人教版七年级数学上册第三章一元一次方程单元测试及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 《一元一次方程》阶段测评 (时间90分钟,满分100分)
一、细心选择(每题3分,共30分) 1. 下列方程中,一元一次方程一共有( ) ①
;②
;③;
④13
15
12
3x x x -=-()
A .1个
B .2个
C .3个
D .4个 2. 下列方程的解是3x =的有( ) ①260x --=
②25x +=
③()()310x x --= ④123
x x =- A .1个 B .2个
C .3
D .4个
3. 若代数式1
54
m +与1
54m ⎛⎫
- ⎪⎝

的值互为相反数,则m 的值为( ) A .0 B .
320 C .120 D .1
10
4. 下列变形中正确的是( )
A.由25-=x 得25--=x
B.由05=y 得5
1=y
C.由23-=x 得2
3-=x D.由532+=x x 得x x 235-=-
5. 对有理数a b 、,规定运算☆的意义是:a b a b a b =⨯++☆,则方程1352
x =☆的解是( ) A .0
B .1
C .2
D .3
6. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( )
7. 甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )
A .甲
B .乙
C .相同
D .和商品的价格有关
8. 足球比赛记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队进行了14场比赛,其中负5场,共得分19分,若设胜场次数为x 场,则可列方程为( )
A. 31(14-)19x x +=
B. 31(145)19x x +--=
C. 31(14-)0(145)19x x x ++--=
D. 319x x +=
9. 小华在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是113
3
y y -=-■,怎么办呢?小明想了一想,便翻看了书后的答案,此方程的解是:6y =-,小华很快补好了这个常数,并迅速完成了作业,这个常数是( )
A .243
- B .233
C .143
- D .143
10.《个人所得税条例》规定,公民题资薪水每月不超过800元者不必纳税,超过800元的部分按超过金额分段纳税,详细税率如下图,某人12月份纳税80元,则该人月薪为( )
……
……
A .1900元
B .1200元
C .1600元
D .1050元 二、耐心填空(每题3分,共24分)
11. 在梯形面积公式()h b a S +=2
1中,若24=S ,6=a ,3=h ,则=b ____.
12. 已知方程23
252
x x -+=-
的解也是方程72x b -=的解,则b =_______. 13. 若单项式26x a b --与3312
y a b -是同类项,则代数式()()23
x y y x ---的值为____.
14. 把方程50.2 1.6310.3 1.2y y
--=-中的小数化为整数得_______________.
15. 方程5132
11264
x x x +---=
去分母时,方程的两边应同时乘以______,则得到的方程是___________. 16. 如图3-1,小红将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少cm? 设正方形边长为
xcm,则可列方程
________________.
17. 一列火车以30里/时的等速行驶,进入一个比列
车长两倍的隧道,由第一节车箱进入隧道
时刻到最后离开这个隧道的时刻,总共用去6分钟,这列火车的长度是______.
18. 某时刻钟表在10点和11点之间,在这个时刻再过6分钟的分针和这个时刻3分钟前的时针正好方向相反且在同一直线上,那么钟表这个时刻为_________. 三、用心解答(共46分) 19. 解下列方程 (1)(本题5分)12
225
y y y -+-=-
(2)(本题7分)519x -=
20. (本题6分)已知()2
310
a b
-++=,代数式2
2
b a m
-+的值比1
2
b a m
-+多1,
求m.
21.(本题6分)某件商品的价格是按获利润25%计算出的,后因库存积压和急需加收资金,决定降价出售,如果每件商品仍能获得10%的利润,试问应按现售价的几折出售(减价到原标价的百分之几就叫做几折,例如标价一元的商品售价七角五分,叫做“七五折”)?
22.(本题7分)售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”
顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”
乙顾客:“我家买了两箱相同特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”
请你根据上面的对话,解答下面的问题:
(1)顾客乙买的两箱鸡蛋合算吗?说明理由.
(2)请你求出顾客甲店里买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少个鸡蛋才不会浪费?
23.(本题7分)有一列数,按一定规律排列成:1248163264
,,,,,,,…,其中有三个相邻的和为1224,这种
----
说法对吗?请说明理由.
24.(本题8分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.
第三章 《一元一次方程》阶段测评
1.A ;
2. C ;
3. D ;
4. D ;
5. B ;
6.C ;
7. B ;
8. B ;
9. D ;10. C ;11. 10;12. 7;13. 20;
14.
50216301312
y y
--=-; 15. 12,2(51)123(32)x x x -+-=-;
16. 45(-4) x x =;17. 1里; 18. 10点15分; 19. (1)
117
(2)若∵510x -≥ ∴ 519x -= 即2x =
若∵510x -< ∴ (51)9x --= 即85
x =-
20. 0m =.
21. 解:设将决定按x 折出售每件商品.根据题意得:
化简方程

