小学数学教学基本功训练
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学语言和日常语言一样,都是由语音、 词汇和语法构成的。数学语言包括有声语言与 无声语言两种,有声语言指的是教师口头讲述 的数学语言,无声语言指的是教师板书的文字 语言、符号语言和图形语言。数学语言和日常 语言有着广泛而密切的联系,但它又不同于日 常语言,而有其特殊性、抽象性和确定性,因 此,数学语言的训练目标要求除应符合日常语 言的训练目标要求外,必然有其特殊的训练目 标要求。概括起来,对数学语言训练的目标要 求主要是:准确精练、科学严谨、富启发性。
【作业题】
1.什么是基本功,基本功有哪些特征? 2.小学数学教学基本功主要指哪些项目 的基本功? 3.小学数学教学基本功训练的主要意义 有哪些? 4.基本功形成一般有哪几个阶段?训练 中应该注意哪些问题?
返回
第二部分
小学教师的数学基本功
数学语言基本功 计算基本功 识图画图基本功 简笔画基本功 逻辑思维基本功 解题基本功
基本功训练中应 注意哪些问题?
⑶坚持有计划地训练。训练必须有计划、有步 骤地进行,要坚持循序渐进的原则,科学地分解训 练步骤,合理地分配训练时间。一般而言,复杂的 动作和技能应进行必要的科学分解,从简单动作或 技能人手,经过一定的练习后再做综合训练。在训 练速度和时间分配方面,初始训练速度宜慢,应及 时注意纠正不规范的动作和技能。训练时间以分散 练习为主,每次练习时间过长,容易疲劳,进而产
小学数学教学基本功
第一部分 小学数学教学基本功训练的内 容、意义和训练途径
第二部分 小学教师的数学基本功 第三部分 小学数学教学基本功 第四部分 教育质量评价基本功 第五部分 教育研究基本功
第一部分
小学数学教学基本功训练的 内容、意义和训练途径
问题背后 的问
题
11 比80的—少 —的数是多少?
请你来讲一讲!
有5朵黄花,红花比黄花多3朵, 红花有多少朵?
例6
有5朵黄花,红花比黄花多3朵, 红花有多少朵?
教师出示例4:有5朵黄花,红花比黄花多3朵,红花有多少朵? 师:××同学,请你读读题(生读题)。 师:题里告诉我们有哪两种花?哪种花的朵数已经告诉我们了。 生:题里告诉我们有两种花,黄花和红花,黄花的朵数已经告 诉我们了。 学生边说,教师边用投影出示:
基本功训练中应 注意哪些问题?
⑵选择正确方法。掌握正确的训练方法是提高 训练效果,保证基本功训练质量的关键,一定要选 择正确的动作或技能作为自己训练的示范和样板, 以形成正确的视觉形象。有了正确的视觉形象,才 能根据一定的标准要求,通过逐步的模仿训练和实 践运作,去掉多余的动作,排除无关技能的干扰, 促进视觉形象与动觉表象的有机结合,逐步促成基 本功的形成。
正确的叙述 是……
例1 “约数和倍数”
评析
不难看出,错误的叙述首先是不符合小学数 学教材的约定,用“数”代替了“整数”,而 “数”与“整数”是两个不同的概念;其次是忽 略了约束条件“b≠0”;第三是用“除尽”代替 “整除”,混淆了两个不同的概念;第四是因倍 数、约数是成组出现的。上述错误都是对数学概 念的理解不准确,未掌握概念的本质的表现。
3.数学语言应富启发性
数学概念一般都比较抽象.教师在教学 中应尽可能从学生的理解能力出发,处理好 直观性与抽象性、通俗性与严谨性的关系, 使自己的数学语言富于启发性和趣味性,促 进学生积极思维。因此,教师在训练和运用 数学语言时,应熟悉学生的生活,熟悉学生 语言,尽可能使用学生能接受的语言分析和 揭示概念的本质属性。
例3 “颠倒相乘”
分析
有的教师在讲述分数除法计算法则 时,常常喜欢简化为“两个分数相除, 颠倒相乘”,这种简化是不科学的。 这里“颠倒”的含义不明,应该按教 材叙述为“甲数除以乙数(0除外),等 于甲数乘以乙数的倒数。”
例4 梯形的定义
请你来 评析 !
