五年级数学《实际问题与方程》教学设计附练习(精选8篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学《实际问题与方程》教学设计附练习(精选8篇)
五年级数学《实际问题与方程》教学设计附练习(精选8篇)
教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。
下面是小编整理的五年级数学《实际问题与方程》教学设计附练习,欢迎大家分享。
五年级数学《实际问题与方程》教学设计附练习篇1
一、教学内容:
二、教学目标:
1、会根据两个未知量的关系,列出含有两个未知数的方程,理解和掌握列方程解这类问题的等量关系和解题方法。
2、学生在观察、分析、抽象,概括和交流的过程中,进一步体会方程的思想。
3、通过不同方法的渗透,培养学生的类推和迁移的思想,激发学生学习数学的兴趣。
三、教学重点:列方程解答含有两个未知数的实际问题。
四、教学难点:准确地找出等量关系,列出方程。
五、教学准备:微课视频,懿文德软件
六、教学过程:
(一)激趣导入
播放爸爸去哪儿主题曲,师提问:同学们都看过爸爸去哪儿么?好看么?你们最喜欢哪位小朋友啊?
预设:1、看过,很好看,我最喜欢......
2、没看过
师:今天啊,老师给你们请来了一位特殊的朋友,她要教我们学习用方程解决实际问题,你们欢迎么?
预设:欢迎。
(二)探究新知
1、微课讲解
将一道跟例题相关的题目以微课的形式进行分析和讲解。
师:请大家认真地听这位朋友讲解,她有任务要交给你们呢。
出示题目:果园里种着桃树和杏树一共180棵,桃树的棵树是杏树的3倍,桃树和杏树各有多少棵?
进行讲解:这道题目和我们之前学的不太一样,要求两个未知量。
我可以设杏树的棵树为180棵,那么桃树的棵树可以表示为3x棵。
分析题目,得到等量关系为:杏树棵树+桃树棵树=总棵树,列出方程为x+3x=180,运用乘法分配律,(1+3)x=180,4x=180,根据等式的性质4x÷4=180÷4,x=45,将x=45代入方程左边=45+3&ties;45=45+135=180=方程右边,所以x=45是方程的解。
杏树的棵树已经求出来了,那么桃树的棵树可以用总棵树-杏树棵树=180-45=135(棵),再根据问题将答话写完整,这道题目就完整的算完了。
接下来,请大家积极地开动你的小脑筋,完成我接下来给你们出的题目,看谁的方法又好又多,那谁就获得优先选取大礼包的权利。
小朋友们,你们听懂了么?(将这个过程录成微课的形式,使同学们能够认真地听,并积极地动脑思考)
师:同学们听懂这位朋友讲解的了。
预设:1、听懂了。
2、没听懂。
师:这道题目跟我们之前学习的不太一样,不是求谁设谁,而是有两个未知量,我们要根据题目具体分析怎么设未知量。
接下来,请同学完成下面这道题目,自己先进行独立思考,然后小组内进行讨论和交流,我们看看哪个小组的方法又多又好。
2、新知探究
(1)出示例题:地球的表面积为5.1亿平方千米,其中海洋面积约为陆地面积的2.4倍,地球上的海洋面积和陆地面积分别是多少亿平方千米?
(2)师:同学们你们知道地球表面积是由什么组成的么?播放地球动态图,使学生认识到地球表面积由海洋面积和陆地面积组成。
(3)师:请同学们根据刚才视频讲解的例题,开动自己的小脑筋,
想想这道题可以怎么做?做完之后,小组之间进行交流。
(师巡视指导)
(4)下面哪个小组来和大家交流一下做法呢?
