铜基硫化物光催化改性研究进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第52卷第3期2023年3月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.52㊀No.3March,2023
铜基硫化物光催化改性研究进展
余海燕1,2,梁海欧1,白㊀杰1,李春萍1
(1.内蒙古工业大学化工学院,呼和浩特㊀010051;2.包头师范学院化学学院,包头㊀014030)摘要:铜基硫化物禁带宽度窄,具有局域表面等离子体共振效应,对可见光有良好的吸收能力,且储量丰富㊁无毒,这些优势使铜基硫化物光催化剂引起了研究者们的广泛关注㊂然而,铜基硫化物光生电子和空穴复合速率高,可见光利用效率低,阻碍了其在光催化领域的应用,因此研究者们尝试了不同的改性策略提高其光催化性能㊂本文综述了铜基硫化物的改性策略,主要论述了形貌调控㊁晶相调控㊁半导体异质结等方式对铜基硫化物光催化性能的改性,分析了不同改性方法对铜基硫化物光催化性能提高的作用,以及铜基硫化物在光催化降解有机污染物㊁光解水产氢㊁光催化还原CO 2等方面的应用,并对铜基硫化物改性研究方向做出了展望㊂
关键词:铜基硫化物;光催化;降解;光生载流子;异质结;纳米复合材料
中图分类号:O643.36;O644.1㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2023)03-0394-11Research Progress of Photocatalytic Modification of Copper Based Sulfides
YU Haiyan 1,2,LIANG Haiou 1,BAI Jie 1,LI Chunping 1
(1.Chemical Engineering College,Inner Mongolia University of Technology,Hohhot 010051,China;2.Chemistry College,Baotou Teachers College,Baotou 014030,China)Abstract :Copper based sulfide photocatalysts have attracted extensive attention of researchers due to their narrow band gap,local surface plasmon resonance effect,good absorption ability to visible light,rich in reserves and non-toxic properties.However,the high recombination rate of photogenerated electrons and holes,and the low utilization efficiency of visible light hinder their application in the field of photocatalysis.Therefore,researchers have tried different modification strategies to improve their photocatalytic performance.This paper focuses on the modification strategies of copper based sulfides,mainly discusses the modification of the photocatalytic performance of copper based sulfides by morphology regulation,crystal phase regulation,and semiconductor heterojunction,etc.,and analyzes the effect of different modification methods on the improvement of the photocatalytic performance.The application of copper based sulfides in the photocatalytic degradation of organic pollutants,photocatalytic splitting water for hydrogen production,photocatalytic reduction of CO 2,etc.are discussed,and the development direction of copper based sulfide modification is prospected.Key words :copper based sulfide;photocatalytic;degradation;photocarrier;heterojunction;nanocomposite
㊀㊀收稿日期:2022-07-13㊀㊀基金项目:国家自然科学基金(21766022)㊀㊀作者简介:余海燕(1990 ),女,内蒙古自治区人,博士研究生,讲师㊂E-mail:2587269300@ ㊀㊀通信作者:李春萍,教授㊂E-mail:hgcp_li@
0㊀引㊀㊀言太阳光中紫外光的能量占5%,可见光(400~800nm)的能量占53%,因此开发光学带隙小于3eV 的光催化剂,充分利用可见光的能量至关重要㊂铜基硫化物储量丰富且无毒,存在少量的铜缺陷,表现出表面等离子体共振(surface plasmon resonance,SPR)效应,在近红外区具有额外的吸收带,并且铜基硫化物的光吸收范围从可见光到近红外光[1-2]㊂因此,铜基硫化物具有独特的物理化学性质,可以作为良好的光催化剂㊂Cu 2-x S 有多种结晶相和化学计量比,例如低辉铜矿(Cu 2S)㊁久辉铜矿(Cu 31S 16或Cu 1.96S)㊁方辉铜矿(Cu 9S 5或Cu 1.8S)㊁斜方蓝辉铜矿(Cu 7S 4或Cu 1.75S),这些都属于富铜相㊂而黑硫铜镍矿CuS 2和铜蓝(CuS)属
㊀第3期余海燕等:铜基硫化物光催化改性研究进展395㊀于贫铜相[3-4]㊂Cu 2-x S 的带隙值在1.2~2.5eV,这取决于Cu-S 的化学计量比[5]㊂Cu-S 的化学计量比和晶体结构是影响光催化性能的关键参数,因此控制Cu 2-x S 的化学计量比至关重要[6]㊂Cu 2-x S 的价带顶主要由S 3p 轨道组成,导带底主要由Cu 4s 轨道组成㊂假设每个铜原子提供1个4s 轨道电子成键,而每个硫原子提供6个电子成键,在完全化学计量比的Cu 2S 中,价带被完全填满,铜离子的价态为+1,硫离子的价态为-2㊂当Cu 2S 暴露在氧化环境中时,环境中强氧化性的物质会与Cu +相互作用,因此会在主要由S 3p 轨道组成的价带顶部产生铜空位(空穴)[7]㊂光学带隙与空穴浓度有关,这种通过价带空穴掺杂产生的光学带隙变化被称为Burstein-Moss 效应[8]㊂众所周知,金属由于存在自由电子而具有SPR 效应㊂然而,Cu 2-x S 存在铜缺陷,使其具有自由空穴,这些空穴载流子使得Cu 2-x S 具有SPR 效应,因此其光吸收范围可拓宽至近红外区㊂㊀