有的教师在叙述梯形的定义 时,常讲“有一组对边平行的四边 形叫做梯形”。
基本功训练中应 注意哪些问题?
4.训练方式要多样化 适当地使基本功训练方式多样化,不仅 能提高大脑皮层的兴奋性,提高训练者的练 习兴趣,而且能使练习的技能适用于多种情 况,提高基本功运用的水平。
基本功训练中应 注意哪些问题?
⑸运用微格教学手段。微格教学手段的 介入,让训练者及时发现基本功训练中自身 存在的问题,有利于整改和提高。
师:题里让我们求哪种花的朵数? 生:题里让我们求红花的朵数。 师:关于红花的朵数题里是怎么说的呀? 生:红花比黄花多3朵。 学生边说,教师边用投影出示:
与前面出示的黄花相对应:
师:“红花比黄花多3朵”(用色粉笔在“比”字上画一个圈)这句话 是说什么花和什么花比?比的结果哪种花多?
生:这句话是说红花和黄花比(教师用色粉笔在“红花”与“黄花” 的下面各画一条——),比的结果红花多(教师用色粉笔在“多”字的下面 点一个圆点)。
语句1:“我手里拿着一个正方形。” 语句2:“这是一平方分米。” 语句3:“这是一个面积单位。” 这里,语句1混淆了实物与图形的界限;语句2混淆了实 物、图形与名数的界限;语句3把实物与名数等同。三个语句 都是不严谨的。应更正为:
语句1:“我手里拿着一块正方形纸板。” 语句2:“这块正方形纸板的面积是一平方分米。” 语句3:“这块正方形纸板的面积是一平方分米,恰好 是一个面积单位。”
什么是基本功?基本功 具有哪些特征?
基本功具有下列特性: (1)习得性。任何一项基本功通过学习和训练,都 可以做到人人能学,个个都会。 (2)专业性。由于工作不同,各专业的基本功要求 也不同,不同的专业有其不同的基本功要求。 (3)基础性。基本功并不是专业工作技能的全部, 基本功通常是指那些完成专业任务的基本的技能, 是那些人人都必须具备的、经常运用的、不再分 解的技能。
由于数学具有暂时撇开事物的内容而 侧重于从形式上研究,以及符号化、模型 化的特征,使得数学日益成为一种形式系 统。它包括规定数学词汇,建立数学概念 系统;规定数学词汇构成公理的规则、公 式之间的变形规则,以及作为推理的命题 演算规则等,这些规则形成了数学语言的 句法结构规则。不同的学术理论,有不同 的数学语言表述方式;不同的研究范围, 有不同的数学语言表述规定。
能力等。如果这些能力不足,则往往导致对数 学概念、数学法则、公式等的错误理解。因此, 加强心理能力的训练,注重概念的理解和数学 理论的学习是提高数学语言水平的关键。
例1 “约数和倍数”
你来挑毛病!
有的教师叙述“约数和倍数”的
概念时,是这样说的:“如果数a能被
数b除尽,那么数a就叫倍数,数b就
叫约数。”
师:那么,“红花比黄花多3朵”这句话是什么意思呢? 生:“红花比黄花多3朵”,就是说红花有两部分组成,一部分是和 黄花同样多的5朵,另一部分是比黄花多的3朵。 师:对了(指图),也就是说红花除了有和黄花同样多的5朵,还比黄 花多3朵,把这两部分合起来…… 生:就是红花的朵数。 师:好!大家猜猜,红花有多少朵?(学生纷纷举手) 生:红花有8朵。 师:你们看,是这样吗?(教师揭开挡5朵红花的纸板)。
例4 梯形的定义
分析
有的教师在叙述梯形的定义时,常讲“有一 组对边平行的四边形叫做梯形”。这里,对四边 形的另一组对边未明确关系,另一组对边可以不 平行,也可以平行。于是定义的概念的外延除包 含梯形外,还包含平行四边形,犯了“定义过宽” 的错误。因此,对教材中叙述的“只有一组对边 平行的四边形叫做梯形”里的“只”字不能省略, 要弄清“有”和“只有”的区别,“有”表示存
在,而“只有”表示存在且惟一,两者不可混淆。
例5 准确把握实物、图形、名数的关系
请你来评析!