预设1:
解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x 亿平方千米。
海洋面积+陆地面积=地球表面积
2.4x+x=5.1
(2.4+1)x=5.1
3.4x=5.1
3.4x÷3.4=5.1÷3.4
x=1.5
5.1-1.5=3.6(亿平方千米)或2.4x=2.4&ties;1.5=3.6(亿平方千米)
答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。
预设2:
解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x 亿平方千米。
地球表面积-陆地面积=海洋面积
5.1-x=2.4x
5.1-x+x=2.4x+x
5.1=(2.4+1)x
5.1=3.4x
3.4x=5.1
3.4x÷3.4=5.1÷3.4
x=1.5
5.1-1.5=3.6(亿平方千米)
答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。
预设3:
解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x 亿平方千米。
地球表面积-海洋面积=陆地面积
5.1-2.4x=x
5.1-2.4x+2.4x=x+2.4x
5.1=(1+2.4)x
5.1=3.4x
3.4x=5.1
3.4x÷3.4=5.1÷3.4
x=1.5
5.1-1.5=3.6(亿平方千米)
答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。
预设4:
解:设海洋面积为x亿平方千米。
那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。
海洋面积+陆地面积=地球表面积
x+实际问题与方程教学设计=5.1
预设5:
解:设海洋面积为x亿平方千米。
那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。
地球表面积-海洋面积=陆地面积
5.1-x=实际问题与方程教学设计
师:同学们都积极的开动了自己的小脑筋,也都做的很棒,下面请大家比较一下这几种方法,你们认为哪种方法最好呢?
预设:第一种方法最好,解方程的过程最简单。
师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。
师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?
(3)总结方法
1、设(找出未知数,用字母x表示)
2、找(找出题目中的等量关系)
3、列(根据等量关系列出方程)
4、解(运用等式的性质解方程)
5、验(将解出的结果代入方程检验)
6、答(完整地写好答话)
师:是的,用方程解决实际问题我们常用的就是你这六个步骤,请同学们要牢记哦。
接下来,老师考考大家,看看你们掌握的怎么样,你们有没有信心接受我的挑战呢?
三、巩固练习
1、果园里苹果树和梨树一共300棵,梨树是苹果树的5倍,苹果树和梨树各有多少棵。
下列说法正确的是()
A、解:设梨树为x棵,则苹果树为5x棵。
B、解:设苹果树为x棵,则梨树为5x棵。
C、解:设苹果树为x棵,则梨树为实际问题与方程教学设计棵。
通过这道题目的练习,使学生更深一步掌握设两个未知量的方法。
2、找出下列各题中的等量关系
(1)小红和小军一共存了235元,小红存的钱数是小军的1.5倍,小红和小军分别存了多少元?
实际问题与方程教学设计等量关系:
(2)植物园里种着松树和柏树,松树的棵树是柏树的2.5倍,柏树比松树少84棵,松树和柏树分别有多少棵?
实际问题与方程教学设计等量关系:
本节课的重难点在于设未知数和找等量关系,通过这两道题的练习,为第三道题的变式练习做准备。
3.养殖场有白兔和黑兔,白兔的只数是黑兔的4倍。
(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?
(2)白兔比黑兔多138只,白兔和黑兔各有多少只?
请同学们先独立完成第一问,然后我们进行交流。
第二问请大家认真思考,观察与第一问的区别,独立完成后,进
行交流。
四、课堂小结
通过本节课的学习:
实际问题与方程教学设计收获是
实际问题与方程教学设计遇到的困惑是
五、作业布置
请同学们完成一份关于保护地球的手抄报
五年级数学《实际问题与方程》教学设计附练习篇2
【教学内容】
教材第73页例1、“做一做”和练习十六的第2~4题。
【教学目标】
1、使学生掌握列方程解决实际问题的基本方法和步骤。
2、找出题中数量间相等的关系,根据等量关系正确地列出方程并解答。
3、培养学生从问题出发去寻找所需条件的分析能力。
【重点难点】
1、根据等量关系正确地列出方程并解答。
2、找出题中数量间相等的关系,根据等量关系正确地列出方程。
【教学准备】
多媒体课件。
【复习导入】
1、用方程表示下列各题的数量关系,并填在横线上:
(1)x的2倍与3、5的和是7、3:
(2)从30里减去x的1、5倍,差是18:
(3)一个数的6倍减去35,差是13:
学生先讨论后尝试找出题中的数量关系,列出等量关系式,学生独立完成后相互交流。
2、解方程。
x+5、7=10 3x-6=18 2(x+2、5)=5
三名学生板演,并交流解答过程。
3、导入新课:出示学校运动会跳远比赛的情景图片,大家能提出什么有价值的问题呢?
学生自由讨论后汇报交流。
那么这节课我们一起来学习利用方程解决实际问题。
出示课题,引入新课并板书。
【新课讲授】
1、教学例1。
(1)出示例1情景图。
这是一次学校运动会的情景,小明进行跳远比赛的场景,大家看:小明的跳远成绩是4、21m,超过学校的原纪录0、06m,学校原跳远纪录是多少米?