p-嵌段元素(例如In㊁Ga㊁Al㊁Sn㊁Ge㊁Sb㊁Bi)㊁d-嵌段元素(例如Zn㊁Fe㊁Co㊁Ni㊁Mo)和f-嵌段元素(例如La㊁Nd㊁Sm㊁Eu㊁Tb)都可与铜形成多元铜基硫化物㊂多元铜基硫化物组成和结构具有多样性㊂例如,依照完全化学计量比可以制得CuInS 2,通过微调Cu㊁In㊁S 的比例可以改善其能带结构,使得缺铜和富铜CuInS 2的光图1㊀代表性多元Cu 基硫化物的能带结构图(CuInS 2[10],CuGaS 2[12],Cu 2SnS 3[13],Cu 3SnS 4[14],CuSbS 2[15],CuCo 2S 4[16],CuNi 2S 4[17],Cu 2WS 4[18],Cu 2ZnSnS 4[19])Fig.1㊀Energy band structure diagram of representative multicomponent Cu based sulfide (CuInS 2[10],CuGaS 2[12],Cu 2SnS 3[13],Cu 3SnS 4[14],CuSbS 2[15],CuCo 2S 4[16],CuNi 2S 4[17],Cu 2WS 4[18],Cu 2ZnSnS 4[19])致发光效率显著提高[9-10]㊂多元铜基硫化物具有不同的晶体结构㊂就CuInS 2而言,目前已知有三种晶体结
构,即黄铜矿㊁闪锌矿和纤锌矿结构[11]㊂图1收集了已发表的实验和理论计算文献的结果,绘制了多元Cu 基
硫化物的能带结构图[10,12-19]㊂因此,铜基硫化物禁带宽度窄,具有良好的光吸收能力,在光催化领域表现出较
高的应用潜力㊂然而,铜基硫化物光生电子复合速率
快,限制了其在光催化领域的应用㊂本文主要从形貌调
控㊁晶相调控㊁Type Ⅱ型异质结构建㊁Z-scheme 异质结构建㊁金属-Cu 基硫化物复合材料异质结构建等方面论
述了对铜基硫化物改性的手段,并分析了不同改性方法
对光催化性能提升的原理㊂本文进一步论述了铜基硫
化物在光催化降解㊁光解水产氢㊁光催化CO 2还原等方
面的应用,最后概述了铜基硫化物现研究阶段中存在的
问题以及研究趋势㊂1㊀铜基硫化物的改性研究1.1㊀形貌调控
形貌对催化剂的光催化活性具有重要影响㊂一方面,同一种物质不同形貌的光催化剂具有不同的比表面积,尺寸越小,暴露的活性位点越多,越有利于光的捕获及光生电子与空穴的分离㊂另一方面,通过改变催化剂的微观形貌,其表面的性质如化学态㊁电子结构和活性位点将发生变化[20]㊂量子效应是指当粒子的尺寸达到纳米尺度范围时,费米能级附近的电子能级由准连续变为离散能级,进而导致催化剂的能带变宽,光生电子或空穴的氧化或还原能力变强,致使光催化反应量子效率提高[21]㊂因此,与常规材料相比,纳米材料表现出更好的化学催化和光催化性㊂Li 等[22]采用球磨法合成了CuS 量子点(CuS QDs),图2(a)显示了CuS QDs 与CuS 纳米粒子(CuS NPs)的紫外吸收光谱图㊂CuS QDs 与CuS NPs
均具有三个明显的吸收峰㊂与CuS NPs 相比,CuS QDs 的吸收边缘发生了强烈的蓝移,这是量子尺寸效应导致的吸收峰蓝移㊂此外,CuS 的粒径分布对吸收峰的宽度具有显著影响㊂通常情况下,粒子尺寸越小,其吸收峰越尖锐㊂CuS NPs 较CuS QDs 粒径大,因此CuS NPs 的吸收峰较CuS QDs 的吸收峰宽㊂超过700nm 的
吸收峰是SPR 效应导致的特征吸收峰㊂Cu 2S 带隙值为1.2eV,但是由于量子尺寸效应,其带隙为2.75eV [23]㊂Zhang 等[24]在MoS 2上负载了小尺寸的Cu 2S 纳米粒子,促进了光生电子与空穴的分离㊂Cr(Ⅵ)的光还原速率可达0.0058min -1㊂
396㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第52卷此外,常见的二维形貌为纳米片或纳米盘(见图2(b)),这些纳米晶体具有层状或非层状结构,显示出了优异的物理和光电特性[25]㊂Zou 等[26]分别在2D 的g-C 3N 4上负载0D㊁1D㊁2D 和3D 的CuS,其研究结果表明,2D 的CuS 与g-C 3N 4面对面的接触不仅增大了材料的比表面积,提高了界面电子传输能力,而且延长光生载流子寿命,提高了光催化性能㊂Liu 等[27]合成了光学带隙和能带结构有显著区别的CuGaS 2(CGS)㊂研究结果表明,2D 纳米片CuGaS 2的光解水产氢性能优于一维纳米棒㊂一维纳米棒的活性主要与(001)晶面有关,而二维纳米片与所暴露的(100)晶面有关㊂如图2(c)显示了(001)晶面与(100)晶面的模拟示意图㊂DFT 计算结果表明,(100)晶面比(001)晶面更有利于电荷的迁移㊂中空结构的纳米复合材料是良好的三维半导体光催化剂㊂例如Li 等[28]以Cu 2-x S 十二面体为模板,利用Cu +和In 3+的扩散速率不同制备了空心CuInS 2十二面体(见图2(d)),其性能优于以前报道的不同形貌的CuInS 2光催化剂㊂Ding 等[29]制备了ZnInS 2纳米片包覆的CuS 空心八面体催化剂,该结构为光催化CO 2还原提供了丰富的活性位点,有效地促进电荷迁移与分离,C 60修饰的CuS@ZnIn 2S 4产CH 4速率为43.6μmol /(h㊃g),
同时CH 4的选择性高达96.5%(见图
2(e)㊁(f))㊂图2㊀(a)CuS QDs 和CuS NPs 的紫外-可见吸收光谱[22];(b)常见的二维纳米片或纳米盘形貌[25];(c)(001)晶面和(100)晶面的示意模型图[27];(d)通过阳离子交换驱动的Kirkendall 效应的制得的空心CuInS 2纳米十二面体示意图[28];(e)合成C 60修饰的CuS@ZnIn 2S 4示意图[29];(f)CH 4的产率[29]
Fig.2㊀(a)UV-Vis absorption spectra of CuS QDs and NPs [22];(b)possible morphologies of two-dimensional nanodisc,nanoplate
and nanosheet morphology [25];(c)schematic models of (001)surface and (100)surface of stimulated wurtzite CGS after geometry optimization [27];(d)schematic illustration of hollow CuInS 2nanododecahedrons prepared via Kirkendall effect driven by cation exchange [28];(e)illustration of the synthesis of fullerene C 60decorated CuS@ZnIn 2S 4[29];(f)time-dependence of CH 4yields [29]
