊥AC,∠ABF=∠CBF=12∠ABC,∴∠CFD+∠BFD=90°. ∵DF⊥BC,∴∠CBF+∠BFD=90°,∴∠CFD =∠CBF ,∴∠CFD =12∠ABC . 24.(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠ADB =∠CBD ,∴∠ADE =∠CBF ,在△ADE 和△CBF 中,⎩⎨⎧AD =CB ,∠ADE =∠CBF ,DE =BF ,∴△ADE ≌△CBF (SAS).(2)解:四边形AFCE 是平行四边形,理由如下:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵DE =BF ,∴OD +DE =OB +BF ,即OE =OF ,∴四边形AFCE 是平行四边形.25.解:(1)AF =BE .证明如下:∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60°,在△AFC 与△BEC 中,⎩⎨⎧AC =BC ,∠ACF =∠BCE ,CF =CE ,∴△AFC ≌△BEC (SAS),∴AF =BE .(2)成立.理由:∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°,∴∠ACB -∠FCB =∠FCE -∠FCB ,即∠ACF =∠BCE ,在△AFC 与△BEC 中,⎩⎨⎧AC =BC ,∠ACF =∠BCE ,CF =CE ,∴△AFC ≌△BEC (SAS),∴AF =BE .26.解:(1)在y =-43x +4中,令y =0,得x =3, ∴点A 的坐标为(3,0),设直线AC 的表达式为y =kx +b ,将A (3,0),C (0,-2)的坐标代入,得⎩⎨⎧0=3k +b ,-2=b ,解得⎩⎨⎧k =23,b =-2,∴直线AC 的表达式为y =23x -2. (2)设P ⎝ ⎛⎭⎪⎫m ,-43m +4,Q ⎝ ⎛⎭⎪⎫n ,23n -2,而A (3,0),O (0,0), ①以PQ ,AO 为对角线,则PQ ,AO 的中点重合,∴⎩⎪⎨⎪⎧m +n 2=3+02,-43m +4+23n -22=0+02,解得⎩⎨⎧m =2,n =1, ∴点P 的坐标为⎝⎛⎭⎪⎫2,43; ②以PA ,QO 为对角线,则PA ,QO 的中点重合,∴⎩⎪⎨⎪⎧m +32=n +02,-43m +4+02=23n -2+02,解得⎩⎨⎧m =2,n =5, ∴点P 的坐标为⎝⎛⎭⎪⎫2,43; ③以PO ,QA 为对角线,则PO ,QA 的中点重合,∴⎩⎪⎨⎪⎧m +02=n +32,-43m +4+02=23n -2+02,解得⎩⎨⎧m =4,n =1, ∴点P 的坐标为⎝⎛⎭⎪⎫4,-43. 综上所述,点P 的坐标为⎝⎛⎭⎪⎫2,43或⎝ ⎛⎭⎪⎫4,-43.。

北师大版八年级数学下册第二章学情评估附答案 (3)

北师大版八年级数学下册第二章学情评估附答案 (3)

北师大版八年级数学下册第二章学情评估一、选择题(共8小题,每小题3分,计24分) 1.下列各式中,是一元一次不等式的是( )A .12x 2≥12B .-5>xC.4x+3≥1D .3x +y <02.关于x 的一元一次不等式3x ≤4+x 的解集在数轴上表示为( )3.a ,b 为实数,且a >b ,则下列不等式的变形正确的是( )A .a -x <b -xB .a 2+2≤b 2+2 C.a 3>b3D .-5a >-5b4.某班数学兴趣小组对不等式组⎩⎨⎧x >3,x ≤a讨论时得到以下结论:①若a =5,则不等式组的解集为3<x ≤5; ②若a =2,则不等式组无解;③若不等式组无解,则a 的取值范围为a <3; ④若不等式组只有两个整数解,则a 的值可以为5.1. 其中,正确的结论的序号是( ) A .①②③ B .①③④ C .①②④D .①②③④5.已知一次函数y =kx +b (k ≠0)的图象经过A (-3,0),B (0,3)两点,则关于x 的不等式kx +b <0的解集是( ) A .x >-3B .x <-3C .-3<x <3D .-3≤x ≤36.若关于x 的不等式3x -m ≤0的正整数解是1,2,3,则m 的取值范围是( )A .m ≥9B .9<m <12C .m <12D .9≤m <127.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x ”到判断“结果是否≥15”为一次运行过程.如果程序运行两次就停止,那么x 的取值范围是( )(第7题)A .x ≥3B .3≤x <7C .3<x ≤7D .x ≤78.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打8折.用27元最多可以购买该商品( ) A .8件B .9件C .10件D .11件二、填空题(共5小题,每小题3分,计15分) 9.