常见有的教师手中拿着一块正方形 硬纸板对学生说:
语句1:“我手里拿着一个正方形。” 语句2:“这是一平方分米。” 语句3:“这是一个面积单位。”
例5 准确把握实物、图形、名数的关系
分
析
常见有的教师手中拿着一块正方形硬纸板对学生说:
22
奇思妙想
1 请用涂颜色的方法表示这个等边三角形的——
3
透过现象看本质
以上两个案例告诉我们:要想高质 量地完成数学教学任务,教师本身必须 具备较高的数学素养,特别是要有过硬 的教学基本功。对新教师而言,一切从 教学基本功训练开始……
什么是基本功?基本功 具有哪些特征?
基本功,按照人们通常的见解,是 指从事某项工作所必需具备的基础知 识和基本技能。
数学语言基本功的训练 目标要求
1.数学语言必须准确精练 2.数学语言必须科学严谨 3.数学语言应富启发性
1.数学语言必须准确精练
数学语言要求用字用词都必须准确精练, 确切地表达数学内容,不能似是而非、模棱两 可、含混不清、重复啰唆。
在学习和应用数学语言的过程中,需要具 备多种心理能力,如感知能力、识别能力、信 息加工能力、想像能力以及对于各种字母、数 学符号、数学表达式和数学图形的记忆和理解
小学数学教学基本功主要指 哪些项目的基本功?
1.小学教师的数学基本功 ⑴数学语言基本功 ⑵计算基本功 ⑶识图画图基本功 ⑷简笔画基本功 ⑸逻辑思维基本功 ⑹解题基本功
小学数学教学基本功主要指 哪些项目的基本功?
2.小学数学教学基本功 ⑴教材分析和掌握的基本功 ⑵备课基本功 ⑶课堂教学基本功
3.“自动化”阶段 在这一阶段,连贯的动作和技能已达到 协调、准确、稳定、灵活的程度,心智活动 熟练化,神经劳动的消耗减少,思维的敏捷 性和灵活性已接近“自动化”的程度。许多 技能或动作的完成已经不再需要想一想,而 是成为一种脱口而出、得心应手的技能。
基本功训练中应 注意哪些问题?
⑴明确训练目标。明确训练的目 标是基本功训练的基础,训练者应根 据自身工作的性质,确定基本功训练 的内容,明确训练的目标要求和训练 的意义,从而充分调动自身的主观能 动性,积极自觉地刻苦训练。
3.教育质量评价基本功 考试命题与试卷分析基本功
4.教学研究基本功
小学数学教学基本 功的主要意义有哪 些?
1.教学基本功训练是素质教育的需要 2.教学基本功训练是深化教学改革的需要 3.教学基本功训练是终身教育的需要
基分基分本为本为功哪功哪形几形几成个成个过阶过阶程段程段可可?以?以
1.认知阶段 练习者通过学习或观察别人的示范,认知 技能的基本要求,并通过自己的初步尝试和练 习,掌握基本功的局部知识或单个的动作。在 这一阶段,许多局部的知识相互干扰,动作不 协调,准确性和稳定性差,缺乏思维的敏捷性 和灵活性.
返回
2.数学语言必须科学严谨
数学知识体系是用数学语言来表达 的,而且,一般地说,数学思维过程也 要借助于数学语言才能进行。所以,数 学语言既是数学思维的产物,又是数学 思维的工具。数学语言就特别要求在描 述数学内容时要具有科学性、严密性; 要符合科学理论和客观规律;要条理清 楚,逻辑严密。
2.数学语言必须科学严谨
2.数学语言必须科学严谨
数学语言有着严格的科学根据和逻辑规 律,数学的定理、公式、法则等揭示了数学 词汇如何结合构成正确的数学语句,影响数 学语言表述不同的主要是数学的理论。因此, 加强数学理论的学习,正确理解和掌握数学 概念、公式、法则和定理,是训练和提高数 学语言水平的关键。教学中要十分注意数学 语言的科学性和严谨性。
数学语言基本功 数学语言是用来表达和描述
客观世界中空间形式和数量关系 的特殊语言。师生进行的种种数 学教学活动,无不以数学语言为 基础,因此,数学语言是数学教 师必备的基本功。
数学语言基本功的意义
1.有利于学生掌握数学基础知识 2.有利于发展学生的思维能力 3.有利于学生良好数学语言的形成
数学语言基本功的训练目标要求是什么?