㊀第3期余海燕等:铜基硫化物光催化改性研究进展397㊀1.2㊀晶相调控
相变过程涉及到电子结构和晶格的对称性变化,其与半导体的禁带宽度密切相关㊂Cu2S具有三种不同的晶相:单斜相㊁六方相㊁立方相[30]㊂Cu2S的单斜相㊁六方相㊁立方相在特定温度与压力下会发生转变㊂温度大约370K时,Cu2S会从单斜相转变为六方相;温度大约700K时,六方相会转变为立方相[31-32]㊂Cao等[33]通过控制反应时间或反应物的添加量,合成了原子级超晶格结构的Cu2S㊂该超晶格结构中六方相的Cu2S和单斜相的Cu2S共存(见图3(a))㊂将其置于亚甲基蓝(MB)溶液中,在可见光下反应100min,其对MB的降解效率可达99.3%㊂此外,Telkhozhayeva等[34]通过化学气相沉积过程中的热退火,进行自上而下的剥落,大块硫化铜发生了从方辉铜矿(Cu9S5)到辉铜矿(Cu1.97S)和低辉铜矿(Cu2S)的相变㊂研究结果表明,Cu2S具有最佳的光催化降解活性(见图3(b))㊂
图3㊀(a)原子级超晶格结构的Cu2S HRTEM照片和相应的FFT电子衍射分析(左)和Cu2S纳米颗粒中的
层错诱导超晶格结构示意图(右)[33];(b)CuS相变过程示意图[34]
Fig.3㊀(a)HRTEM image and the corresponding FFT electron diffraction analysis of the atomic-level superlattice structures Cu2S nanoparticle(left)and a schematic illustration of the stacking faults induced superlattice structures in a single Cu2S nanoparticle(right)[33];(b)schematic diagram of CuS phase transition process[34]
1.3㊀半导体异质结构建
光吸收能力和光生电子与空穴复合速率是影响光催化效率的两个重要因素㊂异质结结构通常比两种单一组分的比表面积大,并且两种组分之间存在界面㊂因此,人们致力于开发异质结,目的是拓宽复合材料的光响应范围㊁延长光生载流子的寿命㊁降低反应的活化能垒,以提高光催化效率[35]㊂近年来,一些关于Cu基硫化物异质结的报道,如Cu2S/Ag2S/BiVO4[36]㊁CuO/Cu2S[23]㊁CuS-Bi2WO6[37]㊁CuInS2/CdS[38]等,均比单一组分的光催化剂性能好㊂
1.3.1㊀TypeⅡ型异质结构建
如果一种半导体与Cu基硫化物的价带和导带位置形成错位电势差,当两个半导体紧密接触,在电势差和内建电场的作用下,光生电子和空穴会转移到电势较低的导带和价带上,这就形成了TypeⅡ型异质结㊂TypeⅡ型异质结促进了光生电子与空穴的分离㊂
Zhang等[39]合成了MoS2/Cu2S光催化剂,其光学性能结果表明,MoS2与Cu2S之间形成Ⅱ型异质结, Cu2S导带上的光生电子向MoS2的导带迁移,在MoS2的表面上发生还原反应,MoS2价带上的空穴向Cu2S的价带迁移,在Cu2S的表面发生氧化反应(见图4(a))㊂Kaushik等[40]在ZnO纳米复合材料上负载了CuS,拓宽了其可见光吸收范围并降低光生电荷复合速率,该催化剂对MB的降解速率可达93%(见图4(b))㊂Yue 等[41]通过简单的共沉淀和煅烧方法合成了Cu2S修饰的Cu2O纳米复合材料㊂光学性质表征结果表明,Cu2S 的修饰可以有效地增强可见光吸收,抑制光生电子-空穴对的复合(见图4(c)㊁(d))㊂
1.3.2㊀Z-scheme型异质结
Tang等[42]合成了Z型异质结Cu2S/Bi2WO6复合催化剂,该材料对草甘膦具有较好的光催化降解性能(见图5(a))㊂当Cu基硫化物(Cu2S)的导带位置高于另一种半导体(Bi2WO6)的导带位置,且Bi2WO6的导带位置接近Cu2S的价带位置,这时Bi2WO6的导带电子会转移到Cu2S的价带,同时会与Cu2S价带上的空穴
398㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第52卷复合,Cu 2S 导带上的电子与吸附的氧气生成㊃O 2-㊂Bi 2WO 6价带中的空穴与OH -/H 2O 反应生成㊃OH㊂Z 型异质结有利于还原和氧化能力强的电子和空穴分离㊂在此基础之上,Zhang 等[43]采用双Z 型异质结Cu 2S /RGO /Bi 2WO 6光催化降解双酚A㊂Cu 2S /RGO /Bi 2WO 6在40min 内的光催化降解双酚A 的效率可达91.00%㊂Fakhravar 等[36]制备了双Z 型异质结Cu 2S /Ag 2S /BiVO 4㊂光电化学结果表明,Cu 2S/Ag 2S/BiVO 4@α-Al 2O 3具有良好的可见光吸收能力和光生电子空穴分离能力㊂猝灭实验表明,㊃OH 和㊃O 2-是光催化降解过程中的主要活性物种,这也证明了Cu 2S /Ag 2S /BiVO 4@α-Al 2O 3形成了Z 型异质结,图5(b)展示了其光催化机理

图4㊀(a)可见光照射下MoS 2/Cu 2S 复合材料Type-Ⅱ型异质结光催化机制[39];(b)光催化降解MB 曲线[40];
Cu 2O /Cu 2S-1/0㊁9/1和0/1纳米复合材料的瞬态光电流(c)和荧光光谱(d)[41]
Fig.4㊀(a)Diagram of Type-Ⅱband alignment mechanism of MoS 2/Cu 2S composites under visible light irradiation [39];(b)photocatalytic degradation curves of MB [40];transient photocurrent response (c)and PL spectra of Cu 2O /Cu 2S-1/0,9/1and 0/1nanocomposites (d)
[41]图5㊀(a)可见光照射下Cu 2S/Bi 2WO 6的Z 型异质结电荷转移机理[42];(b)Cu 2S/Ag 2S/BiVO 4@α-Al 2O 3的Z 型异质结光催化机理[36]
Fig.5㊀(a)Charge transfer mechanism of Z-scheme heterojunction Cu 2S /Bi 2WO 6under visible light irradiation [42];(b)photocatalystic mechanism of Z-scheme heterojunction Cu 2S /Ag 2S /BiVO 4@α-Al 2O 3[36]
㊀第3期余海燕等:铜基硫化物光催化改性研究进展399
㊀1.4㊀金属-半导体异质结构建
将金属纳米颗粒装饰在Cu 基硫化物表面,使得复合催化剂的带隙值位于金属和半导体的带隙值之间,有利于光生载流子的迁移与分离㊂此外,SPR 增强的电场有利于半导体对光的吸收㊂通过控制金属纳米颗粒的大小可以选择特定波长区域的SPR 吸收带[44]㊂金属与半导体的协同作用可以改善金属-半导体异质结结构的物理化学性能[45]㊂