若x 是非负数,则x ________0.10.关于x 的不等式组的解集如图所示,则这个不等式组的解集是________.(第10题) (第11题)11.一次函数y =-32x +3的图象如图所示,当-3<y <3时,x 的取值范围是________.12.若关于x 的不等式组⎩⎨⎧x <m +1,x >2m -1无解,则m 的取值范围是________.13.在一次知识竞赛中,共有25道选择题,每道题的四个选项中,有且只有一个答案正确,选对得4分,不选或错选扣2分,如果得分不低于60分才能得奖,那么要得奖至少应选对________道题. 三、解答题(共13小题,计81分) 14.(5分)根据条件列不等式(组): (1)x +1是负数; (2)x 2是非负数;(3)x 的2倍与3的差小于0;(4)a 的5倍与3的差不小于10,且不大于20.15.(5分)解下列不等式: (1)2(1-x )>3x -8; (2)1-x -23>x +12.16.(5分)解不等式组:⎩⎨⎧2x -1<3(x +2),x +52-1≥2x -13.17.(5分)求不等式x -42>4-x 的最小整数解.18.(5分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3).(1)求m,a的值;(2)根据图象,直接写出不等式2x>ax+4的解集.(第18题)19.(5分)关于x的不等式43x+4≥2x-32a的解也是不等式1-2x6>12的解,求a的取值范围.20.(5分)已知关于x的不等式2m-mx2>12x-1.(1)当m=1时,求该不等式的非负整数解;(2)当m取何值时,该不等式有解,并求出其解集.21.(6分)如图,开心农场准备用50 m的护栏围成一块靠墙的长方形花园,设长方形花园的长为a m,宽为b m.(1)当a=30时,求b的值;(2)受场地条件的限制,a的取值范围为18≤a≤26,求b的取值范围.(第21题)22.(7分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n-mn-3n,如:1※2=12×2-1×2-3×2=-6.(1)求(-2)※3;(2)若3※m<-6,化简(2-m)2+-(-m-2)2.23.(7分)若a ,b ,c 是△ABC 的三边,且a ,b 满足关系式|a -6|+(b -8)2=0,c 是不等式组⎩⎪⎨⎪⎧2x +54>x -4,x +2<4x +13的最大整数解,试判断△ABC 的形状.24.(8分)如图,已知函数y 1=2x +b 和y 2=ax -3的图象交于点P (-2,-5),这两个函数的图象与x 轴分别交于点A ,B . (1)分别求出这两个函数的表达式; (2)求△ABP 的面积;(3)根据图象直接写出不等式2x +b <ax -3的解集.(第24题)25.(8分)某老师计划为学生购买文具,已知购买1件A 种文具和2件B 种文具共需17元,购买2件A 种文具和3件B 种文具共需29元. (1)求A ,B 两种文具每件价格分别为多少元;(2)该老师计划购买A ,B 两种文具共30件,总费用不超过165元,那么最多可购买A 种文具多少件?26.(10分)定义:如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. 请根据以上定义回答下列问题:(1)在方程①3x -1=0;②23x +1=0;③x -(3x +1)=-5中,是不等式组⎩⎨⎧-x +2>x -5,3x -1>-x +2的关联方程的是________;(填序号) (2)若不等式组⎩⎨⎧x -13<1,1+x >-3x +2的一个关联方程的根是整数,则这个关联方程可以是________;(写出一个即可) 解决问题:(3)若方程3-x =2x ,3+x =2⎝ ⎛⎭⎪⎫x +12都是关于x 的不等式组⎩⎨⎧x <2x -m ,x -2≤m 的关联方程,求m 的取值范围.答案一、1.B 2.D 3.C 4.C 5.B 6.D 7.B 8.C 二、9.≥ 10.-1<x ≤1 11.0<x <4 12.m ≥2 13.19 三、14.解:(1)x +1是负数可以表示为x +1<0.(2)x 2是非负数可以表示为x 2≥0.(3)x 的2倍与3的差小于0可以表示为2x -3<0.(4)a 的5倍与3的差不小于10,且不大于20可以表示为⎩⎨⎧5a -3≥10,5a -3≤20.15.解:(1)去括号,得2-2x >3x -8,移项,得-2x -3x >-8-2, 合并同类项,得-5x >-10, 系数化为1,得x <2.(2)去分母,得6-2(x -2)>3(x +1), 去括号,得6-2x +4>3x +3, 移项,得-2x -3x >3-6-4, 合并同类项,得-5x >-7, 系数化为1,得x <75.16.解:⎩⎨⎧2x -1<3(x +2),①x +52-1≥2x -13,②解不等式①,得x >-7, 解不等式②,得x ≤11, 故不等式组的解集为-7<x ≤11. 