基分基分本为本为功哪功哪形几形几成个成个过阶过阶程段程段可可?以?以
2.形成阶段 练习者经过一定时间的训练,在熟练掌握 单个动作和局部技能的基础上,许多局部的技 能逐步协调,形成完整的、连贯的技能系统。 在这一阶段,动作的协调性有所增强,多余动 作的干扰有所减少,准确性和灵敏性都有明显 地提高。
基分基分本为本为功哪功哪形几形几成个成个过阶过阶程段程段可可?以?以
例2 三角形的“顶点”与“底边”
你来挑毛病!
bc a
10厘米
有的教师在教学中对(如图)的三角
形的讲述常常随意地说:“这条底边(指a)
长10厘米,短的斜边(指b)长6厘米,长
的斜边(指c)长8厘米。”
例2 三角形的“顶点”与“底边”
评析
在小学数学教材中,三角形的“底”的概念 只有两种情况:一是等腰三角形有底(边)的概念, 二是与三角形的高相对应时有底(边)的概念。底 (边)不一定在下方,顶不一定在上方。可见,数 学语言必须准确。
1熟练掌握基本口算熟练掌握基本口算2020以内的加减法表内乘除法以内的加减法表内乘除法百以内的乘加乘减除加除减两步计算百以内的乘加乘减除加除减两步计算一般口算一般口算万以内的整数四则计算及简单的小数分数计算万以内的整数四则计算及简单的小数分数计算特殊特殊口算口算利用运算定律和性质及特殊法则的速算利用运算定律和性质及特殊法则的速算和其他口算和其他口算基本功能明确算理科学地准确地进行口算和口算教基本功能明确算理科学地准确地进行口算和口算教2掌握常用速算和估算的科学理论能灵活巧妙掌握常用速算和估算的科学理论能灵活巧妙地运用运算性质法则和数的特征进行速算和估算
【作业题】
1.什么是基本功,基本功有哪些特征? 2.小学数学教学基本功主要指哪些项目 的基本功? 3.小学数学教学基本功训练的主要意义 有哪些? 4.基本功形成一般有哪几个阶段?训练 中应该注意哪些问题?
返回
第二部分
小学教师的数学基本功
数学语言基本功 计算基本功 识图画图基本功 简笔画基本功 逻辑思维基本功 解题基本功
基本功训练中应 注意哪些问题?
⑶坚持有计划地训练。训练必须有计划、有步 骤地进行,要坚持循序渐进的原则,科学地分解训 练步骤,合理地分配训练时间。一般而言,复杂的 动作和技能应进行必要的科学分解,从简单动作或 技能人手,经过一定的练习后再做综合训练。在训 练速度和时间分配方面,初始训练速度宜慢,应及 时注意纠正不规范的动作和技能。训练时间以分散 练习为主,每次练习时间过长,容易疲劳,进而产
小学数学教学基本功
第一部分 小学数学教学基本功训练的内 容、意义和训练途径
第二部分 小学教师的数学基本功 第三部分 小学数学教学基本功 第四部分 教育质量评价基本功 第五部分 教育研究基本功
第一部分
小学数学教学基本功训练的 内容、意义和训练途径
问题背后 的问
题
11 比80的—少 —的数是多少?
请你来讲一讲!
有5朵黄花,红花比黄花多3朵, 红花有多少朵?
例6
有5朵黄花,红花比黄花多3朵, 红花有多少朵?
教师出示例4:有5朵黄花,红花比黄花多3朵,红花有多少朵? 师:××同学,请你读读题(生读题)。 师:题里告诉我们有哪两种花?哪种花的朵数已经告诉我们了。 生:题里告诉我们有两种花,黄花和红花,黄花的朵数已经告 诉我们了。 学生边说,教师边用投影出示:
基本功训练中应 注意哪些问题?