Manzi 等[46]利用CdS 导带中光激发电子的还原电位,在水和有氧的条件下与Cu(Ⅱ)前驱体进行反应,
合成了Cu 2S /Pt 催化剂(见图6)㊂合成的Cu 2S 与Pt 之间形成肖特基势垒,Cu 2S 与Pt 之间的内建电场促使光生电子从Cu 2S 的导带转移至Pt 的表面,因此在Pt 的表面发生CO 2光催化还原反应㊂类似地,Kim 等[47]在Au 纳米粒子上原位生长Cu 2S 壳㊂Au 通过促进光生载流子的分离与传输,增强了光催化降解MB 和罗丹图6㊀光诱导阳离子交换的催化剂光催化CO 2
还原为CO 和CH 4[46]Fig.6㊀Light-induced cation exchange leading to photocatalytic CO 2reduction into CO and CH 4[46]
明B 的活性㊂此外,有些研究者将多种改性策略用于
提升催化剂的光催化活性㊂Zhang 等[48]通过光沉积的
方法,将Au 纳米粒子负载到CuInS 2/C 3N 4异质结上㊂通过调节Cu /In 的原子比可以调节复合催化剂的能带
结构㊂Au 的SPR 效应使光吸收范围扩大,从而进一步
提高光利用率㊂该催化剂在可见光下的析氢速率可达10.72mmol /(h㊃g)㊂2㊀铜基硫化物半导体光催化的应用2.1㊀光催化降解污染物铜基硫化物半导体被广泛应用于降解水中污染物,例如四环素[35]㊁罗丹明B [49]㊁MB [50]㊁甲基橙[51-52]等㊂光催化降解主要机理是催化剂的活性组分受到太阳能的激发产生强氧化空穴和还原电子,空穴和电子分别转化为羟基自由基(㊃OH)和超氧自由基(㊃O 2-)㊂这些自由基具有较强的氧化或还原能力,能有效地降解有机污染物[35]㊂张转芳等[35]采用水热法合成了CuS /GO 复合材料,其在可见光下对四环素和罗丹明B(RhB)的降解效率可达68%和95%㊂GO 作为电子存储器有效地抑制了电子与空穴的复合㊂刘果等[49]在低温下制备了CuS /TiO 2异质结,研究结果表明,CuS 的修饰减小了复合材料的带隙,增加了对可见光的吸收㊂CuS /TiO 2对罗丹明B 的光催化降解性能比单一CuS 或TiO 2高㊂此外,CuS 与MoS 2可以形成Type Ⅱ型异质结,有效应用于光催化类芬顿反应降解高浓度的罗丹明B [53]㊂表1比较了近年来铜基硫化复合物降解污染物的性能[13,18,40,43,54-63]㊂
表1㊀不同铜基硫化物的光催化降解性能
Table 1㊀Photocatalytic degradation of different copper based sulfides
Photocatalyst Organic pollutant Degradation efficiency Lighting condition Ref.Fe 3O 4@SiO 2@ZnO-CuS (10mg)MB (50mL,10mg /L)93%(16min)12W LED bulbs [40]Cu 2S /RGO /Bi 2WO 6(50mg)BPA (50mL,20mg /L)85.28%(40min)300W Xenon lamp,λȡ420nm [43]ZnFe 2O 4/Cu 2S (35mg)
MO (50mL,15ppm)94.3%(8min)60W LED bulbs [54]PANI /CuS (2mg)Sulfamethoxazole (50mL,5mg /L)75.13%(12.5h)500W Xenon lamp,λȡ420nm [55]BaSO 4-CuS (20mg)TC (100mL,20mg /L)96.8%(20min)300W Xenon lamp,λȡ420nm [56]g-C 3N 4/CuS (25mg)RhB (50mL,10mg /L)
100%(120min)300W Xenon lamp,λȡ365nm [57]Cu 2SnS 3/Ti 3+-TiO 2(0.5mg)TC (50mL,20mg /L)100%(90min)1000W halide lamp [13]Cu 2WS 4/BiOCl (20mg)Benzophenone-1(100mL,1mg /L)99%(40min)250W Xenon lamp,λȡ420nm [18]CuInS 2(20mg)Erythrosine (20mL,10mg /L)74.8%(120min)
150W Osram lamp [58]CuInS 2/Bi 2MoO 6(30mg)TC (50mL,15mg /L)
84.7%(120min)300W Xenon lamp,λȡ420nm [59]CuInS 2/NiAl-LDH (25mg)2,4-Dichlorophenol (50mL,10mg /L)
84.5%(120min)250W Xenon lamp,λȡ420nm [60]CuInS 2/ZnO (20mg)RhB (100mL,10mg /L)95.00%(60min)300W Xenon lamp [61]Au /CuS /CdS /TiO 2(10mg)Moxifloxacin (35mL,5mg /L)75.4%(60min)35W Xenon lamp [62]CuS /BiFeO 3(25mg)Alachlor (100mL,5mg /L)95%(60min)300W Xenon lamp,λȡ400nm [63]
400㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第52卷2.2㊀光解水产氢
近年来,随着社会经济的快速发展,环境污染和能源短缺已成为实现可持续发展的两大难题[64-67]㊂在 双碳 策略的驱动下,利用太阳能分解水制氢是未来获取氢能的有效手段之一㊂铜基硫化物由于具有合适的带隙,能有效地分离光生电子与空穴,将水还原为H2,实现光催化产氢㊂
铜基硫化物作为产氢助催化剂与其他半导体材料,如CdS[68]㊁g-C3N4[69]㊁ZnIn2S4[70]等复合,能够很好地提升催化剂的光催化产氢性能㊂CuS分别与1T㊁2H相的MoS2形成异质结,研究结果表明CuS-MoS2-1T具有良好的光催化产氢性能[71]㊂此外,Luo等[69]构建了CuInS2@C3N4异质结,光电测试结果表明CuInS2@C3N4的光响应能力约是g-C3N4的2倍,证明CuInS2@C3N4具有较好的光生电子与空穴分离能力,其光催化产氢速率是g-C3N4的近4倍㊂表2列出了近年来铜基硫化复合物的光催化产氢性能[12,17,69-80]㊂
表2㊀不同铜基硫化物的光催化产氢性能
Table2㊀Photocatalytic hydrogen production of different copper based sulfides
Photocatalyst Hydrogen production rate Lighting condition Sacrificial reagent Ref.