(2)找等量关系。
课件演示小明的跳远成绩、学校原跳远纪录及其关系。
提问:你能根据演示说明,说出小明的跳远成绩、学校原跳远纪录和超出成绩的关系吗?
根据学生回答,板书:
A、小明跳远的成绩-超过的成绩=学校原跳远纪录
B、学校原跳远纪录+超过的成绩=小明跳远的成绩
C、小明跳远的成绩-学校原跳远纪录=超过的成绩
(3)探究方法。
提问:你能试着用自己想到的方法解答吗?
学生汇报算术方法:4、21-0、06=4、15(m)
师:谁还能用其他的方法来解答这道题?如果设学校原跳远纪录为x米,那么根据上面分析得出的等量关系,怎样列方程?
学生尝试解答,并请学生汇报自己的解答过程。
教师板书:
解:设学校原跳远纪录为x米,
由学校原跳远纪录+超过的成绩=小明跳远的成绩
x+0、06=4、21
x+0、06-0、06=4、21-0、06
x=4、15
学生解答后,验证解答方法是否正确。
教师小结:根据不同的等量关系,可以列出不同的方程,一般来说,同一等量关系,用加法比用减法表示更容易思考。
(4)师生共同小结:用方程解决实际问题的步骤。
师:用方程解决实际问题需要注意什么?
小组交流并汇报,教师引导学生总结出用方程解决实际问题的方法、策略、步骤。
①审清题意,找出未知数,用x表示;
②找出等量关系,并列出方程;
③解方程;
④验算。
2、典例讲析。
例:修一条长240km的高速铁路,还剩42km没有修,已经修了多少千米?
分析:此题要求修一条长240km的高速铁路,现在还剩42km没有修,求已经修了多少千米,它们之间的关系为已修+剩下的=总长。
我们可以设已经修的为x千米,再依关系式列方程。
解:设已经修了x千米。
x+42=240
x=198
检验:把x=198代入原方程,方程左边=198+42=240=方程右边
所以x=198是原方程的解。
答:已经修了198km。
【课堂作业】
完成课本第73页“做一做”。
让学生先说出题目的等量关系,再列方程解答。
分析:(1)要求去年的身高是多少,已知今年的身高是1、53m,比去年长高了200px,它们之间的关系是去年的身高+长高的=今年的
身高。
(2)每分钟的滴水量、半小时(即30分钟)及半小时滴水量1、8kg之间的等量关系表示为:每分钟滴水量×30=半小时滴水量。
答案:(1)解:设小明去年身高xm。
200px=0、08m
x+0、08=1、53
x+0、08-0、08=1、53-0、08
x=1、46
经检验x=1、46是原方程的解。
答:小明去年身高是1、46米。
(2)解:设水龙头每分钟浪费水x克。
1、8kg=1800g
30x=1800
30x÷30=1800÷30
x=60
提问:应该怎样验算?
学生口述验算过程。
答:水龙头每分钟浪费水60克。
【课堂小结】
提问:同学们,通过这节课的学习,你知道列方程解决实际问题的解题步骤了吗?还有什么疑惑?