⑵选择正确方法。掌握正确的训练方法是提高 训练效果,保证基本功训练质量的关键,一定要选 择正确的动作或技能作为自己训练的示范和样板, 以形成正确的视觉形象。有了正确的视觉形象,才 能根据一定的标准要求,通过逐步的模仿训练和实 践运作,去掉多余的动作,排除无关技能的干扰, 促进视觉形象与动觉表象的有机结合,逐步促成基 本功的形成。
正确的叙述 是……
例1 “约数和倍数”
评析
不难看出,错误的叙述首先是不符合小学数 学教材的约定,用“数”代替了“整数”,而 “数”与“整数”是两个不同的概念;其次是忽 略了约束条件“b≠0”;第三是用“除尽”代替 “整除”,混淆了两个不同的概念;第四是因倍 数、约数是成组出现的。上述错误都是对数学概 念的理解不准确,未掌握概念的本质的表现。
3.数学语言应富启发性
数学概念一般都比较抽象.教师在教学 中应尽可能从学生的理解能力出发,处理好 直观性与抽象性、通俗性与严谨性的关系, 使自己的数学语言富于启发性和趣味性,促 进学生积极思维。因此,教师在训练和运用 数学语言时,应熟悉学生的生活,熟悉学生 语言,尽可能使用学生能接受的语言分析和 揭示概念的本质属性。
例3 “颠倒相乘”
分析
有的教师在讲述分数除法计算法则 时,常常喜欢简化为“两个分数相除, 颠倒相乘”,这种简化是不科学的。 这里“颠倒”的含义不明,应该按教 材叙述为“甲数除以乙数(0除外),等 于甲数乘以乙数的倒数。”
例4 梯形的定义
请你来 评析 !
有的教师在叙述梯形的定义 时,常讲“有一组对边平行的四边 形叫做梯形”。
基本功训练中应 注意哪些问题?
4.训练方式要多样化 适当地使基本功训练方式多样化,不仅 能提高大脑皮层的兴奋性,提高训练者的练 习兴趣,而且能使练习的技能适用于多种情 况,提高基本功运用的水平。
基本功训练中应 注意哪些问题?
⑸运用微格教学手段。微格教学手段的 介入,让训练者及时发现基本功训练中自身 存在的问题,有利于整改和提高。
师:题里让我们求哪种花的朵数? 生:题里让我们求红花的朵数。 师:关于红花的朵数题里是怎么说的呀? 生:红花比黄花多3朵。 学生边说,教师边用投影出示:
与前面出示的黄花相对应:
师:“红花比黄花多3朵”(用色粉笔在“比”字上画一个圈)这句话 是说什么花和什么花比?比的结果哪种花多?
生:这句话是说红花和黄花比(教师用色粉笔在“红花”与“黄花” 的下面各画一条——),比的结果红花多(教师用色粉笔在“多”字的下面 点一个圆点)。
语句1:“我手里拿着一个正方形。” 语句2:“这是一平方分米。” 语句3:“这是一个面积单位。” 这里,语句1混淆了实物与图形的界限;语句2混淆了实 物、图形与名数的界限;语句3把实物与名数等同。三个语句 都是不严谨的。应更正为:
语句1:“我手里拿着一块正方形纸板。” 语句2:“这块正方形纸板的面积是一平方分米。” 语句3:“这块正方形纸板的面积是一平方分米,恰好 是一个面积单位。”
什么是基本功?基本功 具有哪些特征?