CuS/NiO52.3mmol/(h㊃g)300W Xenon lamp Lactic acid[72] Pt/Cu2SʒZIS-5287.3μmol/(h㊃g)300W Xenon lamp,λȡ420nm Na2SO3,Na2S[73]
Cu2S/TiO245.6mmol/(h㊃g)300W Xenon lamp,λȡ420nm Na2SO3,Na2S[74] Ni-MOFs-P/Cu2S3122.76μmol/(h㊃g)5W LED TEOA[75] CuS@ZnIn2S47910μmol/(h㊃g)300W Xenon lamp,λȡ400nm Na2SO3,Na2S[70] Cu2S/CdZnS5904μmol/(h㊃g)5W LED lamp Na2SO3,Na2S[76]
Cu3P/PCN 5.12μmol/(h㊃g)300W Xenon lamp,λȡ400nm TEOA[77] CuGaS2@Ru 3.38mmol/(h㊃g)300W Xenon lamp,λȡ420nm K2SO3,Na2S[12]
CuSbS22140μmol/(h㊃g)300W Xenon lamp,λȡ420nm TEOA[78] CoWO4/CuNi2S43754.3μmol/(h㊃g)5W LED lamp TEOA[17] CuInS2@C3N4373μmol/(h㊃g)350W Xenon lamp,λȡ420nm Na2SO3,Na2S[69] CuS-MoS2-1T9648.7μmol/(h㊃g)350W Xenon lamp Na2SO3[71] CuInS2/SiO2367.00μmol/(h㊃g)300W Xenon lamp,λȡ420nm Na2SO3,Na2S[79] CdSe/CuInS210610.37μmol/(h㊃g)300W Xenon lamp Na2SO3,Na2S[80]
2.3㊀光催化还原CO2
化石燃料的消耗导致CO2过度排放,光催化CO2还原能够将CO2转化为可再次利用的能源,如CO㊁CH4㊁CH3OH或C2H5OH等㊂光催化CO2还原的机理是催化剂在光照的条件下分别在价带和导带中产生具有强氧化性的空穴和强还原能力的电子㊂空穴将水氧化为氧气和质子,质子与导带中的电子将CO2还原为可再次利用的能源㊂相比于铜基硫化物光催化降解与产氢,目前铜基硫化物应用于光催化还原CO2的研究较少㊂Kar等[4]采用电化学法合成了Cu2S和CuS纳米阵列,该催化剂在模拟太阳光(AM1.5)下,CH4的最高生成速率可达46.21mol㊃m-2㊃h-1㊂Manzi等[46]构建了Cu2S/Pt金属-半导体异质结,其CO的生成速率为3.02mol/(h㊃g)㊂3㊀结语与展望
综上所述,通过形貌调控㊁晶相调控㊁半导体异质结构建㊁金属-半导体异质结构建等方法,促进光生电子-空穴对的分离,有利于光催化氧化还原反应的发生,进而达到提升铜基硫化物在光催化降解污染物㊁制氢和CO2还原性能的目的㊂虽然目前铜基硫化物在光催化领域的应用取得了一定的研究成果,但是其在制备高性能的催化剂方面仍然存在一定的挑战㊂针对铜基硫化物的研究现状及不足,提出了以下几点发展方向: 1)铜基硫化物的光催化性能有待提升,可以选择多种改性方式结合的策略㊂选择能带结构合适的半导体材料与铜基硫化物复合,同时结合金属与非金属掺杂㊁表面电场构建等策略提升铜基硫化物纳米复合材料的光催化性能㊂2)铜基硫化物既具有光催化降解性能,又具有产氢性能,目前已有少量文献报道,但还需更广泛和深入的研究㊂3)铜基硫化物在光催化反应过程中的机理还需深入研究,可以采用原位分析技术(如原位同步辐射㊁原位拉曼等)表征并进行理论计算,深入探索异质结复合材料光催化活性增强的机制㊂
㊀第3期余海燕等:铜基硫化物光催化改性研究进展401㊀
参考文献
[1]㊀SAYED M,YU J G,LIU G,et al.Non-noble plasmonic metal-based photocatalysts[J].Chemical Reviews,2022,122(11):10484-10537.
[2]㊀王启明,王㊀迪,孙洪全,等.制备方法对量子点敏化太阳能电池CuS纳米晶对电极微观结构和性能的影响[J].硅酸盐学报,2020,
48(3):434-441.
WANG Q M,WANG D,SUN H Q,et al.Microstructure and property of CuS nanocrystalline counter electrode in quantum dot sensitized cells[J].
Journal of the Chinese Ceramic Society,2020,48(3):434-441(in Chinese).
[3]㊀SANDS T D,WASHBURN J,GRONSKY R.High resolution observations of copper vacancy ordering in chalcocite(Cu2S)and the
transformation to djurleite(Cu1.97to1.94S)[J].Physica Status Solidi(a),1982,72(2):551-559.