小结:用方程解决实际问题的步骤:
①审清题意,找出已知与未知数,未知数用x表示;
②找出题中的等量关系,并列出方程;
③解方程;
④检验并写出答案。
【课后作业】
1、完成教材第75页练习十六第2~4题。
第7课时实际问题与方程(1)
例1:
等量关系:
A、小明跳远的成绩—超过的成绩=学校原跳远纪录
B、学校原跳远纪录+超过的成绩=小明跳远的成绩
C、小明跳远的成绩-学校原跳远纪录=超过的成绩
列方程解答:
解:设学校原跳远纪录为x米。
由学校原跳远纪录+超过的成绩=小明跳远的成绩
x+0、06=4、21
x+0、06-0、06=4、21-0、06
x=4、15
答:学校原跳远纪录为4、15米。
用方程解决实际问题的步骤:
①审清题意,找出已知与未知数,未知数用x表示;
②找出题中的等量关系,并列出方程;
③解方程;
④检验并写出答案。
五年级数学《实际问题与方程》教学设计附练习篇3
1、教学内容分析
电话计费问题是生活中的常见问题。
具有一定的现实性和开放性。
生活中的数学问题大多是具有开放性的综合问题。
所以对这类问题的探究是数学回归生活,服务于生活的需要。
本节课是实际问题与一元一次方程的最后一课。
设置这一探究的目的不仅是解决这个具体问题。
而是通过这个问题的解决过程,让学生进一步体验建模解题的过程。
2、学习者分析
学生通过之前的学习。
比较熟悉在一些典型问题中用方程模型。
而对于电话计费问题这样的综合性问题。
还缺乏解决问题的经验。
容易无所适从或片面理解。
3、学习目标确定
知识目标:进一步培养学生列方程解应用题的.能力。
情感目标:通过探究实际问题与一元一次方程的关系,感受数学
的应用价值,提高分析问题、解决问题的能力。
4、学习重点和难点。
重点:引导学生弄清题意,设计出各类问题的答案。
难点:把生活中的实际问题抽象成数学问题。
5、学习评价设计
新课程理念强调“经历过程与获取结论同样重要",对数学知识的获得来说,过程比结论更有意义。
我们不能把学生看成是一个“容器”,尽可能往里面塞知识,也不能把学生训练成只会解题的“机器”,而应该让他们投入到知识的获取过程中去。
在过程中徼发学生学习兴趣和动机,展现他们得让思路和方法,使他们学会学习;进而从过程中建构进取型人格,通过过程中的“成就感”来完善自我。
这是目前学生最需要的。
因此本节课我采用“问题—探究—发现”的探究性教学方式。
在学法指导上,本节课主要通过学生自主探索,概括出单项式及其相关概念。
在课堂。
上充分体现了学生的主体性地位和学生学习的规律,及发现知识一探索知识——掌握知识一运用知识的学习过程。
6、学习活动设计
教师活动
学生活动
环节一(根据课堂教育学的程序安排)
教师活动1
问题导学:
下表中有两种移动电话计费方式:
月使用
费/元
主叫限定
时间/分
主叫超时费/
(元/分)
被叫方式一
58
150
0.25
免费
方式二
88
350
0.19
免费
考虑下列问题:
(1)设一个月内用移动电话主叫为t分(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费.
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.
教师提出问题:
1、从表格中的数据,你能把主叫时间分为几部分?
2、你能分别把主叫时间不同的话费情况用含t的代数式表示出来吗?
3、(1)在两种收费方式下,会不会有这么一个时间,打不同样多时间的电话,却收费相同呢?
(2)如果有这一时间,那么如何分别表示收费表达式呢?(“收费相等”是本题列方程的等量关系)
4、你能根据表格判断两种收费方式哪种更合算吗?
学生活动:
教师提问,学生思考回答。
教师对回答的方向适当给予提示。
如月使用费的比较,超时费的比较等。
然后,教师举出一两个具体的主叫时间,让学生通过简单计算回答相应的费用。
活动意图说明
通过提问和学生的回答,了解学生对表格信息的理解能力。
引导
学生对。
表格信息做初步梳理和简单加工。
通过对几个容易计算的主叫时间的话费计算,检验学生是否理解表格信息的含义,并渗透话费多少与主叫时间相关。
环节二
教师活动2
(1)学生充分交流讨论后完成表格:
主叫时间(t/min)
方式一(计费/元)
方式二(计费/元)
t<150
58
88
t=150
58
88
150<t<350
58+0.25(t-150)
88
t=350
58+0.25(350-150)=108
88
t>350
58+0.25(t-150)
88+0.19(t-350)
(2)观察上表,可以看出,主叫时间超出限定时间越长,计费越多,并且随着主叫时间的变化,按哪种方式的计费少也会变化。
①从表格中,可以看出当t≤150时,按方式一的计费少。
②当t从150增加到350时,按方式一的计费由58元增加到108元,而方式二一直是88元,所以方式一在变化过程中,可能某一主叫时间,两种方式的计费相等。
列方程58+0.25(t-150)=88,解得
t=270。
故当t=270时,两种计费方式相同,都是88元,当150<t <270时,按方式一计费少于按方式二计费;当270<t<350时,按方式一计费多于按方式二计费。
③当t=350时,按方式二计费少。
④当t>350时,可以看出,按方式一的计费为108元加上超出350 min的部分超时费0.25(t-350),按方式二的计费为88元加上超时费0.19(t-350),故按方式二的计费少。
根据以上的分析,可以发现当t<270 min时,选择方案一省钱;当t>270 min时,选择方案二省钱。
学生活动2
理解问题的本身是列方程的基础,本例通过表格形式给出已知数据,让学生根据问题展开讨论,帮助理解,培养学生的读题能力和收集信息的能力.