基本功具有下列特性: (1)习得性。任何一项基本功通过学习和训练,都 可以做到人人能学,个个都会。 (2)专业性。由于工作不同,各专业的基本功要求 也不同,不同的专业有其不同的基本功要求。 (3)基础性。基本功并不是专业工作技能的全部, 基本功通常是指那些完成专业任务的基本的技能, 是那些人人都必须具备的、经常运用的、不再分 解的技能。
由于数学具有暂时撇开事物的内容而 侧重于从形式上研究,以及符号化、模型 化的特征,使得数学日益成为一种形式系 统。它包括规定数学词汇,建立数学概念 系统;规定数学词汇构成公理的规则、公 式之间的变形规则,以及作为推理的命题 演算规则等,这些规则形成了数学语言的 句法结构规则。不同的学术理论,有不同 的数学语言表述方式;不同的研究范围, 有不同的数学语言表述规定。
能力等。如果这些能力不足,则往往导致对数 学概念、数学法则、公式等的错误理解。因此, 加强心理能力的训练,注重概念的理解和数学 理论的学习是提高数学语言水平的关键。
例1 “约数和倍数”
你来挑毛病!
有的教师叙述“约数和倍数”的
概念时,是这样说的:“如果数a能被
数b除尽,那么数a就叫倍数,数b就
叫约数。”
师:那么,“红花比黄花多3朵”这句话是什么意思呢? 生:“红花比黄花多3朵”,就是说红花有两部分组成,一部分是和 黄花同样多的5朵,另一部分是比黄花多的3朵。 师:对了(指图),也就是说红花除了有和黄花同样多的5朵,还比黄 花多3朵,把这两部分合起来…… 生:就是红花的朵数。 师:好!大家猜猜,红花有多少朵?(学生纷纷举手) 生:红花有8朵。 师:你们看,是这样吗?(教师揭开挡5朵红花的纸板)。
例4 梯形的定义
分析
有的教师在叙述梯形的定义时,常讲“有一 组对边平行的四边形叫做梯形”。这里,对四边 形的另一组对边未明确关系,另一组对边可以不 平行,也可以平行。于是定义的概念的外延除包 含梯形外,还包含平行四边形,犯了“定义过宽” 的错误。因此,对教材中叙述的“只有一组对边 平行的四边形叫做梯形”里的“只”字不能省略, 要弄清“有”和“只有”的区别,“有”表示存
在,而“只有”表示存在且惟一,两者不可混淆。
例5 准确把握实物、图形、名数的关系
请你来评析!
常见有的教师手中拿着一块正方形 硬纸板对学生说:
语句1:“我手里拿着一个正方形。” 语句2:“这是一平方分米。” 语句3:“这是一个面积单位。”
例5 准确把握实物、图形、名数的关系
分
析
常见有的教师手中拿着一块正方形硬纸板对学生说:
22
奇思妙想
1 请用涂颜色的方法表示这个等边三角形的——
3
透过现象看本质
以上两个案例告诉我们:要想高质 量地完成数学教学任务,教师本身必须 具备较高的数学素养,特别是要有过硬 的教学基本功。对新教师而言,一切从 教学基本功训练开始……
什么是基本功?基本功 具有哪些特征?
基本功,按照人们通常的见解,是 指从事某项工作所必需具备的基础知 识和基本技能。
数学语言基本功的训练 目标要求
1.数学语言必须准确精练 2.数学语言必须科学严谨 3.数学语言应富启发性
1.数学语言必须准确精练
数学语言要求用字用词都必须准确精练, 确切地表达数学内容,不能似是而非、模棱两 可、含混不清、重复啰唆。
在学习和应用数学语言的过程中,需要具 备多种心理能力,如感知能力、识别能力、信 息加工能力、想像能力以及对于各种字母、数 学符号、数学表达式和数学图形的记忆和理解
小学数学教学基本功主要指 哪些项目的基本功?
1.小学教师的数学基本功 ⑴数学语言基本功 ⑵计算基本功 ⑶识图画图基本功 ⑷简笔画基本功 ⑸逻辑思维基本功 ⑹解题基本功
小学数学教学基本功主要指 哪些项目的基本功?
2.小学数学教学基本功 ⑴教材分析和掌握的基本功 ⑵备课基本功 ⑶课堂教学基本功
3.“自动化”阶段 在这一阶段,连贯的动作和技能已达到 协调、准确、稳定、灵活的程度,心智活动 熟练化,神经劳动的消耗减少,思维的敏捷 性和灵活性已接近“自动化”的程度。许多 技能或动作的完成已经不再需要想一想,而 是成为一种脱口而出、得心应手的技能。
基本功训练中应 注意哪些问题?