[4]㊀KAR P,FARSINEZHAD S,ZHANG X J,et al.Anodic Cu2S and CuS nanorod and nanowall arrays:preparation,properties and application in
CO2photoreduction[J].Nanoscale,2014,6(23):14305-14318.
[5]㊀胡铭华,田㊀华,贺军辉.硫化铜空心纳米球的融硫修饰及其对水中Hg2+的高选择性吸附富集[J].无机化学学报,2020,36(4):
695-702.
HU M H,TIAN H,HE J H.Sulfur-infused modification and highly selective enrichment of Hg2+from aqueous solutions of CuS hollow nanospheres[J].Chinese Journal of Inorganic Chemistry,2020,36(4):695-702(in Chinese).
[6]㊀ROY P,SRIVASTAVA S K.Nanostructured copper sulfides:synthesis,properties and applications[J].CrystEngComm,2015,17(41):7801-
7815.
[7]㊀COMIN A,MANNA L.New materials for tunable plasmonic colloidal nanocrystals[J].Chemical Society Reviews,2014,43(11):3957-3975.
[8]㊀陈建金,齐东丽,刘㊀俊,等.射频磁控溅射制备高In组分Al1-x In x N薄膜及其光学性能[J].硅酸盐学报,2021,49(9):1970-1975.
CHEN J J,QI D L,LIU J,et al.Growth and optical properties of In-rich Al1-x In x N films by radio-frequency magnetron sputtering[J].Journal of the Chinese Ceramic Society,2021,49(9):1970-1975(in Chinese).
[9]㊀LU X Y,DENG F,LIU M,et al.The regulation on visible-light photocatalytic activity of CuInS2by different Cu/In molar ratio[J].Materials
Chemistry and Physics,2018,212:372-377.
[10]㊀NAKAMURA Y,ISO Y,ISOBE T.Bandgap-tuned CuInS2/ZnS core/shell quantum dots for a luminescent downshifting layer in a crystalline
silicon solar module[J].ACS Applied Nano Materials,2020,3(4):3417-3426.
[11]㊀HADKE S,HUANG M L,CHEN C,et al.Emerging chalcogenide thin films for solar energy harvesting devices[J].Chemical Reviews,2022,
122(11):10170-10265.
[12]㊀XU W,XIE Z Z,HAN W J,et al.Rational design of interfacial energy level matching for CuGaS2based photocatalysts over hydrogen evolution
reaction[J].International Journal of Hydrogen Energy,2022,47(23):11853-11862.
[13]㊀SHAHZAD K,TAHIR M B,SAGIR M,et al.Synthesis of novel p-n heterojunction Cu2SnS3/Ti3+-TiO2for the complete tetracycline degradation
in few minutes and photocatalytic activity under simulated solar irradiation[J].Ceramics International,2021,47(22):31337-31348. [14]㊀WANG J Y,BO T T,SHAO B Y,et al.Effect of S vacancy in Cu3SnS4on high selectivity and activity of photocatalytic CO2reduction[J].
Applied Catalysis B:Environmental,2021,297:120498.
[15]㊀MAICUS M,LOPEZ E,SANCHEZ M C,et al.Magnetostatic energy calculations in two-and three-dimensional arrays of ferromagnetic prisms[J].
IEEE Transactions on Magnetics,1998,34(3):601-607.
[16]㊀HASANVANDIAN F,ZEHTAB SALMASI M,MORADI M,et al.Enhanced spatially coupling heterojunction assembled from CuCo2S4yolk-shell
hollow sphere capsulated by Bi-modified TiO2for highly efficient CO2photoreduction[J].Chemical Engineering Journal,2022,444:136493.
[17]㊀MAO M,XU J,YU X B,et al.A Z-type heterojunction of bimetal sulfide CuNi2S4and CoWO4for catalytic hydrogen evolution[J].Dalton
Transactions,2020,49(19):6457-6470.
[18]㊀JIANG R R,LU G H,NKOOM M,et al.Mineralization and toxicity reduction of the benzophenone-1using2D/2D Cu2WS4/BiOCl Z-scheme
system:simultaneously improved visible-light absorption and charge transfer efficiency[J].Chemical Engineering Journal,2020,400:125913.
[19]㊀RAZA A,SHEN H L,HAIDRY A A.Novel Cu2ZnSnS4/Pt/g-C3N4heterojunction photocatalyst with straddling band configuration for enhanced
solar to fuel conversion[J].Applied Catalysis B:Environmental,2020,277:119239.
[20]㊀鲍二蓬,张硕卿,邹吉军,等.特殊形貌光催化剂的研究进展[J].化学工业与工程,2021,38(2):19-29.
BAO E P,ZHANG S Q,ZOU J J,et al.Research progress on special-morphology photocatalysts[J].Chemical Industry and Engineering,2021, 38(2):19-29(in Chinese).
[21]㊀EKIMOV A I,EFROS A L,ONUSHCHENKO A A.Quantum size effect in semiconductor microcrystals[J].Solid State Communications,1985,
56(11):921-924.
[22]㊀LI S,GE Z H,ZHANG B P,et al.Mechanochemically synthesized sub-5nm sized CuS quantum dots with high visible-light-driven photocatalytic
activity[J].Applied Surface Science,2016,384:272-278.
[23]㊀岳阳阳,韦㊀毅,邓明龙,等.构造CuO/Cu2S复合微纳米晶材料及其光催化性能研究[J].化工新型材料,2020,48(7):114-118+123.
YUE Y Y,WEI Y,DENG M L,et al.Study on preparation and photocatalytic property of CuO/Cu2S micro-nanocrystal composite[J].New
402㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第52卷Chemical Materials,2020,48(7):114-118+123(in Chinese).
[24]㊀ZHANG Y M,YANG X Y,WANG Y L,et al.Insight into l-cysteine-assisted growth of Cu2S nanoparticles on exfoliated MoS2nanosheets for
effective photoreduction removal of Cr(VI)[J].Applied Surface Science,2020,518:146191.
[25]㊀KAPURIA N,PATIL N N,RYAN K M,et al.Two-dimensional copper based colloidal nanocrystals:synthesis and applications[J].Nanoscale,
2022,14(8):2885-2914.