17.解:x -42>4-x ,去分母,得x -4>8-2x , 移项、合并同类项,得3x >12, 系数化为1,得x >4.故不等式x -42>4-x 的最小整数解为5.18.解:(1)把(m ,3)代入y =2x ,得2m =3,解得m =32,所以点A 的坐标为⎝ ⎛⎭⎪⎫32,3.因为函数y =ax +4的图象过点A , 所以32a +4=3,解得a =-23.(2)不等式2x >ax +4的解集为x >32.19.解:解不等式1-2x 6>12,得x <-1.解不等式43x +4≥2x -32a ,得x ≤6+94a .由题意知6+94a <-1,解得a <-289.20.解:(1)当m =1时,2-x 2>12x -1, 解得x <2,所以该不等式的非负整数解为0,1. (2)2m -mx 2>12x -1, 2m -mx >x -2,(m +1)x <2(m +1).当m ≠-1时,不等式有解,当m >-1时,原不等式的解集为x <2;当m <-1时,原不等式的解集为x >2.21.解:(1)由题意得a +2b =50,当a =30时,30+2b =50,解得b =10.(2)因为a +2b =50,所以a =50-2b ,因为18≤a ≤26,所以⎩⎨⎧50-2b ≥18,50-2b ≤26,解这个不等式组,得12≤b ≤16.22.解:(1)(-2)※ 3=(-2)2×3-(-2)×3-3× 3=43+23-3 3=3 3.(2)3※m =32×m -3m -3m =3m .因为3※m <-6,所以3m <-6,所以m <-2, 所以(2-m )2+(-m -2)2=2-m -m -2=-2m .23.解:因为|a -6|+(b -8)2=0,所以a -6=0,b -8=0,所以a =6,b =8.解不等式组⎩⎪⎨⎪⎧2x +54>x -4,x +2<4x +13,得5<x <212,所以c =10.因为62+82=102,即a 2+b 2=c 2,所以△ABC 是直角三角形.24.解:(1)将(-2,-5)代入y 1=2x +b ,得-5=2×(-2)+b ,解得b =-1.将(-2,-5)代入y 2=ax -3,得-5=a ×(-2)-3,解得a =1.所以这两个函数的表达式分别为y 1=2x -1,y 2=x -3.(2)在y 1=2x -1中,令y 1=0,得x =12, 所以点A 的坐标为⎝ ⎛⎭⎪⎫12,0. 在y 2=x -3中,令y 2=0,得x =3,所以点B 的坐标为(3,0).所以S △ABP =12×AB ×5=12×⎝ ⎛⎭⎪⎫3-12×5=254. (3)不等式2x +b <ax -3的解集为x <-2.25.解:(1)设每件A 种文具的价格为x 元,每件B 种文具的价格为y 元,依题意得⎩⎨⎧x +2y =17,2x +3y =29,解得⎩⎨⎧x =7,y =5.答:每件A 种文具的价格为7元,每件B 种文具的价格为5元.(2)设购买m 件A 种文具,则购买(30-m )件B 种文具,依题意得7m +5(30-m )≤165,解得m ≤152. 又因为m 为正整数,所以m 的最大值为7.答:最多可购买A 种文具7件.26.解:(1)③(2)x -1=0(答案不唯一)(3)解方程3-x =2x ,得x =1,解方程3+x =2⎝⎛⎭⎪⎫x +12,得x =2, 解不等式组⎩⎨⎧x <2x -m ,x -2≤m ,得m <x ≤2+m . 因为方程3-x =2x ,3+x =2⎝ ⎛⎭⎪⎫x +12都是关于x 的不等式组⎩⎨⎧x <2x -m ,x -2≤m的关联方程,所以⎩⎨⎧m <1,2+m ≥2,所以0≤m <1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 一元一次不等式与一元一次不等式组检测题(本试卷满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2015•四川南充中考)若m >n ,下列不等式不一定成立的是( )A.m +2>n +2B.2m >2nC.22m n>D.22m n >2.同时满足不等式2124xx -<-和3316-≥-x x 的整数是( ) A.1,2,3B.0,1,2,3C.1,2,3,4D.0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有 ( ) A.3组 B.4组 C.5组 D.6组)A. B. C. D.5.如果x 的2倍加上5不大于x 的3倍减去4,那么x 的取值范围是( ) A.9>xB.9≥xC.9<xD.9≤x6.(2015•山东泰安中考)不等式组的整数解的个数为( ) A.1B.2C.3D.47.关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,则a 的取值范围是( )A.25411-≤<-aB.25411-<≤-a C.25411-≤≤-aD.25411-<<-a 8.