活动意图说明
学生对电话计费问题是有生活基础的,所以也具备一定的认识基础,再给出探究问题之后让学生充分的发言。
表达自己对问题的直观认识,这也是学生对问题的第一次认识,在此基础上,学生之间通过发表意见互相借鉴,为对问题的进一步探究进行准备。
环节三
教师活动3
练习:课件习题练习
学生活动3
教师提出问题,学生思考并制作表格,教师巡视。
活动意图说明:学生在参考了其他学生的观点之后,再次对问题进行认识,其认识过程与结论已经逐步接近正确而合理的方向,教师在此基础上加以引导和启发,帮助学生确立分类讨论的探究方式,并在总结学生发言的基础上归纳出分类的关键点。
使学生的学习由感性认识逐步过渡到理性认识。
7、板书设计
(1)设一个月内用移动电话主叫为t分(t是正整数)。
根据上
表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费。
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法。
8、教学反思与改进:
创设问题情境,联系生活实际,激发学习动机,将学生置于问题情境中.鼓励学生动手动口,增强学生的自主学习能力,而且让学生从数学的角度去分析和总结生活中的问题,学会能在不同的角度去探求生活经验从而让学生掌握知识。
五年级数学《实际问题与方程》教学设计附练习篇4
【教学目标】
1、会根据具体问题中的数量关系列一元二次方程并求解。
2、能根据问题的实际意义,检验所得结果是否合理。
3、进一步掌握列方程解应用题的步骤和关键。
【教学过程】
一、复习回顾:
1、解一元二次方程都有哪些方法?(学生口答)
2、列一元一次方程解应用题有哪些步骤?(学生口答)
①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答
二、问题探究:
(一)思考课本探究1回答下列问题:
(1)设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了人;第一轮传染后,共有人患了流感。
(2)在第二轮传染中,传染源是人,这些人中每一个人又传染了人,那么第二轮传染了人,第二轮传染后,共有人患流感。
(3)根据等量关系列方程并求解。
为什么要舍去一解?
(4)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?
(5)完成教材思考:如果按照这样的传播速度,三轮传染后,有
多少人患流感?
(学生在交流中解决问题,教师深入小组讨论,对疑惑较多的问题要点拨;前两个问是解题的关键,可作适当点拨。
最后思考题,可让学生试试独立完成。
教给学生如何审题,分析题。
)
三、例题学习:
例1:青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率。
(学生独立思考、练习。
一学生板书,教师巡视后讲解)
例2:(教材探究2)两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
(给学生分组求解,然后比较哪个小组做的有快又准。
最后比较哪种药品成本平均下降率较大。
)
四、课堂练习:(学生独立思考、练习。
一学生板书,教师巡视后讲解)
1、某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?
2、有一人患了流感,经过两轮传染后共有121人患了流感,毎轮传染中平均一个人传染了几个人?
五、总结反思:(由学生自己完成,教师作适当补充)
1、列一元二次方程解应用题的步骤:审、设、找、列、解、答。
最后要检验根是否符合实际意义。
2、探究2是平均增长率或降低率问题。
若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:(常见n=2)
教后记:
本节课是一元二次方程的应用第一课时。
通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实
生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:
一、通过学生口答,复习了列方程解应用题的一般步骤及解一元二次方程的方法,为学习本节知识打好了基础。
二、问题探究通过问题串让学生解决的问题由浅入深,由易到难,也让学生解决问题的能力逐级上升,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。
三、本节课第一个例题,是增长率问题中的一个典型例题,我在引导学生解决此题之后,进一步总结了列方程解应用题的步骤。
不仅关注结果更关注过程,让学生养成良好的解题习惯。
四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。
五、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。
同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。
总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。
六、需改进的方面:
1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。
例如例2有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示、
2、只考虑扑捉学生的思维亮点,一学生列错了方程,我没有给予及时纠正。
导致使一些同学陷入误区、
3、下课后很多学生和我沟通课上一学生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表个人的不同见解的学风。
五年级数学《实际问题与方程》教学设计附练习篇5
教学内容:P64-65的练习十二第4-8题。