[26]㊀ZOU J,LIAO G D,JIANG J Z,et al.Controllable interface engineering of g-C3N4/CuS heterojunction photocatalysts[J].Social Science
Electronic Publishing,2019,32:178.
[27]㊀LIU Z M,LIU J,HUANG Y B,et al.From one-dimensional to two-dimensional wurtzite CuGaS2nanocrystals:non-injection synthesis and
photocatalytic evolution[J].Nanoscale,2018,11(1):158-169.
[28]㊀LI Y M,LIU J,LI X Y,et al.Evolution of hollow CuInS2nanododecahedrons via kirkendall effect driven by cation exchange for efficient solar
water splitting[J].ACS Applied Materials&Interfaces,2019,11(30):27170-27177.
[29]㊀DING Y,CHEN Y J,GUAN Z F,et al.Hierarchical CuS@ZnIn2S4hollow double-shelled p-n heterojunction octahedra decorated with fullerene
C60for remarkable selectivity and activity of CO2photoreduction into CH4[J].ACS Applied Materials&Interfaces,2022,14(6):7888-7899.
[30]㊀欧金花,胡波年,周唤宇,等.透明Cu2S@氮掺杂碳纳米片用于双面量子点敏化太阳能电池对电极的性能[J].硅酸盐学报,2020,48
(10):1581-1588.
OU J H,HU B N,ZHOU H Y,et al.Performance of transparent Cu2S@N-doped carbon film as counter electrode for bifacial quantum dot solar cells[J].Journal of the Chinese Ceramic Society,2020,48(10):1581-1588(in Chinese).
[31]㊀SANTAMARIA-PEREZ D,GARBARINO G,CHULIA-JORDAN R,et al.Pressure-induced phase transformations in mineral chalcocite,Cu2S,
under hydrostatic conditions[J].Journal of Alloys and Compounds,2014,610:645-650.
[32]㊀YANG X,JIANG S Q,ZHANG H C,et al.Pressure-induced structural phase transition and electrical properties of Cu2S[J].Journal of Alloys
and Compounds,2018,766:813-817.
[33]㊀CAO Q,CHE R C,CHEN N.Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven
photocatalytic activity[J].Applied Catalysis B:Environmental,2015,162:187-195.
[34]㊀TELKHOZHAYEVA M,KONAR R,LAVI R,et al.Phase-dependent photocatalytic activity of bulk and exfoliated defect-controlled flakes of
layered copper sulfides under simulated solar light[J].ACS Sustainable Chemistry&Engineering,2021,9(48):16103-16114. [35]㊀张转芳,唐㊀林,孙㊀立,等.CuS/GO纳米复合材料的制备及光催化降解性能[J].精细化工,2019,36(2):237-242.
ZHANG Z F,TANG L,SUN L,et al.Preparation of CuS/GO nanocomposite and its photocatalytic degradation activity[J].Fine Chemicals, 2019,36(2):237-242(in Chinese).
[36]㊀FAKHRAVAR S,FARHADIAN M,TANGESTANINEJAD S.Excellent performance of a novel dual Z-scheme Cu2S/Ag2S/BiVO4heterostructure
in metronidazole degradation in batch and continuous systems:immobilization of catalytic particles onα-Al2O3fiber[J].Applied Surface Science,2020,505:144599.
[37]㊀申久英,刘碧雯,赵宇翔,等.CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J].复合材料学报,2022,39(3):1163-1172.
SHEN J Y,LIU B W,ZHAO Y X,et al.Preparation and photocatalytic properties CuS-Bi2WO6/carbon nanofibers composites[J].Acta Materiae Compositae Sinica,2022,39(3):1163-1172(in Chinese).
[38]㊀李仁杰,李园利,李茜娅,等.CuInS2/CdS基掺杂纳米晶的晶体结构㊁光谱性质及性能调控研究[J].化学研究与应用,2021,33(4):
699-707.
LI R J,LI Y L,LI X Y,et al.Crystal structure,spectral properties and performance tailoring of CuInS2/CdS based doped colloidal nanocrystals[J].
Chemical Research and Application,2021,33(4):699-707(in Chinese).
[39]㊀ZHANG X J,GUO Y C,TIAN J,et al.Controllable growth of MoS2nanosheets on novel Cu2S snowflakes with high photocatalytic activity[J].
Applied Catalysis B:Environmental,2018,232:355-364.
[40]㊀KAUSHIK B,YADAV S,RANA P,et al.Precisely engineered type II ZnO-CuS based heterostructure:a visible light driven photocatalyst for
efficient mineralization of organic dyes[J].Applied Surface Science,2022,590:153053.
[41]㊀YUE Y M,ZHANG P X,WANG W,et al.Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap
Cu2S decorated Cu2O nanocomposites for efficient removal of organic pollutants[J].Journal of Hazardous Materials,2020,384:121302. [42]㊀TANG Q Y,CHEN W F,LV Y R,et al.Z-scheme hierarchical Cu2S/Bi2WO6composites for improved photocatalytic activity of glyphosate
degradation under visible light irradiation[J].Separation and Purification Technology,2020,236:116243.
[43]㊀ZHANG R,YU J R,ZHANG T Q,et al.A novel snowflake dual Z-scheme Cu2S/RGO/Bi2WO6photocatalyst for the degradation of bisphenol A
under visible light and its effect on crop growth[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,641:128526.
[44]㊀LEMOS DE SOUZA M,PEREIRA DOS SANTOS D,CORIO P.Localized surface plasmon resonance enhanced photocatalysis:an experimental
and theoretical mechanistic investigation[J].RSC Advances,2018,8(50):28753-28762.
[45]㊀张㊀轩,郑丽君.光解水制氢单相催化剂研究进展[J].化工进展,2021,40(S1):215-222.
ZHANG X,ZHENG L J.Process of single phase photocatalysts for hydrogen production[J].Chemical Industry and Engineering Progress,2021,
㊀第3期余海燕等:铜基硫化物光催化改性研究进展403㊀40(S1):215-222(in Chinese).
[46]㊀MANZI A,SIMON T,SONNLEITNER C,et al.Light-induced cation exchange for copper sulfide based CO2reduction[J].Journal of the
American Chemical Society,2015,137(44):14007-14010.