⑴明确训练目标。明确训练的目 标是基本功训练的基础,训练者应根 据自身工作的性质,确定基本功训练 的内容,明确训练的目标要求和训练 的意义,从而充分调动自身的主观能 动性,积极自觉地刻苦训练。
3.教育质量评价基本功 考试命题与试卷分析基本功
4.教学研究基本功
小学数学教学基本 功的主要意义有哪 些?
1.教学基本功训练是素质教育的需要 2.教学基本功训练是深化教学改革的需要 3.教学基本功训练是终身教育的需要
基分基分本为本为功哪功哪形几形几成个成个过阶过阶程段程段可可?以?以
1.认知阶段 练习者通过学习或观察别人的示范,认知 技能的基本要求,并通过自己的初步尝试和练 习,掌握基本功的局部知识或单个的动作。在 这一阶段,许多局部的知识相互干扰,动作不 协调,准确性和稳定性差,缺乏思维的敏捷性 和灵活性.
返回
2.数学语言必须科学严谨
数学知识体系是用数学语言来表达 的,而且,一般地说,数学思维过程也 要借助于数学语言才能进行。所以,数 学语言既是数学思维的产物,又是数学 思维的工具。数学语言就特别要求在描 述数学内容时要具有科学性、严密性; 要符合科学理论和客观规律;要条理清 楚,逻辑严密。
2.数学语言必须科学严谨
2.数学语言必须科学严谨
数学语言有着严格的科学根据和逻辑规 律,数学的定理、公式、法则等揭示了数学 词汇如何结合构成正确的数学语句,影响数 学语言表述不同的主要是数学的理论。因此, 加强数学理论的学习,正确理解和掌握数学 概念、公式、法则和定理,是训练和提高数 学语言水平的关键。教学中要十分注意数学 语言的科学性和严谨性。
数学语言基本功 数学语言是用来表达和描述
客观世界中空间形式和数量关系 的特殊语言。师生进行的种种数 学教学活动,无不以数学语言为 基础,因此,数学语言是数学教 师必备的基本功。
数学语言基本功的意义
1.有利于学生掌握数学基础知识 2.有利于发展学生的思维能力 3.有利于学生良好数学语言的形成
数学语言基本功的训练目标要求是什么?
基分基分本为本为功哪功哪形几形几成个成个过阶过阶程段程段可可?以?以
2.形成阶段 练习者经过一定时间的训练,在熟练掌握 单个动作和局部技能的基础上,许多局部的技 能逐步协调,形成完整的、连贯的技能系统。 在这一阶段,动作的协调性有所增强,多余动 作的干扰有所减少,准确性和灵敏性都有明显 地提高。
基分基分本为本为功哪功哪形几形几成个成个过阶过阶程段程段可可?以?以
例2 三角形的“顶点”与“底边”
你来挑毛病!
bc a
10厘米
有的教师在教学中对(如图)的三角
形的讲述常常随意地说:“这条底边(指a)
长10厘米,短的斜边(指b)长6厘米,长
的斜边(指c)长8厘米。”
例2 三角形的“顶点”与“底边”
评析
在小学数学教材中,三角形的“底”的概念 只有两种情况:一是等腰三角形有底(边)的概念, 二是与三角形的高相对应时有底(边)的概念。底 (边)不一定在下方,顶不一定在上方。可见,数 学语言必须准确。
1熟练掌握基本口算熟练掌握基本口算2020以内的加减法表内乘除法以内的加减法表内乘除法百以内的乘加乘减除加除减两步计算百以内的乘加乘减除加除减两步计算一般口算一般口算万以内的整数四则计算及简单的小数分数计算万以内的整数四则计算及简单的小数分数计算特殊特殊口算口算利用运算定律和性质及特殊法则的速算利用运算定律和性质及特殊法则的速算和其他口算和其他口算基本功能明确算理科学地准确地进行口算和口算教基本功能明确算理科学地准确地进行口算和口算教2掌握常用速算和估算的科学理论能灵活巧妙掌握常用速算和估算的科学理论能灵活巧妙地运用运算性质法则和数的特征进行速算和估算