,折扣数为88%,答:应按现售价的八八折出售.
22. 解:(1)顾客乙买两箱鸡蛋节省的钱2(1412)4⨯-=
顾客乙丢掉的20个坏鸡蛋浪费的钱20
128
⨯=
30
因为4元<8元,所以顾客乙买的两箱鸡蛋不合算.
(2)设顾客甲买了x箱鸡蛋.
由题意得:1221496
=⨯-.
x x
解这个方程得:6
x=,6301810
⨯÷=(个)
答:略
23. 解:设第一个数字为x,则第二、三个数字依次为24
x x
-、.
根据题意可得:(2)41224
+-+=
x x x
解得:408
=、
-=
x=,则291641832
x x
但这三个数字却不在以上数列中,所以按规律排列的三个数字和为1224,这种说法是错误的.
24. 解:购买单价1.80元的笔记本24本,单价2.60元的笔记本12本.如果按李红原来报的价格,那么设购买单价1.80元的笔记本x本,列方程可得:1.8x+2.6·(36-x)=100-27.60,
解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元.
专项训练二概率初步
一、选择题
1.(徐州中考)下列事件中的不可能事件是( )
A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上
C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°
2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )
A.25% B.50% C.75% D.85%
3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )
A.1
10
B.
1
5
C.
3
10
D.
2
5
4.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选
择“参加社会调查”的概率为( )
A.1
4
B.
1
3
C.
1
2
D.
3
4
5.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )
A.1
2
B.
1
3
C.
1
4
D.
1
6
6.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )
A.1
3
B.
1
6
C.
1
9
D.
1
12
7.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )
A.3
16
B.
3
8
C.
5
8
D.
13
16
第7题图第8题图
8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )
A.16
B.π6
C.π8
D.π5
二、填空题
9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛
⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的
概率是________.
10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.
11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.
12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5
名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.
13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.
14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为1
4,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a
有解的概率为________.
三、解答题
15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:
(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于4
5,求m 的值.
16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持
人去掉其中一题的一个错误选项).
(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;
(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;
(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.
17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.
18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:
(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;
(2)如果摸出的这两个小球上数字之和为9的概率是1
3
,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果
x的值不可以取4,请写出一个符合要求的x的值.
参考答案与解析
1.D 2.B 3.C 4.A 5.A 6.C 7.C
8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2
=BC 2
+AC 2
,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-15
2

3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π
6
.
9.12 10.12 11.15 12.35 13.15 14.1
3 15.解:(1)
4 2或3 (2)根据题意得
6+m 10=4
5
,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为1
4

(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为1
2,所以锐锐能通关的概率为12×13=1
6

(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题
的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为1
6
.
17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为1
3

(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>1
3
,∴甲获胜的概率大,游戏不公平.
2 3 5
2 2 2
3 2 5 2 3 2 3 3 3 5 3 5
2 5
3 5 5 5
18.解:(1)0.33
(2)图略,当x 为4时,数字和为9的概率为
212=16≠1
3
,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的
概率是13.。

相关文档
最新文档