[47]㊀KIM Y,PARK K Y,JANG D M,et al.Synthesis of Au-Cu2S core-shell nanocrystals and their photocatalytic and electrocatalytic activity[J].
The Journal of Physical Chemistry C,2010,114(50):22141-22146.
[48]㊀ZHANG R,WANG H Y,LI Y Y,et al.Investigation on the photocatalytic hydrogen evolution properties of Z-scheme Au NPs/CuInS2/NCN-CN x
composite photocatalysts[J].ACS Sustainable Chemistry&Engineering,2021,9(21):7286-7297.
[49]㊀刘㊀果,吴维成,卢圆圆,等.低温下制备具有高光催化降解罗丹明B活性的CuS/TiO2复合材料[J].人工晶体学报,2016,45(6):
1567-1573.
LIU G,WU W C,LU Y Y,et al.Preparation of CuS/TiO2composites with high photocatalytic activity at low temperature for degradation of rodamine B[J].Journal of Synthetic Crystals,2016,45(6):1567-1573(in Chinese).
[50]㊀张克杰,李㊀宇,夏㊀源,等.核壳结构CdS/CuS纳米复合材料的制备及光催化性能[J].高等学校化学学报,2019,40(3):489-497.
ZHANG K J,LI Y,XIA Y,et al.Synthesis and photocatalytic performance of CdS/CuS core-shell nanocomposites[J].Chemical Journal of Chinese Universities,2019,40(3):489-497(in Chinese).
[51]㊀曾㊀斌,曾武军,刘万锋.通用法制备石墨烯/硫化铜微米花和石墨烯/硫化亚锡微米花及在水污染处理中的应用[J].人工晶体学报,
2019,48(3):494-498.
ZENG B,ZENG W J,LIU W F.Graphene/CuS microflower and graphene/SnS microflower prepared by general method and its application in the water treatment[J].Journal of Synthetic Crystals,2019,48(3):494-498(in Chinese).
[52]㊀曾㊀斌,曾武军,刘万锋.绿色合成石墨烯负载硫化铜/硫化镉多级纳米球及在水污染处理中的应用[J].人工晶体学报,2019,48
(10):1907-1911.
ZENG B,ZENG W J,LIU W F.Green synthesis of graphene-CuS/Cd S hierarchical nanospheres and its application in the water treatment[J].
Journal of Synthetic Crystals,2019,48(10):1907-1911(in Chinese).
[53]㊀赵晶晶,张正中,陈小浪,等.微波诱导组装CuS@MoS2核壳纳米管及其光催化类芬顿反应研究[J].化学学报,2020,78(9):
961-967.
ZHAO J J,ZHANG Z Z,CHEN Z L,et al.Microwave-induced assembly of CuS@MoS2core-shell nanotubes and study on their photocatalytic Fenton-like reactions[J].Acta Chimica Sinica,2020,78(9):961-967(in Chinese).
[54]㊀KAUSHIK B,RANA P,SOLANKI K,et al.In-situ synthesis of3-D hierarchical ZnFe2O4modified Cu2S snowflakes:exploring their
bifunctionality in selective photocatalytic reduction of nitroarenes and methyl orange degradation[J].Journal of Photochemistry and Photobiology A:Chemistry,2022,433:114165.
[55]㊀YANG J H,FANG L,GAN X H,et al.Efficient degradation of sulfamethoxazole under visible light irradiation by polyaniline/copper sulfide
composite photocatalyst[J].Environmental Science and Pollution Research,2022,29(24):36502-36511.
[56]㊀CHEN Q S,ZHOU H Q,WANG J C,et al.Activating earth-abundant insulator BaSO4for visible-light induced degradation of tetracycline[J].
Applied Catalysis B:Environmental,2022,307:121182.
[57]㊀ZOU J,LIAO G D,WANG H T,et al.Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts[J].Journal of Alloys
and Compounds,2022,911:165020.
[58]㊀JAFARINEJAD A,BASHIRI H,SALAVATI-NIASARI M.Sonochemical synthesis and characterization of CuInS2nanostructures using new sulfur
precursor and their application as photocatalyst for degradation of organic pollutants under simulated sunlight[J].Arabian Journal of Chemistry, 2022,15(8):104007.
[59]㊀GUO J R,WANG L P,WEI X,et al.Direct Z-scheme CuInS2/Bi2MoO6heterostructure for enhanced photocatalytic degradation of tetracycline
under visible light[J].Journal of Hazardous Materials,2021,415:125591.
[60]㊀WANG T,MEN Q Y,LIU X Q,et al.A staggered type of0D/2D CuInS2/NiAl-LDH heterojunction with enhanced photocatalytic performance
for the degradation of2,4-Dichlorophenol[J].Separation and Purification Technology,2022,294:121215.
[61]㊀LIU C Q,ZHANG B,LIU E Z,et al.Nano composite of CuInS2/ZnO with improved photocatalytic activity of degradation and hydrogen
production[J].Optical Materials,2020,109:110379.
[62]㊀CHEN Q H,ZHANG M M,LI J Y,et al.Construction of immobilized0D/1D heterostructure photocatalyst Au/CuS/CdS/TiO2NBs with
enhanced photocatalytic activity towards moxifloxacin degradation[J].Chemical Engineering Journal,2020,389:124476.
[63]㊀BHOI Y P,MISHRA B G.Photocatalytic degradation of alachlor using type-II CuS/BiFeO3heterojunctions as novel photocatalyst under visible
light irradiation[J].Chemical Engineering Journal,2018,344:391-401.
[64]㊀IERVOLINO G,VAIANO V,SANNINO D,et al.Hydrogen production from glucose degradation in water and wastewater treated by Ru-LaFeO3/
Fe2O3magnetic particles photocatalysis and heterogeneous photo-Fenton[J].International Journal of Hydrogen Energy,2018,43(4): 2184-2196.
[65]㊀WANG Y Z,CHEN D,QIN L S,et al.Hydrogenated ZnIn2S4microspheres:boosting photocatalytic hydrogen evolution by sulfur vacancy。

相关文档
最新文档