(2015·浙江温州中考)不等式组12,12x x +>⎧⎨-≤⎩的解集是( )A. 1<xB. x ≥3C. 1≤x <3D. 1<x ≤39.如图,函数y=2x-4与x 轴、y 轴交于点(2,0),(0,-4), 当-4<y <0时,x 的取值范围是( )A.x <-1B.-1<x <0C.0<x <2D.-1<x <210.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车 载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种 运输车至少应安排( ) A.4辆B.5辆C.6辆D.7辆二、填空题(每小题3分,共24分) 11.若代数式2151--+t t 的值不小于-3,则的取值范围是_________. 12.若不等式03≤-k x 的正数解是1,2,3,则的取值范围是________. 13.若0)3)(2(>-+x x ,则的取值范围是________. 14.若b a <,用“<”或“>”号填空:2______b a +. 15.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,则)3)(3(+-b a 的值等于_______.16.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________. 17.若关于的不等式5)1(+<-a x a 和42<x 的解集相同,则的值为________. 18.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了_______支. 三、解答题(共46分)19.(6分)解下列不等式(组): (1)1312523-+≥-x x ; (2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x20.(6分)已知关于的方程组⎩⎨⎧=+=+3135y x my x 的解为非负数,求整数的值.21.(6分)若关于的方程52)4(3+=+a x 的解大于关于的方程3)43(4)14(-=+x a x a 的解,求的取值范围.22.(6分)有人问一位老师,他所教的班有多少位学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩下不足6位同学在操场上踢足球”.试问这个班共有多少位学生?23.(6分)(2015·湖南株洲中考)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?24.(8分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2 400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为x kg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量...与实际有不符之处,请找出不符之处,并计算第一季度的实际销售总量.25.(8分)随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量范围.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月的产量范围.第二章一元一次不等式与一元一次不等式组检测题参考答案1.D解析:∵m>n,根据不等式的基本性质1,不等式两边同时加上2,不等号方向不变,故A项正确;∵m>n,且2>0,根据不等式的基本性质2,不等式两边同乘(或除以)同一个正数,不等号方向不变,∴ 2m >2n ,22m n >,故B ,C 项都正确;∵ 当m =1,n =-3时,m >n ,但22m n <,故D 项不一定成立.2.B 解析:由题意,得121426133xx x x .⎧-<-⎪⎨⎪-≥-⎩,解得243x -≤<,所以整数x 的取值为0,1, 2,3.3.B 解析:设三个连续正奇数中间的一个数为, 则 27)2()2(≤+++-x x x , 解得 9≤x ,所以72≤-x . 所以2-x 只能分别取1,3,5,7. 故这样的奇数组有4组.4.A 解析:去括号,得2-2x <4.移项,得-2x <4-2. 合并同类项,得-2x <2. 系数化为1,得x >-1.在数轴上表示时,开口方向应向右,且不包括端点值.故选项B ,C ,D 错误,选项A 正确.5.B 解析:由题意可得,解得,所以的取值范围是.6.C 解析:要求不等式组的整数解的个数,首先求出不等式组的解集,然后从解集中确定整数解.解不等式①,得x >-.解不等式②,得x ≤1.所以不等式组的解集是-1.5<x ≤1, 所以不等式组的整数解有-1,0,1三个. 故选C.7.B 解析:不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32的解集为a x 428-<<.因为不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,所以134212≤-<a ,解得25411-<≤-a .8.D 解析:根据不等式的解法,先分别求出不等式组中两个不等式的解集,然后取这两个不等式解集的公共部分.解不等式,得x >1;解不等式②,得x ≤3. 所以不等式组的解集是1<x ≤3.9.C 解析:函数与轴、轴交于点(2,0),(0,-4); 故当时,函数值的取值范围是-4<<0.因而当-4<<0时,的取值范围是0<<2.故选C. 10.C 解析:设甲种运输车应安排辆, 则,解得.故甲种运输车至少需要6辆.故选C. 11.373t ≤解析:由题意,得11 3 52t t +--≥-,解得373t .≤ 12.129<≤k 解析:不等式03≤-k x 的解集为3kx ≤. 因为不等式03≤-k x 的正整数解是1,2,3, 所以 433<≤k,所以129<≤k . 13.3>x 或2-<x 解析:由题意,得 ⎩⎨⎧>->+0302x x 或⎩⎨⎧<-<+0302x x ,前一个不等式组的解集为3>x ,后一个不等式组的解集为2-<x . 所以x 的取值范围是3>x 或2-<x .14.< 解析:因为b a <,所以a +a <a +b ,所以2a <a +b . 15.-2 解析:不等式组⎩⎨⎧>-<-3212b x a x 的解集为 2123+<<+a x b .由题意,得⎪⎩⎪⎨⎧=+-=+121123a b ,解得 ⎩⎨⎧-==21b a ,所以2)32()31()3)(3(-=+-⨯-=+-b a . 16.0 解析:根据题意,得-5x +<x +1,解得x >-.所以使y 1<y 2的最小整数是0. 17.7 解析:的解集是因为的解集相同,所以所以51a x a +<-,所以51a a +-=2,解得7a .= 检验:当7a =时,10a -≠,所以7a =符合要求.18.8 解析:设签字笔购买了x 支,则圆珠笔购买了15 x -()支,根据题意,得215(15)27215(15)>26.x .-x ,x .-x +<⎧⎨+⎩解不等式组得79x .<<∵x 是整数,∴8x .=19.解:(1)去分母,得15)12(5)23(3-+≥-x x . 去括号,得1551069-+≥-x x . 移项、合并同类项,得 4-≥-x . 两边都除以-1,得4≤x .(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x解不等式 ①,得 2>x . 解不等式 ②,得1x .>所以,原不等式组的解集是2x .>20.解:解方程组 5331 x y m x y +=⎧⎨+=⎩,,得31325312m x ,m y .-⎧=⎪⎪⎨-⎪=⎪⎩由题意,得3130 25310 2mm -⎧≥⎪⎪⎨-⎪≥⎪⎩,,解得331531≤≤m . 因为为整数,所以只能为7,8,9,10.21.解:因为关于x 的方程方程52)4(3+=+a x 的解为372-=a x , 关于x 的方程3)43(4)14(-=+x a x a 的解为a x 316-=. 由题意,得a a 316372->-.解得 187>a .22.解:设该班共有位学生,则6)742(<++-xx x x . ∴6283<x .∴56<x . ① ②又∵x ,2x ,4x ,7x都是正整数, 则是2,4,7的公倍数.∴28=x . 故这个班共有28位学生. 23.解:设孔明购买球拍x 个,根据题意,得1.52022200x ⨯+≤, 解得8711x ≤. 由于x 取正整数,故x 的最大值为7. 答:孔明应该买7个球拍.24.解:(1)设利润为元.方案一:240082400)2432(1-=--=x x y , 方案二:x x y 4)2428(2=-=. 当x x 424008>-时,600>x ; 当x x 424008=-时,600=x ; 当x x 424008<-时,600<x . 即当600>x 时,选择方案一; 当600=x 时,任选一个方案均可; 当600<x 时,选择方案二.(2)由(1)可知当600=x 时,利润为2400元. 一月份利润2000<2400,则600<x , 由4x =2000,得x =500,故一月份不符. 三月份利润5600>2400,则600>x .由560024008=-x ,得 x =1000,故三月份不符. 二月份600=x 符合实际.故第一季度的实际销售总量=500+600+1000=2100(kg ). 25.解:设下个月的产量为件,根据题意,得 ⎪⎩⎪⎨⎧≥⨯+≤⨯≤.,,160001000)30060(202001922x x x解得 1800016000≤≤x .即下个月的产量不少于16000件,不多于18000件.。

相关文档
最新文档